JP2011211097A - 半導体素子の製造方法 - Google Patents

半導体素子の製造方法 Download PDF

Info

Publication number
JP2011211097A
JP2011211097A JP2010079571A JP2010079571A JP2011211097A JP 2011211097 A JP2011211097 A JP 2011211097A JP 2010079571 A JP2010079571 A JP 2010079571A JP 2010079571 A JP2010079571 A JP 2010079571A JP 2011211097 A JP2011211097 A JP 2011211097A
Authority
JP
Japan
Prior art keywords
layer
gan
semiconductor
plane
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010079571A
Other languages
English (en)
Inventor
Naoki Hirao
直樹 平尾
Yuya Miura
祐哉 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010079571A priority Critical patent/JP2011211097A/ja
Priority to US13/053,416 priority patent/US8236671B2/en
Priority to CN201110073885.4A priority patent/CN102208496B/zh
Publication of JP2011211097A publication Critical patent/JP2011211097A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

【課題】高精度の厚さの窒化物半導体層を含む半導体素子の製造方法を提供する。
【解決手段】基板上に、+c面を主面とするGaNなどからなる半導体膜20Aを形成する工程と、その半導体膜20Aの+c面における一部領域を選択的に掘り下げ、溝29を形成する工程と、溝29を埋めるように金属層38を形成する工程と、金属層38が露出するまで半導体層20の−c面を全体に亘って研磨し、その厚さ方向の一部を除去する工程とを含む。これにより、溝29の深さに対応した所定の厚さを有する半導体層20が得られる。
【選択図】図5

Description

本発明は窒化ガリウム(GaN)からなる半導体層を含む半導体素子の製造方法に関する。
窒化ガリウム(GaN)などの窒化物半導体は、発光ダイオード(LED;Light Emitting Diode)等の半導体発光素子や、高温動作が可能な高速トランジスタ等の半導体素子への応用が実用化されている。
このような窒化物半導体を用いた半導体素子を製造するにあたっては、例えばサファイア基板などの母材基板の上に、窒化物半導体層を所定の厚さとなるように成長させたのち、その窒化物半導体層と母材基板との界面を剥離することにより、窒化物半導体基板を得るようにしている。例えば、窒化物半導体層と母材基板との界面に所定の強度のレーザ光を照射し、そのレーザ光の照射箇所を局所的に加熱し昇華させることで両者の剥離がなされる。このようなレーザ光照射による昇華作用を利用することにより、効率的な半導体素子の製造が可能となる。
ところが、このようなレーザ光による窒化物半導体層と母材基板との分離を行う際には、その過程において両者のうちレーザ光が照射されている部分のみが剥離し、他の部分が接合したままの状態が存在することとなる。このため、両者の接合部分に応力集中が生じ、窒化物半導体層の表面にクラック(亀裂)が生じてしまう可能性が高い。
このようなクラックが発生した表面層は、いわゆる損傷層(あるいはダメージ層)と呼ばれる。損傷層の存在は物理的な強度や特性の劣化を招くだけでなく、半導体素子の製造工程中における汚れや不純物などの付着を引き起こしかねない。また、半導体発光素子を製造する場合、窒化物半導体層には電極を取り付ける必要がある。その窒化物半導体層の表面層が損傷層である場合には電極の接触抵抗が増大する傾向にある。さらに、そのような電極の加工のために表面の損傷層に対してドライエッチング加工を行なう場合にはピラーと呼ばれる微細柱状構造物が発生するという問題が生ずる。
そこで、本出願人は、窒化物半導体層を成長させたのち、化学機械研磨(CMP;Chemical Mechanical Polishing)処理を行うことにより前述のような損傷層を除去する技術を既に開発している(例えば、特許文献1参照)。
特開2006−86388号公報
ところで、窒化物半導体層がGaN層である場合、そのCMP処理を行うと+c面よりも−c面においてより高い研磨レートが得られる。このため、GaN層における研磨容易面は−c面ということができる。しかしながら、GaN層の−c面に対してCMP処理を行うと、研磨レートが高いことも影響し、所定の位置でCMP処理を確実に停止することが困難であった。よって、所定の厚さのGaN層を得ることが困難であった。
本発明はかかる問題点に鑑みてなされたもので、その目的は、高精度の厚さを有する窒化物半導体層を含む半導体素子を効率的に作製するための、半導体素子の製造方法を提供することにある。
本発明の半導体素子の製造方法は、基板上に、+c面を主面とするGaN層を形成する工程と、そのGaN層の+c面における一部領域を選択的に掘り下げ、溝を形成する工程と、その溝を埋めるように金属層を形成する工程と、基板とGaN層とを分離したのち、金属層が露出するまでGaN層の−c面を全体に亘って研磨し、その厚さ方向の一部を除去する工程とを含むものである。ここで、III−V族化合物半導体であるGaN層の結晶構造は六方晶系のウルツァイト構造もしくはジンクブレンド構造であり、c軸と直交する平面で劈開したとき、+c軸側の面(+c面)はガリウム(Ga)原子が並んだ結晶面となり、−c軸側の面(−c面)は窒素(N)原子が並んだ結晶面となる。
本発明の半導体素子の製造方法では、GaN層の+c面における溝を埋めるように金属層を形成したのち、GaN層の−c面を全体に亘って研磨し、その厚さ方向の一部を除去するようにした。これにより、溝の底部に充填された金属層が露出した時点で研磨レートが大幅に低下するので、研磨処理を過剰に進行させずに停止することが容易となる。あるいは、電気抵抗の変化を検出しながら研磨処理を行い、金属層が露出した際の電気抵抗の急激な変化が生じた時点で研磨処理を停止するようにしてもよい。いずれにおいても、溝の深さに応じた厚さのGaN層が残存することとなる。
本発明の半導体素子の製造方法によれば、GaN層の+c面における溝を埋めるように金属層を形成したのち、GaN層における+c面と反対側の−c面の研磨を進行させるようにしたので、金属層が露出した時点で速やかに研磨を停止することができる。その結果、高精度の厚さを有するGaN層を容易かつ効率的に作製することができる。
本発明の一実施の形態としての発光ダイオードの断面図である。 図2に示した発光ダイオードの製造方法における一工程を表す断面図である。 図2に続く一工程を表す断面図である。 図3に続く一工程を表す断面図である。 図4に続く一工程を表す断面図である。 図5に続く一工程を表す断面図である。 図7に続く一工程を表す断面図である。 図7に続く一工程を表す断面図である。 本発明の実施例における、研磨時のGaN層の経時変化を表す特性図である。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[発光ダイオードの構成]
図1は、本発明の一実施の形態としての発光ダイオード(LED)の断面構造を表したものである。なお、図1は、模式的に表したものであり、実際の寸法、形状とは異なっている。
この発光ダイオードは、窒化物系III−V族化合物半導体を含む半導体層20と、p側電極30と、n側電極35とを備えたものである。半導体層20は、GaN層22、n型コンタクト層23、n型クラッド層24、活性層25、p型クラッド層26およびp型コンタクト層27をこの順に積層して構成される積層体である。p側電極30は、p型コンタクト層27の表面に設けられており、n側電極35は、GaN層22の表面に設けられている。p側電極30は、その一部が導電性の接続層33と接続されている。この接続層33は、外部電源からp側電極30に電流を供給するための経路となる。接続層33は、接着層41(ここでは図示せず)を介して支持基板50と接着されている。この発光ダイオードは、活性層25からの光が、n型コンタクト層23およびn型クラッド層24から構成されるn型半導体層を介して射出される形式(いわゆるボトム・エミッション型)の半導体発光素子である。
なお、ここでいう窒化物系III−V族化合物半導体とは、ガリウム(Ga)と窒素(N)とを含んだ窒化ガリウム系化合物のことであり、例えばGaN,AlGaN(窒化アルミニウム・ガリウム),あるいはAlGaInN(窒化アルミニウム・ガリウム・インジウム)などが挙げられる。これらは、必要に応じてSi(シリコン),Ge(ゲルマニウム),O(酸素),Se(セレン)などのIV族およびVI族元素からなるn型不純物、または、Mg(マグネシウム),Zn(亜鉛),C(炭素)などのII族およびIV族元素からなるp型不純物を含有している。
GaN層22は、例えば、厚さが0.5μmのアンドープのGaNにより構成され、サファイアのc面上にELO(Epitaxial Lateral Overgrowth)技術などの横方向結晶成長技術を用いて成長させることにより形成されるものである。n型コンタクト層23は、例えば、厚さが4.0μmのn型GaNにより、n型クラッド層24は、例えば、厚さが1.0μmのn型AlGaNによりそれぞれ構成される。
活性層25は、例えば、厚さが3.5nmのアンドープInx Ga1-x N井戸層(0<x<1)と厚さが7.0nmのアンドープIny Ga1-y N障壁層(0<y<1)とを一組としてこれを3組積層してなる多重量子井戸構造を有する。この活性層25はその面内方向の中心領域に、注入された電子と正孔の再結合により光子が発生する発光領域25Aを有する。p型クラッド層26は、例えば、厚さが0.5μmのp型AlGaNにより構成される。p型コンタクト層27は、例えば、厚さが0.1μmのp型GaNにより構成され、p型クラッド層26よりも高いp型不純物濃度を有する。
p型コンタクト層27の上面の一部には、光反射層31が設けられている。光反射層31は、無電界めっき法により形成されためっき膜である保護層32によって完全に覆われている。保護層32は、例えばニッケル(Ni),銅(Cu),パラジウム(Pd),金(Au)および錫(Sn)のうちの1種、またはそれらの元素を2種以上含む合金によって構成される。
なお、p型コンタクト層27と光反射層31との間には、例えば、パラジウム(Pd),ニッケル(Ni),白金(Pt)およびロジウム(Rh)などの遷移金属、あるいはそれらの遷移金属に銀(Ag)を添加した材料からなる金属層を挿入するようにしてもよい。この金属層を設けることにより、p型コンタクト層27と光反射層31との機械的な密着性を向上させたり、電気的な接触性を向上させたりするなどの効果が期待できる。
光反射層31は、金属的性質を有する物質、例えば銀(Ag)もしくはその合金により構成され、例えば30nm以上200nm以下の厚さを有している。銀合金としては、銀に、白金(Pt)、パラジウム(Pd)、金(Au)、銅(Cu)、インジウム(In)およびガリウム(Ga)の少なくとも1つの物質を添加して構成されたものが挙げられる。より具体的には、光反射層31は、銀98%,パラジウム1%,銅1%を含有する、いわゆるAPC合金である。
純銀および銀合金は、極めて大きな反射率を有する。これにより、光反射層31は活性層25の発光領域25Aから発せられる発光光のうち、射出窓であるGaN層22とは反対側に向かう光をGaN層22へ向けて反射する機能を発揮する。また、光反射層31は、金属層32A(後出)および保護層32と共にp側電極30を構成しており、接続層33と電気的に接続されている。そのため、光反射層31は、p型コンタクト層27との電気的な接触性が高いことも要求される。
光反射層31の上面には、金属層32Aが設けられている。この金属層32Aは、保護層32を無電界めっき法により形成する際のめっき下地層(めっきシード層)として機能するものである。金属層32Aの構成材料は、例えばニッケルまたはニッケル合金である。
なお、半導体層20およびp側電極30を覆うように金属層38が形成されている。但し、金属層38と半導体層20の端面との間には絶縁層37が設けられており、金属層38はp側電極30の保護層32のみと接している。
[発光ダイオードの製造方法]
次に、このような構成を備えた発光ダイオードの製造方法の一例について、図2から図8を参照しつつ詳細に説明する。図2〜図8は、いずれも、製造過程における発光ダイオードの断面構成を表すものである。ここでは、複数の発光ダイオードを一括形成する場合を例示して説明する。
最初に、図2(A)に示したように、基板10として例えばc面(面方位{0001})を主面とするサファイアを用意したのち、そのc面上に、バッファ層11を介して、GaNなどの窒化物系III−V族化合物半導体からなる半導体膜20Aを、例えば、MOCVD(Metal Organic Chemical Vapor Deposition :有機金属気相成長)法により全面に亘って形成する。バッファ層11もまた、MOCVD法によりサファイアのc面上において低温成長させることにより形成されるものであり、例えば、厚さが30nmのアンドープのGaNにより構成される。この際、GaN系化合物半導体の原料としては、例えば、トリメチルアルミニウム(TMA)、トリメチルガリウム(TMG)、トリメチルインジウム(TMIn)、アンモニア (NH3)を用い、ドナー不純物の原料としては、例えば、シラン(SiH4 )を用い、アクセプタ不純物の原料としては、例えばビス=メチルシクロペンタジエニルマグネシウム((CH3 5 4 2 Mg)あるいはビス=シクロペンタジエニルマグネシウム((C5 5 2 Mg)を用いる。
詳細には、まず基板10の表面(c面)を、例えばサーマルクリーニングにより清浄する。続いて、清浄された基板10上に、例えばMOCVD法により例えば500℃程度の温度でバッファ層11を低温成長させたのち、例えばELOなどの横方向結晶成長技術により例えば1000℃の成長温度でGaN層22を成長させる。
次に、GaN層22上に、例えばMOCVD法により、n型コンタクト層23,n型クラッド層24,活性層25,p型クラッド層26およびp型コンタクト層27を順次成長させる。ここで、インジウム(In)を含まない層であるn型コンタクト層23,n型クラッド層24,p型クラッド層26およびp型コンタクト層27の成長温度は例えば1000℃程度とし、インジウム(In)を含む層である活性層25の成長温度は例えば700℃以上800℃以下とする。このようにして半導体層20を結晶成長させたのち、例えば600℃以上700℃以下の温度で数十分間加熱して、p型クラッド層26およびp型コンタクト層27中のアクセプタ不純物を活性化させる。
次に、p型コンタクト層27上に、所定形状のレジストパターン40を形成する。こののち、図2(B)に示したように、このレジストパターン40をマスクとして、例えば塩素系ガスを用いたRIE(Reactive Ion Etching:反応性イオンエッチング) 法により、半導体膜20Aの露出部をバッファ層11に達するまで掘り下げることにより、溝29によって隔てられた複数の半導体層20を形成する。
次に、図3(A)に示したように、レジストパターン40を除去したのち、p型コンタクト層27上に、例えばスパッタ法により光反射層31と金属層32Aとを順に積層する。
金属層32Aを形成したのち、図3(B)に示したように、その金属層32Aをめっき下地層として利用した無電解めっき法により、光反射層31を完全に覆うように保護層32を形成する。これにより、p側電極30が得られる。このとき、p型コンタクト層27の上面(p型クラッド層26と反対側の面)、光反射層31の端面、および金属層32Aの表面が少なくともめっき浴に浸漬するようにする。そうすることで、金属層32Aの表面だけでなく、金属層32Aの周囲領域におけるp型コンタクト層27の表面においてもめっき成長が生じる。すなわち、ここでは、金属層32A、光反射層31およびp型コンタクト層27のうちの少なくとも1つを基点としてめっき成長が生じる。その結果、光反射層31および金属層32Aの周囲を覆う緻密かつ強固な保護層32が形成される。ここで、金属層32Aの厚さおよび構成材料の組成のうちの少なくとも一方を変化させることにより、金属層32Aおよび光反射層31の表面電位、および、それらの表面電位によって変化するp型クラッド層26の電位を調整することが望ましい。これにより、めっき浴中での電気化学的な反応性を制御し、めっき膜である保護層32の形成領域(広がり)を調整することができるからである。特に、p型クラッド層26の電位は、p型クラッド層26自体の内部抵抗の大きさに応じて、金属層32Aから遠ざかれば遠ざかるほどそのめっき浴中での自然電位に収束していく。この電位の勾配を制御することにより、保護層32の形成領域(広がり)の調整が可能である。なお、図3(A),3(B)では、光反射層31の上面全体を覆うように金属層32Aを設ける例を示したが、光反射層31の上面の一部のみを覆うように金属層32Aを形成してもよい。このように金属層32Aの表面積を変化させることによっても電気化学反応の反応性を制御することができるので、所望の平面形状および断面形状を有する保護層32が得られる。
そののち、半導体層20およびバッファ層11の露出部分を全て覆い、かつp側電極30の少なくとも一部を露出させるように、選択的に絶縁層37を形成する。ここでは、全体を覆うようにレジストを塗布することで絶縁膜を形成する。そののち、必要に応じて加熱処理(ベーキング)を行い、さらにフォトリソグラフィ技術を用いて保護層32の上面の一部が露出するように上記絶縁膜を選択的に除去することで絶縁層37を得る。
次に、図4(A)に示したように、全体を覆うように、例えば銅(Cu)などからなる金属層38を形成する。なお、金属層38としては、銅のほかにチタン(Ti),アルミニウム(Al),ニッケル(Ni),金(Au),クロム(Cr)などを用いることが可能である。
さらに、全体を覆うようにレジストなどを塗布することにより絶縁膜39Aを形成する。この際、隣り合う半導体層20を隔てる溝29を完全に充填し、かつ、自らの上面が平坦となるように十分な厚さで絶縁膜39Aを形成するとよい。そののち、必要に応じて加熱処理(ベーキング)を行ったのち、図4(B)に示したように、フォトリソグラフィ技術を用いて保護層32の上面の一部が露出するように絶縁膜39Aを選択的に除去し、絶縁層39を形成する。
続いて、例えば電気めっき法などにより銅(Cu)などからなるめっき膜を形成したのちパターニングすることにより、図5に示したようにp側電極30と接続された接続層33を形成する。こののち、接続層33を覆い、かつその周囲埋めるように接着層41を形成し、この接着層41を介してサファイアなどからなる支持基板50を接続層33に貼り合わせる。
こののち、基板10の裏面側から、例えばエキシマレーザを全面に亘って照射する。これによりレーザ・アブレーションを生じさせ、基板10とバッファ層11との界面を剥離させることにより両者を分離する。レーザ・アブレーションとは、レーザを照射されたバッファ層11の一部が局所的に加熱されて昇華することにより、基板10とバッファ層11とが剥離する現象である。この際、剥離したバッファ層11の表面には損傷層が生じることとなる。
このため、図6に示したように、バッファ層11の−c面を化学機械研磨(CMP;Chemical Mechanical Polishing)法により研磨することにより、損傷層を確実に除去する。そのまま積層方向にCMPを進行させるとバッファ層11は全て除去され、研磨面には半導体層20の底面、および溝29の底部に位置する絶縁層37が現れる。
さらにCMPを進行させると溝29の底面を埋める絶縁層37が除去され、図7に示したように、研磨面は金属層38に達することとなる。このように金属層38が露出すると、金属層38が露出する前と比較して研磨レートが大幅に低下する。よって、その変化を検出することにより所定の位置で精度良く研磨停止をすることができる。
CMP法は、具体的には、SiO2 (コロイダルシリカ)、CeO2 、Al23 、MnO2 等の研磨剤粒子を水酸化カリウム(KOH)等の電解質、過酸化水素等の酸化剤、硝酸、弗酸、バッファード弗酸等の無機酸、カルボン酸等の有機酸、無機または有機アルカリ剤、有機系分散剤や界面活性剤等の薬剤を含む水中に分散させて得られる分散体を研磨液(CMPスラリー)として用いて研磨するものであり、通常は、ポリウレタン等からなる研磨パッドを用いて研磨する。このようなCMP法によれば、通常の研磨と異なり、化学的作用と機械的な作用が協働して、加工面に加工変質層を作らずに表面を削ることができる。そのうえ、CMP法で用いる研磨剤粒子は、研磨面との接触界面を局部的に温度上昇させて化学反応を進行させたり、その反応生成物を研磨剤粒子の表面に吸着させて研磨を進行させたりすることができる。通常の研磨では、研磨剤粒子の機械的な作用により微小なマイクロクラック層が形成されて損傷部が発生してしまうおそれがある。これに対し、CMP法を用いるようにすれば、微小なマイクロクラック層を発生させることなく研磨を行うことができる。したがって、のちの工程で電極などを形成する場合に、研磨面における接触抵抗の増加を抑制するのに有利となる。
さらに、CMP処理により露出した半導体層20におけるp側電極30と反対側の面を覆うように、蒸着法などによりチタン(Ti)層、白金(Pt)層、および金(Au)層を順に積層したのち、所定形状となるようにパターニングすることによりn側電極35を形成する(図8参照)。
最後に、半導体層20ごとに分割するなどの所定の工程を経ることにより、本実施の形態の発光ダイオードが製造される。
このようにして製造された発光ダイオードでは、p側電極30およびn側電極35に電流が供給されると、電流が活性層25の発光領域25Aに注入され、これにより電子と正孔の再結合による発光が生じる。この発光領域25Aで生じた発光光のうち射出窓であるGaN層22へ直接向かう光L1は基板10を透過して外部に射出され、GaN層22とは反対側に向かう光L2,L3は光反射層31によってGaN層22へ向けて反射されたのち、半導体層20を透過して外部に射出される(図1参照)。
このとき、光L2,L3は極めて大きな反射率を有する銀(Ag)を含んで構成された光反射層31で反射されるので、光反射層31が銀(Ag)を含まない場合と比べて反射率や光抽出効率がより大きくなる。
[本実施の形態の作用・効果]
このように、本実施の形態では、バッファ層11の上に溝29によって隔てられたGaNなどからなる半導体層20を複数形成したのち、その溝29の底面を覆い、かつ、かつ半導体層20の+c面と接するように金属層38を形成した。そののち、半導体層20の−c面の側からCMPを行い、バッファ層11の全てと、半導体層20の厚さ方向の一部とを除去するようにした。これにより、溝29の底部に形成された金属層38が研磨面に露出した時点で研磨レートが大幅に低下するので、CMPを過剰に進行させずに所定位置で停止することが容易となる。
この現象については、以下のように考えられる。まず、半導体層20を構成するGaNは、内部分極などにより結晶場を有している。このため、金属層38が研磨面に露出する前の段階では、半導体層20におけるp側電極30と接する側の面(+c面)、ならびにそれと導通するp側電極30および金属層38は、比較的貴な電位を有することとなる。一方、半導体層20におけるp側電極30と反対側の面(研磨される側の面,すなわち−c面)は、比較的卑な電位を有することとなる。この状況では、+c面と−c面との表面電位に差が生じていることから、CMPに用いる研磨液による−c面での腐食が進行しやすい。ところが、CMPが進行して金属層38が研磨面に露出すると、CMP処理装置の研磨パッドと金属層38との接触により研磨面と金属層38とが等電位となる。すなわち、+c面と−c面との表面電位が等しくなり、研磨液による−c面での腐食が生じにくくなる。その結果、研磨レートが大幅に低下するものと考えられる。
また、本実施の形態では、電気抵抗の変化を検出しながら研磨処理を行い、金属層38が研磨面に露出した際の電気抵抗の急激な変化が生じた時点で研磨処理を確実に停止することもできる。いずれにおいても、溝29の深さに応じた厚さの半導体層20が残存することとなる。すなわち、半導体膜20Aの+c面を掘り下げて形成した溝29を埋めるように金属層38を形成したのち、半導体層20における−c面の研磨を進行させるようにしたので、金属層38が露出した時点で速やかに研磨を停止することができる。その結果、高精度の厚さを有する半導体層20を容易かつ効率的に作製することができる。その結果、所望の性能を発揮する高信頼性の発光ダイオードを実現することができる。
なお、本実施の形態では、溝29を形成するにあたり、半導体膜20Aの一部領域をバッファ層11に達するまで掘り下げるようにしたが、厚み方向の途中まで掘り下げ、半導体膜20Aの一部を残すようにしてもよい。その場合にも、溝29の底面を覆い、かつ半導体膜20Aの+c面と接するように金属層38を形成しておけば、半導体膜20Aの+c面側からの研磨を、金属層38が研磨面に露出した時点で正確に停止することができる。同時に、半導体膜20Aは、複数の半導体層20に分離されることとなる。
本発明の実施例について詳細に説明する。
(実施例)
実施例として、上記実施の形態の説明に従い、図1の発光ダイオードを作製した。ここでは、まず、基板10としてc面を主面とするサファイアを用意したのち、そのc面上に、MOCVD法により500℃で成長させ、厚さが30nmのアンドープのGaNからなるバッファ層11を形成した。そののち、バッファ層11の上に、アンドープのGaNをELO技術により1000℃で成長させ、厚さ0.5μmのGaN層22を形成した。さらに、GaN層22上に、MOCVD法を用いて、n型コンタクト層23,n型クラッド層24,活性層25,p型クラッド層26およびp型コンタクト層27を順次成長させ、半導体膜20Aを得た。ここで、n型コンタクト層23,n型クラッド層24,p型クラッド層26およびp型コンタクト層27の成長温度は1000℃程度とし、活性層25の成長温度は、緑色については720℃とし、青色については780℃とした。n型コンタクト層23は、厚さが4.0μmのn型GaNによって構成し、n型クラッド層24は、厚さが1.0μmのn型AlGaNによって構成した。活性層25は、厚さが3.5nmのアンドープInx Ga1-x N井戸層(0<x<1)と厚さが7.0nmのアンドープIny Ga1-y N障壁層(0<y<1)とを一組としてこれを3組積層してなる多重量子井戸構造とした。p型クラッド層26は、厚さが0.5μmのp型AlGaNにより構成し、p型コンタクト層27は、厚さが0.1μmの、p型クラッド層26よりも高いp型不純物濃度を有するp型GaNにより構成した。
次に、p側電極30を所定位置に形成したのち、RIE法を用いて半導体膜20Aを選択的にGaN層22に到達するまで掘り下げることで凸部28および溝29を形成した。そののち、全体を覆うように銅を用いて金属層38を形成した。ここで、溝29の深さを2.1μmとした。すなわち、半導体層20の厚さの目標値を2.1μmとした。
続いて、基板10をバッファ層11から剥離させたのち、バッファ層11およびGaN層の−c面を全体に亘って研磨した。その際、研磨時間(経過時間)と膜厚の変化との関係を調査した。その結果を図9に示す。図9では、横軸が研磨時間(分)を表し、縦軸が残存する半導体層20(半導体膜20A)の膜厚を表す。なお、研磨液としては、水酸化カリウム(KOH)を含むものを用い、研磨レートは0.07μm/min.とした。
(比較例)
金属層38の代わりに、ビスフェノールフルオレンエポキシアクリレート酸付加物およびプロピレングリコールモノメチルエーテルアセテート(PGMEA)を主成分とする樹脂(新日鐵化学株式会社製「VPA100」)によって凸部28および溝29を覆うようにしたことを除き、他は同様にして比較例としての発光ダイオードを作製した。
図9に示したように、実施例(□で表示した曲線)では、半導体層20の厚さが目標値とする2.1μmに近づくほど研磨レートが低下し、2.1μmに到達した時点(溝29を埋める金属層38が露出した時点)でほとんど研磨が進行しなくなった。これに対し、比較例(●で表示した曲線)では、半導体層20の厚さが目標値とする2.1μmに到達した時点(溝29を埋める樹脂が露出した時点)で研磨レートがやや低下するものの、その後も研磨は進行し続けてしまった。
このように、本実施例によれば、所望の厚さを有する半導体層(GaN層)が容易に作製可能であることが確認できた。
以上、実施の形態を挙げて本発明を説明したが、本発明は上記した実施の形態において説明した態様に限定されず、種々の変形が可能である。例えば、上記実施の形態では、半導体素子として発光ダイオードを例示して説明するようにしたが、本発明の半導体素子は、GaN層を有するトランジスタ等の他のデバイスをも含む概念である。
10…基板、11…バッファ層、20A…半導体膜、20…半導体層、22…GaN層、23…n型コンタクト層、24…n型クラッド層、25…活性層、25A…発光領域、26…p型クラッド層、27…p型コンタクト層、28…凸部、29…溝、30…p側電極、31…光反射層、32A…金属層、32…保護層、33…接続層、35…n側電極、36…n側バンプ部、37…絶縁層、38…金属層、39…絶縁層、40…レジストパターン、41…接着層、50…支持基板、L1,L2,L3…光。

Claims (6)

  1. 基板上に、+c面を主面とする窒化ガリウム(GaN)層を形成する工程と、
    前記GaN層の+c面における一部領域を選択的に掘り下げ、溝を形成する工程と、
    前記溝を埋めるように金属層を形成する工程と、
    前記基板と前記GaN層とを分離したのち、前記金属層が露出するまで前記GaN層の−c面を全体に亘って研磨し、その厚さ方向の一部を除去する工程と
    を含む半導体素子の製造方法。
  2. 前記金属層が露出した時点で前記GaN層の−c面の研磨を停止する請求項1記載の半導体素子の製造方法。
  3. 前記基板として+c面を主面とするサファイア基板を用い、
    前記サファイア基板の+c面上においてエピタキシャル成長させることにより前記GaN層を形成する
    請求項1記載の半導体素子の製造方法。
  4. 水酸化カリウム(KOH)を含む研磨液を用いた化学機械研磨(CMP)法により、前記GaN層の−c面を研磨する請求項1記載の半導体素子の製造方法。
  5. レーザアブレーション法により前記基板と前記GaN層との分離をおこなう請求項1記載の半導体素子の製造方法。
  6. 前記金属層を、銅(Cu)を用いて形成する請求項1記載の半導体素子の製造方法。
JP2010079571A 2010-03-30 2010-03-30 半導体素子の製造方法 Pending JP2011211097A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010079571A JP2011211097A (ja) 2010-03-30 2010-03-30 半導体素子の製造方法
US13/053,416 US8236671B2 (en) 2010-03-30 2011-03-22 Method of manufacturing semiconductor device
CN201110073885.4A CN102208496B (zh) 2010-03-30 2011-03-23 制造半导体器件的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010079571A JP2011211097A (ja) 2010-03-30 2010-03-30 半導体素子の製造方法

Publications (1)

Publication Number Publication Date
JP2011211097A true JP2011211097A (ja) 2011-10-20

Family

ID=44697236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010079571A Pending JP2011211097A (ja) 2010-03-30 2010-03-30 半導体素子の製造方法

Country Status (3)

Country Link
US (1) US8236671B2 (ja)
JP (1) JP2011211097A (ja)
CN (1) CN102208496B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122452A (ja) * 2013-12-25 2015-07-02 サンケン電気株式会社 発光装置
WO2015146069A1 (ja) * 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 発光ダイオード素子

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201121864D0 (en) 2011-12-20 2012-02-01 Mled Ltd Improving display contrast
AU2016102463A4 (en) * 2015-01-05 2021-06-03 E-Vision Smart Optics, Inc. Methods and systems for mold releases
CN114664972B (zh) * 2020-12-23 2024-04-16 比亚迪股份有限公司 一种硅片的抛光方法、太阳能电池片的制备方法及太阳能电池片
TWI843148B (zh) * 2021-07-15 2024-05-21 愛爾蘭商納維達斯半導體有限公司 用於矽上gan晶圓之單粒化的系統及方法
CN118404492A (zh) * 2024-07-01 2024-07-30 万华化学集团电子材料有限公司 一种抛光垫及其制备方法、应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI243488B (en) 2003-02-26 2005-11-11 Osram Opto Semiconductors Gmbh Electrical contact-area for optoelectronic semiconductor-chip and its production method
JP4729896B2 (ja) 2004-09-17 2011-07-20 ソニー株式会社 半導体薄膜の表面処理方法
JP2007081113A (ja) * 2005-09-14 2007-03-29 Sony Corp 半導体装置の製造方法
JP2007081312A (ja) * 2005-09-16 2007-03-29 Showa Denko Kk 窒化物系半導体発光素子の製造方法
US20080150085A1 (en) * 2006-12-22 2008-06-26 Armin Dadgar Gruppe-iii-nitrid-halbleiterbauelement mit hoch p-leitfahiger schicht
WO2009146583A1 (en) * 2008-06-02 2009-12-10 Hong Kong Applied Science and Technology Research Institute Co. Ltd Semiconductor wafer, semiconductor device and methods for manufacturing semiconductor wafer and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122452A (ja) * 2013-12-25 2015-07-02 サンケン電気株式会社 発光装置
WO2015146069A1 (ja) * 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 発光ダイオード素子

Also Published As

Publication number Publication date
CN102208496A (zh) 2011-10-05
US20110244667A1 (en) 2011-10-06
CN102208496B (zh) 2015-03-25
US8236671B2 (en) 2012-08-07

Similar Documents

Publication Publication Date Title
TWI431798B (zh) 具有導電性金屬基板之發光二極體
TWI479674B (zh) 半導體晶圓組件之處理方法
JP5286045B2 (ja) 半導体発光素子の製造方法
JP5343860B2 (ja) GaN系LED素子用電極およびGaN系LED素子ならびにそれらの製造方法。
US7465592B2 (en) Method of making vertical structure semiconductor devices including forming hard and soft copper layers
US20120273823A1 (en) Nitride semiconductor light emitting element and method of manufacturing the same
JP5281545B2 (ja) 半導体発光素子の製造方法
KR20090104931A (ko) 집적화된 대면적 수직구조 그룹 3족 질화물계 반도체발광다이오드 소자 및 제조 방법
US11335830B2 (en) Photo-emission semiconductor device and method of manufacturing same
JP2011211097A (ja) 半導体素子の製造方法
KR20110077707A (ko) 수직형 발광 다이오드 및 그 제조방법
JP5318353B2 (ja) GaN系LED素子および発光装置
KR101428066B1 (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법
JP2008141047A (ja) 窒化物半導体発光素子
KR101480551B1 (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법
JP5281536B2 (ja) 半導体発光装置の製造方法
US8778780B1 (en) Method for defining semiconductor devices
JP2020537360A (ja) 電子及び光電子デバイスのための窒化アルミニウム基板の電気化学的除去
JP2007042944A (ja) 窒化物半導体素子の製法
JP2013084750A (ja) GaN系発光ダイオードの製造方法
Yeh et al. InGaN flip-chip light-emitting diodes with embedded air voids as light-scattering layer
KR101124470B1 (ko) 반도체 발광소자
JP2009206461A (ja) 窒化物半導体発光素子とその製造方法
KR101084641B1 (ko) 3족 질화물 반도체 발광소자
TW202429681A (zh) 具有雜質吸除之電子裝置