JP2011210983A - Copper foil for printed wiring board which forms circuit with superior electrical transmission characteristic, and layered body using the same - Google Patents

Copper foil for printed wiring board which forms circuit with superior electrical transmission characteristic, and layered body using the same Download PDF

Info

Publication number
JP2011210983A
JP2011210983A JP2010077779A JP2010077779A JP2011210983A JP 2011210983 A JP2011210983 A JP 2011210983A JP 2010077779 A JP2010077779 A JP 2010077779A JP 2010077779 A JP2010077779 A JP 2010077779A JP 2011210983 A JP2011210983 A JP 2011210983A
Authority
JP
Japan
Prior art keywords
copper foil
printed wiring
copper
circuit
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010077779A
Other languages
Japanese (ja)
Other versions
JP5506497B2 (en
Inventor
Misato Chuganji
美里 中願寺
Hideki Furusawa
秀樹 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010077779A priority Critical patent/JP5506497B2/en
Publication of JP2011210983A publication Critical patent/JP2011210983A/en
Application granted granted Critical
Publication of JP5506497B2 publication Critical patent/JP5506497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper foil for a printed wiring board that has an excellent etching property during circuit pattern formation, is suitable to fine pitch fabrication, and has excellent electrical transmission characteristics, and to provide a layered body using the same.SOLUTION: The copper foil for the printed wiring board includes: a copper foil base material, at least one of surfaces of which has a surface roughness Ra of ≤0.1 μm; and a coating layer which covers at least a part of the surface of the copper foil base material and is composed of one or more kinds among Pt, Au and Pd.

Description

本発明は、プリント配線板用の銅箔及びそれを用いた積層体に関し、特にフレキシブルプリント配線板用の銅箔及びそれを用いた積層体に関する。   The present invention relates to a copper foil for a printed wiring board and a laminate using the same, and more particularly to a copper foil for a flexible printed wiring board and a laminate using the same.

プリント配線板はここ半世紀に亘って大きな進展を遂げ、今日ではほぼすべての電子機器に使用されるまでに至っている。近年の電子機器の小型化、高性能化ニーズの増大に伴い搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められている。   Printed wiring boards have made great progress over the last half century and are now used in almost all electronic devices. In recent years, with the increasing needs for miniaturization and higher performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and higher frequency than printed circuit boards. Response is required.

プリント配線板は、銅箔に絶縁基板を接着、もしくは絶縁基板上にNi合金等を蒸着させた後に電気めっきで銅層を形成させて積層体とした後に、エッチングにより銅箔または銅層面に導体パターンを形成するという工程を経て製造されるのが一般的である。そのため、プリント配線板用の銅箔または銅層には良好なエッチング性が要求される。   A printed wiring board is made by bonding an insulating substrate to a copper foil, or depositing a Ni alloy or the like on the insulating substrate and then forming a copper layer by electroplating to form a laminate, and then etching the conductor on the copper foil or copper layer surface. In general, it is manufactured through a process of forming a pattern. Therefore, good etching properties are required for the copper foil or copper layer for printed wiring boards.

銅箔は、樹脂との非接着面に表面処理を施さないと、エッチング後の銅箔回路の銅部分が、銅箔の表面から下に向かって、すなわち樹脂層に向かって、末広がりにエッチングされる(ダレを発生する)。通常は、回路側面の角度が小さい「ダレ」となり、特に大きな「ダレ」が発生した場合には、樹脂基板近傍で銅回路が短絡し、電送特性が悪い不良品となる場合もある。ここで、図3に、銅回路形成時に「ダレ」を生じて樹脂基板近傍で銅回路が短絡した例を示す回路表面の拡大写真を示す。   If the copper foil is not subjected to surface treatment on the non-adhesive surface with the resin, the copper portion of the copper foil circuit after etching is etched away from the surface of the copper foil, that is, toward the resin layer. (Sagging). Normally, the angle on the side of the circuit is “sagging”, and when a large “sagging” occurs, the copper circuit may be short-circuited near the resin substrate, resulting in a defective product with poor electrical transmission characteristics. Here, FIG. 3 shows an enlarged photograph of the circuit surface showing an example in which “sagging” occurs when the copper circuit is formed and the copper circuit is short-circuited in the vicinity of the resin substrate.

このような「ダレ」は極力小さくすることが電送特性の向上には必要であるが、このような末広がりのエッチング不良を防止するために、エッチング時間を延長して、エッチングをより多くして、この「ダレ」を減少させることも考えられる。しかし、この場合は、すでに所定の幅寸法に至っている箇所があると、そこがさらにエッチングされることになるので、その銅箔部分の回路幅がそれだけ狭くなり、回路設計上目的とする均一な線幅(回路幅)が得られず、特にその部分(細線化された部分)で発熱し、場合によっては断線するという問題が発生する。電子回路のファインパターン化がさらに進行する中で、現在もなお、このようなエッチング不良による問題がより強く現れ、回路形成上で、大きな問題となっている。   Such “sag” is necessary to improve the electrical transmission characteristics as much as possible, but in order to prevent such poor etching, the etching time is extended to increase the etching, It is possible to reduce this “sag”. However, in this case, if there is a portion that has already reached the predetermined width dimension, it will be further etched, so that the circuit width of the copper foil portion will be reduced accordingly, and the circuit design will be a uniform target. The line width (circuit width) cannot be obtained, and heat is generated particularly in that portion (thinned portion), and in some cases, there is a problem of disconnection. As the fine patterning of electronic circuits further progresses, the problem due to such etching failure still appears more strongly and still becomes a big problem in circuit formation.

これらを改善する方法として、エッチング面側の銅箔に銅よりもエッチング速度が遅い金属又は合金層を形成した表面処理が特許文献1に開示されている。この場合の金属又は合金としては、Ni、Co及びこれらの合金である。回路設計に際しては、レジスト塗布側、すなわち銅箔の表面からエッチング液が浸透するので、レジスト直下にエッチング速度が遅い金属又は合金層があれば、その近傍の銅箔部分のエッチングが抑制され、他の銅箔部分のエッチングが進行するので、「ダレ」が減少し、より均一な幅の回路が形成できるという効果をもたらすという、従来技術と比較して急峻な回路形成が可能となり、大きな進歩があったと言える。   As a method for improving these, Patent Document 1 discloses a surface treatment in which a metal or alloy layer having an etching rate slower than that of copper is formed on a copper foil on the etching surface side. In this case, the metal or alloy includes Ni, Co, and alloys thereof. In circuit design, the etching solution penetrates from the resist coating side, that is, from the surface of the copper foil, so if there is a metal or alloy layer with a slow etching rate directly under the resist, the etching of the copper foil portion in the vicinity is suppressed. Since the etching of the copper foil portion of the metal film progresses, the “sag” is reduced, and a circuit with a more uniform width can be formed. This makes it possible to form a sharper circuit compared to the prior art, and a great progress has been made. It can be said that there was.

また、特許文献2では、厚さ1000〜10000ÅのCu薄膜を形成し、該Cu薄膜の上に厚さ10〜300Åの銅よりもエッチング速度が遅いNi薄膜を形成している。   Further, in Patent Document 2, a Cu thin film having a thickness of 1000 to 10,000 mm is formed, and an Ni thin film having an etching rate slower than that of copper having a thickness of 10 to 300 mm is formed on the Cu thin film.

特開2002−176242号公報JP 2002-176242 A 特開2000−269619号公報JP 2000-269619 A

近年、回路の微細化、高密度化がさらに進行し、より急峻に傾斜する側面を有する回路が求められている。しかしながら、特許文献1に記載される技術ではこれらには対応できない。   In recent years, further miniaturization and higher density of circuits have progressed, and there is a demand for circuits having side surfaces that are more steeply inclined. However, the technique described in Patent Document 1 cannot cope with these.

また、特許文献1に記載される表面処理層はソフトエッチングにより除去する必要があること、さらには樹脂との非接着面表面処理銅箔は、積層体に加工される工程で、樹脂の貼付け等の高温処理が施される。これは表面処理層の酸化を引き起こし、結果として銅箔のエッチング性は劣化する。   Moreover, it is necessary to remove the surface treatment layer described in Patent Document 1 by soft etching, and furthermore, the non-adhesive surface-treated copper foil with the resin is a process of processing into a laminate, and the application of the resin High temperature treatment is applied. This causes oxidation of the surface treatment layer, and as a result, the etching property of the copper foil deteriorates.

前者については、エッチング除去の時間をなるべく短縮し、きれいに除去するためには、表面処理層の厚さを極力薄くすることが必要であること、また後者の場合には、熱を受けるために、下地の銅層が酸化され(変色するので、通称「ヤケ」と言われている。)、レジストの塗布性(均一性、密着性)の不良やエッチング時の界面酸化物の過剰エッチングなどにより、パターンエッチングでのエッチング性、ショート、回路パターンの幅の制御性などの不良が発生するという問題があるので、改良が必要か又は他の材料に置換することが要求されている。   As for the former, it is necessary to reduce the thickness of the surface treatment layer as much as possible in order to shorten the etching removal time as much as possible, and to remove it cleanly. In the latter case, in order to receive heat, The underlying copper layer is oxidized (discolored, so it is commonly called “yake”), due to poor resist coatability (uniformity, adhesion), excessive etching of interfacial oxide during etching, etc. There is a problem that defects such as etching property in pattern etching, short circuit, and controllability of the width of the circuit pattern occur, so that improvement is required or replacement with other materials is required.

そこで、本発明は、回路パターン形成の際のエッチング性が良好でファインピッチ化に適し、電送特性が良好なプリント配線板用銅箔及びそれを用いた積層体を提供することを課題とする。   Then, this invention makes it a subject to provide the copper foil for printed wiring boards with favorable etching property at the time of circuit pattern formation, suitable for fine pitch formation, and favorable electrical transmission characteristics, and a laminated body using the same.

本発明者らは、鋭意検討の結果、表面粗さが所定値以下に規定された銅箔の樹脂との非接着面側にPt、Au、Pdのいずれか1種以上で構成された被覆層を設けた場合には、回路側面の傾斜角が80°以上となるような回路を形勢できることを見出した。これにより、近年の回路の微細化、高密度化に十分対応する電送特性が良好な回路を形成することができる。   As a result of intensive studies, the present inventors have made a coating layer composed of at least one of Pt, Au, and Pd on the non-adhesion surface side of the copper foil resin whose surface roughness is prescribed to a predetermined value or less. It was found that a circuit having an inclination angle of 80 ° or more on the side surface of the circuit can be formed. As a result, it is possible to form a circuit with good electrical transmission characteristics that can sufficiently cope with the recent miniaturization and high density of circuits.

以上の知見を基礎として完成した本発明は一側面において、少なくとも一方の表面粗さRaが0.1μm以下である銅箔基材と、銅箔基材の表面の少なくとも一部を被覆し、且つ、Pt、Au及びPdのいずれか1種以上で構成された被覆層とを備えたプリント配線板用銅箔である。   The present invention completed on the basis of the above knowledge, in one aspect, at least one surface roughness Ra covers 0.1 μm or less of the copper foil base, and at least part of the surface of the copper foil base, and , Pt, Au, and a copper foil for printed wiring board provided with a coating layer composed of at least one of Pd.

本発明に係るプリント配線板用銅箔の一実施形態においては、銅箔の表面粗さRaが0.07μm以下である。   In one embodiment of the copper foil for printed wiring boards according to the present invention, the surface roughness Ra of the copper foil is 0.07 μm or less.

本発明に係るプリント配線板用銅箔の別の一実施形態においては、銅箔の表面粗さRaが0.03μm以下である。   In another embodiment of the copper foil for printed wiring boards according to the present invention, the surface roughness Ra of the copper foil is 0.03 μm or less.

本発明に係るプリント配線板用銅箔の更に別の一実施形態においては、被覆層のAuが1000μm/dm2以下、Ptが1050μm/dm2以下、Pdが600μm/dm2以下の付着量で存在する。 In still another embodiment of the copper foil for printed wiring board according to the present invention, the coating layer has an adhesion amount of Au of 1000 μm / dm 2 or less, Pt of 1050 μm / dm 2 or less, and Pd of 600 μm / dm 2 or less. Exists.

本発明に係るプリント配線板用銅箔の更に別の一実施形態においては、被覆層のAuが20〜400μm/dm2、Ptが20〜400μm/dm2、Pdが20〜250μm/dm2の付着量で存在する。 In still another embodiment of the copper foil for printed wiring boards according to the present invention, Au of the coating layer is 20 to 400 μm / dm 2 , Pt is 20 to 400 μm / dm 2 , and Pd is 20 to 250 μm / dm 2 . Present in the amount of adhesion.

本発明に係るプリント配線板用銅箔の更に別の一実施形態においては、被覆層のAuが50〜300μm/dm2、Ptが50〜300μm/dm2、Pdが30〜180μm/dm2の付着量で存在する。 In still another embodiment of the copper foil for printed wiring boards according to the present invention, Au of the coating layer is 50 to 300 μm / dm 2 , Pt is 50 to 300 μm / dm 2 , and Pd is 30 to 180 μm / dm 2 . Present in the amount of adhesion.

本発明に係るプリント配線板用銅箔の更に別の一実施形態においては、プリント配線板はフレキシブルプリント配線板である。   In another embodiment of the copper foil for printed wiring boards according to the present invention, the printed wiring board is a flexible printed wiring board.

本発明は更に別の一側面において、本発明に係る銅箔と樹脂基板との積層体である。   In another aspect of the present invention, there is provided a laminate of the copper foil and the resin substrate according to the present invention.

本発明は更に別の一側面において、銅層と樹脂基板との積層体であって、銅層の少なくとも一方の表面粗さRaが0.1μm以下であり、銅層の表面の少なくとも一部をAu、Pd、Ptのいずれか1種以上で被覆する本発明に係る被覆層を備えた積層体である。   According to still another aspect of the present invention, there is provided a laminate of a copper layer and a resin substrate, wherein at least one surface roughness Ra of the copper layer is 0.1 μm or less, and at least a part of the surface of the copper layer is formed. It is a laminate provided with a coating layer according to the present invention that is coated with one or more of Au, Pd, and Pt.

本発明に係る積層体の一実施形態においては、銅箔又は銅層に回路が形成されており、回路表面の幅をW1(μm)、回路底面の幅をW2(μm)、銅箔又は銅層の厚みをb(μm)、回路のピッチ幅をX(μm)、エッチングファクターE.F.をb/{(W2−W1)/2}としたとき、W2/X≧0.2のときE.F.≧1.5であり、且つ、W1及びW2の標準偏差が0.8以下である。   In one embodiment of the laminate according to the present invention, a circuit is formed on a copper foil or a copper layer, the width of the circuit surface is W1 (μm), the width of the circuit bottom is W2 (μm), the copper foil or copper The layer thickness is b (μm), the circuit pitch width is X (μm), the etching factor E.I. F. Is b / {(W2-W1) / 2}, and W2 / X ≧ 0.2, E.E. F. ≧ 1.5, and the standard deviation of W1 and W2 is 0.8 or less.

本発明に係る積層体の別の一実施形態においては、W2/X≧0.2のときE.F.≧2.5である。   In another embodiment of the laminate according to the present invention, when W2 / X ≧ 0.2, E.E. F. ≧ 2.5.

本発明に係る積層体の別の一実施形態においては、樹脂基板がポリイミド基板である。   In another embodiment of the laminate according to the present invention, the resin substrate is a polyimide substrate.

本発明は更に別の一側面において、本発明に係る積層体を材料としたプリント配線板である。   In yet another aspect, the present invention is a printed wiring board made of the laminate according to the present invention.

本発明によれば、回路パターン形成の際のエッチング性が良好でファインピッチ化に適し、電送特性が良好なプリント配線板用銅箔及びそれを用いた積層体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the copper foil for printed wiring boards with favorable etching property at the time of circuit pattern formation, suitable for fine pitch formation, and favorable electrical transmission characteristic, and a laminated body using the same can be provided.

回路パターンの一部の表面写真、当該部分における回路パターンの幅方向の横断面の模式図、及び、該模式図を用いたエッチングファクター(EF)の計算方法の概略である。It is the outline | summary of the calculation method of the etching factor (EF) using the surface photograph of a part of circuit pattern, the schematic diagram of the cross section of the width direction of the circuit pattern in the said part, and this schematic diagram. 実施例29により形成された回路およびその断面を示す写真である。40 is a photograph showing a circuit formed according to Example 29 and a cross section thereof. 銅回路形成時に「ダレ」を生じて樹脂基板近傍で銅回路が短絡した例を示す回路表面の拡大写真である。It is an enlarged photograph of the circuit surface which shows the example which produced "sagging" at the time of copper circuit formation, and the copper circuit short-circuited in the resin substrate vicinity.

(銅箔基材)
本発明に用いることのできる銅箔基材の形態に特に制限はないが、典型的には圧延銅箔や電解銅箔の形態で用いることができる。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。屈曲性が要求される用途には圧延銅箔を適用することが多い。
銅箔基材の材料としてはプリント配線板の導体パターンとして通常使用されるタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
(Copper foil base material)
Although there is no restriction | limiting in particular in the form of the copper foil base material which can be used for this invention, Typically, it can use with the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. Rolled copper foil is often used for applications that require flexibility.
In addition to high-purity copper such as tough pitch copper and oxygen-free copper, which are usually used as conductor patterns for printed wiring boards, for example, Sn-containing copper, Ag-containing copper, Cr, Zr or Mg are added as the copper foil base material. It is also possible to use a copper alloy such as a copper alloy, a Corson copper alloy to which Ni, Si and the like are added. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.

本発明に用いることのできる銅箔基材の厚さについても特に制限はなく、プリント配線板用に適した厚さに適宜調節すればよい。例えば、5〜100μm程度とすることができる。但し、ファインパターン形成を目的とする場合には30μm以下、好ましくは20μm以下であり、典型的には5〜20μm程度である。   There is no restriction | limiting in particular also about the thickness of the copper foil base material which can be used for this invention, What is necessary is just to adjust to the thickness suitable for printed wiring boards suitably. For example, it can be set to about 5 to 100 μm. However, for the purpose of forming a fine pattern, it is 30 μm or less, preferably 20 μm or less, and typically about 5 to 20 μm.

本発明に使用する銅箔基材は、少なくとも、銅箔基材の絶縁基板との接着面の反対側(回路形成予定面側)の表面において、表面粗さRaが0.1μm以下である。このため、ファインピッチや高周波電気特性が良好となる。また、表面粗さRaは好ましくは0.07μm以下であり、更に好ましくは0.03μm以下である。   The copper foil substrate used in the present invention has a surface roughness Ra of 0.1 μm or less on at least the surface of the copper foil substrate opposite to the bonding surface with the insulating substrate (circuit formation scheduled surface side). For this reason, fine pitch and high frequency electrical characteristics are improved. The surface roughness Ra is preferably 0.07 μm or less, and more preferably 0.03 μm or less.

(1)被覆層の構成
銅箔基材の上述の表面の少なくとも一部には、被覆層が形成されている。被覆層は、Pt、Au及びPdのいずれか1種以上で構成されている。
なお、銅箔基材の絶縁基板との接着面側には、絶縁基板との接着性向上のために、例えば銅箔基材表面から順に積層した中間層及び表層で構成された別の被覆層を形成してもよい。この場合、中間層は、例えば、Ni、Mo、Ti、Zn、Co、V、Sn、Mn、Nb、Ta及びCrの少なくともいずれか1種を含むのが好ましい。中間層は、金属の単体で構成されていてもよく、例えば、Ni、Mo、Ti、Zn、Co、Nb及びTaのいずれか1種で構成されるのが好ましい。中間層は、合金で構成されていてもよく、例えば、Ni、Zn、V、Sn、Mn、Cr及びCuの少なくともいずれか2種の合金で構成されるのが好ましい。
(1) Structure of coating layer The coating layer is formed in at least one part of the above-mentioned surface of a copper foil base material. The coating layer is composed of at least one of Pt, Au, and Pd.
In addition, on the adhesive surface side of the copper foil base material with the insulating substrate, for the purpose of improving the adhesiveness with the insulating substrate, for example, another coating layer composed of an intermediate layer and a surface layer laminated in order from the copper foil base material surface May be formed. In this case, the intermediate layer preferably contains at least one of Ni, Mo, Ti, Zn, Co, V, Sn, Mn, Nb, Ta, and Cr, for example. The intermediate layer may be composed of a single metal, for example, preferably composed of any one of Ni, Mo, Ti, Zn, Co, Nb, and Ta. The intermediate layer may be made of an alloy, for example, preferably made of an alloy of at least any two of Ni, Zn, V, Sn, Mn, Cr and Cu.

(2)被覆層の同定
被覆層の同定はXPS、若しくはAES等表面分析装置にて表層からアルゴンスパッタし、深さ方向の化学分析を行い、夫々の検出ピークの存在によって同定することができる。
(2) Identification of coating layer The coating layer can be identified by the presence of each detected peak by performing argon sputtering from the surface layer with a surface analyzer such as XPS or AES and performing chemical analysis in the depth direction.

(3)付着量
被覆層がAuで構成されている場合は、Auの付着量が1000μm/dm2以下であり、20〜400μg/dm2であるのがより好ましく、50〜300μg/dm2であるのが更により好ましい。被覆層がPdで構成されている場合は、Pdの付着量が600μg/dm2以下であり、20〜250μg/dm2であるのがより好ましく、30〜180μg/dm2であるのが更により好ましい。被覆層がPtで構成されている場合は、Ptの付着量が1050μg/dm2以下であり、20〜400μg/dm2であるのがより好ましく、50〜300μg/dm2であるのが更により好ましい。被覆層のAuの付着量が10μg/dm2未満、被覆層のPdの付着量が10μg/dm2未満、及び、被覆層のPtの付着量が10μg/dm2未満であると、それぞれ効果が十分でない。一方、被覆層のAuの付着量が1000μg/dm2、被覆層のPdの付着量が600μg/dm2、及び、被覆層のPtの付着量が1050μg/dm2を超えると、それぞれ初期エッチング性に悪影響を及ぼす。
(3) When the coating weight coating layer is composed of Au is a deposition amount of Au is 1000 .mu.m / dm 2 or less, more preferably from 20~400μg / dm 2, in 50~300μg / dm 2 Even more preferably. When the coating layer is made of Pd, the adhesion amount of Pd is 600 μg / dm 2 or less, more preferably 20 to 250 μg / dm 2 , and even more preferably 30 to 180 μg / dm 2. preferable. If the coating layer is composed of Pt is the amount of adhesion of Pt 1050μg / dm 2 or less, more preferably from 20~400μg / dm 2, further that a 50~300μg / dm 2 from preferable. When the Au adhesion amount of the coating layer is less than 10 μg / dm 2 , the Pd adhesion amount of the coating layer is less than 10 μg / dm 2 , and the Pt adhesion amount of the coating layer is less than 10 μg / dm 2 , the effect is obtained. not enough. On the other hand, the amount of adhered 1000 [mu] g / dm 2 of the Au coating layer, the coating layer of the adhesion amount 600 [mu] g / dm 2 of Pd, and, when the amount of deposition of Pt of the coating layer exceeds 1050μg / dm 2, respectively initial etch resistant Adversely affect.

(銅箔の製造方法)
本発明に係るプリント配線板用銅箔は、銅箔基材の表面処理により表面粗さRaを0.1μm以下とした後、スパッタリング法により形成することができる。すなわち、スパッタリング法によって銅箔基材の表面の少なくとも一部を、被覆層により被覆する。具体的には、スパッタリング法によって、銅箔のエッチング面側に銅よりもエッチングレートの低いPt、Au及びPdのいずれか1種以上からなる被覆層を形成する。被覆層は、スパッタリング法に限らず、例えば、電気めっき、無電解めっき等の湿式めっき法で形成してもよい。
(Manufacturing method of copper foil)
The copper foil for printed wiring boards according to the present invention can be formed by sputtering after the surface roughness Ra is 0.1 μm or less by the surface treatment of the copper foil base material. That is, at least a part of the surface of the copper foil base material is coated with the coating layer by a sputtering method. Specifically, a coating layer made of at least one of Pt, Au, and Pd having an etching rate lower than that of copper is formed on the etching surface side of the copper foil by a sputtering method. The coating layer is not limited to the sputtering method, and may be formed by, for example, a wet plating method such as electroplating or electroless plating.

(プリント配線板の製造方法)
本発明に係る銅箔を用いてプリント配線板(PWB)を常法に従って製造することができる。以下に、プリント配線板の製造方法の例を示す。
(Printed wiring board manufacturing method)
A printed wiring board (PWB) can be manufactured according to a conventional method using the copper foil according to the present invention. Below, the example of the manufacturing method of a printed wiring board is shown.

まず、銅箔と絶縁基板とを貼り合わせて積層体を製造する。銅箔が積層される絶縁基板はプリント配線板に適用可能な特性を有するものであれば特に制限を受けないが、例えば、リジッドPWB用に紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等を使用し、FPC用にポリエステルフィルムやポリイミドフィルム等を使用する事ができる。   First, a laminated body is manufactured by bonding a copper foil and an insulating substrate. The insulating substrate on which the copper foil is laminated is not particularly limited as long as it has characteristics applicable to a printed wiring board. For example, paper base phenolic resin, paper base epoxy resin, synthetic fiber for rigid PWB Use cloth base epoxy resin, glass cloth / paper composite base epoxy resin, glass cloth / glass non-woven composite base epoxy resin, glass cloth base epoxy resin, etc., use polyester film, polyimide film, etc. for FPC I can do things.

貼り合わせの方法は、リジッドPWB用の場合、ガラス布などの基材に樹脂を含浸させ、樹脂を半硬化状態まで硬化させたプリプレグを用意する。銅箔を被覆層の反対側の面からプリプレグに重ねて加熱加圧させることにより行うことができる。   In the case of the rigid PWB, a prepreg is prepared by impregnating a base material such as a glass cloth with a resin and curing the resin to a semi-cured state. It can be carried out by superposing a copper foil on the prepreg from the opposite surface of the coating layer and heating and pressing.

フレキシブルプリント配線板(FPC)用の場合、ポリイミドフィルム又はポリエステルフィルムと銅箔とをエポキシ系やアクリル系の接着剤を使って接着することができる(3層構造)。また、接着剤を使用しない方法(2層構造)としては、ポリイミドの前駆体であるポリイミドワニス(ポリアミック酸ワニス)を銅箔に塗布し、加熱することでイミド化するキャスティング法や、ポリイミドフィルム上に熱可塑性のポリイミドを塗布し、その上に銅箔を重ね合わせ、加熱加圧するラミネート法が挙げられる。キャスティング法においては、ポリイミドワニスを塗布する前に熱可塑性ポリイミド等のアンカーコート材を予め塗布しておくことも有効である。   In the case of a flexible printed wiring board (FPC), a polyimide film or a polyester film and a copper foil can be bonded using an epoxy or acrylic adhesive (three-layer structure). In addition, as a method without using an adhesive (two-layer structure), a polyimide varnish (polyamic acid varnish), which is a polyimide precursor, is applied to a copper foil and heated to form an imidization or on a polyimide film. There is a laminating method in which a thermoplastic polyimide is applied to the substrate, a copper foil is overlaid thereon, and heated and pressed. In the casting method, it is also effective to apply an anchor coating material such as thermoplastic polyimide in advance before applying the polyimide varnish.

本発明に係る積層体は各種のプリント配線板(PWB)に使用可能であり、特に制限されるものではないが、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)に適用可能であり、絶縁基板材料の種類の観点からはリジッドPWB、フレキシブルPWB(FPC)、リジッド・フレックスPWBに適用可能である。また、本発明に係る積層体は、銅箔を樹脂に貼り付けてなる上述のような銅張積層板に限定されず、樹脂上にスパッタリング、めっきで銅層を形成したメタライジング材であってもよい。   The laminate according to the present invention can be used for various printed wiring boards (PWB) and is not particularly limited. For example, from the viewpoint of the number of layers of the conductor pattern, the single-sided PWB, double-sided PWB, and multilayer PWB ( It is applicable to rigid PWB, flexible PWB (FPC), and rigid flex PWB from the viewpoint of the type of insulating substrate material. Further, the laminate according to the present invention is not limited to the above-described copper-clad laminate obtained by attaching a copper foil to a resin, and is a metalizing material in which a copper layer is formed on the resin by sputtering or plating. Also good.

上述のように作製した積層体の銅箔上に形成された被覆層表面にレジストを塗布し、マスクによりパターンを露光し、現像することによりレジストパターンを形成したものをエッチング液に浸漬する。このとき、エッチングを抑制するPt、Au及びPdのいずれか1種以上で構成された被覆層は、銅箔上のレジスト部分に近い位置にあり、レジスト側の銅箔のエッチングは、この被覆層近傍がエッチングされていく速度よりも速い速度で、被覆層から離れた部位の銅のエッチングが進行することにより、銅の回路パターンのエッチングがほぼ垂直に進行する。これにより銅の不必要部分を除去されて、次いでエッチングレジストを剥離・除去して回路パターンを露出することができる。
積層体に回路パターンを形成するために用いるエッチング液に対しては、被覆層のエッチング速度は、銅よりも十分に小さいためエッチングファクターを改善する効果を有する。エッチング液は、塩化第二銅水溶液、又は、塩化第二鉄水溶液等を用いることができる。また、銅箔基材と被覆層との間には、初期エッチング性に悪影響を及ぼさない限り、耐加熱変色性の観点から下地層を設けてもよい。下地層としては、ニッケル、ニッケル合金、コバルト、銀、マンガンが好ましい。下地層を設ける方法は、乾式法及び湿式法のいずれを用いても良い。
A resist is applied to the surface of the coating layer formed on the copper foil of the laminate produced as described above, the pattern is exposed with a mask, and the resist pattern formed by development is immersed in an etching solution. At this time, the coating layer composed of at least one of Pt, Au, and Pd that suppresses etching is located near the resist portion on the copper foil, and the etching of the copper foil on the resist side Etching of the copper circuit pattern proceeds substantially vertically by etching of the copper in a portion away from the coating layer at a speed faster than the speed at which the vicinity is etched. Thus, unnecessary portions of copper can be removed, and then the etching resist can be peeled and removed to expose the circuit pattern.
With respect to the etching solution used for forming the circuit pattern on the laminate, the etching rate of the coating layer is sufficiently smaller than that of copper, so that the etching factor is improved. As the etching solution, a cupric chloride aqueous solution, a ferric chloride aqueous solution, or the like can be used. In addition, a base layer may be provided between the copper foil base material and the coating layer from the viewpoint of heat discoloration resistance as long as the initial etching property is not adversely affected. As the underlayer, nickel, nickel alloy, cobalt, silver, and manganese are preferable. Either a dry method or a wet method may be used as a method for providing the base layer.

(プリント配線板の銅箔表面の回路形状)
上述のように被覆層側からエッチングされて形成されたプリント配線板の銅箔表面の回路は、その長尺状の2つの側面が絶縁基板上に垂直に形成されるのではなく、通常、銅箔の表面から下に向かって、すなわち樹脂層に向かって、末広がりに形成される(ダレの発生)。これにより、長尺状の2つの側面はそれぞれ絶縁基板表面に対して傾斜角θを有している。現在要求されている回路パターンの微細化(ファインピッチ化)のためには、回路のピッチをなるべく狭くすることが重要であるが、この傾斜角θが小さいと、それだけダレが大きくなり、回路のピッチが広くなってしまう。また、回路表面の幅W1(μm)および回路底面の幅W2(μm)は、通常、各回路及び回路内で完全に一定ではない。このようなW1及びW2のばらつきが大きいと、回路の品質に悪影響を及ぼすおそれがある。従って、被覆層側からエッチングされて形成されたプリント配線板の銅箔表面の回路は、長尺状の2つの側面がそれぞれ絶縁基板表面に対して65〜90°の傾斜角θを有するのが望ましい。また、銅箔又は銅層の厚みをb(μm)、回路のピッチ幅をX(μm)、エッチングファクターE.F.をb/{(W2−W1)/2}としたとき、W2/X≧0.2のときE.F.≧1.5且つ、W1及びW2の標準偏差が0.8以下であるのが望ましく、さらにW2/X≧0.2のときE.F.≧2.5であるのが望ましい。
(Circuit shape on the copper foil surface of the printed wiring board)
As described above, the circuit on the copper foil surface of the printed wiring board formed by etching from the coating layer side is not usually formed with two long side surfaces perpendicular to the insulating substrate. From the surface of the foil downward, that is, toward the resin layer, it is formed so as to spread toward the end (generation of sagging). Thus, the two long side surfaces each have an inclination angle θ with respect to the surface of the insulating substrate. It is important to reduce the circuit pitch as much as possible for miniaturization (fine pitch) of the circuit pattern that is currently required. However, if this inclination angle θ is small, the sagging increases accordingly, The pitch becomes wider. In addition, the width W1 (μm) of the circuit surface and the width W2 (μm) of the circuit bottom are usually not completely constant in each circuit and circuit. If such variations in W1 and W2 are large, the circuit quality may be adversely affected. Therefore, in the circuit on the copper foil surface of the printed wiring board formed by etching from the coating layer side, the two long side surfaces each have an inclination angle θ of 65 to 90 ° with respect to the insulating substrate surface. desirable. Further, the thickness of the copper foil or copper layer is b (μm), the pitch width of the circuit is X (μm), the etching factor E.I. F. Is b / {(W2-W1) / 2}, and W2 / X ≧ 0.2, E.E. F. It is desirable that the standard deviation of W1 and W2 is 0.8 or less, and when W2 / X ≧ 0.2, E.E. F. It is desirable that ≧ 2.5.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

(例1:実施例1〜32)
(銅箔への被覆層の形成)
実施例1〜32の銅箔基材として、表1に記載の厚さ及び表面粗さの各種銅箔又は銅層(圧延銅箔については日鉱金属製C1100、メタライジングCCLについては、日鉱金属製マキナス〔銅層側Ra0.01μm、タイコート層の金属付着量Ni1780μg/dm2、Cr360μg/dm2〕)を用意した。
(Example 1: Examples 1-32)
(Formation of coating layer on copper foil)
As the copper foil base materials of Examples 1 to 32, various copper foils or copper layers having the thickness and surface roughness shown in Table 1 (Nikko Metal C1100 for rolled copper foil, Nikko Metal for metalizing CCL) Macinas [copper layer side Ra 0.01 μm, tie coat layer metal adhesion amount Ni 1780 μg / dm 2 , Cr 360 μg / dm 2 ] was prepared.

銅箔の表面に付着している薄い酸化膜を逆スパッタにより取り除き、Au、Pt、Pdのターゲットを以下の装置及び条件でスパッタリングすることにより、被覆層を形成した。被覆層の厚さは成膜時間を調整することにより変化させた。スパッタリングに使用した各種金属の単体は純度が3Nのものを用いた。
・装置:バッチ式スパッタリング装置(アルバック社、型式MNS−6000)
・到達真空度:1.0×10-5Pa
・スパッタリング圧:0.2Pa
・逆スパッタ電力:100W
・スパッタリング電力:50W
・ターゲット:エッチング面用
Au−50wt%Pd、Pt−50wt%Pd
Au−50wt%Pt
Au、Pt、Pd、Ni、Zn、Co、Cr、Ag、Mn(3N)
Ni−20wt%Cr、Ni−7wt%V、Ni−20wt%Mn
Ni−20wt%Zn、Ni−20wt%Sn
・ターゲット:接着面用
Ni、Cr(3N)
・成膜速度:各ターゲットについて一定時間約0.2μm成膜し、3次元測定器で厚さを測定し、単位時間当たりのスパッタレートを算出した。
A thin oxide film adhering to the surface of the copper foil was removed by reverse sputtering, and a target of Au, Pt, and Pd was sputtered with the following apparatus and conditions to form a coating layer. The thickness of the coating layer was changed by adjusting the film formation time. The simple substance of the various metals used for sputtering used the thing of purity 3N.
-Equipment: Batch type sputtering equipment (ULVAC, Model MNS-6000)
・ Achieving vacuum: 1.0 × 10 −5 Pa
・ Sputtering pressure: 0.2 Pa
・ Reverse sputtering power: 100W
・ Sputtering power: 50W
・ Target: For etching surface Au-50wt% Pd, Pt-50wt% Pd
Au-50wt% Pt
Au, Pt, Pd, Ni, Zn, Co, Cr, Ag, Mn (3N)
Ni-20wt% Cr, Ni-7wt% V, Ni-20wt% Mn
Ni-20wt% Zn, Ni-20wt% Sn
・ Target: Ni, Cr (3N) for adhesive surface
Film formation rate: About 0.2 μm of film was formed for each target for a fixed time, the thickness was measured with a three-dimensional measuring device, and the sputtering rate per unit time was calculated.

被覆層を設けた銅箔に対して、被覆層と反対側の表面にあらかじめ付着している薄い酸化被膜を逆スパッタリングによって取り除き、Ni層及びCr層を順に成膜した。
上記手順で表面処理が施された銅箔に、接着剤付ポリイミドフィルム(ニッカン工業製、CISV1215)を7kgf/cm2の圧力、160℃で40分間の加熱プレスで積層させた。一部の銅箔は、窒素雰囲気下で350℃で2時間保持した後に、上記手順でポリイミドフィルムと積層させた。
The thin oxide film previously attached to the surface opposite to the coating layer was removed from the copper foil provided with the coating layer by reverse sputtering, and a Ni layer and a Cr layer were sequentially formed.
A polyimide film with an adhesive (manufactured by Nikkan Kogyo Co., Ltd., CISV1215) was laminated on the copper foil that had been subjected to the surface treatment by the above procedure by a hot press at a pressure of 7 kgf / cm 2 and 160 ° C. for 40 minutes. Some copper foil was laminated | stacked with the polyimide film in the said procedure, after hold | maintaining at 350 degreeC for 2 hours by nitrogen atmosphere.

<付着量の測定>
被覆層のAu,Pd、Ptの付着量測定は、王水で表面処理銅箔サンプルを溶解させ、その溶解液を希釈し、原子吸光分析法で行った。Ni、Ni系合金の付着量測定としては、50mm×50mmの銅箔表面の被膜をHNO3(2重量%)とHCl(5重量%)を混合した溶液に溶解し、その溶液中の金属濃度をICP発光分光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SFC−3100)にて定量し、単位面積当たりの金属量(μg/dm2)を算出した。
<Measurement of adhesion amount>
The adhesion amount of Au, Pd, and Pt in the coating layer was measured by atomic absorption spectrometry by dissolving the surface-treated copper foil sample with aqua regia, diluting the solution. To measure the adhesion amount of Ni and Ni-based alloys, a film of 50 mm × 50 mm copper foil surface was dissolved in a mixed solution of HNO 3 (2 wt%) and HCl (5 wt%), and the metal concentration in the solution Was quantified with an ICP emission spectroscopic analyzer (SFC-3100, manufactured by SII Nanotechnology Co., Ltd.), and the amount of metal (μg / dm 2 ) per unit area was calculated.

(エッチングによる回路形状)
銅箔のエッチング面をアセトンで脱脂し、硫酸(100g/L)に30秒浸漬させて、表面の汚れ及び酸化層を取り除いた。次に、スピンコーターを用いて液体レジスト(東京応化工業製、OFPR−800LB)をエッチング面に滴下し、乾燥させた。乾燥後のレジスト厚みは1μmとなるように調整した。その後、露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を以下の条件で実施した。
(Circuit shape by etching)
The etched surface of the copper foil was degreased with acetone and immersed in sulfuric acid (100 g / L) for 30 seconds to remove the surface contamination and the oxide layer. Next, a liquid resist (manufactured by Tokyo Ohka Kogyo Co., Ltd., OFPR-800LB) was dropped onto the etching surface using a spin coater and dried. The resist thickness after drying was adjusted to 1 μm. Thereafter, 10 circuits were printed by an exposure process, and an etching process for removing unnecessary portions of the copper foil was performed under the following conditions.

<エッチング条件>
・塩化第二鉄水溶液:(37wt%、ボーメ度:40°)
・液温:50°C
・スプレー圧:0.25MPa
(50μmピッチ回路形成)
・レジストL/S=33μm/17μm
・仕上がり回路ボトム(回路底部)幅:25μm
・エッチング時間:10〜130秒
(30μmピッチ回路形成)
・レジストL/S=25μm/5μm
・仕上がり回路ボトム(回路底部)幅:15μm
・エッチング時間:30〜200秒
・エッチング終点の確認:時間を変えてエッチングを数水準行い、光学顕微鏡で回路間に銅が残存しなくなるのを確認し、これをエッチング時間とした。
エッチング後、45℃のNaOH水溶液(100g/L)に1分間浸漬させてレジストを剥離した。
<Etching conditions>
-Ferric chloride aqueous solution: (37 wt%, Baume degree: 40 °)
・ Liquid temperature: 50 ° C
・ Spray pressure: 0.25 MPa
(50 μm pitch circuit formation)
・ Resist L / S = 33μm / 17μm
-Finished circuit bottom (circuit bottom) width: 25 μm
Etching time: 10 to 130 seconds (30 μm pitch circuit formation)
・ Resist L / S = 25μm / 5μm
-Finished circuit bottom (circuit bottom) width: 15 μm
-Etching time: 30 to 200 seconds-Confirmation of etching end point: Etching was carried out at several levels by changing the time, and it was confirmed that copper did not remain between the circuits with an optical microscope.
After the etching, the resist was peeled off by dipping in a 45 ° C. aqueous NaOH solution (100 g / L) for 1 minute.

<エッチングファクターの測定条件>
エッチングファクターは、末広がりにエッチングされた場合(ダレが発生した場合)、回路が垂直にエッチングされたと仮定した場合の、銅箔上面からの垂線と樹脂基板との交点からのダレの長さの距離をa(=(W2−W1)/2)とした場合において、このaと銅箔の厚さbとの比:b/aを示すものであり、この数値が大きいほど、傾斜角は大きくなり、エッチング残渣が残らず、ダレが小さくなることを意味する。図1に、回路パターンの一部の表面写真と、当該部分における回路パターンの幅方向の横断面の模式図と、該模式図を用いたエッチングファクターの計算方法の概略とを示す。このW1及びW2は、それぞれ回路上方からのSEM観察により測定し、エッチングファクター(EF=b/a)を算出した。このエッチングファクターを用いることにより、エッチング性の良否を簡単に判定できる。さらに、傾斜角θは上記手順で測定したa及び銅箔の厚さbを用いてアークタンジェントを計算することにより算出した。これらの測定範囲は回路長600μmで、12点のW1、W2、その標準偏差、及びエッチングファクター、傾斜角θの平均値を結果として採用した。
<Etching factor measurement conditions>
The etching factor is the distance of the length of sagging from the intersection of the vertical line from the upper surface of the copper foil and the resin substrate, assuming that the circuit is etched vertically when sagging at the end (when sagging occurs) Is a (= (W2-W1) / 2), the ratio of this a to the thickness b of the copper foil: b / a is shown. The larger this value, the greater the inclination angle. This means that no etching residue remains and sagging is reduced. FIG. 1 shows a surface photograph of a part of a circuit pattern, a schematic diagram of a cross section in the width direction of the circuit pattern at the part, and an outline of a method for calculating an etching factor using the schematic diagram. W1 and W2 were measured by SEM observation from above the circuit, and the etching factor (EF = b / a) was calculated. By using this etching factor, it is possible to easily determine whether the etching property is good or bad. Furthermore, the inclination angle θ was calculated by calculating the arc tangent using a and the thickness b of the copper foil measured in the above procedure. These measurement ranges had a circuit length of 600 μm, and adopted W1 and W2 at 12 points, their standard deviations, and average values of etching factors and inclination angles θ as results.

(例2:比較例33〜49)
比較例33〜49の銅箔基材として、表3に記載の厚さ及び表面粗さの各種銅箔又は銅層を準備し(圧延銅箔については日鉱金属製C1100、電解銅箔については日鉱金属製JTC箔、メタライジングCCLについては、日鉱金属製マキナス〔銅層側Ra0.01μm、タイコート層の金属付着量Ni1780μg/dm2、Cr360μg/dm2〕)、それぞれ例1の手順で表面処理を施し、エッチング処理を行った。
例1〜2の各測定結果を表1〜4に示す。
(Example 2: Comparative Examples 33 to 49)
As copper foil base materials of Comparative Examples 33 to 49, various copper foils or copper layers having the thicknesses and surface roughnesses shown in Table 3 were prepared (Nikko Metal C1100 for rolled copper foil and Nikko for electrolytic copper foil. For metal JTC foil and metalizing CCL, Nikko Metal's Macinas [copper layer side Ra 0.01 μm, tie coat layer metal adhesion amount Ni 1780 μg / dm 2 , Cr 360 μg / dm 2 ]), surface treatment according to the procedure of Example 1 respectively. Etching was performed.
Each measurement result of Examples 1-2 is shown in Tables 1-4.

<評価>
(実施例1〜32)
実施例1〜32では、50μmピッチ及び30μmピッチの両方のレジストパターンで、エッチングファクターが大きく且つバラツキもなく、矩形方に近い断面の回路を形成することができた。
図2に、実施例29により形成された回路の写真およびその断面写真を示す。
<Evaluation>
(Examples 1-32)
In Examples 1 to 32, it was possible to form a circuit having a cross section close to a rectangular shape with both a 50 μm pitch and a 30 μm pitch resist pattern with a large etching factor and no variation.
FIG. 2 shows a photograph of a circuit formed according to Example 29 and a cross-sectional photograph thereof.

(比較例33〜49)
比較例33及び46は、表面にPt、Pd、Auが付着しておらず、エッチングファクターが小さくなった。
比較例34〜39では、Pt、Pd、Auの付着量が多く、直線性が不良となった。
比較例40〜49では、用いた銅箔の表面粗さRaが大きく、直線性が不良となった。
(Comparative Examples 33-49)
In Comparative Examples 33 and 46, Pt, Pd, and Au were not attached to the surface, and the etching factor was small.
In Comparative Examples 34 to 39, the adhesion amount of Pt, Pd, and Au was large, and the linearity was poor.
In Comparative Examples 40 to 49, the copper foil used had a large surface roughness Ra, resulting in poor linearity.

Claims (13)

少なくとも一方の表面粗さRaが0.1μm以下である銅箔基材と、該銅箔基材の該表面の少なくとも一部を被覆し、且つ、Pt、Au及びPdのいずれか1種以上で構成された被覆層とを備えたプリント配線板用銅箔。   A copper foil base having at least one surface roughness Ra of 0.1 μm or less, and covering at least a part of the surface of the copper foil base, and at least one of Pt, Au, and Pd The copper foil for printed wiring boards provided with the comprised coating layer. 前記表面粗さRaが0.07μm以下である請求項1に記載のプリント配線板用銅箔。   The copper foil for printed wiring board according to claim 1, wherein the surface roughness Ra is 0.07 μm or less. 前記表面粗さRaが0.03μm以下である請求項2に記載のプリント配線板用銅箔。   The copper foil for printed wiring boards according to claim 2, wherein the surface roughness Ra is 0.03 μm or less. 前記被覆層のAuが1000μm/dm2以下、Ptが1050μm/dm2以下、Pdが600μm/dm2以下の付着量で存在する請求項1〜3のいずれかに記載のプリント配線板用銅箔。 The copper foil for printed wiring boards according to any one of claims 1 to 3, wherein Au of the coating layer is present in an amount of 1000 µm / dm 2 or less, Pt is 1050 µm / dm 2 or less, and Pd is 600 µm / dm 2 or less. . 前記被覆層のAuが20〜400μm/dm2、Ptが20〜400μm/dm2、Pdが20〜250μm/dm2の付着量で存在する請求項4に記載のプリント配線板用銅箔。 The copper foil for printed wiring boards according to claim 4, wherein Au of the coating layer is present in an amount of 20 to 400 μm / dm 2 , Pt is 20 to 400 μm / dm 2 , and Pd is 20 to 250 μm / dm 2 . 前記被覆層のAuが50〜300μm/dm2、Ptが50〜300μm/dm2、Pdが30〜180μm/dm2の付着量で存在する請求項5に記載のプリント配線板用銅箔。 The copper foil for printed wiring boards according to claim 5, wherein Au of the coating layer is present in an amount of 50 to 300 µm / dm 2 , Pt is 50 to 300 µm / dm 2 , and Pd is 30 to 180 µm / dm 2 . プリント配線板はフレキシブルプリント配線板である請求項1〜6のいずれかに記載のプリント配線板用銅箔。   A printed wiring board is a flexible printed wiring board, Copper foil for printed wiring boards in any one of Claims 1-6. 請求項1〜7のいずれかに記載の銅箔と樹脂基板との積層体。   The laminated body of the copper foil and resin substrate in any one of Claims 1-7. 銅層と樹脂基板との積層体であって、
前記銅層の少なくとも一方の表面粗さRaが0.1μm以下であり、該表面の少なくとも一部をAu,Pt、Pdのいずれか1種以上で覆する請求項1〜7のいずれかに記載の被覆層を備えた積層体。
A laminate of a copper layer and a resin substrate,
The surface roughness Ra of at least one of the copper layer is 0.1 μm or less, and at least a part of the surface is covered with at least one of Au, Pt, and Pd. The laminated body provided with the coating layer.
前記銅箔又は銅層に回路が形成されており、回路表面の幅をW1(μm)、回路底面の幅をW2(μm)、該銅箔又は銅層の厚みをb(μm)、回路のピッチ幅をX(μm)、エッチングファクターE.F.をb/{(W2−W1)/2}としたとき、W2/X≧0.2のときE.F.≧1.5であり、且つ、W1及びW2の標準偏差が0.8以下である請求項8又は9に記載の積層体。   A circuit is formed on the copper foil or copper layer, the width of the circuit surface is W1 (μm), the width of the circuit bottom is W2 (μm), the thickness of the copper foil or copper layer is b (μm), The pitch width is X (μm), the etching factor is E.E. F. Is b / {(W2-W1) / 2}, and W2 / X ≧ 0.2, E.E. F. The laminate according to claim 8 or 9, wherein ≧ 1.5 and the standard deviation of W1 and W2 is 0.8 or less. W2/X≧0.2のときE.F.≧2.5である請求項10に記載の積層体。   E. When W2 / X ≧ 0.2 F. The laminate according to claim 10, wherein ≧ 2.5. 前記樹脂基板がポリイミド基板である請求項8〜11のいずれかに記載の積層体。 The laminate according to any one of claims 8 to 11, wherein the resin substrate is a polyimide substrate. 請求項8〜12のいずれかに記載の積層体を材料としたプリント配線板。   The printed wiring board which used the laminated body in any one of Claims 8-12 as a material.
JP2010077779A 2010-03-30 2010-03-30 Copper foil for printed wiring board for forming circuit with excellent electric transmission characteristics and laminate using the same Expired - Fee Related JP5506497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077779A JP5506497B2 (en) 2010-03-30 2010-03-30 Copper foil for printed wiring board for forming circuit with excellent electric transmission characteristics and laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077779A JP5506497B2 (en) 2010-03-30 2010-03-30 Copper foil for printed wiring board for forming circuit with excellent electric transmission characteristics and laminate using the same

Publications (2)

Publication Number Publication Date
JP2011210983A true JP2011210983A (en) 2011-10-20
JP5506497B2 JP5506497B2 (en) 2014-05-28

Family

ID=44941728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077779A Expired - Fee Related JP5506497B2 (en) 2010-03-30 2010-03-30 Copper foil for printed wiring board for forming circuit with excellent electric transmission characteristics and laminate using the same

Country Status (1)

Country Link
JP (1) JP5506497B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049644A (en) * 2012-08-31 2014-03-17 Toppan Forms Co Ltd Antenna structure, data receiver/transmitter and communication apparatus

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265729A (en) * 1975-11-27 1977-05-31 Oike Kogyo Kk Production method of metallic foil
JPH06184785A (en) * 1991-06-28 1994-07-05 Gould Inc Metal foil improved in separation strength and method of producing said foil
JPH07314603A (en) * 1993-12-28 1995-12-05 Nippon Denkai Kk Copper clad laminate, multilayered printed circuit board and treatment of them
JPH08309918A (en) * 1995-05-22 1996-11-26 Nippon Denkai Kk Copper clad laminated sheet, printed circuit board using the same and production of them
JPH0974273A (en) * 1995-06-27 1997-03-18 Nippon Denkai Kk Copper plated laminated board for printed circuit board and adhesive agent used therefor
JP2002105699A (en) * 2000-10-02 2002-04-10 Nikko Materials Co Ltd Electrolytic copper foil for copper-clad laminate, and manufacturing method thereof
JP2002164390A (en) * 2000-11-28 2002-06-07 Hitachi Cable Ltd Tape carrier and its manufacturing method
JP2002359452A (en) * 2001-03-29 2002-12-13 Sumitomo Bakelite Co Ltd Method of manufacturing flexible circuit printed wiring board
JP2003127276A (en) * 2001-10-24 2003-05-08 Mitsui Chemicals Inc Polyimide metal foil laminated plate and its production method
JP2004019002A (en) * 2002-06-18 2004-01-22 Karentekku:Kk Apparatus for etching circuit
JP2004175839A (en) * 2002-11-25 2004-06-24 Toppan Printing Co Ltd Etchant for metallic material and etching method
WO2004084597A1 (en) * 2003-03-20 2004-09-30 Hitachi Chemical Co., Ltd. Material for multilayer printed circuit board with built-in capacitor, substrate for multilayer printed circuit board, multilayer printed circuit board and methods for producing those
JP2005101398A (en) * 2003-09-26 2005-04-14 Mitsui Mining & Smelting Co Ltd Copper foil with silver coating layer and copper clad laminate using it
JP2005285884A (en) * 2004-03-29 2005-10-13 Hitachi Cable Ltd Carrier tape for semiconductor device manufacturing method, and etching processing device therefor
JP2007136677A (en) * 2005-11-14 2007-06-07 Toyobo Co Ltd Metal coated polyimide film

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265729A (en) * 1975-11-27 1977-05-31 Oike Kogyo Kk Production method of metallic foil
JPH06184785A (en) * 1991-06-28 1994-07-05 Gould Inc Metal foil improved in separation strength and method of producing said foil
JPH07314603A (en) * 1993-12-28 1995-12-05 Nippon Denkai Kk Copper clad laminate, multilayered printed circuit board and treatment of them
JPH08309918A (en) * 1995-05-22 1996-11-26 Nippon Denkai Kk Copper clad laminated sheet, printed circuit board using the same and production of them
JPH0974273A (en) * 1995-06-27 1997-03-18 Nippon Denkai Kk Copper plated laminated board for printed circuit board and adhesive agent used therefor
JP2002105699A (en) * 2000-10-02 2002-04-10 Nikko Materials Co Ltd Electrolytic copper foil for copper-clad laminate, and manufacturing method thereof
JP2002164390A (en) * 2000-11-28 2002-06-07 Hitachi Cable Ltd Tape carrier and its manufacturing method
JP2002359452A (en) * 2001-03-29 2002-12-13 Sumitomo Bakelite Co Ltd Method of manufacturing flexible circuit printed wiring board
JP2003127276A (en) * 2001-10-24 2003-05-08 Mitsui Chemicals Inc Polyimide metal foil laminated plate and its production method
JP2004019002A (en) * 2002-06-18 2004-01-22 Karentekku:Kk Apparatus for etching circuit
JP2004175839A (en) * 2002-11-25 2004-06-24 Toppan Printing Co Ltd Etchant for metallic material and etching method
WO2004084597A1 (en) * 2003-03-20 2004-09-30 Hitachi Chemical Co., Ltd. Material for multilayer printed circuit board with built-in capacitor, substrate for multilayer printed circuit board, multilayer printed circuit board and methods for producing those
JP2005101398A (en) * 2003-09-26 2005-04-14 Mitsui Mining & Smelting Co Ltd Copper foil with silver coating layer and copper clad laminate using it
JP2005285884A (en) * 2004-03-29 2005-10-13 Hitachi Cable Ltd Carrier tape for semiconductor device manufacturing method, and etching processing device therefor
JP2007136677A (en) * 2005-11-14 2007-06-07 Toyobo Co Ltd Metal coated polyimide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049644A (en) * 2012-08-31 2014-03-17 Toppan Forms Co Ltd Antenna structure, data receiver/transmitter and communication apparatus

Also Published As

Publication number Publication date
JP5506497B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5346054B2 (en) Copper foil for printed wiring board and laminated board using the same
JP2011166018A (en) Copper foil for printed wiring board
JP5156784B2 (en) Copper foil for printed wiring board and laminate using the same
JP5232823B2 (en) Copper foil for printed wiring board excellent in etching property and laminate using the same
JP5702942B2 (en) Copper foil for printed wiring board excellent in etching property and laminate using the same
JP5506497B2 (en) Copper foil for printed wiring board for forming circuit with excellent electric transmission characteristics and laminate using the same
JP5542715B2 (en) Copper foil for printed wiring board, laminate and printed wiring board
JP5406099B2 (en) Copper foil and laminate for printed wiring board with excellent etching properties
WO2013027444A1 (en) Copper foil for printed wiring board and laminated body using same
JP5524671B2 (en) Copper foil and laminate for printed wiring board with excellent etching properties
JP2012146933A (en) Method of forming circuit board for printed wiring board
JP2011253856A (en) Forming method of circuit board for printed wiring board
JP5808114B2 (en) Copper foil for printed wiring board, laminate and printed wiring board
JP5079883B2 (en) Copper foil for printed wiring board excellent in heat discoloration resistance and etching property, and laminate using the same
JP2011253855A (en) Laminate of insulating substrate and copper layer or copper foil for printed wiring board, print circuit board, and method of forming circuit board
JP2013028823A (en) Laminate and printed wiring board using the same
JP5746876B2 (en) Method for forming an electronic circuit
JP2011207092A (en) Laminate of copper foil or copper layer and insulating substrate for printed wiring board, having excellent etching property
JP2011210986A (en) Copper foil for printed wiring board and layered body which have superior heating discoloration resistance and etching property
JP2011210984A (en) Copper foil for printed wiring board and layered body which have superior heating discoloration resistance and etching property
JP2011253854A (en) Formation method of circuit board for printed wiring board
JP2011210998A (en) Copper foil for printed wiring board and layered body which have superior heating discoloration resistance and etching property
JP2012033628A (en) Method of forming circuit board for printed wiring board
JP2011253851A (en) Formation method of circuit board for printed wiring board
JP2011210991A (en) Copper foil for printed wiring board and layered body which have superior etching property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

R150 Certificate of patent or registration of utility model

Ref document number: 5506497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees