JP2011210770A - Method of manufacturing semiconductor element - Google Patents

Method of manufacturing semiconductor element Download PDF

Info

Publication number
JP2011210770A
JP2011210770A JP2010074441A JP2010074441A JP2011210770A JP 2011210770 A JP2011210770 A JP 2011210770A JP 2010074441 A JP2010074441 A JP 2010074441A JP 2010074441 A JP2010074441 A JP 2010074441A JP 2011210770 A JP2011210770 A JP 2011210770A
Authority
JP
Japan
Prior art keywords
wafer
semiconductor
outer peripheral
semiconductor substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010074441A
Other languages
Japanese (ja)
Other versions
JP5499826B2 (en
Inventor
Hiroyuki Oi
浩之 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010074441A priority Critical patent/JP5499826B2/en
Publication of JP2011210770A publication Critical patent/JP2011210770A/en
Application granted granted Critical
Publication of JP5499826B2 publication Critical patent/JP5499826B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor element, which has small wafer warpage and wafer cracking even when using a wafer which already has a large diameter and is thinned when fed to wafer processes.SOLUTION: The method of manufacturing the semiconductor element includes forming an outer peripheral end 3 by reducing a thickness of an outer periphery of a semiconductor substrate 1, and bonding a metal 4, which has a larger coefficient of thermal expansion than the semiconductor substrate and also has a melting point higher than a maximum temperature applied in a heat treatment process among processes of forming a plurality of semiconductor elements 1, to the outer peripheral end 3 to such a film thickness that the semiconductor elements of the semiconductor substrate 1 do not protrude from both principal surface where the semiconductor elements are formed before a process of forming the plurality of semiconductor elements on the semiconductor substrate 1.

Description

本発明は、プロセスへの投入から大径の薄化ウエハを用いる半導体素子の製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor device using a thin wafer having a large diameter from the time of introduction into a process.

電力用半導体装置(以降、半導体装置は半導体素子と同義語とする)は、オン時にドリフト電流が流れる方向と、オフ時の逆バイアス電圧による空乏層が延びる方向とが同じであるので、縦型半導体装置とも言われる。たとえば、通常のプレーナーゲート型nチャネル縦型MOSFETの場合、高抵抗のnドリフト層の部分は、MOSFETがオン状態の時は縦方向にドリフト電流を流す領域として働き、オフ状態の時は空乏化して耐圧を保持する領域となる。この高抵抗のnドリフト層の電流経路を短くすることすなわち高抵抗nドリフト層を薄くすることは、ドリフト抵抗が低くなるのでMOSFETの実質的なオン抵抗を下げる効果に繋がる。このような低オン抵抗にする構成は、前述のMOSFETだけでなく、IGBT、バイポーラトランジスタ、ダイオード等の縦型半導体素子においても同様に成立することが知られている。縦型半導体装置の耐圧はドリフト層の厚さに関連するが、1800Vクラスの半導体装置でも仕上がり時のウエハ(半導体基板)の厚さは180μm、1200Vで120μm、600Vでは60μmあれば充分である。 In a power semiconductor device (hereinafter, a semiconductor device is synonymous with a semiconductor element), the direction in which a drift current flows when turned on is the same as the direction in which a depletion layer extends due to a reverse bias voltage when turned off. It is also called a semiconductor device. For example, in the case of a normal planar gate type n-channel vertical MOSFET, the portion of the high-resistance n drift layer functions as a region for flowing a drift current in the vertical direction when the MOSFET is in the on state, and is depleted in the off state. To be a region for holding a withstand voltage. The high resistance of the n - possible to shorten the current path of the drift layer or high-resistance n - thinning the drift layer, since the drift resistance decreases leading to the effect of lowering the substantial on-resistance of the MOSFET. It is known that such a low on-resistance configuration is similarly established not only in the above-described MOSFET but also in vertical semiconductor elements such as IGBTs, bipolar transistors, and diodes. The breakdown voltage of the vertical semiconductor device is related to the thickness of the drift layer. Even in the case of a 1800 V class semiconductor device, the thickness of the finished wafer (semiconductor substrate) is 180 μm, 120 V at 1200 V, and 60 μm at 600 V.

一方で、均一な抵抗分布が必要な電力用半導体装置ではウエハとしてFZ結晶を用いるのが一般的である。FZ結晶を用いるウエハは、CZ結晶を用いるものより大径化が難しいが、それでもチップのコストダウンのため大径化が進められている。しかし、たとえば、直径6インチ、8インチのFZ結晶のウエハで、たとえば、厚さ120μmのウエハを、ウエハプロセスに投入して所要の加工を加える際に、ウエハ割れを少なくしてプロセスフローを完了して半導体素子を製造することは困難を伴う。ウエハ割れが多いとプロセスを完了できないウエハ数が増加し、半導体装置の完成数量が大きく低下し易い。そこで、従来は通常、ウエハを厚く、たとえば、6インチ径で625μm厚、8インチ径で725μm厚程度に厚くしてウエハ強度を上げることにより、大径のウエハで製造プロセスに流した場合でもウエハ割れを少なくする方法が採られている。さらに、たとえば、製造プロセスの前半ではウエハの片面側のみの製造プロセスを進め、製造プロセス後半で裏面側の製造プロセスに移る前に、裏面側を研磨およびエッチングしてほぼ仕上げウエハ厚に近い厚さにまでウエハを薄化している。その後、薄化ウエハの裏面側に必要な製造プロセスを加えることにより、薄化ウエハの状態でのプロセス加工を少なくしてウエハ割れをできるだけ防止するようにしている。しかし、この方法は、厚い投入ウエハを製造プロセスの途中で厚さの三分の二以上を削り落として仕上がりウエハとしているので、結果的には高価な半導体基板材料を無駄に消費していることになる。   On the other hand, an FZ crystal is generally used as a wafer in a power semiconductor device that requires a uniform resistance distribution. Wafers using FZ crystals are more difficult to increase in diameter than those using CZ crystals, but are still increasing in diameter to reduce chip costs. However, for example, when a 6-inch or 8-inch diameter FZ crystal wafer, for example, a 120 μm thick wafer is put into the wafer process and subjected to the required processing, the wafer flow is reduced and the process flow is completed. Thus, it is difficult to manufacture a semiconductor device. If there are many wafer cracks, the number of wafers that cannot be completed increases, and the number of completed semiconductor devices tends to decrease greatly. Therefore, conventionally, the wafer is usually thick, for example, by increasing the wafer strength by increasing the thickness of the 6-inch diameter to about 625 μm and the 8-inch diameter to about 725 μm, so that even if the wafer is flowed through the manufacturing process, the wafer A method of reducing cracking is employed. Furthermore, for example, the manufacturing process proceeds only on one side of the wafer in the first half of the manufacturing process, and before moving to the manufacturing process on the back side in the second half of the manufacturing process, the back side is polished and etched to a thickness that is nearly the finished wafer thickness. The wafer has been thinned to Thereafter, a necessary manufacturing process is added to the back side of the thinned wafer, thereby reducing the number of process steps in the thinned wafer state and preventing the wafer from cracking as much as possible. However, this method uses a thick wafer as a finished wafer by scraping more than two thirds of the thickness during the manufacturing process, resulting in wasteful consumption of expensive semiconductor substrate materials. become.

この点に関して、プロセス投入を薄いウエハにした場合に問題となる薄いウエハの反りを低減するために、薄いウエハを平坦化した状態でウエハの外周部に樹脂をリング状に塗布し硬化させて、基板の補強部とする加工方法が知られている。またはウエハの外周部にリング状に厚い基板部分を残すように内周部のみを必要な厚さに削って薄くする薄化ウエハのように、厚い外周部が補強部となる加工方法も知られている(特許文献1)。また、薄化ウエハにガラス支持板を貼り付けて補強する貼り付けウエハでは、外周部の貼り付け界面からのウエハ割れや薬液の浸透を防ぐために、ウエハの外周端部に樹脂をリング状に付着させ密封した状態で硬化させる加工方法が知られている(特許文献2)。ウエハの外周部のみをリング状に厚くして補強部とすることにより、ウエハ強度を高くして製造プロセスに流す方法およびその治具に関することが記載されている文献が公開されている(特許文献3)。   In this regard, in order to reduce the warpage of the thin wafer, which becomes a problem when the process input is made into a thin wafer, the resin is applied in a ring shape on the outer periphery of the wafer in a flattened state and cured, A processing method for forming a reinforcing portion of a substrate is known. Also known is a processing method in which the thick outer peripheral part becomes a reinforcing part, such as a thinned wafer, in which only the inner peripheral part is cut to a required thickness so as to leave a thick substrate portion in a ring shape on the outer peripheral part of the wafer. (Patent Document 1). In addition, in the case of a bonded wafer that is reinforced by attaching a glass support plate to a thinned wafer, a resin is attached in a ring shape to the outer peripheral edge of the wafer in order to prevent wafer cracking and chemical penetration from the bonding interface at the outer peripheral portion. A processing method is known that cures in a sealed state (Patent Document 2). A document describing a method for increasing the wafer strength and flowing it to the manufacturing process by thickening only the outer peripheral portion of the wafer in a ring shape to be a reinforcing portion and a jig for the same is disclosed (Patent Literature). 3).

特開2001−257185号公報JP 2001-257185 A 特開2006−352078号公報JP 2006-352078 A 米国公開第2008−64184号公報US Publication No. 2008-64184

しかしながら、薄いウエハに生じ易いウエハ反りを防ぐために、ウエハの外周端部に樹脂をリング状に付着させ硬化させる方法は、リング状の硬化樹脂の厚さがウエハの厚さより厚いため、製造プロセスに流すためには、固有の搬送装置とプロセス装置に合わせるための治具などを必要とする。さらに、ウエハの外周端部に付着させるリング状の樹脂の温度特性により、プロセス条件が制約されるという問題がある。また、薄化ウエハにガラス支持板を接着剤で貼り付けて強度を高くしたウエハではやはり接着剤の耐熱温度がその後のプロセスで問題となる。さらに、貼り付けウエハの場合はウエハ外周部を密封しないとその後のプロセスに使用される薬液の性質によって、貼り付けウエハ内部に浸透してウエハの加工表面を劣化させる問題がある。いずれにしても、プロセス投入の最初から、プロセス完了した仕上がりウエハ厚に近い薄いウエハを投入しても、ウエハ割れがなくウエハプロセスを完了させることができれば、厚いウエハをプロセス後半で裏面研削して厚さの三分の二を捨てる半導体結晶材料費が減るので、コストダウンになることは明白である。   However, in order to prevent the wafer warpage that is likely to occur on a thin wafer, the method of attaching the resin to the outer peripheral edge of the wafer in a ring shape and curing it is difficult for the manufacturing process because the thickness of the ring-shaped cured resin is larger than the thickness of the wafer. In order to flow, a jig for adjusting to a specific transfer device and a process device is required. Furthermore, there is a problem that process conditions are limited by the temperature characteristics of the ring-shaped resin adhered to the outer peripheral edge of the wafer. Further, in a wafer in which a glass support plate is attached to a thinned wafer with an adhesive to increase the strength, the heat resistance temperature of the adhesive is also a problem in the subsequent processes. Furthermore, in the case of a bonded wafer, unless the outer periphery of the wafer is sealed, there is a problem that the processed surface of the wafer deteriorates by penetrating into the bonded wafer due to the nature of the chemical used in the subsequent processes. In any case, if the wafer process can be completed without a wafer crack even if a thin wafer close to the finished wafer thickness after the process is completed is introduced from the beginning of the process, the thick wafer is ground back in the latter half of the process. Obviously, the cost is reduced because the semiconductor crystal material cost for discarding two-thirds of the thickness is reduced.

本発明は、以上述べた点に鑑みてなされたものであり、プロセスへの投入から大径の薄化ウエハを用いる場合でも、ウエハ反りおよびウエハ割れの少ない半導体素子の製造方法を提供することである。   The present invention has been made in view of the above points, and provides a method for manufacturing a semiconductor element with less wafer warpage and wafer cracking even when a thin wafer having a large diameter is used from the time of introduction into the process. is there.

前記本発明の目的を達成するために、半導体基板に複数の半導体素子を形成する工程の前に、前記半導体基板の外周を減厚して外周端部を形成し、該外周端部に、前記半導体基板より熱膨張係数が大きく、かつ、前記半導体素子を形成する工程内の熱処理工程で印加されるもっとも高い温度より融点が高い金属を、前記半導体基板の前記半導体素子が形成される両主面より突出しない膜厚で被着する半導体素子の製造方法とする。   In order to achieve the object of the present invention, before the step of forming a plurality of semiconductor elements on a semiconductor substrate, the outer periphery of the semiconductor substrate is reduced in thickness to form an outer peripheral end, Both main surfaces of the semiconductor substrate on which the semiconductor element is formed are made of a metal having a thermal expansion coefficient larger than that of the semiconductor substrate and having a melting point higher than the highest temperature applied in the heat treatment step in the step of forming the semiconductor element. A method for manufacturing a semiconductor element to be deposited with a film thickness that does not protrude further is provided.

前記外周端部を備える同径の前記半導体基板を複数枚重ね、前記外周端部を露出させて前記主面方向から回転治具に挟み、少なくとも、前記半導体素子が形成される領域をマスクし、前記回転治具に挟む方向を軸に前記重ねた半導体基板を回転させ、前記外周端部に前記金属をスパッタリングによって成膜することが好ましい。また、前記スパッタリングが、複数枚重ねられた前記半導体基板の密着部に到達しない角度の傾斜スパッタリングにより、それぞれの主面側から順次行われることも好ましい。   A plurality of the semiconductor substrates having the same diameter provided with the outer peripheral end portion are stacked, the outer peripheral end portion is exposed and sandwiched by a rotating jig from the main surface direction, and at least a region where the semiconductor element is formed is masked, It is preferable that the stacked semiconductor substrate is rotated about a direction sandwiched between the rotating jigs, and the metal is deposited on the outer peripheral edge by sputtering. Moreover, it is also preferable that the sputtering is sequentially performed from the respective principal surface sides by inclined sputtering at an angle that does not reach the close contact portion of the stacked semiconductor substrates.

また、前記複数枚の半導体基板は、前記スパッタリング時に上昇する前記半導体基板の温度以上の耐熱性を有する緩衝膜を間に挟んで重ねられることが望ましい。   Preferably, the plurality of semiconductor substrates are stacked with a buffer film having heat resistance equal to or higher than the temperature of the semiconductor substrate rising during the sputtering.

さらに、前記半導体基板は、前記半導体素子を形成する工程でその厚さを減じる研削工程を必要としない厚さである半導体素子の製造方法とすることが望ましい。また、前記半導体基板の外周端部は、前記両主面からそれぞれ延長される傾斜部と両主面に垂直な端面からなる形状、または前記両主面からそれぞれ延長される曲率部からなる形状に加工されている半導体素子の製造方法とすることも好ましい。また、前記半導体素子をIGBTとすることができる。   Furthermore, it is desirable that the semiconductor substrate has a thickness that does not require a grinding step for reducing the thickness in the step of forming the semiconductor element. Further, the outer peripheral end of the semiconductor substrate has a shape composed of an inclined portion extending from each of the main surfaces and an end surface perpendicular to the main surfaces, or a shape formed of a curvature portion extending from each of the main surfaces. It is also preferable to adopt a method for manufacturing a processed semiconductor element. The semiconductor element can be an IGBT.

本発明によれば、プロセスへの投入から大径の薄化ウエハを用いる場合でも、ウエハ反りおよびウエハ割れの少ない半導体素子の製造方法を提供することができる。   According to the present invention, it is possible to provide a method for manufacturing a semiconductor element with less wafer warpage and wafer cracking even when a thin wafer having a large diameter is used from the start of the process.

本発明にかかるウエハ回転治具の断面図である。It is sectional drawing of the wafer rotation jig concerning this invention. 本発明にかかるウエハの外周端部を示す断面図である。It is sectional drawing which shows the outer peripheral edge part of the wafer concerning this invention. 本発明にかかるウエハの外周端部の処理方法を示す断面図である。It is sectional drawing which shows the processing method of the outer peripheral edge part of the wafer concerning this invention. 本発明にかかるIGBTを示す断面図である。It is sectional drawing which shows IGBT concerning this invention. 本発明にかかる異なるウエハ回転治具の断面図である。It is sectional drawing of the different wafer rotation jig concerning this invention. 本発明にかかるウエハの外周端部の処理方法を示す図である。It is a figure which shows the processing method of the outer peripheral edge part of the wafer concerning this invention.

以下、本発明の半導体素子の製造方法にかかる実施例について、図面を参照して詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。   Embodiments of the method for manufacturing a semiconductor device according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.

本発明の半導体素子の製造方法として、1200VクラスのIGBTの製造方法を採りあげて具体的に説明する。8インチ径で厚さ120μmのn型FZシリコンウエハ1(以下ウエハ1という)を用意する。この例の場合、投入ウエハ(半導体基板)としてのウエハ1の厚さは、ほぼ仕上がり時の厚さである。製造プロセスの中で、表面を研磨したり、エッチングを行なうことがあるが、研磨やエッチングで減じる厚さはごくわずか(例えば裏面にシリコン層を露出させる為に、研磨で5μm程度)である。つまり、製造プロセスの過程で、ウエハの厚さを大幅に減じる研削工程を必要としないため、材料の無駄が生じない。なお、製造するIGBTの耐圧など所望の特性に応じて投入するウエハの厚さを決定すればよい。   A manufacturing method of a 1200 V class IGBT will be specifically described as a manufacturing method of the semiconductor element of the present invention. An n-type FZ silicon wafer 1 (hereinafter referred to as wafer 1) having a diameter of 8 inches and a thickness of 120 μm is prepared. In the case of this example, the thickness of the wafer 1 as the input wafer (semiconductor substrate) is almost the thickness when finished. In the manufacturing process, the surface may be polished or etched, but the thickness reduced by polishing or etching is very small (for example, about 5 μm by polishing to expose the silicon layer on the back surface). In other words, in the course of the manufacturing process, there is no need for a grinding step that significantly reduces the thickness of the wafer, so no material is wasted. Note that the thickness of the wafer to be loaded may be determined according to desired characteristics such as the breakdown voltage of the IGBT to be manufactured.

図3はウエハ1の外周端部の処理方法を示す断面図である。図3(a)に示すように、ボンド剤中に固定砥粒を分散させた砥石からなる型治具2に、ウエハ1の外周端部3をウエハ1および型治具2を回転させながら押し当てて、ウエハ1の両主面側の外周端部3の表面にそれぞれ傾斜部3aを形成する。また、最も外側には、両主面に垂直な最外周端面3cを形成する。最外周面3cは、ウエハ1の外周端部処理前の該終端面を残してもよいし、やや鋭利になった端面を型治具2で研削して平坦な面としてもよい。   FIG. 3 is a cross-sectional view showing a method of processing the outer peripheral edge of the wafer 1. As shown in FIG. 3 (a), the outer peripheral edge 3 of the wafer 1 is pushed while rotating the wafer 1 and the mold jig 2 against the mold jig 2 made of a grindstone in which fixed abrasive grains are dispersed in a bonding agent. The inclined portions 3a are formed on the surfaces of the outer peripheral end portions 3 on the both main surface sides of the wafer 1, respectively. Moreover, the outermost peripheral end surface 3c perpendicular to both main surfaces is formed on the outermost side. The outermost peripheral surface 3c may leave the end surface of the wafer 1 before the processing of the outer peripheral end portion, or may be a flat surface by grinding the slightly sharpened end surface with the mold jig 2.

あるいは、図3(b)に示すように、型治具2にR形状を持たせて、これに倣って面取りを行なって、ウエハ1の両主面側の外周端部3に曲率部3bを形成してもよい。   Alternatively, as shown in FIG. 3 (b), the mold jig 2 is formed with an R shape and chamfered in accordance with this, and the curvature portion 3 b is formed at the outer peripheral end portions 3 on both main surfaces of the wafer 1. It may be formed.

このように、ウエハ1の両主面側の外周端部3に傾斜部3a、曲率部3bや最外周面3cを形成するのは、ウエハ1の最外周がナイフ状に鋭利にとがっていると、搬送時にウエハ1を保持するホルダを削り取ってしまったり、割れや欠けの発生を防ぐためである。   As described above, the inclined portion 3a, the curved portion 3b, and the outermost peripheral surface 3c are formed on the outer peripheral end portions 3 on the both main surface sides of the wafer 1 because the outermost outer periphery of the wafer 1 is sharpened like a knife. This is to prevent the holder that holds the wafer 1 from being scraped off during the transfer, and to prevent the occurrence of cracks and chips.

図6は、ウエハ1の外周端部3の処理方法を示す図である。上記のように外周端部3を形成した後、図6に示すように、研磨剤を含浸させた研磨布5を円筒状に備え、該円筒状の研磨布5に研磨剤を含浸させたものを回転させ、一方のウエハ1も回転させながら押し付け、かつ該研磨布5とウエハ1とを相対的に上下動させることによって、前記型治具2によって加工された面に残留する加工ダメージを除去することが望ましい。   FIG. 6 is a diagram illustrating a method of processing the outer peripheral edge 3 of the wafer 1. After forming the outer peripheral end 3 as described above, as shown in FIG. 6, a polishing cloth 5 impregnated with an abrasive is provided in a cylindrical shape, and the cylindrical polishing cloth 5 is impregnated with an abrasive. , While pressing one wafer 1 while rotating, and relatively moving the polishing cloth 5 and the wafer 1 up and down, the processing damage remaining on the surface processed by the mold jig 2 is removed. It is desirable to do.

次に、上記のように外周端部処理を終えたウエハ1を複数枚用意する。そして各ウエハ1間に図示しない耐熱フィルム(たとえば、耐熱エラストマーフィルム)をそれぞれ挟んで重ねる。この耐熱フィルムはウエハ同士の接触による擦れ、キズを防止する機能を有する。後の工程でウエハ1の表面を仕上げ研磨する工程を行なえば、この耐熱フィルム無しにウエハを重ねることもできる。   Next, a plurality of wafers 1 having been subjected to the outer edge processing as described above are prepared. A heat-resistant film (not shown) (for example, a heat-resistant elastomer film) is sandwiched between the wafers 1 and stacked. This heat-resistant film has a function of preventing rubbing and scratches due to contact between wafers. If a step of finishing and polishing the surface of the wafer 1 is performed in a later step, the wafers can be stacked without the heat-resistant film.

図1は、ウエハ回転治具30の断面図である。ここでは、ウエハ1に前記耐熱フィルムを挟んで重ねた状態でウエハ回転治具30に取り付ける。図1の例では、25枚のウエハ1を重ねて取り付けたが、スパッタ装置の能力に応じてより多くの枚数を重ねて処理してもよい。なお、ウエハ回転治具30は、スパッタ蒸着槽50内に配置されている。   FIG. 1 is a cross-sectional view of the wafer rotating jig 30. Here, the wafer 1 is attached to the wafer rotating jig 30 with the heat-resistant film sandwiched therebetween. In the example of FIG. 1, 25 wafers 1 are stacked and attached, but a larger number of wafers 1 may be stacked and processed according to the capability of the sputtering apparatus. The wafer rotating jig 30 is disposed in the sputter deposition tank 50.

耐熱フィルムを挟んで重ねあわされたウエハ1は、二枚のウエハ挟み円板31a−31bによって挟持される。   The wafer 1 stacked with the heat-resistant film interposed therebetween is sandwiched between two wafer sandwiching disks 31a-31b.

一方のウエハ挟み板31aの中心には、回転軸20bの一端が取り付けられ、回転軸20bの他端はスパッタ蒸着槽50の一方の壁面にベアリング33aとベアリングマウント34aを介して保持されている。他方のウエハ挟み板31bの中心には、回転軸20cの一端が取り付けられ、回転軸20cの他端は、スパッタ蒸着槽50の他方の壁面にベアリング33bとベアリングマウント34bを介して保持されている。この他方の側の回転軸20cは、前記他方のウエハ挟み板31bとベアリング33bとの間に軸の長さ調整ネジ36とストッパー35を備えている。   One end of the rotating shaft 20b is attached to the center of one wafer sandwiching plate 31a, and the other end of the rotating shaft 20b is held on one wall surface of the sputter deposition tank 50 via a bearing 33a and a bearing mount 34a. One end of a rotating shaft 20c is attached to the center of the other wafer sandwiching plate 31b, and the other end of the rotating shaft 20c is held on the other wall surface of the sputter deposition tank 50 via a bearing 33b and a bearing mount 34b. . The other rotating shaft 20c includes a shaft length adjusting screw 36 and a stopper 35 between the other wafer sandwiching plate 31b and the bearing 33b.

積層されたウエハ1は、軸の長さ調整ネジ36の締め付け力によって二枚のウエハ挟み円板31a−31bの間に保持される。   The stacked wafers 1 are held between the two wafer sandwiching disks 31a-31b by the tightening force of the shaft length adjusting screw 36.

ここで、ウエハ挟み円板31a,31bが、ウエハ1に比べて小さすぎると、積層されたウエハ1を局所的に押さえることになり、ウエハ1に不要な応力を印加することになる。そこで、ウエハ挟み円板31a,31bは、ウエハ1の押圧面をできるだけ大きく(広く)して、ウエハ1を面で押圧することが望ましい。   Here, if the wafer sandwiching disks 31 a and 31 b are too small compared to the wafer 1, the stacked wafers 1 are locally pressed, and unnecessary stress is applied to the wafer 1. Therefore, it is desirable that the wafer sandwiching disks 31a and 31b make the pressing surface of the wafer 1 as large (wide) as possible and press the wafer 1 with the surface.

また、ウエハ挟み円板31a,31bが、ウエハ1よりも大きいと、後述のスパッタ工程で、外周端部3以外の領域への不要な金属膜の成膜を防ぐことができるが、大きすぎると、後述するスパッタ工程で、斜め方向からのスパッタを行なう際の障害となってしまう。そこで、ウエハ挟み円板31a,31bは、ウエハ1の面取りが行なわれていない領域(外周端部3以外の領域)と同じ大きさにするか、後述のスパッタ工程で斜め方向からのスパッタの障害とならない範囲で、ウエハ1の面取りが行なわれていない領域(外周端部3以外の領域)より若干大きくすればよい。   Further, if the wafer sandwiching disks 31a and 31b are larger than the wafer 1, an unnecessary metal film can be prevented from being formed in a region other than the outer peripheral edge 3 in a sputtering process described later. In the sputtering process described later, it becomes an obstacle when performing sputtering from an oblique direction. Therefore, the wafer sandwiching disks 31a and 31b have the same size as the area where the wafer 1 is not chamfered (area other than the outer peripheral edge 3), or obstruction of sputtering in an oblique direction in the sputtering process described later. As long as it does not become, it may be slightly larger than the area where the wafer 1 is not chamfered (area other than the outer peripheral edge 3).

例えば、ウエハ挟み円板31a,31bを、ウエハ1の面取りが行なわれていない領域と同じ大きさとする。   For example, the wafer sandwiching disks 31a and 31b have the same size as the area where the wafer 1 is not chamfered.

回転軸20aは、一端が図示しない回転駆動モーターなどに接続され、他端に取り付けられた歯車32を介して、回転軸20bに駆動力を伝達する。   One end of the rotating shaft 20a is connected to a rotation driving motor (not shown) and the like, and a driving force is transmitted to the rotating shaft 20b via a gear 32 attached to the other end.

前記スパッタ蒸着槽50中に設置されたウエハ回転治具30に挟まれる25枚のウエハの外周端部3にスパッタ蒸着処理をする際、図1に示すウエハ回転治具30に25枚のウエハ1を挟んだ状態では、図示されない遮蔽板によってウエハ1の外周端部3以外の部分にはスパッタ蒸着されないようにされている。   When performing the sputter deposition process on the outer peripheral edge 3 of the 25 wafers sandwiched between the wafer rotation jigs 30 installed in the sputter deposition tank 50, the wafer rotation jig 30 shown in FIG. In the state of sandwiching the film, sputtering deposition is not performed on portions other than the outer peripheral edge 3 of the wafer 1 by a shielding plate (not shown).

図5は、前記図1とは異なるウエハ回転治具40の断面図である。前記ウエハ回転治具30と異なるところは、前記調整ネジ36に代えて、スプリング38によって、ウエハ挟み治具31に挟まれるウエハ1を弾性的に保持していることである。ベアリング38を備えたベアリングマウント34を、スプリング38で押圧することで、ウエハ挟み円板31aと31bとの間にウエハ1を挟持する。このほかの、図1と同じところは同じ符号で示して説明を省略する。また、このウエハ回転治具40では、回転軸20dを直接スパッタ蒸着槽の外側に出しているが、前記図1のウエハ回転治具30のように蒸着槽内で歯車を介して駆動力を伝達させてもよい。本発明の半導体素子の製造方法では、回転機能を有する治具にウエハを挟み込んで回転させ、高融点金属をウエハ外周端部にスパッタ蒸着すればよい。図1と図5のウエハ回転治具は、その例を示すものであり、本発明の要旨を超えない限り、これらの方式に限定されない。   FIG. 5 is a cross-sectional view of a wafer rotating jig 40 different from that shown in FIG. The difference from the wafer rotating jig 30 is that the wafer 1 held by the wafer holding jig 31 is elastically held by a spring 38 instead of the adjusting screw 36. By pressing a bearing mount 34 including a bearing 38 with a spring 38, the wafer 1 is sandwiched between the wafer sandwiching disks 31a and 31b. Other parts that are the same as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. Further, in this wafer rotating jig 40, the rotating shaft 20d is directly exposed to the outside of the sputter deposition tank. However, like the wafer rotating jig 30 in FIG. You may let them. In the semiconductor element manufacturing method of the present invention, the wafer may be sandwiched and rotated by a jig having a rotation function, and a refractory metal may be sputter deposited on the outer peripheral edge of the wafer. The wafer rotation jigs in FIGS. 1 and 5 show examples thereof, and are not limited to these methods as long as they do not exceed the gist of the present invention.

図2は、ウエハの外周端部を示す断面図である。図1のように取り付けた25枚のウエハ1を回転させながら、重ねたウエハ1同士の外周端部3に、半導体基板(ウエハ)より熱膨張係数が大きい材料をスパッタにより被着させる。図2(a)、(b)に示すように、斜めスパッタ37でウエハ1の両主面側から被着させる。   FIG. 2 is a cross-sectional view showing the outer peripheral edge of the wafer. While rotating the 25 wafers 1 attached as shown in FIG. 1, a material having a larger thermal expansion coefficient than that of the semiconductor substrate (wafer) is deposited on the outer peripheral edge 3 of the stacked wafers 1 by sputtering. As shown in FIGS. 2 (a) and 2 (b), the wafer is deposited from both main surface sides of the wafer 1 by oblique sputtering 37.

ウエハ1の外周端部3に被着させる材料として、ウエハの材料(シリコン)より、熱膨張係数の大きな材料を選択したのは、ウエハに対する線膨張係数の大きい高融点金属では、高張力が得られ基板の反りを平坦に矯正する働きを示すためである。ドーナツ形状をした材料では、室温よりも高い温度下において、室温の状態に比べ外側に広がろうとする力が働く。すなわち、内側の空間の直径が大きくなる方向に膨張する。本発明においては、ウエハの外周部にドーナツ状の線膨張係数の高い材料を付設するため、室温よりも高い温度下で内側のウエハを広げようとする力が働く。即ち、ウエハの反りは矯正される。   The material having a higher thermal expansion coefficient than the wafer material (silicon) is selected as the material to be deposited on the outer peripheral edge 3 of the wafer 1 because a high melting point metal having a high linear expansion coefficient with respect to the wafer has a high tension. This is to show the function of correcting the warpage of the substrate. In a donut-shaped material, a force to spread outward acts at a temperature higher than room temperature as compared to a room temperature state. That is, the inner space expands in the direction of increasing the diameter. In the present invention, since a doughnut-like material having a high linear expansion coefficient is attached to the outer peripheral portion of the wafer, a force is applied to spread the inner wafer at a temperature higher than room temperature. That is, the warpage of the wafer is corrected.

また、ウエハ(半導体基板)より融点が高い材料を選択したのは、後の製造プロセスに、高温(1000℃〜1200℃程度)の熱処理のプロセス、たとえば、熱酸化膜形成、ボロンなどの不純物の熱拡散工程が存在しても、半導体特性に悪影響を及ぼすことがないようにするためである。すなわち、前記のような高温熱処理の際にも、ウエハの外周端部にリング状に被着させた高融点金属膜が半導体基板中へ熱拡散したり、合金を形成することがなく、溶融、蒸発を起こさず、また、不純物元素としてウエハ内部に深く拡散しない材料が望ましいから選択したのである。   A material having a higher melting point than that of the wafer (semiconductor substrate) was selected because a subsequent heat treatment process (for example, thermal oxide film formation, impurities such as boron) This is to prevent the semiconductor characteristics from being adversely affected even if the thermal diffusion process exists. That is, even during the high-temperature heat treatment as described above, the refractory metal film deposited in a ring shape on the outer peripheral edge of the wafer does not thermally diffuse into the semiconductor substrate or form an alloy without melting. A material that does not evaporate and does not diffuse deeply into the wafer as an impurity element is desirable.

また、ウエハ(半導体基板)より融点が高い材料を選択するもう一つの理由は、半導体プロセスの中で行われる数々のウエハに対する異なる種類の積層膜堆積や、ウエハの積層膜パターン形成においてなされる部分的な前記積層膜の除去により、シリコンウエハ内部には応力が蓄積され、ウエハの変形や反りをもたらすからである。本発明によれば、ウエハの外周部にリング状に、ウエハが平坦な状態で予め高融点材料を付設することにより、当初の平坦な形状を維持しようとする保持力を得ることが可能となるからである。   Another reason for selecting a material having a higher melting point than that of the wafer (semiconductor substrate) is the portion formed in the deposition of different types of laminated films on wafers and the formation of laminated film patterns on wafers performed in a semiconductor process. This is because stress is accumulated in the silicon wafer due to the removal of the laminated film, and the wafer is deformed or warped. According to the present invention, it is possible to obtain a holding force for maintaining the original flat shape by attaching a high melting point material in advance to the outer peripheral portion of the wafer in a ring shape while the wafer is flat. Because.

さらに、前述したように図1、図2に示す斜めスパッタ37を用いたのは、重ねたウエハ1同士の外周端部3側の密着部(図2(a)(b)における点a)にスパッタ粒子が到達しないようにするためである。斜めスパッタ37で、図2(c)に示すように、それぞれの外周端部3の傾斜部3aに高融点金属を被着させる。   Further, as described above, the oblique sputtering 37 shown in FIGS. 1 and 2 is used at the close contact portion (point a in FIGS. 2A and 2B) on the outer peripheral end 3 side of the stacked wafers 1. This is to prevent the sputtered particles from reaching. As shown in FIG. 2 (c), a refractory metal is deposited on the inclined portion 3 a of each outer peripheral end 3 by the oblique sputtering 37.

この例では、チタン/窒化チタン膜4を被着した。チタン/窒化チタン膜4のチタンと窒化チタンとの膜厚比は1/1とする。このような斜めスパッタ37すると、金属スパッタによるウエハ1同士の癒着を防止することができる。金属スパッタによるウエハ1同士の癒着を防止するには、さらに、被着チタン/窒化チタン膜4とウエハの傾斜部3aを含めたトータル厚さがウエハ1の厚さより薄いことが重要である。このトータル厚さが厚いと、スパッタ時に隣接するウエハ1の外周端部3の傾斜部3aに被着されたチタン/窒化チタン膜4同士が接触して癒着する惧れがある。チタン/窒化チタン膜4同士が癒着すると、複数枚のウエハが分離できなくなる惧れがあるので避けなければならない。   In this example, a titanium / titanium nitride film 4 was deposited. The film thickness ratio of titanium / titanium nitride in the titanium / titanium nitride film 4 is 1/1. Such oblique sputtering 37 can prevent adhesion between the wafers 1 due to metal sputtering. In order to prevent adhesion between the wafers 1 due to metal sputtering, it is further important that the total thickness including the deposited titanium / titanium nitride film 4 and the inclined portion 3 a of the wafer is thinner than the thickness of the wafer 1. If this total thickness is large, the titanium / titanium nitride films 4 deposited on the inclined portion 3a of the outer peripheral edge 3 of the wafer 1 adjacent to each other may be brought into contact with each other during sputtering. If the titanium / titanium nitride films 4 are bonded to each other, there is a possibility that a plurality of wafers cannot be separated, so this must be avoided.

また、癒着しない場合でも、ウエハの厚さより外周端部3のチタン/窒化チタン膜4が出っ張っていると、このウエハ1を加工プロセスに流す場合特別な治具が必要になり、コストが増すので好ましくない。つまり、被着した金属(この例ではチタン/窒化チタン膜4)の厚さ(図2(c)の矢印T1)がプロセスに投入するウエハ1の厚さを超えないようにする。   Even when the wafer 1 does not adhere, if the titanium / titanium nitride film 4 on the outer peripheral edge 3 protrudes from the thickness of the wafer, a special jig is required to flow the wafer 1 to the processing process, which increases costs. It is not preferable. That is, the thickness of the deposited metal (in this example, the titanium / titanium nitride film 4) (arrow T1 in FIG. 2C) does not exceed the thickness of the wafer 1 to be put into the process.

しかし一方で、ウエハ1の厚さを越えてチタン/窒化チタン膜を厚く堆積させる必要が有る場合、即ち、より強い反り補強力を確保しようとする場合であるが、この様に高融点金属を厚く形成する場合は、ウエハ1同士の癒着を防ぐために、ウエハ1とウエハ1との間に面内で一様な厚さを有するフィルムや板を挟めばよい。スパッタや蒸着時にウエハが高温化(250℃以下)する場合は、エラストマ材などを選択すれば良い。この場合はウエハの片面につき、ウエハ1同士の間に挟むフィルムや板の厚さの半分以下の範囲で、ウエハ1の厚さを越えて厚く堆積させる事ができる。   However, on the other hand, when it is necessary to deposit a thick titanium / titanium nitride film beyond the thickness of the wafer 1, that is, when it is intended to secure a stronger warp reinforcement, In the case of forming a thick film, a film or a plate having a uniform thickness may be sandwiched between the wafer 1 and the wafer 1 in order to prevent adhesion between the wafers 1. If the wafer is heated (250 ° C. or lower) during sputtering or vapor deposition, an elastomer material or the like may be selected. In this case, the thickness of the wafer 1 can be increased so as to exceed the thickness of the wafer 1 within one half or less of the thickness of the film or plate sandwiched between the wafers 1.

ただし、このようにウエハ1の厚さを越えてチタン/窒化チタン膜を厚く堆積すると、ウエハの外周部を強固に補強できる半面、半導体素子工程の途中でウエハ厚さを減じる必要が有る場合、この部分を避けて坐繰り研磨したり、エッチングしたりする、特別なウエハ薄化技術を要する。   However, if the titanium / titanium nitride film is deposited thickly beyond the thickness of the wafer 1 in this way, the outer periphery of the wafer can be strongly reinforced, but if the wafer thickness needs to be reduced during the semiconductor element process, A special wafer thinning technique that avoids this part and performs back-grinding or etching is required.

前述の高融点金属としてはチタン/窒化チタンの他に、タングステン、チタン、窒化チタンなどの単層、あるいはモリブデンタングステン/チタン、タングステン/モリブデンなどの積層を用いることができる。ウエハ1の外周端部3の傾斜部3aへのチタン/窒化チタン膜4の被着工程の終了後、重ねたウエハ1を一枚毎、バラバラにして、通常の半導体素子用の表面側プロセスを施す。前記耐熱フィルムを挟まないで、ウエハ1を直接重ねてウエハ1の外周端部3にチタン/窒化チタン膜4を被着したときは、ウエハプロセスに投入する前に、ウエハ1の表裏面を両面研磨で仕上げ研磨することが望ましい。研磨条件は一般的な研磨方法でよい。たとえば、研磨材;コロイダルシリカ(粒径20〜40nm)pH11〜12程度、溶剤;NaOH水溶液、研磨布;不織布または発泡ポリウレタン系等、厚さ1mm程度、研磨時間;10分程度である。   As the aforementioned refractory metal, in addition to titanium / titanium nitride, a single layer of tungsten, titanium, titanium nitride or the like, or a laminate of molybdenum tungsten / titanium, tungsten / molybdenum, or the like can be used. After the process of depositing the titanium / titanium nitride film 4 on the inclined portion 3a of the outer peripheral edge 3 of the wafer 1, the stacked wafers 1 are separated one by one to perform a normal surface process for semiconductor elements. Apply. When the wafer 1 is directly overlapped and the titanium / titanium nitride film 4 is deposited on the outer peripheral edge 3 of the wafer 1 without sandwiching the heat-resistant film, the front and back surfaces of the wafer 1 are placed on both sides before being put into the wafer process. It is desirable to perform final polishing by polishing. Polishing conditions may be a general polishing method. For example, abrasive: colloidal silica (particle size: 20 to 40 nm) pH of about 11 to 12, solvent: NaOH aqueous solution, polishing cloth: non-woven fabric or polyurethane foam type, thickness of about 1 mm, polishing time: about 10 minutes.

以降の本発明にかかるウエハプロセスについて、一例として、図4の要部断面図に示すIGBTのウエハプロセスを採りあげて説明する。図4に示すIGBT100ウエハの表面は図面の上側(エミッタ側)であり、ウエハの裏面は下側(コレクタ側)とする。ウエハの外周端部の傾斜部にチタン/窒化チタン膜が被着されたウエハの主要部表面に、酸化膜パターンを形成後、pベース領域102と、耐圧領域内に設けられるp型ガードリング(図示せず)とが同時に形成される。pベース領域の表面からnベース層101(nドリフト層)に達する深さのトレンチ103が形成され、該トレンチ103内にゲート絶縁膜104が形成されゲート電極105となる高濃度ポリシリコンが充填された後に、前記トレンチ103に接するpベース領域102の表面にn型エミッタ領域106が形成される。ラッチアップ耐量の向上を図るためにp型ベース領域102の表面層の一部に高濃度p型領域(図示せず)が形成されることが望ましい。 The following wafer process according to the present invention will be described by taking, as an example, the IGBT wafer process shown in the cross-sectional view of the main part of FIG. The surface of the IGBT 100 wafer shown in FIG. 4 is the upper side (emitter side) of the drawing, and the back surface of the wafer is the lower side (collector side). After forming an oxide film pattern on the surface of the main part of the wafer having a titanium / titanium nitride film deposited on the inclined part of the outer peripheral edge of the wafer, the p base region 102 and a p-type guard ring (inside the breakdown voltage region) (Not shown). A trench 103 having a depth reaching the n base layer 101 (n drift layer) from the surface of the p base region is formed. A gate insulating film 104 is formed in the trench 103 and high-concentration polysilicon serving as the gate electrode 105 is formed. After filling, an n + -type emitter region 106 is formed on the surface of the p base region 102 in contact with the trench 103. In order to improve the latch-up resistance, it is desirable that a high concentration p + -type region (not shown) is formed in a part of the surface layer of the p-type base region 102.

前記ゲート電極105の上部には層間絶縁膜107が被覆される。さらに、この層間絶縁膜107の表面上にはAlなどの金属膜からなるエミッタ電極108が被覆される。このエミッタ電極108は前記層間絶縁膜107に設けられる開口部により、前記n型エミッタ領域106表面とp型ベース領域102の表面に共通に導電接触する構成となっている。さらに、エミッタ電極108上にパッシベーション膜としてチッ化膜や窒素雰囲気中でアニールしたアモルファスシリコン膜、あるいはポリイミド膜が形成されることが好ましいが、図4では省略されている。 An interlayer insulating film 107 is coated on the gate electrode 105. Further, the surface of the interlayer insulating film 107 is covered with an emitter electrode 108 made of a metal film such as Al. The emitter electrode 108 is configured to be in conductive contact in common with the surface of the n + -type emitter region 106 and the surface of the p-type base region 102 through an opening provided in the interlayer insulating film 107. Further, a nitride film, an amorphous silicon film annealed in a nitrogen atmosphere, or a polyimide film is preferably formed on the emitter electrode 108 as a passivation film, but is omitted in FIG.

ウエハの裏面側に形成される表面構造(以下、裏面素子構造とする)として、nベース層101の表面層に、nFS層109(フィールドストップ層)およびpコレクタ層110がこの順で設けられている。コレクタ電極111は、pコレクタ層110に接する。このような裏面素子構造を有するIGBTをFS(フィールドストップ)型IGBTと称する。これにより、少数キャリアの低注入、高輸送効率という効果を奏しながら、ノンパンチスルー構造よりもベース層を薄くすることで更なるオン電圧、ターンオフ損失特性が改善されたものにすることができる。 As a surface structure formed on the back surface side of the wafer (hereinafter referred to as a back surface element structure), an n + FS layer 109 (field stop layer) and a p + collector layer 110 are arranged in this order on the surface layer of the n base layer 101. Is provided. The collector electrode 111 is in contact with the p + collector layer 110. An IGBT having such a back element structure is referred to as an FS (field stop) type IGBT. As a result, the ON layer and turn-off loss characteristics can be further improved by making the base layer thinner than the non-punch-through structure while achieving the effects of low injection of minority carriers and high transport efficiency.

1バッチ25枚の8インチ径で、厚さ120μmのFZ−n型シリコンウエハの外周端部に前記高融点金属を前述のようにスパッタ被着させた後、耐圧1200Vクラスの通常のIGBTのウエハプロセスから裏面研削工程を除いたウエハプロセスに流し、前記シリコンウエハに複数のIGBT領域を完成させる。この複数のIGBT領域を有するウエハについて、ウエハの反り(Warp)の大きさ(mm)とウエハが割れたり、ウエハ欠けたりした枚数を調べた。反りの値はウエハの割れや欠けの無いウエハについての反り値である。反りは、ウエハを垂直に立て、ウエハ全域に渡り、表裏それぞれに最も迫り出した位置間の距離を、水平成分について求め、その値からウエハの平均厚さを引いた値を反り値とする。比較例として、高融点金属をスパッタ被着しない場合で、厚さ120μmの薄いウエハ25枚をIGBTプロセスに投入しプロセス完了させた後のウエハについて調べた。前記高融点金属として、チタン/窒化チタン、タングステン、チタン、窒化チタン、モリブデンタングステン/チタン、タングステン/モリブデンについて調べた。融点と熱膨張係数(線膨張係数)はそれぞれタングステンが3430℃と0.045×10−4−1、チタンが1812℃と0.084×10−4−1、窒化チタンが2930℃と0.094×10−4−1、モリブデンが2620℃と0.051×10−4−1、シリコン単結晶の線膨張係数は0.042×10−4−1である。各高融点金属のスパッタ被着膜厚を、0.08μm、0.01μm、0.1μm、1.0μm、3.0μmに変化させてウエハの反りの大きさと割れまたは欠けが生じた枚数(ワレカケと表示)とを調べた。その結果を表1に示す。なお、表1において最厚部は、図2(c)の矢印(T2)で表したように、スパッタ被着膜の最も厚い部分の厚さを示している。 One batch of 25 8 inch diameter, 120 μm thick FZ-n silicon wafers were sputter-deposited with the refractory metal as described above, and then a normal IGBT wafer with a withstand voltage of 1200 V class. A plurality of IGBT regions are completed on the silicon wafer by flowing to the wafer process excluding the back grinding step from the process. With respect to the wafer having the plurality of IGBT regions, the wafer warp size (mm) and the number of wafers cracked or chipped were examined. The value of the warp is a warp value for a wafer having no wafer cracks or chips. The warpage is determined by obtaining the horizontal component of the distance between the positions where the wafer is placed vertically, over the entire wafer, and the most protruding positions on the front and back sides, and the value obtained by subtracting the average thickness of the wafer from this value is taken as the warpage value. As a comparative example, 25 wafers having a thickness of 120 μm, which were not sputter-deposited with a refractory metal, were put into an IGBT process, and the wafer after the process was completed was examined. As the refractory metal, titanium / titanium nitride, tungsten, titanium, titanium nitride, molybdenum tungsten / titanium, and tungsten / molybdenum were examined. The melting point and thermal expansion coefficient (linear expansion coefficient) are 3430 ° C. and 0.045 × 10 −4 K −1 for tungsten, 1812 ° C. and 0.084 × 10 −4 K −1 for titanium, and 2930 ° C. for titanium nitride, respectively. 0.094 × 10 −4 K −1 , molybdenum is 2620 ° C. and 0.051 × 10 −4 K −1 , and the linear expansion coefficient of the silicon single crystal is 0.042 × 10 −4 K −1 . The sputter deposit film thickness of each refractory metal was changed to 0.08 μm, 0.01 μm, 0.1 μm, 1.0 μm, and 3.0 μm, and the number of warped wafers and the number of cracked or chipped wafers And display). The results are shown in Table 1. In Table 1, the thickest part indicates the thickness of the thickest part of the sputter deposited film, as indicated by the arrow (T2) in FIG.

Figure 2011210770
Figure 2011210770

表1では、8インチの薄いウエハの外周端部に高融点金属膜を被着させなかった場合は、1バッチ25枚のすべてのウエハに割れまたは欠けが発生することを示している。高融点金属膜をウエハの外周端部に被着させた場合は、チタン/窒化チタン膜を用いると、膜厚0.01μm以上にすると、ウエハの割れ・欠けが0枚になるので望ましい。また、膜厚3.0μmで反り1mm、ウエハの割れ・欠け0枚であり、最も良い結果を示している。チタン/窒化チタン膜の膜厚3.0μmの場合は、反り値が1mmと最も小さい値になるので、高融点金属熱膨張係数はシリコンウエハの熱膨張係数より大きくなるほど、大径ウエハの反りに対する矯正能力が高いことを示していると考えられる。   Table 1 shows that when a high melting point metal film is not deposited on the outer peripheral edge of an 8-inch thin wafer, all the wafers of 25 batches are cracked or chipped. When the refractory metal film is deposited on the outer peripheral edge of the wafer, it is desirable to use a titanium / titanium nitride film because if the film thickness is 0.01 μm or more, there will be no cracks / chips on the wafer. Further, the film thickness is 3.0 μm, the warp is 1 mm, and there are no cracks / chips on the wafer, indicating the best results. When the thickness of the titanium / titanium nitride film is 3.0 μm, the warp value is as small as 1 mm. Therefore, the higher the refractory metal thermal expansion coefficient than the thermal expansion coefficient of the silicon wafer, the greater the warpage of the large diameter wafer. It is considered that the correction ability is high.

チタン/窒化チタン膜以外の高融点金属の場合、いずれの金属膜でも膜厚0.01μm以上にすると、ウエハの割れ・欠けが0枚であるので採用することができる。   In the case of a refractory metal other than the titanium / titanium nitride film, any metal film having a film thickness of 0.01 μm or more can be adopted because there are no wafer cracks / chips.

割れ・欠けについては、高融点金属の膜厚が0.01μm以上あれば、反りの大きさに係わらず、0枚となっている。タングステン膜をウエハ外周端部に被着させた場合は、反りの大きさが23mmでも割れ・欠けが無いことを示していることから、20mm程度までの反り自体の大きさは割れ・欠けに直接的には関係しないと思われる。高融点金属膜の膜厚が0.01μm以上あれば、反りがある程度の大きさであっても、割れ・欠けが無いのは、金属膜が薄いウエハを補強するとともに、金属膜を被着する前に、割れ・欠けの発端となり易いウエハ外周端部の鋭角部を研磨除去することによる抑止効果もあるからと思われる。   The number of cracks / chips is zero when the film thickness of the refractory metal is 0.01 μm or more regardless of the warpage. When the tungsten film is deposited on the outer peripheral edge of the wafer, it indicates that there is no crack or chip even if the warpage is 23 mm. Therefore, the size of the warp itself up to about 20 mm directly affects the crack and chip. Seems to be unrelated. If the film thickness of the refractory metal film is 0.01 μm or more, the metal film reinforces a thin wafer and adheres the metal film even if the warp is large to some extent. This is presumably because there is a deterrent effect by polishing and removing the sharp corners at the outer peripheral edge of the wafer, which tends to cause cracks and chips.

ウエハの割れ・欠けの発生が無い場合でも、表1から、反りについては、最大23mmから1mm程度まであり、ある程度の反りは避けられない。また、8インチ径用のウエハプロセスで、ウエハの搬送治具の一種として用いられるウエハカセットのウエハを差し入れ保持するウエハスロットのピッチとして、一般的に6.35mmなどのものが使用されている。このウエハスロットを隔てる仕切りの幅は2.5mmであるので、この値を引いた値がウエハが入る隙間になる。従って、反りが6.35mm−2.5mm=3.85mm以下の場合、25枚入れのカセットを使用することができる。反りがこれ以上になると、仕切りを間引いた倍ピッチカセットあるいは2つ置きに間引いた3倍ピッチカセットを使うことになる。倍ピッチカセットの場合のウエハスロットのピッチは12.7mm、3倍ピッチカセットの場合のウエハスロットピッチは19.05mmとなるので、反りについてはある程度大きくてもプロセスに流せないことはないが、一度に流せるウエハ枚数が少なくなるので、プロセスの処理効率が悪くなり、製造コストがアップする問題がある。従って、ウエハの反りについては、プロセスの処理効率の観点から、3.85mm以下であることが望ましい。これを基準に表1を見ると、高融点金属としてチタン、窒化チタン、タングステン/モリブデンを用いる場合は膜厚3.0mm以上、チタン/窒化チタン、タングステン/チタンを用いる場合は膜厚1.0mm以上が当てはまる。これらの高融点金属とすれば、ウエハワレカケ0枚で、ウエハの反りを3mm以下にすることができるので、8インチ径ウエハをプロセスに投入した場合でも、通常の25枚用ウエハカセットを用いることができ、プロセス処理効率が悪くなることもない。   Even when there is no occurrence of cracking or chipping of the wafer, it can be seen from Table 1 that the warpage is up to about 23 mm to 1 mm, and a certain degree of warpage is inevitable. In addition, a wafer slot pitch of 6.35 mm or the like is generally used as a wafer slot pitch for inserting and holding a wafer cassette used as a kind of wafer transfer jig in an 8-inch wafer process. Since the width of the partition separating the wafer slots is 2.5 mm, a value obtained by subtracting this value becomes a gap for the wafer to enter. Therefore, when the warpage is 6.35 mm−2.5 mm = 3.85 mm or less, a cassette containing 25 sheets can be used. When the warp is more than this, a double pitch cassette with thinned partitions or a triple pitch cassette with thinned every other partition is used. The wafer slot pitch in the case of the double pitch cassette is 12.7 mm, and the wafer slot pitch in the case of the triple pitch cassette is 19.05 mm. Since the number of wafers that can be flowed through is reduced, there is a problem that the processing efficiency of the process deteriorates and the manufacturing cost increases. Therefore, the wafer warpage is desirably 3.85 mm or less from the viewpoint of process efficiency. Looking at Table 1 based on this, when titanium, titanium nitride, tungsten / molybdenum is used as the refractory metal, the film thickness is 3.0 mm or more, and when titanium / titanium nitride, tungsten / titanium is used, the film thickness is 1.0 mm. The above is true. If these refractory metals are used, the wafer warpage can be reduced to 3 mm or less with 0 wafer cracks. Therefore, even when an 8-inch wafer is put into the process, a normal 25 wafer cassette can be used. And process processing efficiency does not deteriorate.

1 ウエハ
2 型治具
3 外周端部
3a 傾斜部
3b 曲率部
3c 最外周端面
4 チタン/窒化チタン膜
5 研磨布
30 ウエハ回転治具
31a、31b ウエハ挟み円板
32 歯車
33、33a、33b ベアリング
34、34a、34b ベアリングマウント
35 ストッパー
36 長さ調節ネジ
37 斜めスパッタ
50 スパッタ蒸着槽
100 IGBT
101 nベース層
102 pベース領域
103 トレンチ
104 ゲート絶縁膜
105 ゲート電極
106 n型エミッタ領域
107 層間絶縁膜
108 エミッタ電極
109 nFS層
110 pコレクタ層
111 コレクタ電極
DESCRIPTION OF SYMBOLS 1 Wafer 2 Type jig | tool 3 Outer peripheral edge part 3a Inclined part 3b Curvature part 3c Outermost outer peripheral end surface 4 Titanium / titanium nitride film 5 Polishing cloth 30 Wafer rotation jig 31a, 31b Wafer clamping disk 32 Gear 33, 33a, 33b Bearing 34 , 34a, 34b Bearing mount 35 Stopper 36 Length adjusting screw 37 Oblique sputter 50 Sputter deposition tank 100 IGBT
101 n base layer 102 p base region 103 trench 104 gate insulating film 105 gate electrode 106 n + type emitter region 107 interlayer insulating film 108 emitter electrode 109 n + FS layer 110 p + collector layer 111 collector electrode

Claims (7)

半導体基板に複数の半導体素子を形成する工程の前に、
前記半導体基板の外周を減厚して外周端部を形成し、該外周端部に、前記半導体基板より熱膨張係数が大きく、かつ、前記半導体素子を形成する工程内の熱処理工程で印加されるもっとも高い温度より融点が高い金属を、前記半導体基板の前記半導体素子が形成される両主面より突出しない膜厚で被着することを特徴とする半導体素子の製造方法。
Before the step of forming a plurality of semiconductor elements on a semiconductor substrate,
The outer periphery of the semiconductor substrate is reduced in thickness to form an outer peripheral end, and the outer peripheral end has a thermal expansion coefficient larger than that of the semiconductor substrate and is applied in a heat treatment step in the step of forming the semiconductor element. A method of manufacturing a semiconductor element, comprising depositing a metal having a melting point higher than the highest temperature so as not to protrude from both main surfaces of the semiconductor substrate on which the semiconductor element is formed.
前記外周端部を備える同径の前記半導体基板を複数枚重ね、前記外周端部を露出させて前記主面方向から回転治具に挟み、
少なくとも、前記半導体素子が形成される領域をマスクし、
前記回転治具に挟む方向を軸に前記重ねた半導体基板を回転させ、
前記外周端部に前記金属をスパッタリングによって成膜することを特徴とする請求項1記載の半導体素子の製造方法。
A plurality of the semiconductor substrates having the same diameter provided with the outer peripheral end portion are stacked, the outer peripheral end portion is exposed, and is sandwiched between rotating jigs from the main surface direction,
Masking at least a region where the semiconductor element is formed;
Rotate the stacked semiconductor substrate around the direction sandwiched between the rotating jigs,
2. The method of manufacturing a semiconductor element according to claim 1, wherein the metal is deposited on the outer peripheral edge by sputtering.
前記スパッタリングが、複数枚重ねられた前記半導体基板の密着部に到達しない角度の傾斜スパッタリングにより、それぞれの主面側から順次行われることを特徴とする請求項2記載の半導体素子の製造方法。 3. The method of manufacturing a semiconductor element according to claim 2, wherein the sputtering is sequentially performed from each main surface side by inclined sputtering at an angle that does not reach a close contact portion of the plurality of stacked semiconductor substrates. 前記複数枚の半導体基板は、前記スパッタリング時に上昇する前記半導体基板の温度以上の耐熱性を有する緩衝膜を間に挟んで重ねられてことを特徴とする請求項2または3の何れか一項に記載の半導体素子の製造方法。 4. The semiconductor substrate according to claim 2, wherein the plurality of semiconductor substrates are stacked with a buffer film having heat resistance equal to or higher than the temperature of the semiconductor substrate rising during the sputtering. The manufacturing method of the semiconductor element of description. 前記半導体基板は、前記半導体素子を形成する工程でその厚さを減じる研削工程を必要としない厚さであることを特徴とする請求項1ないし4の何れかに記載の半導体素子の製造方法。 5. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor substrate has a thickness that does not require a grinding step of reducing the thickness in the step of forming the semiconductor device. 前記半導体基板の外周端部は、前記両主面からそれぞれ延長される傾斜部と両主面に垂直な端面からなる形状、または前記両主面からそれぞれ延長される曲率部からなる形状に加工されていることを特徴とする請求項1記載の半導体素子の製造方法。 The outer peripheral end of the semiconductor substrate is processed into a shape consisting of an inclined portion extending from each of the main surfaces and an end surface perpendicular to the main surfaces, or a shape consisting of a curvature portion extending from each of the main surfaces. 2. The method of manufacturing a semiconductor device according to claim 1, wherein: 半導体素子がIGBTであることを特徴とする請求項1乃至6のいずれか一項に記載の半導体素子の製造方法。 The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is an IGBT.
JP2010074441A 2010-03-29 2010-03-29 Manufacturing method of semiconductor device Expired - Fee Related JP5499826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010074441A JP5499826B2 (en) 2010-03-29 2010-03-29 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010074441A JP5499826B2 (en) 2010-03-29 2010-03-29 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2011210770A true JP2011210770A (en) 2011-10-20
JP5499826B2 JP5499826B2 (en) 2014-05-21

Family

ID=44941558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010074441A Expired - Fee Related JP5499826B2 (en) 2010-03-29 2010-03-29 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5499826B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253915A (en) * 2010-06-02 2011-12-15 Shin Etsu Handotai Co Ltd Silicon wafer
JP2015065349A (en) * 2013-09-25 2015-04-09 富士電機株式会社 Semiconductor device and method of manufacturing the same
JP7024128B1 (en) 2020-09-30 2022-02-22 株式会社フルヤ金属 Sputtering target-backing plate joint, its manufacturing method and recovery method of sputtering target

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105270A (en) * 1974-01-23 1975-08-19
JPH06295848A (en) * 1993-04-08 1994-10-21 Mitsubishi Electric Corp Fabrication of semiconductor device
JP2011071254A (en) * 2009-09-25 2011-04-07 Mitsubishi Electric Corp Silicon carbide substrate and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105270A (en) * 1974-01-23 1975-08-19
JPH06295848A (en) * 1993-04-08 1994-10-21 Mitsubishi Electric Corp Fabrication of semiconductor device
JP2011071254A (en) * 2009-09-25 2011-04-07 Mitsubishi Electric Corp Silicon carbide substrate and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253915A (en) * 2010-06-02 2011-12-15 Shin Etsu Handotai Co Ltd Silicon wafer
JP2015065349A (en) * 2013-09-25 2015-04-09 富士電機株式会社 Semiconductor device and method of manufacturing the same
JP7024128B1 (en) 2020-09-30 2022-02-22 株式会社フルヤ金属 Sputtering target-backing plate joint, its manufacturing method and recovery method of sputtering target
JP2022058089A (en) * 2020-09-30 2022-04-11 株式会社フルヤ金属 Sputtering target backing plate joint body, manufacturing method thereof, and sputtering target recovery method

Also Published As

Publication number Publication date
JP5499826B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
US8507362B2 (en) Process of forming ultra thin wafers having an edge support ring
US11557505B2 (en) Method of manufacturing a template wafer
JP4348408B2 (en) Manufacturing method of semiconductor device
JP5266869B2 (en) Semiconductor device and manufacturing method of semiconductor device
CN1599958A (en) Pasted wafer and method for producing pasted wafer
US11361969B2 (en) Device substrate with high thermal conductivity and method of manufacturing the same
CN114883186A (en) Wafer back processing method based on temporary bonding and wafer
JP3620528B2 (en) Manufacturing method of semiconductor device
JP2011165771A (en) Method of manufacturing semiconductor device
JP5499826B2 (en) Manufacturing method of semiconductor device
WO2011161906A1 (en) Method and device for producing silicon carbide semiconductor element
US10559664B2 (en) Method of manufacturing semiconductor device by removing a bulk layer to expose an epitaxial-growth layer and by removing portions of a supporting-substrate to expose portions of the epitaxial-growth layer
JP7302953B2 (en) Silicon carbide parts and methods of manufacturing silicon carbide parts
US9589926B2 (en) Method of manufacturing semiconductor device
JP5532754B2 (en) Manufacturing method of semiconductor device
US20130017671A1 (en) Method for manufacturing semiconductor device
JP2022069819A (en) Manufacturing method for semiconductor device, and hot plate
JP7135352B2 (en) Semiconductor device manufacturing method
JP2008251579A (en) Electrostatic chuck and manufacturing method of semiconductor device
JP2004296817A (en) Method of manufacturing semiconductor device
JP4572529B2 (en) Manufacturing method of semiconductor device
JP2011166034A (en) Method of manufacturing semiconductor device
JP2006059929A (en) Method of manufacturing semiconductor device
WO2017158747A1 (en) Epitaxial substrate manufacturing method and semiconductor device manufacturing method
JP4337637B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees