JP2011209035A - センサ - Google Patents

センサ Download PDF

Info

Publication number
JP2011209035A
JP2011209035A JP2010075642A JP2010075642A JP2011209035A JP 2011209035 A JP2011209035 A JP 2011209035A JP 2010075642 A JP2010075642 A JP 2010075642A JP 2010075642 A JP2010075642 A JP 2010075642A JP 2011209035 A JP2011209035 A JP 2011209035A
Authority
JP
Japan
Prior art keywords
substrate
sensor
heat
thermal conductivity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010075642A
Other languages
English (en)
Inventor
Shinichi Ike
信一 池
Junji Kumasa
淳司 熊佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2010075642A priority Critical patent/JP2011209035A/ja
Publication of JP2011209035A publication Critical patent/JP2011209035A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】熱伝導率の低い基板において温度上昇を抑制することのできるセンサを提供する。
【解決手段】本発明に係るセンサの例によるフローセンサ10は、熱伝導率がシリコン(Si)より低い基板、例えばガラス製又はセラミックス製の基板20と、基板20の一方の面上に設けられる周囲温度センサ(抵抗素子)34と、周囲温度センサ(抵抗素子)34に近接して設けられ、熱伝導率が基板より高い熱伝導部材、例えばシリコン(Si)製又はタングステン(W)製の熱伝導部材23と、を備える。
【選択図】図2

Description

本発明に係るいくつかの態様は、熱伝導率がシリコン(Si)より低い基板と基板の一方の面上に設けられる抵抗体とを備えるセンサに関する。
従来、この種のセンサとして、ガラス基板と、ニッケル(Ni)金属の薄膜とを備える流量センサにおいて、ガラス基板とニッケル薄膜との間に中間層を形成することにより、ガラス基板とニッケル薄膜との接合強度を高めるようにしたものが知られている(例えば、特許文献1参照)。
特開平5−142009号公報
一方、ガラス基板上に抵抗体を設ける場合、抵抗体は通電すると熱を発するが、ガラスは熱伝導率が低いので、当該熱が放熱されずにガラス基板の温度が上昇してしまう、という問題があった。この場合、温度上昇に伴って抵抗値が変更してしまい、抵抗体自体の精度が低下するなどの影響を及ぼすのみならず、ガラス基板上の他の電子部品素子にも影響を及ぼすおそれがあった。
本発明のいくつかの態様は前述の問題に鑑みてなされたものであり、熱伝導率の低い基板において温度上昇を抑制することのできるセンサを提供することを目的の1つとする。
本発明に係るセンサは、熱伝導率がシリコンより低い基板と、基板の一方の面上に設けられる抵抗体と、抵抗体に近接して設けられ、熱伝導率が基板より高い熱伝導部材と、を備える。
かかる構成によれば、熱伝導率が基板より高い熱伝導部材は、抵抗体に接するように設けられる。これにより、通電により抵抗体が熱を発したときに、当該抵抗体に近接して設けられた熱伝導部材が放熱する。これにより、熱伝導率がシリコンより低い基板を備えるセンサであっても、基板の温度上昇を抑制することができ、所定の物理量を精度良く検出することが可能となる。
好ましくは、前述の熱伝導部材は、基板の一方の面から他方の面まで貫通する。
かかる構成によれば、熱伝導部材が基板の一方の面から他方の面まで貫通する。これにより、熱伝導部材は、抵抗体が基板の一方の面上で発した熱を他方の面へ熱伝導させる経路(パス)となる。これにより、基板の外部に効率良く放熱することができ、基板の温度上昇を更に抑制することができる。
好ましくは、前述の基板の材料は、ガラスである。
かかる構成によれば、基板の材料がガラスである。ここで、ガラス製の基板は、従来のシリコン製の基板と比較して、熱伝導率は低いが、エッチングに加えてドリルなどを用いた微細加工も可能であるため、成形が容易であり、形状設計の自由度が高い。よって、熱伝導部材を設けるための加工、例えば、一方の面から他方の面まで貫通する貫通孔を容易に形成することができる。これにより、基板の温度上昇を抑制することができるセンサを容易に実現することができる。
好ましくは、前述の基板の材料は、セラミックスである。
かかる構成によれば、基板の材料がセラミックスである。ここで、セラミックス製の基板は、ガラス製の基板と同様に、従来のシリコン製の基板と比較して、熱伝導率は低いが、エッチングに加えてドリルなどを用いた微細加工も可能であるため、成形が容易であり、形状設計の自由度が高い。よって、熱伝導部材を設けるための加工、例えば、一方の面から他方の面まで貫通する貫通孔を容易に形成することができる。これにより、基板の温度上昇を抑制することができるセンサを容易に実現することができる。
好ましくは、前述の基板は、腐食性物質に対して耐食性を有する。
かかる構成によれば、基板が腐食性物質に対して耐食性を有する。これにより、腐食性物質が存在する環境(状況)で使用することができ、腐食性物質の流体、例えばCl2、BCl3などを含有する気体(ガス)の流速(流量)を検出するフローセンサに好適に用いることができる。
本発明に係るセンサの例によるフローセンサを説明する斜視図である。 図1に示したVII−VII線矢視方向断面である。 基板における時間と温度との関係を説明するグラフである。 図1に示したフローセンサの他の例を説明する斜視図である。 図1に示したVI−VI線矢視方向断面である。
以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法などは以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。なお、以下の説明において、図面の上側を「上」、下側を「下」、左側を「左」、右側を「右」という。
図1乃至図5は、本発明に係るセンサの一例を示すためのものである。図1は、本発明に係るセンサの例によるフローセンサを説明する斜視図であり、図2は、図1に示したVII−VII線矢視方向断面図である。図1及び図2に示すように、フローセンサ10は、一方の面(図1及び図2において上面)にキャビティ(凹部)25を有する基板20と、基板20の上面の上に設けられたセンサ薄膜30と、を備える。
センサ薄膜30は、下部絶縁層30aと、上部絶縁層30bとを含んで構成される。下部絶縁層30aは、基板20から電気的に絶縁するためのものであり、基板20の上面に全面にわたって形成される。また、センサ薄膜30は、下部絶縁層30aの上に、ヒータ(抵抗素子)31と、ヒータ31を挟んでヒータ31の両側に設けられた一組の抵抗素子32,33と、基板20の一辺側に設けられた周囲温度センサ(抵抗素子)34と、を有する。ヒータ31、抵抗素子32,33、及び周囲温度センサ34は、流体の速度(流速)又は流量を検出するためのセンサ回路を構成し、各抵抗素子31,32,33,34、及びこれらを電気的に接続する配線(図示省略)などは、例えば、スパッタリング法、CVD法、真空蒸着法等の方法により、金属や酸化物を付着させて形成(パターニング)される。上部絶縁層30bは、センサ回路部を被覆し保護するためのものであり、下部絶縁層30a及び各抵抗素子31,32,33,34の上に形成される。下部絶縁膜30a及び上部絶縁膜30bの材料としては、例示的に、窒化ケイ素(SiN)や酸化ケイ素(SiO2)などが使用可能である。
このような構成を備えるフローセンサ10は、例えば図1及び図2中にブロック矢印で示すように、測定対象である流体、例えばガスの流れる方向に沿って、抵抗素子32,31及び33が順に並ぶように配置される。この場合、抵抗素子32は、ヒータ31よりも上流側(図1及び図2において左側)に設けられた上流側測温抵抗素子として機能し、抵抗素子33は、ヒータ31よりも下流側(図1及び図2において右側)に設けられた下流側測温抵抗素子として機能する。
センサ薄膜30におけるキャビティ25を覆う部分は、熱容量が小さく、基板20に対して断熱性を有するダイアフラムを成す。周囲温度センサ34は、フローセンサ10が設置された管路(図示省略)を流通するガスの温度を測定する。ヒータ31は、例示的に、キャビティ25を覆うセンサ薄膜30の中心に配置されており、周囲温度センサ34が計測したガスの温度よりも一定温度高くなるように、加熱される。上流側測温抵抗素子32は、ヒータ31よりも上流側の温度を検出するのに用いられ、下流側測温抵抗素子33は、ヒータ31よりも下流側の温度を検出するのに用いられる。
ここで、管路内のガスが静止している場合、ヒータ21で加えられた熱は、上流方向及び下流方向へ対称的に拡散する。従って、上流側測温抵抗素子32及び下流側測温抵抗素子33の温度は等しくなり、上流側測温抵抗素子32及び下流側測温抵抗素子33の電気抵抗は等しくなる。これに対し、管路内のガスが上流から下流に流れている場合、ヒータ31で加えられた熱は、下流方向に運ばれる。従って、上流側測温抵抗素子32の温度よりも、下流側測温抵抗素子33の温度が高くなる。
このような温度差は、上流側測温抵抗素子32の電気抵抗と下流側測温抵抗素子33の電気抵抗との間に差を生じさせる。下流側測温抵抗素子33の電気抵抗と上流側測温抵抗素子32の電気抵抗との差は、管路内のガスの速度や流量と相関関係がある。そのため、下流側測温抵抗素子33の電気抵抗と上流側測温抵抗素子32の電気抵抗との差を基に、管路を流れる流体の速度(流速)や流量を算出することができる。抵抗素子31、32及び33の電気抵抗の情報は、後述する電極パッド21及び接続部材22を通じて電気信号として取り出すことができる。
図1及び図2に示すセンサ薄膜30の厚さは、例えば1μmであり、センサ薄膜30の縦横の寸法は、例えば基板20と同一(1.7mm程度)である。各抵抗素子31,32,33,34のそれぞれの材料には、白金(Pt)などが使用可能である。また、各抵抗素子31,32,33,34の形成には、リソグラフィ法などが適用可能である。
図1及び図2に示す基台20の厚さは、例えば525μmであり、基台20の縦横の寸法は、例えばそれぞれ1.7mm程度である。但し、基台20の寸法及び形状は、これらに限られない。キャビティ25は、異方性エッチングなどのMEMS(Micro Electro Mechanical Systems)技術を用いて形成することができる。図2には、一例として断面形状が舟形凹状のキャビティ25が形成された様子を例示している。
図2に示すように、基板20は、下面(裏面)に設けられた電極パッド21と、上面から下面まで貫通する貫通電極22と、熱伝導部材23を有する。
電極パッド21は、外部の回路などに電気的に接続するためのものである。貫通電極22は、センサ薄膜30、特に各抵抗素子31,32,33,34と電極パッド21とを電気的に接続するためのものである。電極パッド21及び接続部材22のそれぞれの材料には、銅(Cu)、銅合金、タングステン(W)、タングステン合金などが使用可能である。
図3は、基板における時間と上昇温度との関係を示すグラフである。図3に示すように、菱形で表される(プロットされる)、従来のシリコン製の基板の場合、熱伝導率が十分高いので、基板上の抵抗素子が発熱しても、時間経過により基板の温度は上昇しない。しかし、三角で表される(プロットされる)、ガラス製の基板の場合、熱伝導率がシリコン(Si)よりも低いので、基板上の抵抗素子が発熱すると、時間経過により基板の温度は上昇する。
一方、図1及び図2に示す本発明のフローセンサ10では、基板20は、熱伝導率がシリコン(Si)より低い材料、例えば、ガラスやセラミックスから構成される。また、熱伝導部材23は、熱伝導率が基板20より高い材料、例えば、シリコン(Si)やタングステン(W)から構成される。熱伝導部材23は、周囲温度センサ(抵抗素子)34の直下に、具体的には、下部絶縁層30aを介して周囲温度センサ(抵抗素子)34に近接して設けられる。これにより、通電により周囲温度センサ(抵抗素子)34が熱を発したときに、当該周囲温度センサ(抵抗素子)34に近接して設けられた熱伝導部材23が放熱する。よって、図3に示すように、円形で表される(プロットされる)、ガラス製の基板20にシリコン製の熱伝導部材23を設けた場合に、基板20上の周囲温度センサ(抵抗素子)34が発熱しても、時間経過により基板20の温度はあまり上昇しない。
また、図2に示す熱伝導部材23は、基板20の一方の面(図2において上面)から他方の面(図2において下面)まで貫通する。これにより、熱伝導部材23は、周囲温度センサ(抵抗素子)34が基板20の上面上で発した熱を下面へ熱伝導させる経路(パス)となる。
基板20の材料としては、例えばガラス又はセラミックスが好ましい。ここで、ガラス製の基板20は、従来のシリコン製の基板と比較して、熱伝導率は低いが、エッチングに加えてドリルなどを用いた微細加工も可能であるため、成形が容易であり、形状設計の自由度が高い。よって、熱伝導部材23を設けるための加工、例えば、一方の面から他方の面まで貫通する貫通孔を容易に形成することができる。なお、セラミックス製の基板20の場合も、ガラス製の基板20同様の性質を有する。
また、基板20の材料としては、腐食性物質に対して耐食性を有するものが更に好ましい。これにより、腐食性物質が存在する環境(状況)で使用することができ、腐食性物質の流体、例えばCl2、BCl3などを含有する気体(ガス)の流速(流量)を検出するフローセンサ10に好適に用いることができる。
図4は、図1に示したフローセンサの他の例を説明する斜視図であり、図5は、図4に示したVI−VI線矢視方向断面図である。本実施形態では、フローセンサ10が電極パッド21と、貫通電極22とを備えるようにしたが、これに限定されない。フローセンサ10は、腐食性物質を含有する流体の流速(流量)を検出する場合に好適に用いることができるが、流体が腐食性物質を含有しない場合には、図4及び図5に示すように、基板20の一方の面(図4及び図5において上面)に電極パッド35を設けるようにしてもよい。
なお、本実施形態では、本発明に係るセンサの一例としてフローセンサ10を示したが、これに限定されず、温度センサ、圧力センサなど他の種類のセンサであってもよい。
このように、本実施形態におけるフローセンサ10によれば、熱伝導率が基板20より高い熱伝導部材23が、周囲温度センサ(抵抗素子)34に近接して設けられる。これにより、通電により周囲温度センサ(抵抗素子)34が熱を発したときに、当該周囲温度センサ(抵抗素子)34に近接して設けられた熱伝導部材23が放熱する。よって、図3に示すように、円形で表される(プロットされる)、ガラス製の基板20にシリコン製の熱伝導部材23を設けた場合に、基板20上の周囲温度センサ(抵抗素子)34が発熱しても、時間経過により基板の温度はあまり上昇しない。これにより、熱伝導率がシリコン(Si)より低い基板20を備えるセンサであっても、基板20の温度上昇を抑制することができ、所定の物理量を精度良く検出することが可能となる。
また、本実施形態におけるフローセンサ10によれば、熱伝導部材22が基板20の一方の面(図1及び図2において上面)から他方の面(図1及び図2において下面)まで貫通する。これにより、熱伝導部材23は、周囲温度センサ(抵抗素子)34が基板20の上面上で発した熱を下面へ熱伝導させる経路(パス)となる。これにより、基板20の外部に効率良く放熱することができ、基板20の温度上昇を更に抑制することができる。
また、本実施形態におけるフローセンサ10によれば、基板20の材料がガラスである。ここで、ガラス製の基板20は、従来のシリコン製の基板と比較して、熱伝導率は低いが、エッチングに加えてドリルなどを用いた微細加工も可能であるため、成形が容易であり、形状設計の自由度が高い。よって、熱伝導部材23を設けるための加工、例えば、一方の面から他方の面まで貫通する貫通孔を容易に形成することができる。これにより、基板20の温度上昇を抑制することができるセンサを容易に実現することができる。
また、本実施形態におけるフローセンサ10によれば、基板20の材料がセラミックスである。ここで、セラミックス製の基板20は、従来のシリコン製の基板と比較して、熱伝導率は低いが、エッチングに加えてドリルなどを用いた微細加工も可能であるため、成形が容易であり、形状設計の自由度が高い。よって、熱伝導部材23を設けるための加工、例えば、一方の面から他方の面まで貫通する貫通孔を容易に形成することができる。これにより、基板20の温度上昇を抑制することができるセンサを容易に実現することができる。
また、本実施形態におけるフローセンサ10によれば、基板20が腐食性物質に対して耐食性を有する。これにより、腐食性物質が存在する環境(状況)で使用することができ、腐食性物質の流体、例えばCl2、BCl3などを含有する気体(ガス)の流速(流量)を検出するフローセンサ10に好適に用いることができる。
なお、前述の実施形態の構成は、組み合わせたり或いは一部の構成部分を入れ替えたりしたりしてもよい。また、本発明の構成は前述の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。
10…フローセンサ
20…基板
21…電極パッド
22…貫通電極
23…熱伝導部材
30…センサ薄膜
34…周囲温度センサ(抵抗素子)34

Claims (5)

  1. 熱伝導率がシリコンより低い基板と、
    前記基板の一方の面上に設けられる抵抗体と、
    前記抵抗体に近接して設けられ、熱伝導率が前記基板より高い熱伝導部材と、を備える
    ことを特徴とするセンサ。
  2. 前記熱伝導部材は、前記基板の一方の面から他方の面まで貫通する
    ことを特徴とする請求項1に記載のセンサ。
  3. 前記基板の材料は、ガラスである
    ことを特徴とする請求項1又は2に記載のセンサ。
  4. 前記基板の材料は、セラミックスである
    ことを特徴とする請求項1又は2に記載のセンサ。
  5. 前記基板は、腐食性物質に対して耐食性を有する
    ことを特徴とする請求項1乃至4の何れか一項に記載のセンサ。
JP2010075642A 2010-03-29 2010-03-29 センサ Pending JP2011209035A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075642A JP2011209035A (ja) 2010-03-29 2010-03-29 センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075642A JP2011209035A (ja) 2010-03-29 2010-03-29 センサ

Publications (1)

Publication Number Publication Date
JP2011209035A true JP2011209035A (ja) 2011-10-20

Family

ID=44940266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075642A Pending JP2011209035A (ja) 2010-03-29 2010-03-29 センサ

Country Status (1)

Country Link
JP (1) JP2011209035A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109211342A (zh) * 2018-09-05 2019-01-15 武汉四方光电科技有限公司 一种气流流量计、mems硅基温敏芯片及其制备方法
JP2021131323A (ja) * 2020-02-20 2021-09-09 サーパス工業株式会社 流量計および流量計の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109211342A (zh) * 2018-09-05 2019-01-15 武汉四方光电科技有限公司 一种气流流量计、mems硅基温敏芯片及其制备方法
JP2021131323A (ja) * 2020-02-20 2021-09-09 サーパス工業株式会社 流量計および流量計の製造方法

Similar Documents

Publication Publication Date Title
JP4935225B2 (ja) 電子部品実装体
US20060209920A1 (en) Probe for electronic clinical thermometer
JP2008020193A (ja) 熱式流量センサ
US9921088B2 (en) Device for determining temperature as well as measuring arrangement for determining flow
JP6421655B2 (ja) 熱流束センサ
JP2012073206A (ja) 熱式流量センサ
JP2001027558A (ja) 感熱式流量センサ
JP2009300381A (ja) 熱伝導型真空計、圧力測定方法
JP2011209035A (ja) センサ
JP6243040B2 (ja) 被酸化性ガスを検出するセンサ
JP3706358B2 (ja) 気体流量・温度測定素子
JP5564457B2 (ja) フローセンサ
JP7309744B2 (ja) 熱絶縁を備えた温度検出プローブ
JP2017101955A (ja) 測定装置及び測定装置の製造方法
JP2015194429A (ja) フローセンサおよび流量計
JP2011209009A (ja) センサ
JP4844252B2 (ja) 熱式質量流量計
JP2011209038A (ja) フローセンサ
JP4970751B2 (ja) 検知素子、真空計及び真空管
JP2011185869A (ja) フローセンサ
JP5907688B2 (ja) フローセンサ及びフローセンサの製造方法
JP2017026428A (ja) 測定装置の製造方法および測定装置
JP6219769B2 (ja) フローセンサおよびフローセンサの製造方法
JP2015194428A (ja) フローセンサおよびフローセンサの製造方法
WO2017203860A1 (ja) 湿度測定装置