JP2011208238A - Vapor deposition apparatus - Google Patents

Vapor deposition apparatus Download PDF

Info

Publication number
JP2011208238A
JP2011208238A JP2010077916A JP2010077916A JP2011208238A JP 2011208238 A JP2011208238 A JP 2011208238A JP 2010077916 A JP2010077916 A JP 2010077916A JP 2010077916 A JP2010077916 A JP 2010077916A JP 2011208238 A JP2011208238 A JP 2011208238A
Authority
JP
Japan
Prior art keywords
vapor deposition
substrate
substrate support
support member
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010077916A
Other languages
Japanese (ja)
Other versions
JP5654255B2 (en
Inventor
Thinkao Panupong
パヌポーン・ティンカオ
Jamujai Nittasu
ニッタス・ジャムジャイ
Charuntonsukkuo Suratep
スラテップ・チャルントンスックオ
Puriyansurii Supaluk
スパルーク・プリヤンスリー
Koji Shimizu
浩二 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Hoya Lens Thailand Ltd
Original Assignee
Hoya Corp
Hoya Lens Thailand Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp, Hoya Lens Thailand Ltd filed Critical Hoya Corp
Priority to JP2010077916A priority Critical patent/JP5654255B2/en
Publication of JP2011208238A publication Critical patent/JP2011208238A/en
Application granted granted Critical
Publication of JP5654255B2 publication Critical patent/JP5654255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vapor deposition apparatus which does not form vapor deposition spots on individual substrates even when vapor-deposited films are formed on many substrates at a time, and can manufacture a substrate having stable reflection properties.SOLUTION: This vapor deposition apparatus is constituted by: a substrate support member 2 for supporting a plurality of substrates 6; and a vapor deposition source 4 which spreads a desired vapor-deposition material onto the surface to be vapor-deposited of the substrate 6 supported by the substrate support member 2, and is arranged so that angles from the vapor deposition source 4 with respect to the fringes of the surfaces to be vapor-deposited of each substrate 6 are approximately the same over all perimeters of the surfaces to be vapor-deposited. Because the angles from the vapor deposition source 4 with respect to the fringes of the surfaces to be vapor-deposited of each substrate 6 are approximately the same over all perimeters of the surfaces to be vapor-deposited, vapor deposition angles of the vapor deposition material spreading from the vapor deposition source 4 become same in the fringes of the surfaces to be vapor-deposited of each substrate 6. Because of this, the vapor deposition material uniformly deposits on the fringes of each substrate 6, and vapor-deposited films having a uniform film thickness are formed.

Description

本発明は、眼鏡レンズなどに用いられる基板の表面に所望の膜を成膜する為に用いられる蒸着装置に関し、特に、複数の基板に対して一度に、精度良く成膜が可能な蒸着装置に関する。   The present invention relates to a vapor deposition apparatus used for forming a desired film on the surface of a substrate used for spectacle lenses and the like, and more particularly to a vapor deposition apparatus capable of forming a film on a plurality of substrates at once with high accuracy. .

眼鏡などに用いられる光学レンズには様々な機能が付与される。例えば、真空蒸着法により、基板(レンズ)表面に多層の反射防止膜が成膜されることにより、反射防止機能を有する光学レンズが形成される。   Various functions are imparted to optical lenses used in glasses or the like. For example, an optical lens having an antireflection function is formed by forming a multilayer antireflection film on the surface of the substrate (lens) by vacuum deposition.

このように、多層反射防止膜は、一般的に真空蒸着装置を使用して成膜されている。真空蒸着装置は、複数の基板が配列されたドーム型の基板支持体と、基板支持体の下方に配置された加熱ヒータと蒸着源とを有しており、基板の被蒸着面が蒸着源側に向くように基板支持体に支持されている。そして、加熱ヒータにより蒸着源を加熱することで、蒸着源から蒸着分子が飛散し、基板の被蒸着面に蒸着する(特許文献1)。   As described above, the multilayer antireflection film is generally formed using a vacuum deposition apparatus. The vacuum deposition apparatus includes a dome-shaped substrate support in which a plurality of substrates are arranged, a heater and a deposition source arranged below the substrate support, and the deposition surface of the substrate is on the deposition source side. Is supported by the substrate support. And a vapor deposition molecule disperses from a vapor deposition source by heating a vapor deposition source with a heater, and vapor-deposits on the to-be-deposited surface of a substrate (patent documents 1).

ところで、多層反射防止膜は、構成する膜の厚みや蒸着状態により、その干渉色が異なる場合がある。複数の基板を一度に蒸着する場合、基板の配置場所により蒸着具合が変化し、結果的に膜質が均質にならないことがある。
また、基板が曲面を有するレンズである場合には、その曲面においても局所的に異なる膜厚分布が生じ同一のレンズでありながら干渉色が異なってしまうことがあり得る。特に、曲率半径の大きいハイカーブレンズでは、レンズの周縁がカーブの影になり、蒸着材料が付着しにくい。
By the way, the multilayer antireflection film may have different interference colors depending on the thickness of the constituent film and the deposition state. When a plurality of substrates are vapor-deposited at once, the degree of vapor deposition varies depending on the location of the substrates, and as a result, the film quality may not be uniform.
Further, when the substrate is a lens having a curved surface, locally different film thickness distributions may occur on the curved surface, and the interference color may be different even though the lens is the same. In particular, in a high curve lens having a large curvature radius, the periphery of the lens becomes a shadow of the curve, and the deposition material is difficult to adhere.

図18A及び図18Bは、従来の蒸着装置において基板に蒸着膜を成膜するときの様子を示したものであり、曲面を有する基板の被蒸着面内で、蒸着角度が異なる場合の基板に対する蒸着分子の付着の様子を模式的に示した図である。図18A及び図18Bでは、基板支持部材12に支持された基板6を一つだけ抜き出して図示している。図18A及び図18Bにおいて、基板16の周縁における接線を線lnで示す。また、基板支持部材12のボトム側に位置する基板16の面と、図示しない蒸着源とを結ぶ線を線lで示し、基板支持部材12のアッパー側に位置する基板16の面と、図示しない蒸着源とを結ぶ線を線lで示す。そして、線lnと線lとの角度差をθとし、線lnと線lとの角度差をθとする。 FIG. 18A and FIG. 18B show a state in which a vapor deposition film is formed on a substrate in a conventional vapor deposition apparatus, and vapor deposition on a substrate in the case where the vapor deposition angle is different within a vapor deposition surface of a substrate having a curved surface. It is the figure which showed the mode of adhesion of a molecule | numerator typically. 18A and 18B, only one substrate 6 supported by the substrate support member 12 is extracted and illustrated. In FIG. 18A and FIG. 18B, the tangent at the periphery of the substrate 16 is indicated by a line ln. In addition, a line connecting the surface of the substrate 16 positioned on the bottom side of the substrate support member 12 and a vapor deposition source (not shown) is indicated by a line 11 , and the surface of the substrate 16 positioned on the upper side of the substrate support member 12 is illustrated. It shows the line connecting the evaporation source not in the line l 2. The angle difference between the line ln and the line l 1 is θ 1 , and the angle difference between the line ln and the line l 2 is θ 2 .

例えば、図18Aに示すように、ドーム型の基板支持部材12において、θ>θの場合、すなわち、基板16のボトム側が蒸着源に対して広角に対向している場合、基板16のボトム側により多くの蒸着分子が付着する。そして、この場合には、基板16のアッパー側では、被蒸着面の曲面によって蒸着源からの蒸着分子が遮られ、基板16のアッパー側には蒸着分子が付着しにくい。このため、基板16のボトム側でのみ蒸着膜の膜厚が厚くなってしまう。 For example, as shown in FIG. 18A, in the dome-shaped substrate support member 12, when θ 1 > θ 2 , that is, when the bottom side of the substrate 16 faces the deposition source at a wide angle, the bottom of the substrate 16 More deposited molecules adhere to the side. In this case, vapor deposition molecules from the vapor deposition source are blocked by the curved surface of the vapor deposition surface on the upper side of the substrate 16, and the vapor deposition molecules hardly adhere to the upper side of the substrate 16. For this reason, the film thickness of the vapor deposition film becomes thick only on the bottom side of the substrate 16.

一方、図18Bに示すように、ドーム型の基板支持部材12において、θ<θの場合、すなわち、基板16のアッパー側が蒸着源に対して広角に対向している場合、基板16のアッパー側により多くの蒸着分子が付着する。そして、この場合には、基板16のボトム側では、被蒸着面の曲面によって蒸着源からの蒸着分子が遮られ、基板16のボトム側には、蒸着分子が付着しにくい。このため、基板16のアッパー側でのみ、蒸着膜の膜厚が厚くなってしまう。 On the other hand, as shown in FIG. 18B, in the dome-shaped substrate support member 12, when θ 12 , that is, when the upper side of the substrate 16 faces the deposition source at a wide angle, the upper of the substrate 16 More deposited molecules adhere to the side. In this case, vapor deposition molecules from the vapor deposition source are blocked by the curved surface of the deposition surface on the bottom side of the substrate 16, and the vapor deposition molecules hardly adhere to the bottom side of the substrate 16. For this reason, the film thickness of the vapor deposition film becomes thick only on the upper side of the substrate 16.

このように、曲面を有する基板16をドーム型の基板支持部材12に支持して蒸着膜を成膜する場合には、基板16の周縁で、蒸着面に対して蒸着分子が入射してくる角度(蒸着角)が異なり、基板16内に膜圧分布が生じやすい。このため、一般的に用いられている従来の蒸着装置では、基板16内に蒸着斑が生じ、また、基板16内で干渉色が異なる部分が発生するので、安定した反射特性を得られない。   As described above, when the vapor deposition film is formed by supporting the substrate 16 having a curved surface on the dome-shaped substrate support member 12, the angle at which the vapor deposition molecules enter the vapor deposition surface at the periphery of the substrate 16. (Vapor deposition angle) is different, and film pressure distribution tends to occur in the substrate 16. For this reason, in a conventional vapor deposition apparatus that is generally used, vapor deposition spots are generated in the substrate 16, and portions having different interference colors are generated in the substrate 16, so that stable reflection characteristics cannot be obtained.

これに対し、例えば、特許文献2には、基板の被蒸着面と、蒸着源の向き合う角度を調節する機構を備えた蒸着装置が記載されている。この特許文献2に記載の蒸着装置では、複数のパーツがヒンジやリンク結合部により連結された基体ホルダーを備えている。そして、基体ホルダーのヒンジやリンク結合部の変形により、基板の蒸着源に向く角度を調節する構成とされている。これにより、基板の被蒸着面に、精度良く蒸着材を蒸着させている。   On the other hand, for example, Patent Document 2 describes a vapor deposition apparatus including a mechanism for adjusting an angle at which a vapor deposition surface of a substrate and a vapor deposition source face each other. The vapor deposition apparatus described in Patent Document 2 includes a substrate holder in which a plurality of parts are connected by hinges or link coupling portions. And it is set as the structure which adjusts the angle which faces the vapor deposition source of a board | substrate by the deformation | transformation of the hinge of a base | substrate holder, or a link coupling part. Thereby, the vapor deposition material is deposited on the deposition surface of the substrate with high accuracy.

しかしながら、蒸着工程においては、蒸着源から飛散する蒸着材料は、蒸着したい部分のみに定着するわけではなく、被蒸着面を有する基板を保持する基体ホルダーに向けても飛散され、定着してしまう。このため、基体ホルダーのヒンジやリンク結合部が変形したときに、以前の蒸着工程で付着した蒸着物が剥がれ落ちる場合がある。剥がれた蒸着物が蒸着中の基板の被蒸着面に付着すると、その付着した領域だけ蒸着されないという問題がある。   However, in the vapor deposition process, the vapor deposition material scattered from the vapor deposition source is not fixed only to the portion to be vapor deposited, but is scattered and fixed toward the substrate holder that holds the substrate having the vapor deposition surface. For this reason, when the hinge of the substrate holder or the link coupling portion is deformed, the deposited material attached in the previous deposition process may peel off. When the peeled deposit adheres to the deposition surface of the substrate being deposited, there is a problem that only the adhered region is not deposited.

また、一度に多数(例えば100以上)の基板に蒸着をする場合、ヒンジや結合リンクの角度を調整するのは煩雑であり、実用的ではない。   Moreover, when vapor-depositing on many (for example, 100 or more) board | substrates at once, adjusting the angle of a hinge or a coupling link is complicated, and is not practical.

特開2004−99948号公報Japanese Patent Laid-Open No. 2004-99948 特開平10−68066号公報Japanese Patent Laid-Open No. 10-68066

上述の点に鑑み、本発明は、一度に多数の基板に蒸着膜を形成する場合においても、個々の基板に蒸着斑が生じず、安定した反射特性を有する基板を製造できる蒸着装置を提供する。   In view of the above, the present invention provides a vapor deposition apparatus capable of producing a substrate having stable reflection characteristics without causing vapor deposition spots on individual substrates even when vapor deposition films are formed on many substrates at once. .

上記課題を解決し、本発明の目的を達成するため、本発明の蒸着装置は、基板支持部材と、蒸着源と、を有する。基板支持部材は、複数の基板を支持するものである。蒸着源は、基板支持部材に支持された基板の被蒸着面上に所望の蒸着材料を飛散させるものであり、各基板の被蒸着面の周縁に対する蒸着源からの角度が全周に渡ってほぼ同一となるように配置されている。ここで、「ほぼ同一」の許容範囲は、基板の被蒸着面の周縁に対する蒸着源からの角度差が5度以下とする。たとえば、基板支持部材が移動可能であり、各基板が蒸着装置内で移動する場合には、その蒸着過程の終始にわたって、蒸着源からの角度差が5度以下であることをいう。また、蒸発源から最も離間しているときの角度差と最も近接した時の角度差の和算値が10度以下であるとより好ましい。   In order to solve the above problems and achieve the object of the present invention, the vapor deposition apparatus of the present invention includes a substrate support member and a vapor deposition source. The substrate support member supports a plurality of substrates. The vapor deposition source is intended to scatter a desired vapor deposition material on the vapor deposition surface of the substrate supported by the substrate support member, and the angle from the vapor deposition source with respect to the periphery of the vapor deposition surface of each substrate is almost the entire circumference. They are arranged to be the same. Here, the allowable range of “substantially the same” is that the angle difference from the deposition source with respect to the periphery of the deposition surface of the substrate is 5 degrees or less. For example, when the substrate support member is movable and each substrate moves in the vapor deposition apparatus, it means that the angle difference from the vapor deposition source is 5 degrees or less throughout the vapor deposition process. Moreover, it is more preferable that the sum value of the angle difference when it is farthest from the evaporation source and the angle difference when it is closest is 10 degrees or less.

本発明の蒸着装置では、各基板の被蒸着面の周縁に対する蒸着源からの角度を被蒸着面の全周に渡ってほぼ同一となるように、蒸着源を配置することにより、蒸着源から飛散される蒸着材料の被蒸着面の周縁に対する蒸着角がほぼ同一となる。これにより、各基板の被蒸着面の周縁において、均一な膜厚の蒸着膜を成膜することができる。   In the vapor deposition apparatus of the present invention, the vapor deposition source is disposed so that the angle from the vapor deposition source with respect to the periphery of the vapor deposition surface of each substrate is substantially the same over the entire circumference of the vapor deposition surface, thereby scattering from the vapor deposition source. The vapor deposition angle with respect to the peripheral edge of the surface to be vapor-deposited is almost the same. Thereby, the vapor deposition film with a uniform film thickness can be formed at the periphery of the vapor deposition surface of each substrate.

また、本発明の蒸着装置では、基板支持部材は、蒸着源側に面して所定の曲率を有する基板支持面を有して構成されることが好ましい。そして、複数の基板は、その基板支持部材の基板支持面に、被蒸着面が蒸着源側に面するように支持される。また、蒸着源は、基板支持部材に支持された全ての基板の位置から、基板支持面の曲率半径分だけ離れた位置に配置されていることが好ましい。   Moreover, in the vapor deposition apparatus of this invention, it is preferable that a board | substrate support member has a board | substrate support surface which has a predetermined curvature facing the vapor deposition source side. The plurality of substrates are supported on the substrate support surface of the substrate support member such that the deposition surface faces the deposition source side. Further, the vapor deposition source is preferably arranged at a position separated from the positions of all the substrates supported by the substrate support member by the curvature radius of the substrate support surface.

以上の構成とすることにより、各基板の被蒸着面の周縁に対する蒸着源からの角度が、被蒸着面の全周に渡ってほぼ同一とされる。また、蒸着源から各基板への距離も同一となる。   By setting it as the above structure, the angle from the vapor deposition source with respect to the periphery of the vapor deposition surface of each board | substrate is made substantially the same over the perimeter of the vapor deposition surface. Further, the distance from the vapor deposition source to each substrate is the same.

そして、基板支持部材は、その中心軸を回転軸として回転可能に構成されることが好ましい。基板支持部材を回転させながら基板の被蒸着面に蒸着材料を蒸着させることで、より均一な膜厚の蒸着膜を成膜することができる。   The substrate support member is preferably configured to be rotatable about its central axis as a rotation axis. By depositing the deposition material on the deposition surface of the substrate while rotating the substrate support member, it is possible to form a deposition film having a more uniform film thickness.

また、必要に応じて、基板支持部材と蒸着源との間の所望の位置に、蒸着源から飛散する蒸着材料の飛散方向を補正する補正板が配置されていることが好ましい。
補正板を配置することにより、各基板に成膜される蒸着膜の膜厚を均一に補正することができる。
Moreover, it is preferable that the correction board which correct | amends the scattering direction of the vapor deposition material scattered from a vapor deposition source is arrange | positioned in the desired position between a board | substrate support member and a vapor deposition source as needed.
By disposing the correction plate, the film thickness of the deposited film formed on each substrate can be corrected uniformly.

本発明によれば、一度に多数の基板に蒸着膜を形成する場合においても、個々の基板において、均一な蒸着膜を成膜することができ、また、同時に蒸着された各基板の蒸着膜も均一に成膜することができる。これにより、安定した反射特性を有する基板を製造することができる。   According to the present invention, even when vapor deposition films are formed on a large number of substrates at a time, a uniform vapor deposition film can be formed on each substrate, and the vapor deposition films on the respective substrates deposited at the same time can also be formed. A uniform film can be formed. Thereby, the board | substrate which has the stable reflective characteristic can be manufactured.

本発明の一実施形態の蒸着装置の概略構成図である。It is a schematic block diagram of the vapor deposition apparatus of one Embodiment of this invention. 本発明の一実施形態の蒸着装置の概略断面構成図である。It is a schematic sectional block diagram of the vapor deposition apparatus of one Embodiment of this invention. 本発明の一実施形態の蒸着装置に支持された複数の基板のうちの1つを拡大して図示したものである。1 is an enlarged view of one of a plurality of substrates supported by a vapor deposition apparatus according to an embodiment of the present invention. A,B 実施例に係る蒸着装置の概略構成図と、その蒸着装置において、基板支持部材に支持された各基板への蒸着角を示した図である。It is the figure which showed the schematic block diagram of the vapor deposition apparatus which concerns on A, B Example, and the vapor deposition angle to each board | substrate supported by the board | substrate support member in the vapor deposition apparatus. 実施例において、蒸着材料としてSiOを用いて成膜を行ったときの、1段目から7段目の基板の分光曲線を示した図である。In an embodiment, when a film was formed by using a SiO 2 as an evaporation material, a graph showing the spectral curve of the substrate from the first stage 7 stage. 実施例において、蒸着材料としてZrOを用いて成膜を行ったときの、1段目から7段目の基板の分光曲線を示した図である。In an embodiment, when a film was formed by using ZrO 2 as the evaporation material is a graph showing the spectral curve of the substrate from the first stage 7 stage. A,B 比較例1に係る蒸着装置の概略構成図と、その蒸着装置において、基板支持部材に支持された各基板への蒸着角を示した図である。A, B It is the figure which showed the schematic block diagram of the vapor deposition apparatus which concerns on the comparative example 1, and the vapor deposition angle to each board | substrate supported by the substrate support member in the vapor deposition apparatus. A,B 比較例2に係る蒸着装置の概略構成図と、その蒸着装置において、基板支持部材に支持された各基板への蒸着角を示した図である。A, B It is the figure which showed the schematic block diagram of the vapor deposition apparatus which concerns on the comparative example 2, and the vapor deposition angle to each board | substrate supported by the substrate support member in the vapor deposition apparatus. A,B 比較例3に係る蒸着装置の概略構成図と、その蒸着装置において、基板支持部材に支持された各基板への蒸着角を示した図である。A, B It is the schematic block diagram of the vapor deposition apparatus which concerns on the comparative example 3, and the figure which showed the vapor deposition angle to each board | substrate supported by the substrate support member in the vapor deposition apparatus. A,B 比較例4に係る蒸着装置の概略構成図と、その蒸着装置において、基板支持部材に支持された各基板への蒸着角を示した図である。A, B It is the schematic block diagram of the vapor deposition apparatus which concerns on the comparative example 4, and the figure which showed the vapor deposition angle to each board | substrate supported by the board | substrate support member in the vapor deposition apparatus. A,B 比較例5に係る蒸着装置の概略構成図と、その蒸着装置において、基板支持部材に支持された各基板への蒸着角を示した図である。A, B It is the schematic block diagram of the vapor deposition apparatus which concerns on the comparative example 5, and the figure which showed the vapor deposition angle to each board | substrate supported by the board | substrate support member in the vapor deposition apparatus. A,B 実施例1、及び比較例の蒸着装置を用いてSiO膜を成膜した場合の、基板支持部材の中心軸から各基板への距離、膜厚、屈折率、膜厚比を示したものである。A, B Shows the distance, film thickness, refractive index, and film thickness ratio from the central axis of the substrate support member to each substrate when the SiO 2 film is formed using the vapor deposition apparatus of Example 1 and Comparative Example. It is a thing. A,B 図12A及び図12Bの膜厚をグラフ化して示した図と、屈折率をグラフ化して示した図である。FIGS. 12A and 12B are a graph showing the film thicknesses of FIGS. 12A and 12B and a graph showing the refractive index. A,B 実施例1、及び比較例の蒸着装置を用いてNb膜を成膜した場合の、基板支持部材の中心軸から各基板への距離、膜厚、屈折率、膜厚比を示したものである。A, B The distance from the central axis of the substrate support member to each substrate, the film thickness, the refractive index, and the film thickness ratio when the Nb 2 O 5 film was formed using the vapor deposition apparatuses of Example 1 and Comparative Example Is shown. A,B 図14A及び図14Bの膜厚をグラフ化して示した図と、屈折率をグラフ化して示した図である。FIGS. 14A and 14B are a graph showing the film thicknesses of FIGS. 14A and 14B and a graph showing the refractive index. A,B 実施例1、及び比較例の蒸着装置を用いてZrO膜を成膜した場合の、基板支持部材の中心軸から各基板への距離、膜厚、屈折率、膜厚比を示したものである。A, B Shows the distance, film thickness, refractive index, and film thickness ratio from the central axis of the substrate support member to each substrate when the ZrO 2 film is formed using the vapor deposition apparatus of Example 1 and Comparative Example. It is a thing. A,B 図16A及び図16Bの膜厚をグラフ化して示した図と、屈折率をグラフ化して示した図である。FIGS. 16A and 16B are a graph showing the film thicknesses of FIGS. 16A and 16B and a graph showing the refractive index. A,B 従来の蒸着装置において基板に蒸着膜を成膜するときの様子を示した図である。A, B It is the figure which showed the mode when forming a vapor deposition film on a board | substrate in the conventional vapor deposition apparatus.

以下に、本発明の実施形態に係る蒸着装置の一例を、図1〜図17を参照しながら説明する。なお、本発明は以下の例に限定されるものではない。   Below, an example of the vapor deposition apparatus which concerns on embodiment of this invention is demonstrated, referring FIGS. In addition, this invention is not limited to the following examples.

図1〜図7を用いて、本発明の一実施形態に係る蒸着装置について説明する。   The vapor deposition apparatus which concerns on one Embodiment of this invention is demonstrated using FIGS.

図1は、本実施形態例の蒸着装置1の概略構成図である。また、図2Aは、本実施形態例の蒸着装置1の断面構成図であり、図2Bは、蒸着装置の要部をその上面から見た図である。図1及び図2に示すように、本実施形態例の蒸着装置1は、曲面を有するレンズなどの基板6を複数支持する基板支持部材2と、所望の蒸着材料を飛散させる蒸着源4とを有し、これらが、真空を維持できる真空チャンバー7内に配置されている。   FIG. 1 is a schematic configuration diagram of a vapor deposition apparatus 1 according to this embodiment. Moreover, FIG. 2A is a cross-sectional block diagram of the vapor deposition apparatus 1 of the present embodiment, and FIG. 2B is a view of the main part of the vapor deposition apparatus as viewed from the top surface. As shown in FIGS. 1 and 2, the vapor deposition apparatus 1 of this embodiment includes a substrate support member 2 that supports a plurality of substrates 6 such as lenses having curved surfaces, and a vapor deposition source 4 that scatters a desired vapor deposition material. These are arranged in a vacuum chamber 7 that can maintain a vacuum.

基板支持部材2は、蒸着源4側に面して所定の曲率を有する基板支持面2aを有するドーム型の部材で構成されている。基板支持部材2の基板支持面2aには、レンズなどの基板6を支持するホルダー3が複数個設けられている。また、基板支持部材2の頂上部の基板支持面2aとは反対側の面には、円筒形状のドームヘッド5が取り付けられている。このドームヘッド5は、基板支持部材2を真空チャンバー7内に保持するために設けられているものである。そして、基板支持部材2は、基板支持部材2の中心軸周りに回転可能に構成されている。   The substrate support member 2 is constituted by a dome-shaped member having a substrate support surface 2a facing the vapor deposition source 4 and having a predetermined curvature. A plurality of holders 3 for supporting a substrate 6 such as a lens are provided on the substrate support surface 2 a of the substrate support member 2. A cylindrical dome head 5 is attached to a surface of the top of the substrate support member 2 opposite to the substrate support surface 2a. The dome head 5 is provided to hold the substrate support member 2 in the vacuum chamber 7. The substrate support member 2 is configured to be rotatable around the central axis of the substrate support member 2.

蒸着源4は、例えば、電子ビームの照射によって蒸着材料を飛散させる電子ビーム蒸着源等で構成され、所望の蒸着材料を保持するケースと、その蒸着材料に電子ビームを照射するための電子銃とで構成されている。蒸着源4は、図2Bに示すように、蒸着材料が基板支持面2aに向くように真空チャンバー7内の基板支持部材の中心軸上に配置され、また、図2Aに示すように、基板支持部材2に支持された全ての基板6の位置から、基板支持面2aの曲率半径R分だけ離れた位置に配置されている。
すなわち、本実施形態例では、基板支持面2aの形状が蒸着源4を中心とする球面形状とされているため、基板支持部材2に支持された全ての基板6が、蒸着源4から等距離(=R)に配置される。
The vapor deposition source 4 includes, for example, an electron beam vapor deposition source that scatters the vapor deposition material by electron beam irradiation, a case for holding a desired vapor deposition material, and an electron gun for irradiating the vapor deposition material with an electron beam. It consists of As shown in FIG. 2B, the vapor deposition source 4 is disposed on the central axis of the substrate support member in the vacuum chamber 7 so that the vapor deposition material faces the substrate support surface 2a. The substrate 2 is disposed at a position separated from the positions of all the substrates 6 supported by the member 2 by the curvature radius R of the substrate support surface 2a.
That is, in the present embodiment, the shape of the substrate support surface 2 a is a spherical shape centered on the vapor deposition source 4, so that all the substrates 6 supported by the substrate support member 2 are equidistant from the vapor deposition source 4. (= R).

基板支持部材2では、基板支持面2aの各ホルダー3に、曲面を有する基板6をその被蒸着面が蒸着源4に面するように固定する。その後、蒸着源4に図示しない電子銃から電子ビームを照射することにより蒸着材料を加熱して基板支持面2aに向かって飛散させる。これにより、基板6の被蒸着面に蒸着材料が蒸着し、基板6の被蒸着面に所望の膜厚の蒸着膜が成膜される。このとき、必要に応じて、基板支持部材2を回転させる。また、図示しないが、真空チャンバー7内の基板支持部材2と蒸着源4との間の所望の位置に、必要に応じて、蒸着源4からの蒸着材料の飛散方向を補正する補正板を設けてもよい。   In the substrate support member 2, the curved substrate 6 is fixed to each holder 3 of the substrate support surface 2 a so that the deposition surface faces the deposition source 4. Thereafter, the deposition material 4 is heated and scattered toward the substrate support surface 2a by irradiating the deposition source 4 with an electron beam from an electron gun (not shown). As a result, the deposition material is deposited on the deposition surface of the substrate 6, and a deposition film having a desired film thickness is formed on the deposition surface of the substrate 6. At this time, the substrate support member 2 is rotated as necessary. Although not shown, a correction plate for correcting the scattering direction of the vapor deposition material from the vapor deposition source 4 is provided at a desired position between the substrate support member 2 and the vapor deposition source 4 in the vacuum chamber 7 as necessary. May be.

図3は、本実施形態例の蒸着装置1に支持された複数の基板6のうちの1つを拡大して図示したものである。図3を用いて、本実施形態例の蒸着装置1における基板6の被蒸着面と、蒸着源4から飛散してくる蒸着分子との関係を説明する。   FIG. 3 is an enlarged view of one of the plurality of substrates 6 supported by the vapor deposition apparatus 1 of this embodiment. The relationship between the deposition surface of the substrate 6 and the vapor deposition molecules scattered from the vapor deposition source 4 in the vapor deposition apparatus 1 of this embodiment will be described with reference to FIG.

以下の説明では、基板支持部材2に支持された基板6の、ドーム型の基板支持部材2の中心側の端部を「上端」とし、基板支持部材2の外周側の端部を「下端」とする。
ところで、真空蒸着においては、真空チャンバー7内の圧力が十分低く保たれているため、蒸着源4に保持された蒸着材料の分子は基板6に向かってほぼ放射状に飛散する。このため、以下の説明では、基板6の被蒸着面に対する蒸着源4からの角度を、その被蒸着面に対する蒸着角(本明細書において「蒸着角」とは、蒸着源からの角度を示す。)として説明する。図3では、基板6の下端における被蒸着面の接線lnと、その下端の位置と蒸着源4とを結ぶ線lの角度差θを基板6上端への蒸着角θとし、基板6の上端における被蒸着面の接線lnと、その上端の位置と蒸着源4とを結ぶ線lとを基板6の下端への蒸着角θとする。
In the following description, the end on the center side of the dome-shaped substrate support member 2 of the substrate 6 supported by the substrate support member 2 is referred to as “upper end”, and the end on the outer peripheral side of the substrate support member 2 is referred to as “lower end”. And
By the way, in vacuum vapor deposition, since the pressure in the vacuum chamber 7 is kept sufficiently low, the molecules of the vapor deposition material held in the vapor deposition source 4 scatter almost radially toward the substrate 6. For this reason, in the following description, the angle from the deposition source 4 with respect to the deposition surface of the substrate 6 is defined as the deposition angle with respect to the deposition surface (in this specification, “deposition angle” indicates the angle from the deposition source. ). In Figure 3, and the tangential ln of the evaporation surface of the lower end of the substrate 6, and the deposition angle theta 1 of the angle difference theta 1 line l 1 connecting the evaporation source 4 and the position of its lower end to the substrate 6 the upper end, the substrate 6 the tangent ln of the evaporation surface at the upper end of the vapor deposition angle theta 2 of the line l 2 connecting the evaporation source 4 and the position of its upper end to the lower end of the substrate 6.

本実施形態例の蒸着装置1では、基板支持部材2の基板支持面2aの形状が、蒸着源4を中心とした球面形状とされる。このため、蒸着源4から、基板6の被蒸着面の上端、及び下端への距離が等しくなり、また、基板6の被蒸着面が回転対象形状の場合には、基板6の上端及び下端の蒸着源4へ向く角度も等しくなる。このため、基板6の下端における蒸着角θと基板6の上端における蒸着角θがほぼ等しくなる。図3では、基板6の下端及び上端の蒸着角θ,θのみ示したが、実際には、基板6の被蒸着面の全周縁に渡って蒸着角はほぼ同一となる。 In the vapor deposition apparatus 1 of the present embodiment, the shape of the substrate support surface 2 a of the substrate support member 2 is a spherical shape centered on the vapor deposition source 4. For this reason, the distance from the vapor deposition source 4 to the upper end and the lower end of the vapor deposition surface of the substrate 6 becomes equal, and when the vapor deposition surface of the substrate 6 has a shape to be rotated, the upper and lower ends of the substrate 6 are The angle toward the vapor deposition source 4 is also equal. For this reason, the vapor deposition angle θ 1 at the lower end of the substrate 6 is substantially equal to the vapor deposition angle θ 2 at the upper end of the substrate 6. In FIG. 3, only the vapor deposition angles θ 1 and θ 2 at the lower end and the upper end of the substrate 6 are shown, but actually, the vapor deposition angles are almost the same over the entire periphery of the vapor deposition surface of the substrate 6.

このように、本実施形態例の蒸着装置1では、基板6の被蒸着面の全周縁において、蒸着角がほぼ同一となるため、被蒸着面の全周縁に渡って均一に蒸着材料が付着する。これにより、基板6の被蒸着面周縁の膜厚差を低減することができる。   As described above, in the vapor deposition apparatus 1 according to the present embodiment, the vapor deposition angle is substantially the same at the entire periphery of the deposition surface of the substrate 6, so that the vapor deposition material uniformly adheres over the entire periphery of the deposition surface. . Thereby, the film thickness difference of the vapor deposition surface periphery of the board | substrate 6 can be reduced.

また、本実施形態例の蒸着装置1では、基板支持部材2の基板支持面2aの形状が蒸着源4を中心とした球面形状とされるので、蒸着源4から各基板6への距離も等距離となる。このため、基板支持部材2に支持された全ての基板6において、被蒸着面周縁の膜厚差が低減され、かつ、各基板間の膜厚差も低減される。また、基板支持面2aが蒸着源4を中心とした球面形状であるため、蒸着源4から飛散した蒸着材料は、各基板6の中心では被蒸着面対して垂直方向に入射する。このため、飛散した蒸着材料は、各基板6の被蒸着面に安定して付着する。   Moreover, in the vapor deposition apparatus 1 of the present embodiment, the shape of the substrate support surface 2a of the substrate support member 2 is a spherical shape centered on the vapor deposition source 4, so that the distance from the vapor deposition source 4 to each substrate 6 is also the same. Distance. For this reason, in all the substrates 6 supported by the substrate support member 2, the film thickness difference at the periphery of the deposition surface is reduced, and the film thickness difference between the substrates is also reduced. Further, since the substrate support surface 2a has a spherical shape centered on the vapor deposition source 4, the vapor deposition material scattered from the vapor deposition source 4 is incident on the vapor deposition surface in the vertical direction at the center of each substrate 6. For this reason, the scattered vapor deposition material adheres stably to the vapor deposition surface of each substrate 6.

[実施例]
次に、上述した本実施形態例の蒸着装置1をより具体的に実施した実施例について説明する。図4Aは、実施例に係る蒸着装置の概略構成図である。
[Example]
Next, the Example which implemented the vapor deposition apparatus 1 of this embodiment example mentioned above more concretely is described. FIG. 4A is a schematic configuration diagram of a vapor deposition apparatus according to an embodiment.

図4Aの、点Aは、蒸着源4の配置する位置である。点B及び点Cは、基板支持部材2の対向する端部の位置を示す。また、点Dは、基板支持部材2の中心である。また、点Gは、基板支持部材2の中心軸上の点である。   A point A in FIG. 4A is a position where the vapor deposition source 4 is arranged. Points B and C indicate the positions of the opposite ends of the substrate support member 2. The point D is the center of the substrate support member 2. Further, the point G is a point on the central axis of the substrate support member 2.

実施例では、図4Aにおいて、基板支持面2aの曲率半径R=1146mm、蒸着源4から各基板6が支持された基板支持面2aまでの距離AB=AC=AD=1146mm、基板支持部材2の外径BC=1390mmとした。   4A, the radius of curvature R of the substrate support surface 2a is 1146 mm, the distance AB from the vapor deposition source 4 to the substrate support surface 2a on which each substrate 6 is supported is AB = AC = AD = 1146 mm, The outer diameter BC = 1390 mm.

図4Bは、実施例における蒸着装置において、基板支持部材2の1段目から8段目に配置された各基板6における被蒸着面の下端への蒸着角θ1と、上端への蒸着角θと、それらの角度差θ−θを示した図である。なお、基板支持部材2の中心に一番近い位置(すなわち、ドーム形状の最上段の位置)を1段目とし、基板支持部材2の端部(すなわち、ドーム形状の最下段)にかけて、2段目、3段目・・・・8段目とする。また、図4Aの図示B側をB sideとし、図示C側をC sideとする。 FIG. 4B shows a deposition angle θ1 to the lower end of the deposition surface and a deposition angle θ 2 to the upper end of each substrate 6 arranged in the first to eighth stages of the substrate support member 2 in the vapor deposition apparatus in the embodiment. FIG. 6 is a diagram illustrating the angle difference θ 1 −θ 2 between them. The position closest to the center of the substrate support member 2 (that is, the uppermost position of the dome shape) is defined as the first step, and is extended to the end of the substrate support member 2 (that is, the lowermost step of the dome shape). Eyes, 3rd stage, ... 8th stage. Further, the B side shown in FIG. 4A is B side and the C side shown is C side.

図4Bに示すように、実施例の蒸着装置では蒸発源4がドームの中心にあり、各基板6の被蒸着面において、下端への蒸着角θと上端への蒸着角θが同じ値を示すため、蒸着角の角度差θ、及びθ(=θ−θ)は0度となることがわかる。そして、1段目から8段目に保持された全ての基板6において、基板6の周縁における蒸着角が等しい。
このように、実施例の蒸着装置では、基板6内でも、基板6間においても基板6周縁の蒸着角は同じになることがわかった。
As shown in FIG. 4B, in the vapor deposition apparatus of Example in the center of the evaporation source 4 is dome in the vapor deposition surface of the substrate 6, the deposition angle theta 2 is equal to the deposition angle theta 1 and the upper end to the lower end Therefore, it can be seen that the vapor deposition angle differences θ B and θ c (= θ 1 −θ 2 ) are 0 degrees. And in all the board | substrates 6 hold | maintained from the 1st stage to the 8th stage, the vapor deposition angle in the periphery of the board | substrate 6 is equal.
Thus, in the vapor deposition apparatus of the Example, it turned out that the vapor deposition angle of the board | substrate 6 periphery becomes the same also in the board | substrate 6 and between the board | substrates 6. FIG.

次に、実施例の蒸着装置を用い、基板6に単層の蒸着膜を成膜した場合における各基板6の膜厚について確認した。この成膜実験では、基板6として、度数−6.00、曲率半径47.0mm、外径47mmのテストレンズを用い、蒸着材料として、酸化シリコン(SiO)、及び酸化ジルコニウム(ZrO)を用いた場合について調べた。 Next, the film thickness of each substrate 6 when a single-layer vapor deposition film was formed on the substrate 6 was confirmed using the vapor deposition apparatus of the example. In this film formation experiment, a test lens having a power of −6.00, a radius of curvature of 47.0 mm, and an outer diameter of 47 mm is used as the substrate 6, and silicon oxide (SiO 2 ) and zirconium oxide (ZrO 2 ) are used as vapor deposition materials. The case where it was used was examined.

図5は、実施例において、蒸着材料としてSiOを用いて成膜を行ったときの、1段目から7段目の基板の分光曲線を示した図である。また、図6は、実施例において、蒸着材料としてZrOを用いて成膜を行ったときの、1段目から7段目の基板の分光曲線を示した図である。図5及び図6の横軸は、波長(nm)であり、縦軸は、反射率である。また、図5及び図6における、基板内の分光曲線の測定位置は、それぞれ、基板の上端部(レンズコバ)から1cmの位置と、下端部(レンズコバ)から1cmの位置とした。また、図5及び図6では、それぞれの基板において、単層の蒸着膜を成膜したときの測定結果である。 FIG. 5 is a diagram showing the spectral curves of the first to seventh stage substrates when film formation is performed using SiO 2 as the vapor deposition material in the examples. FIG. 6 is a diagram showing spectral curves of the first to seventh stage substrates when film formation is performed using ZrO 2 as a vapor deposition material in the example. The horizontal axis in FIGS. 5 and 6 is the wavelength (nm), and the vertical axis is the reflectance. 5 and 6, the measurement position of the spectral curve in the substrate was 1 cm from the upper end (lens edge) of the substrate and 1 cm from the lower end (lens edge), respectively. 5 and 6 show measurement results when a single-layer deposited film is formed on each substrate.

図5及び図6に示すように、実施例の蒸着装置では、全ての段において、基板の被蒸着面の上端及び下端での分光曲線がほぼ一致している。また、基板内での膜厚比も十分に小さい値となっている。さらに、各段に保持された各基板の膜厚d、及び屈折率nもほぼ同程度となった。基板間の膜厚の差異は、補正板を使用することのより容易に解消することができる。   As shown in FIGS. 5 and 6, in the vapor deposition apparatus of the example, the spectral curves at the upper end and the lower end of the deposition target surface of the substrate almost coincide with each other. The film thickness ratio in the substrate is also a sufficiently small value. Furthermore, the film thickness d and the refractive index n of each substrate held at each stage were almost the same. The difference in film thickness between the substrates can be eliminated more easily by using a correction plate.

このように、本実施形態例の蒸着装置1では、1つの基板6内においても、また、基板支持部材2の段差の異なる位置に保持された各基板間においても良好な成膜が可能となる。また、図5及び図6に示すように、度数−6.00のハイカーブレンズ(すなわち、被蒸着面の曲率半径の大きいレンズ)を用いた場合にも、被蒸着面の全周縁において均一な膜厚の蒸着膜を成膜できることがわかった。   As described above, in the vapor deposition apparatus 1 according to the present embodiment, it is possible to form a good film even in one substrate 6 or between the substrates held at different positions of the step of the substrate support member 2. . As shown in FIGS. 5 and 6, even when a high-curve lens having a power of −6.00 (that is, a lens having a large curvature radius of the deposition surface) is used, a uniform film is formed on the entire periphery of the deposition surface. It was found that a thick deposited film can be formed.

次に、比較例として、実施例の蒸着装置とは、基板支持部材2の構成や、基板支持部材2に対する蒸着源4の位置が異なる蒸着装置について説明する。   Next, as a comparative example, a vapor deposition apparatus in which the configuration of the substrate support member 2 and the position of the vapor deposition source 4 with respect to the substrate support member 2 are different from the vapor deposition apparatus of the embodiment will be described.

[比較例1]
図7Aは、比較例1に係る蒸着装置の概略構成図である。また、図7Bは、比較例1における蒸着装置を用いた場合の、蒸発源に最も接近する側であるB側(B side)の1段目から8段目に配置された各基板6における被蒸着面の下端への蒸着角θ、上端への蒸着角θ、その蒸着角の角度差θ(=θ−θ)と、蒸発源に最も遠隔する側であるC側(C side)の1段目から8段目に配置された各基板6における被蒸着面の下端への蒸着角θ、上端への蒸着角θ、その蒸着角の角度差θ(θ−θ)とを示している。また、基板支持面の回転で、その角度差は、ある程度相殺される。図7Bには、B側及びC側の角度差θ、θが基板支持面の回転でも相殺できない角度分(相乗角度差)も示している。なお、ここで示す相乗角度差はB側及びC側の角度差θ、θを和算した値(θ+θ)である。
[Comparative Example 1]
FIG. 7A is a schematic configuration diagram of a vapor deposition apparatus according to Comparative Example 1. Further, FIG. 7B shows a case where the substrates 6 arranged on the first to eighth stages on the B side (B side) which is the side closest to the evaporation source when the vapor deposition apparatus in Comparative Example 1 is used. The vapor deposition angle θ 1 to the lower end of the vapor deposition surface, the vapor deposition angle θ 2 to the upper end, the angle difference θ B (= θ 1 −θ 2 ) between the vapor deposition angles, and the C side (C side), the deposition angle θ 1 to the lower end of the deposition surface, the deposition angle θ 2 to the upper end, and the angle difference θ C1 − θ 2 ). Further, the rotation of the substrate support surface cancels the angle difference to some extent. FIG. 7B also shows the angle difference (synergistic angle difference) at which the angle differences θ B and θ C between the B side and the C side cannot be offset even by the rotation of the substrate support surface. The synergistic angle difference shown here is a value (θ B + θ C ) obtained by adding the angle differences θ B and θ C between the B side and the C side.

比較例1の蒸着装置は、実施例の蒸着装置において、蒸着源の位置(点Aで示す)のみ異なる例であり、蒸着源の位置を、実施例の蒸着源の位置90mmだけ、点Gと基板支持部材2の中心を結ぶ線に対して垂直方向にオフセットした例である。
すなわち、比較例1では、
R=1146mm
AG=90mm
GD=1146mm
BC=1390mm
に構成された蒸着装置を用いた。
The vapor deposition apparatus of Comparative Example 1 is an example in which only the position of the vapor deposition source (indicated by a point A) is different from the vapor deposition apparatus of the embodiment. In this example, the substrate support member 2 is offset in the direction perpendicular to the line connecting the centers.
That is, in Comparative Example 1,
R = 1146mm
AG = 90mm
GD = 1146mm
BC = 1390mm
The vapor deposition apparatus comprised in 1 was used.

比較例1の蒸着装置では、蒸着角が、B側ではθがθよりも広く、C側ではθがθよりも広い結果となった。基板支持面の回転により、相乗角度差θ+θは少ないものの、基板支持部材2の下段側に保持された基板6ほど、相乗角度差θ+θが大きくなる傾向にあることがわかる。 In the vapor deposition apparatus of Comparative Example 1, the vapor deposition angle was such that θ 1 was wider than θ 2 on the B side and θ 2 was wider than θ 1 on the C side. Although the synergistic angle difference θ B + θ C is small due to the rotation of the substrate support surface, it can be seen that the synergistic angle difference θ B + θ C tends to increase as the substrate 6 is held on the lower side of the substrate support member 2.

また、比較例1の蒸着装置において蒸着膜の成膜を行った結果、相乗角度差θ+θが広くなる5段目の基板から8段目の基板にかけて上端側と下端側の色調の変化が見られた。 Further, as a result of forming a vapor deposition film in the vapor deposition apparatus of Comparative Example 1, the change in color tone between the upper end side and the lower end side from the fifth stage substrate to the eighth stage substrate where the synergistic angle difference θ B + θ C widens. It was observed.

[比較例2]
図8Aは、比較例2に係る蒸着装置の概略構成図である。また、図8Bは、蒸発源に最も近接する側であるB側(B side)の1段目から8段目に配置された各基板6における被蒸着面の下端への蒸着角θ、上端への蒸着角θ、その蒸着角の角度差θ(=θ−θ)と、蒸発源に最も遠隔する側であるC側(C side)の1段目から8段目に配置された各基板6における被蒸着面の下端への蒸着角θ、上端への蒸着角θ、その蒸着角の角度差θ(=θ−θ)と、基板B側及びC側の角度差θ、θから算出される相乗角度差θ+θも示している。
[Comparative Example 2]
FIG. 8A is a schematic configuration diagram of a vapor deposition apparatus according to Comparative Example 2. Further, FIG. 8B shows the deposition angle θ 1 to the lower end of the deposition surface on each substrate 6 arranged on the B side (B side), which is the side closest to the evaporation source, to the lower end, and the upper end. Vapor deposition angle θ 2 , angle difference θ B (= θ 1 −θ 2 ) between the vapor deposition angles, and C side (C side), which is the side farthest from the evaporation source, are arranged in the first to eighth stages In each of the substrates 6, the deposition angle θ 1 to the lower end of the deposition surface, the deposition angle θ 2 to the upper end, the angle difference θ C (= θ 1 −θ 2 ) of the deposition angles, the substrate B side and the C side A synergistic angle difference θ B + θ C calculated from the angle differences θ B and θ C of FIG.

比較例2では、
R=1000mm
AG=90m、
GD=1146mm
BC=1350mm
に構成された蒸着装置を用いた。
In Comparative Example 2,
R = 1000mm
AG = 90m,
GD = 1146mm
BC = 1350mm
The vapor deposition apparatus comprised in 1 was used.

比較例2の蒸着装置では、基板支持部材2の下段側に保持された基板6ほど、基板の上端及び下端の蒸着角の相乗角度差θ+θが大きく、また、全体的に、比較例1の蒸着装置よりも、蒸着角の相乗角度差θ+θが大きい。 In the vapor deposition apparatus of Comparative Example 2, the synergistic angle difference θ B + θ C between the vapor deposition angles of the upper end and the lower end of the substrate is larger as the substrate 6 is held on the lower side of the substrate support member 2. The synergistic angle difference θ B + θ C of the deposition angle is larger than that of the first deposition apparatus.

比較例2の蒸着装置において蒸着膜の成膜を行った結果、3段目より下側の段では、基板6の上端と下端の色味が明らかに異なることを確認した。また、2段目よりも上段においても、同色系ではあるが、基板6の上端と下端において色調の変化が確認された。比較例2では、下段に行くほど、基板6の上端と下端との蒸着角の相乗角度差θ+θが大きくなり、また、基板6の下端の蒸着角θが大きくなっていくためであり、下段に支持された基板6ほど、基板6の上端に成膜される蒸着膜の膜厚が薄くなるからである。 As a result of forming a vapor deposition film in the vapor deposition apparatus of Comparative Example 2, it was confirmed that the colors of the upper end and the lower end of the substrate 6 were clearly different in the stage below the third stage. Further, even in the upper stage from the second stage, although the same color system was used, a change in color tone was confirmed at the upper and lower ends of the substrate 6. In Comparative Example 2, the lower the stage, the greater is the synergistic angle difference θ B + θ C between the upper and lower ends of the substrate 6, and the larger the deposition angle θ 1 at the lower end of the substrate 6 is. This is because the thickness of the deposited film formed on the upper end of the substrate 6 becomes thinner as the substrate 6 supported in the lower stage.

[比較例3]
図9Aは、比較例3に係る蒸着装置の概略構成図である。また、図9Bは、基板保持部材2の中心から一方の側であるB側の1段目から8段目に配置された各基板6における被蒸着面の下端への蒸着角θ、上端への蒸着角θ、その蒸着角の角度差θ(=θ−θ)と、B側とは基板保持部材の中心を挟んで反対側であるC側の1段目から8段目に配置された各基板6における被蒸着面の下端への蒸着角θ、上端への蒸着角θ、その蒸着角の角度差θ(=θ−θ)と、基板B側及びC側の角度差θ、θの和算値から算出される相乗角度差θ+θも示している。
[Comparative Example 3]
FIG. 9A is a schematic configuration diagram of a vapor deposition apparatus according to Comparative Example 3. 9B shows a deposition angle θ 1 to the lower end of the deposition surface of each substrate 6 arranged on the first side to the eighth stage on the B side, which is one side from the center of the substrate holding member 2, to the upper end. The deposition angle θ 2 , the angle difference θ B (= θ 1 −θ 2 ) of the deposition angle, and the B side are the first to eighth steps on the C side opposite to the center of the substrate holding member. Deposition angle θ 1 to the lower end of the surface to be deposited on each substrate 6, the deposition angle θ 2 to the upper end, the angle difference θ C (= θ 1 −θ 2 ) between the deposition angles, the substrate B side, The synergistic angle difference θ B + θ C calculated from the sum of the C side angle differences θ B and θ C is also shown.

比較例3の蒸着装置は、比較例2の蒸着装置において、蒸着源4の位置のみ異なる例であり、蒸着源4の位置を、比較例2の位置から、基板支持部材2の中心軸上(点Aで示す)とした例である。
すなわち、比較例3では、
R=1000mm
AG=0mm
GD=1146mm
BC=1350mm
に構成された蒸着装置を用いた。
The vapor deposition apparatus of Comparative Example 3 is an example in which only the position of the vapor deposition source 4 is different from the vapor deposition apparatus of Comparative Example 2, and the position of the vapor deposition source 4 is changed from the position of Comparative Example 2 on the central axis of the substrate support member 2 ( This is an example indicated by a point A).
That is, in Comparative Example 3,
R = 1000mm
AG = 0mm
GD = 1146mm
BC = 1350mm
The vapor deposition apparatus comprised in 1 was used.

比較例3の蒸着装置では各基板6の上端と下端の蒸着角の角度差θ−θは、基板支持部材2の回転を問わず、すべての段において10度以下の一定角度に保たれる。しかしながら、回転による角度差の相殺が生じないため、蒸着過程において、角度差θ−θは常に相乗する。特に、下段の基板6では、基板6の下端への相乗角度差θ+θが大きい傾向にある。 In the vapor deposition apparatus of Comparative Example 3, the angle difference θ 1 −θ 2 between the vapor deposition angles at the upper end and the lower end of each substrate 6 was kept at a constant angle of 10 degrees or less in all stages regardless of the rotation of the substrate support member 2. It is. However, since the angle difference due to rotation does not cancel out, the angle difference θ 1 −θ 2 always synergizes in the vapor deposition process. In particular, in the lower substrate 6, the synergistic angle difference θ B + θ C to the lower end of the substrate 6 tends to be large.

比較例3の蒸着装置において蒸着膜の成膜を行った結果、5段目から8段目の基板6では、上端と下端の色味が明らかに異なり、2段目から4段目の基板6では、基板6の上端と下端において、同色系であるが、色調の変調が確認された。また、1段目の基板6では、色調変化は僅かとなった。   As a result of forming a vapor deposition film in the vapor deposition apparatus of Comparative Example 3, the colors of the upper and lower ends of the substrates 6 from the fifth stage to the eighth stage are clearly different, and the substrates 6 from the second stage to the fourth stage are different. Then, although the same color system is used at the upper end and the lower end of the substrate 6, the modulation of the color tone was confirmed. In the first-stage substrate 6, the color tone change was slight.

比較例3により、単に、蒸着源4を基板支持部材2の中心軸上に配置するのみでは、各基板6の周縁の蒸着膜の膜厚差を十分に低減することはできないことがわかる。   It can be seen from Comparative Example 3 that the film thickness difference between the deposited films on the periphery of each substrate 6 cannot be sufficiently reduced simply by disposing the deposition source 4 on the central axis of the substrate support member 2.

[比較例4]
図10Aは、比較例4に係る蒸着装置の概略構成図である。また、図10Bは、蒸発源に最も近接する側であるB側の1段目から8段目に配置された各基板6における被蒸着面の下端への蒸着角θ、上端への蒸着角θ、その蒸着角の角度差θ(=θ−θ)と、蒸発源に最も遠隔する側であるC側(C side)の1段目から8段目に配置された各基板6における被蒸着面の下端への蒸着角θ、上端への蒸着角θ、その蒸着角の角度差θ(=θ−θ)と、基板B側及びC側の角度差θ、θの和算値から算出される相乗角度差θ+θも示している。
[Comparative Example 4]
FIG. 10A is a schematic configuration diagram of a vapor deposition apparatus according to Comparative Example 4. FIG. 10B shows the deposition angle θ 1 to the lower end of the deposition surface and the deposition angle to the upper end of each substrate 6 arranged in the first to eighth stages on the B side that is closest to the evaporation source. θ 2 , an angle difference θ B (= θ 1 −θ 2 ) between the deposition angles, and the substrates disposed on the first to eighth stages on the C side (C side) which is the side farthest from the evaporation source 6, the deposition angle θ 1 to the lower end of the deposition surface, the deposition angle θ 2 to the upper end, the angle difference θ C (= θ 1 −θ 2 ) of the deposition angle, and the angle difference θ between the substrate B side and the C side. B, synergistic angle difference θ B + θ C calculated from summing values of theta C is also shown.

比較例4では、
R=1375.53mm
AG=90mm
GD=1146mm
BC=1390mm
に構成された蒸着装置を用いた。
In Comparative Example 4,
R = 1375.53 mm
AG = 90mm
GD = 1146mm
BC = 1390mm
The vapor deposition apparatus comprised in 1 was used.

比較例4の蒸着装置では、基板支持部材2の下段に支持された基板6ほど、基板6の上端と下端の蒸着角の相乗角度差θ+θが大きくなる。また、比較例2及び3のように、曲率半径R=1000mmの基板支持面2aを有する蒸着装置では、基板6の下端の蒸着角θが大きい傾向にあったが、比較例4のように、曲率半径R=1375.53mmと、基板支持面2aの曲率半径が大きい場合には、基板6の上端の蒸着角θが大きくなっていくことがわかる。 In the vapor deposition apparatus of Comparative Example 4, the synergistic angle difference θ B + θ C between the upper and lower vapor deposition angles of the substrate 6 increases as the substrate 6 is supported on the lower stage of the substrate support member 2. Also, as in Comparative Examples 2 and 3, a vapor deposition apparatus having a substrate supporting surface 2a of the curvature radius R = 1000 mm, although the deposition angle theta 1 of the lower end of the substrate 6 was in a greater tendency, as in Comparative Example 4 When the radius of curvature R is 1375.53 mm and the curvature radius of the substrate support surface 2a is large, it can be seen that the vapor deposition angle θ 2 at the upper end of the substrate 6 increases.

比較例4の蒸着装置において蒸着膜の成膜を行った結果、6段目から8段目の基板6では、上端と下端の色味が明らかに異なり、3段目及び5段目の基板6では、基板6の上端と下端において、同色系であるが、色調の変調が確認された。また、1段目及び2段目の基板6では、色調の変調が僅かに見られた。   As a result of forming a vapor deposition film in the vapor deposition apparatus of Comparative Example 4, the colors of the upper and lower ends of the sixth to eighth stage substrates 6 are clearly different, and the third and fifth stage substrates 6 are different. Then, although the same color system is used at the upper end and the lower end of the substrate 6, the modulation of the color tone was confirmed. Further, in the first-stage and second-stage substrates 6, slight color tone modulation was observed.

[比較例5]
図11Aは、比較例5に係る蒸着装置の概略構成図である。また、図11Bは、基板保持部材2の中心から一方の側であるB側(B side)の1段目から8段目に配置された各基板6における被蒸着面の下端への蒸着角θ、上端への蒸着角θ、その蒸着角の角度差θ(=θ−θ)と、B側とは基板保持部材の中心を挟んで反対側であるC側(C side)の1段目から8段目に配置された各基板6における被蒸着面の下端への蒸着角θ、上端への蒸着角θ、その蒸着角の角度差θ(=θ−θ)と、基板B側及びC側の角度差θ、θの和算値から算出される相乗角度差θ+θも示している。
[Comparative Example 5]
FIG. 11A is a schematic configuration diagram of a vapor deposition apparatus according to Comparative Example 5. FIG. 11B shows a deposition angle θ from the center of the substrate holding member 2 to the lower end of the deposition surface in each substrate 6 arranged on the B side (B side) from the first stage to the eighth stage. 1. Deposition angle θ 2 to the upper end, an angle difference θ B (= θ 1 −θ 2 ) between the deposition angles, and a C side (C side) that is opposite to the B side across the center of the substrate holding member Of each of the substrates 6 arranged in the first to eighth stages, the deposition angle θ 1 to the lower end of the deposition surface, the deposition angle θ 2 to the upper end, and the angle difference θ C (= θ 1 −θ) 2 ) and the synergistic angle difference θ B + θ C calculated from the sum of the angle differences θ B and θ C between the substrate B side and the C side are also shown.

比較例5の蒸着装置は、比較例4の蒸着装置において、蒸着源4の位置のみ異なる例であり、蒸着源4の位置を基板支持部材2の中心軸上(点Aで示す)とした例である。
すなわち、比較例3では、
R=1375.53mm
AG=0mm
GD=1146mm
BC=1390mm
に構成された蒸着装置を用いた。
The vapor deposition apparatus of Comparative Example 5 is an example in which only the position of the vapor deposition source 4 is different from the vapor deposition apparatus of Comparative Example 4, and the position of the vapor deposition source 4 is on the central axis of the substrate support member 2 (indicated by a point A). It is.
That is, in Comparative Example 3,
R = 1375.53 mm
AG = 0mm
GD = 1146mm
BC = 1390mm
The vapor deposition apparatus comprised in 1 was used.

比較例5の蒸着装置では各基板6の上端と下端の蒸着角の相乗角度差θ+θは、比較例4と比較して大きくなった。特に、下段の基板6では、基板6の上端への蒸着角θが大きい傾向にある。 In the vapor deposition apparatus of Comparative Example 5, the synergistic angle difference θ B + θ C between the upper and lower vapor deposition angles of each substrate 6 was larger than that of Comparative Example 4. In particular, in the lower substrate 6, the vapor deposition angle θ 2 toward the upper end of the substrate 6 tends to be large.

比較例5の蒸着装置において蒸着膜の成膜を行った結果、4段目から8段目の基板6では、上端と下端の色味が明らかに異なり、2段目及び3段目の基板6では、基板6の上端と下端において、同色系であるが、色調の変調が確認された。また、1段目の基板6では、色調の変化が僅かに確認された。   As a result of forming a vapor deposition film in the vapor deposition apparatus of Comparative Example 5, the colors of the upper and lower ends of the substrates 6 from the fourth stage to the eighth stage are clearly different. Then, although the same color system is used at the upper end and the lower end of the substrate 6, the modulation of the color tone was confirmed. In the first-stage substrate 6, a slight change in color tone was confirmed.

以上のように、比較例1〜5の蒸着装置では、1つの基板6内においても、基板支持部材2の異なる段に支持された各基板6間でも、成膜される蒸着膜の膜厚を均一にすることが難しいことがわかった。   As described above, in the vapor deposition apparatuses of Comparative Examples 1 to 5, the film thickness of the vapor deposition film to be formed can be formed in one substrate 6 or between the substrates 6 supported on different stages of the substrate support member 2. It turned out that it was difficult to make it uniform.

[成膜実験の比較結果]
次に、実施例の蒸着装置と、比較例4の蒸着装置において、蒸着材料としてSiOを用いた成膜実験の比較結果を示す。この実験では、実施例の蒸着装置、及び比較例の蒸着装置ともに、基板支持部材2を回転させずに成膜を行った。
[Comparison result of film formation experiment]
Next, in the vapor deposition apparatus of the example and the vapor deposition apparatus of comparative example 4, the comparison result of the film forming experiment using SiO 2 as the vapor deposition material is shown. In this experiment, both the vapor deposition apparatus of the example and the vapor deposition apparatus of the comparative example were formed without rotating the substrate support member 2.

図12Aは、実施例の蒸着装置を用いた場合の、基板支持部材2の中心軸から各基板への距離、膜厚、屈折率、膜厚比を示したものである。また、図12Bは、比較例4の蒸着装置を用いた場合の、基板支持部材の1段目から8段目に支持される基板の、基板支持部材2の中心軸からの距離、膜厚、屈折率、膜厚比を示したものである。基板支持部材2の中心から実施例を示す図4A及び比較例4を示す図10Aの図示B側に支持された基板をB−1、B−2、・・・・B−8で示し、基板支持部材2の中心から図4Aおよび図10Aの図示C側に支持された基板をC−1、C−2、・・・C−8で示す。また、図13Aは、図12A及び図12Bの膜厚をグラフ化して示した図であり、横軸に、基板支持部材2の中心軸から各基板6までの距離を示し、縦軸に膜厚を示す。また、図13Bは、図12A及び図12Bの屈折率をグラフ化して示した図であり、横軸に、基板支持部材2の中心軸から各基板6までの距離を示し、縦軸に膜厚を示す。なお、横軸は、「0」を基板支持部材2の中心軸が通る点とし、その中心軸から基板支持部材2の一方の側に保持された基板6までの距離を正で示し、一方の側に対向する他方の側に保持された基板6までの距離を負で示す。膜厚と屈折率の測定は、基板中心にて実施した。   FIG. 12A shows the distance from the central axis of the substrate support member 2 to each substrate, the film thickness, the refractive index, and the film thickness ratio when the vapor deposition apparatus of the example is used. Moreover, FIG. 12B shows the distance from the central axis of the substrate support member 2, the film thickness, of the substrate supported from the first stage to the eighth stage of the substrate support member when the vapor deposition apparatus of Comparative Example 4 is used. The refractive index and the film thickness ratio are shown. 4B showing the embodiment from the center of the substrate support member 2 and the substrate supported on the B side in FIG. 10A showing the comparative example 4 are denoted by B-1, B-2,. The substrates supported from the center of the support member 2 to the side C shown in FIGS. 4A and 10A are indicated by C-1, C-2,... C-8. 13A is a graph showing the film thicknesses of FIGS. 12A and 12B. The horizontal axis indicates the distance from the central axis of the substrate support member 2 to each substrate 6, and the vertical axis indicates the film thickness. Indicates. FIG. 13B is a graph showing the refractive indexes of FIGS. 12A and 12B. The horizontal axis indicates the distance from the central axis of the substrate support member 2 to each substrate 6, and the vertical axis indicates the film thickness. Indicates. The horizontal axis indicates “0” as the point through which the central axis of the substrate support member 2 passes, and the distance from the central axis to the substrate 6 held on one side of the substrate support member 2 is positive. The distance to the substrate 6 held on the other side facing the side is shown as negative. The film thickness and refractive index were measured at the center of the substrate.

図13Aに示すように、実施例の蒸着装置を用いた場合では、基板支持部材2の下段側に支持される基板6では、若干、膜厚が小さいものの、各基板6間の膜厚差は、許容範囲内とされる。
一方で、比較例4の蒸着装置を用いた場合では、基板支持部材2の中心軸から一方の側に支持された基板6が、他方の側に支持された基板6よりも明らかに膜厚が小さい。
As shown in FIG. 13A, in the case of using the vapor deposition apparatus of the example, although the film thickness is slightly small in the substrate 6 supported on the lower side of the substrate support member 2, the film thickness difference between the substrates 6 is Is within the allowable range.
On the other hand, in the case where the vapor deposition apparatus of Comparative Example 4 is used, the substrate 6 supported on one side from the central axis of the substrate support member 2 has a clear film thickness than the substrate 6 supported on the other side. small.

また、屈折率は、図13Bに示すように、実施例の蒸着装置を用いた場合では、全ての基板6において、同程度の屈折率となる。一方、比較例4の蒸着装置を用いた場合では、下段側において、屈折率が他の基板6に比較して大きく異なる基板6があり、下段側で安定した屈折率を確保することができない。   In addition, as shown in FIG. 13B, the refractive index is the same for all the substrates 6 when the vapor deposition apparatus of the example is used. On the other hand, when the vapor deposition apparatus of Comparative Example 4 is used, there is a substrate 6 having a refractive index that is significantly different from that of the other substrate 6 on the lower side, and a stable refractive index cannot be ensured on the lower side.

次に、実施例の蒸着装置と比較例4の蒸着装置において、蒸着材料として五酸化ニオブ(Nb)を用いた成膜実験の比較結果を示す。この実験では、実施例の蒸着装置、及び比較例の蒸着装置ともに、基板支持部材2を回転させずに成膜を行った。 Next, a comparison result of a film forming experiment using niobium pentoxide (Nb 2 O 5 ) as a vapor deposition material in the vapor deposition apparatus of the example and the vapor deposition apparatus of Comparative Example 4 is shown. In this experiment, both the vapor deposition apparatus of the example and the vapor deposition apparatus of the comparative example were formed without rotating the substrate support member 2.

図14Aは、実施例の蒸着装置を用いた場合の、基板支持部材2の中心軸から各基板6への距離、膜厚、屈折率、膜厚比を示したものである。また、図14Bは、比較例の蒸着装置を用いた場合の、基板支持部材2の中心軸から各基板6への距離、膜厚、屈折率、膜厚比を示したものである。また、図15Aは、図14A及び図14Bの膜厚をグラフ化して示した図であり、横軸に、基板支持部材2の中心軸から各基板6までの距離を示し、縦軸に膜厚を示す。また、図15Bは、図14A及び図14Bの屈折率をグラフ化して示した図であり、横軸に、基板支持部材2の中心軸から各基板6までの距離を示し、縦軸に膜厚を示す。   FIG. 14A shows the distance, film thickness, refractive index, and film thickness ratio from the central axis of the substrate support member 2 to each substrate 6 when the vapor deposition apparatus of the example is used. FIG. 14B shows the distance, film thickness, refractive index, and film thickness ratio from the central axis of the substrate support member 2 to each substrate 6 when the vapor deposition apparatus of the comparative example is used. 15A is a graph showing the film thicknesses of FIGS. 14A and 14B. The horizontal axis indicates the distance from the central axis of the substrate support member 2 to each substrate 6, and the vertical axis indicates the film thickness. Indicates. FIG. 15B is a graph showing the refractive indexes of FIGS. 14A and 14B. The horizontal axis indicates the distance from the central axis of the substrate support member 2 to each substrate 6, and the vertical axis indicates the film thickness. Indicates.

図15A及び図15Bからわかるように、蒸着材料として、Nbを用いた場合にも、SiOを用いた場合と同様の傾向が得られた。 As can be seen from FIGS. 15A and 15B, the same tendency as in the case of using SiO 2 was obtained when Nb 2 O 5 was used as the vapor deposition material.

次に、実施例の蒸着装置と比較例4の蒸着装置において、蒸着材料としてZrOを用いた成膜実験の比較結果を示す。この実験では、実施例の蒸着装置、及び比較例の蒸着装置ともに、基板支持部材2を回転させずに成膜を行った。 Next, a comparison result of a film forming experiment using ZrO 2 as a vapor deposition material in the vapor deposition apparatus of Example and the vapor deposition apparatus of Comparative Example 4 is shown. In this experiment, both the vapor deposition apparatus of the example and the vapor deposition apparatus of the comparative example were formed without rotating the substrate support member 2.

図16Aは、実施例の蒸着装置を用いた場合の、基板支持部材2の中心軸から各基板6への距離、膜厚、屈折率、膜厚比を示したものである。また、図16Bは、比較例の蒸着装置を用いた場合の、基板支持部材2の中心軸から各基板6への距離、膜厚、屈折率、膜厚比を示したものである。また、図17Aは、図16A及び図16Bの膜厚をグラフ化して示した図であり、横軸に、基板支持部材2の中心軸から各基板6までの距離を示し、縦軸に膜厚を示す。また、図17Bは、図16A及び図16Bの屈折率をグラフ化して示した図であり、横軸に、基板支持部材2の中心軸から各基板6までの距離を示し、縦軸に膜厚を示す。   FIG. 16A shows the distance, film thickness, refractive index, and film thickness ratio from the central axis of the substrate support member 2 to each substrate 6 when the vapor deposition apparatus of the example is used. FIG. 16B shows the distance, film thickness, refractive index, and film thickness ratio from the central axis of the substrate support member 2 to each substrate 6 when the vapor deposition apparatus of the comparative example is used. FIG. 17A is a graph showing the film thicknesses of FIGS. 16A and 16B. The horizontal axis indicates the distance from the central axis of the substrate support member 2 to each substrate 6, and the vertical axis indicates the film thickness. Indicates. FIG. 17B is a graph showing the refractive indexes of FIGS. 16A and 16B. The horizontal axis indicates the distance from the central axis of the substrate support member 2 to each substrate 6, and the vertical axis indicates the film thickness. Indicates.

図17A及び図17Bからわかるように、蒸着材料として、ZrOを用いた場合にも、SiO及びNbを用いた場合と同様の傾向が得られた。 As can be seen from FIGS. 17A and 17B, when ZrO 2 was used as the vapor deposition material, the same tendency as when SiO 2 and Nb 2 O 5 were used was obtained.

以上のように、実施例の蒸着装置では、蒸着材料の種類にかかわらず、基板支持部材2に支持された各基板6間で、膜厚や屈折率を揃えることができる。   As mentioned above, in the vapor deposition apparatus of an Example, a film thickness and a refractive index can be equalized between each board | substrate 6 supported by the board | substrate support member 2 irrespective of the kind of vapor deposition material.

このように、本発明の蒸着装置では、基板支持部材2に支持されたそれぞれの基板6の被蒸着面の全周縁において、均一な蒸着膜を成膜することができ、また、基板支持部材2に支持された全ての基板6においても、膜厚や屈折率を揃えることが可能となる。このため、本発明の蒸着装置によれば、個々の基板に蒸着斑が生じず、安定した反射特性を有する基板を製造することができる。また、本発明によれば、特に、一度に100枚以上の基板に蒸着膜を成膜するような大型の蒸着装置においても、各基板において、均質な蒸着膜を成膜することができる。   Thus, in the vapor deposition apparatus of the present invention, a uniform vapor deposition film can be formed on the entire periphery of the vapor deposition surface of each substrate 6 supported by the substrate support member 2, and the substrate support member 2. It is possible to make the film thickness and the refractive index uniform in all the substrates 6 supported by the above. For this reason, according to the vapor deposition apparatus of this invention, a vapor deposition spot does not arise in each board | substrate, but the board | substrate which has the stable reflective characteristic can be manufactured. In addition, according to the present invention, a uniform vapor deposition film can be formed on each substrate even in a large vapor deposition apparatus that forms a vapor deposition film on 100 or more substrates at a time.

1・・・蒸着装置、2・・・基板支持部材、2a・・・基板支持面、3・・・ホルダー、4・・・蒸着源、5・・・ドームヘッド、6・・・基板、7・・・真空チャンバー、12・・・基板支持部材、16・・・基板、R・・・曲率半径   DESCRIPTION OF SYMBOLS 1 ... Deposition apparatus, 2 ... Substrate support member, 2a ... Substrate support surface, 3 ... Holder, 4 ... Deposition source, 5 ... Dome head, 6 ... Substrate, 7 ... Vacuum chamber, 12 ... Substrate support member, 16 ... Substrate, R ... Radiation radius

Claims (4)

複数の基板を支持する基板支持部材と、
前記基板支持部材に支持された基板の被蒸着面上に所望の蒸着材料を飛散させる蒸着源であって、各基板の被蒸着面の周縁に対する蒸着源からの角度が、被蒸着面全周に渡ってほぼ同一となるように配置された蒸着源と、
を有する蒸着装置。
A substrate support member for supporting a plurality of substrates;
A deposition source that scatters a desired deposition material on the deposition surface of the substrate supported by the substrate support member, and an angle from the deposition source with respect to the periphery of the deposition surface of each substrate is around the deposition surface. A deposition source arranged to be substantially the same across
A vapor deposition apparatus.
前記基板支持部材は、前記蒸着源側に面して所定の曲率を有する基板支持面を有して構成され、
前記複数の基板は、前記基板支持面に、前記被蒸着面が前記蒸着源側に面するように支持され、
前記蒸着源は、前記基板支持部材に支持された全ての基板の位置から、前記基板支持面の曲率半径分だけ離れた位置に配置されている
請求項1に記載の蒸着装置。
The substrate support member is configured to have a substrate support surface having a predetermined curvature facing the vapor deposition source side,
The plurality of substrates are supported on the substrate support surface such that the deposition surface faces the deposition source side,
The vapor deposition apparatus according to claim 1, wherein the vapor deposition source is disposed at a position separated from a position of all the substrates supported by the substrate support member by a curvature radius of the substrate support surface.
前記基板支持部材は、その中心軸を回転軸として回転可能とされている
請求項1又は2に記載の蒸着装置。
The vapor deposition apparatus according to claim 1, wherein the substrate support member is rotatable about a central axis of the substrate support member.
前記基板支持部材と前記蒸着源との間の所望の位置に、前記蒸着源から飛散する蒸着材料の飛散方向を補正する補正板が配置されている
請求項1〜3のいずれか一項に記載の蒸着装置。
The correction board which correct | amends the scattering direction of the vapor deposition material scattered from the said vapor deposition source is arrange | positioned in the desired position between the said board | substrate support member and the said vapor deposition source. Vapor deposition equipment.
JP2010077916A 2010-03-30 2010-03-30 Vapor deposition equipment Active JP5654255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077916A JP5654255B2 (en) 2010-03-30 2010-03-30 Vapor deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077916A JP5654255B2 (en) 2010-03-30 2010-03-30 Vapor deposition equipment

Publications (2)

Publication Number Publication Date
JP2011208238A true JP2011208238A (en) 2011-10-20
JP5654255B2 JP5654255B2 (en) 2015-01-14

Family

ID=44939590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077916A Active JP5654255B2 (en) 2010-03-30 2010-03-30 Vapor deposition equipment

Country Status (1)

Country Link
JP (1) JP5654255B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728796A (en) * 2017-04-19 2018-11-02 蓝思科技(长沙)有限公司 The preparation method and revision board of color gradient film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337310A (en) * 1992-10-23 1994-12-06 Matsushita Electric Ind Co Ltd Optical multilayer film, film forming method, and film forming device therefore
JP2004091899A (en) * 2002-09-03 2004-03-25 Victor Co Of Japan Ltd Deposition system and deposition method for antireflection film
JP2006070291A (en) * 2004-08-31 2006-03-16 Hoya Corp Lens manufacturing method and program
JP2006309139A (en) * 2005-03-29 2006-11-09 Seiko Epson Corp Manufacturing method of stain-proof optical article
JP2009179828A (en) * 2008-01-29 2009-08-13 Hoya Corp Vapor deposition method and vapor deposition device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337310A (en) * 1992-10-23 1994-12-06 Matsushita Electric Ind Co Ltd Optical multilayer film, film forming method, and film forming device therefore
JP2004091899A (en) * 2002-09-03 2004-03-25 Victor Co Of Japan Ltd Deposition system and deposition method for antireflection film
JP2006070291A (en) * 2004-08-31 2006-03-16 Hoya Corp Lens manufacturing method and program
JP2006309139A (en) * 2005-03-29 2006-11-09 Seiko Epson Corp Manufacturing method of stain-proof optical article
JP2009179828A (en) * 2008-01-29 2009-08-13 Hoya Corp Vapor deposition method and vapor deposition device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728796A (en) * 2017-04-19 2018-11-02 蓝思科技(长沙)有限公司 The preparation method and revision board of color gradient film

Also Published As

Publication number Publication date
JP5654255B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
US6250758B1 (en) Plastic optical devices having antireflection film and mechanism for equalizing thickness of antireflection film
JP5840448B2 (en) Antireflection film and method of manufacturing antireflection film
US20020017452A1 (en) Method for applying an antireflection coating to inorganic optically transparent substrates
US20120229906A1 (en) Anti-Reflection Optical Element and Method for Manufacturing Anti-Reflection Optical Element
US9684100B2 (en) Anti-reflection nano-coating structure
US10844472B2 (en) Method of retrofitting a vacuum deposition chamber
JP2006342384A (en) Method and apparatus for manufacturing spherical lens with full face filter film, spherical lens with full-face filter film, and optical module
FR2732362A1 (en) Planetary cathodic sputter deposition station for optical or opthalmic lenses
JPH11310875A (en) Apparatus for coating substrate
JP5654255B2 (en) Vapor deposition equipment
US20220213591A1 (en) Device and method for coating substrates having planar or shaped surfaces by means of magnetron sputtering
CN105483618A (en) Film coating method of lens
JP2011084760A (en) Film deposition method
JP5921351B2 (en) Deposition equipment
TWI486620B (en) Method for manufacturing optical member and optical member
JP7237489B2 (en) Antireflection film, optical element, and method for forming antireflection film
US20150009556A1 (en) Optical element, optical thin film forming apparatus, and optical thin film forming method
JP6714399B2 (en) Optical element and optical thin film forming method
WO2003083162A1 (en) Vacuum deposition apparatus and method for depositing thin optical films on high curvature substrates
JP2587400B2 (en) Method and apparatus for coating spherical glass on entire surface
WO2012133468A1 (en) Method for manufacturing objective lens
JP7349798B2 (en) Anti-reflection film, optical element and anti-reflection film formation method
WO2020162463A1 (en) Optical element and optical element manufacturing method
Glocker et al. System for Sputtering Uniform Optical Coatings on Flat and Curved Surfaces Without Masks
Honkanen Optical monitoring in fabrication of optical coatings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140122

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141120

R150 Certificate of patent or registration of utility model

Ref document number: 5654255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250