JP2011203565A - Method for suppressing haze of photomask, storage warehouse for photomask, and exposure apparatus - Google Patents

Method for suppressing haze of photomask, storage warehouse for photomask, and exposure apparatus Download PDF

Info

Publication number
JP2011203565A
JP2011203565A JP2010071770A JP2010071770A JP2011203565A JP 2011203565 A JP2011203565 A JP 2011203565A JP 2010071770 A JP2010071770 A JP 2010071770A JP 2010071770 A JP2010071770 A JP 2010071770A JP 2011203565 A JP2011203565 A JP 2011203565A
Authority
JP
Japan
Prior art keywords
photomask
haze
light
exposure
arf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010071770A
Other languages
Japanese (ja)
Inventor
Takahiro Matsuura
孝浩 松浦
Isato Ida
勇人 井田
Kyoko Kuroki
恭子 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010071770A priority Critical patent/JP2011203565A/en
Publication of JP2011203565A publication Critical patent/JP2011203565A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a means for suppressing the generation of HAZE on a MoSi light-shielding film caused by ArF exposure.SOLUTION: The method for suppressing the HAZE of a photomask comprises decomposing and removing HAZE, which comprises ammonia or an organic substance generated in a light-shielding part of a photomask having a light-shielding film made of MoSi, by irradiation with light from an ArF lamp before and after ArF exposure. Disclose is a storage warehouse for a photomask or an exposure apparatus, which is provided with a mechanism of irradiating the front and the back surfaces of the photomask having a light-shielding film containing MoSi with light from an ArF lamp.

Description

本発明は、ペリクルに被覆された遮光膜を備えるフォトマスクを露光すると発生するHAZEの抑制方法に関する。   The present invention relates to a method for suppressing HAZE that occurs when a photomask having a light-shielding film covered with a pellicle is exposed.

シリコンウエハから半導体製品を製造する場合には、フォトレジストを塗布したウエハ基板上に、フォトマスクに形成されたパターンを投影光学系にて転写する投影露光方式が使用されている。近年、パターン形状の微細化に伴い、使用される露光光は短波長化される傾向にあり、KrF(波長248nm)やArF(波長193nm)を用いた露光装置が実用化された。1つの半導体回路に対して数十枚に及ぶフォトマスクが使用されることもある。   When manufacturing a semiconductor product from a silicon wafer, a projection exposure method is used in which a pattern formed on a photomask is transferred onto a wafer substrate coated with a photoresist by a projection optical system. In recent years, with the miniaturization of the pattern shape, the exposure light used has a tendency to be shortened, and an exposure apparatus using KrF (wavelength 248 nm) or ArF (wavelength 193 nm) has been put into practical use. Dozens of photomasks may be used for one semiconductor circuit.

これらのフォトマスクに対しては、露光時、保管時、搬送時の全てにフォトマスク周囲を浮遊する浮遊埃が付着して異物となる。フォトマスク上の異物は、露光時に、その部分の結像を妨げるため、半導体製品に欠陥が現れる。このようなフォトマスク表面に付着する異物による解像不良を防ぐため、フォトマスクは表面に透光性を有する防塵カバーとしてペリクルを装着している。   To these photomasks, floating dust that floats around the photomask adheres to all of the photomask during exposure, storage, and conveyance, and becomes foreign matter. The foreign matter on the photomask hinders image formation at the time of exposure, so that a defect appears in the semiconductor product. In order to prevent such poor resolution due to foreign matters adhering to the photomask surface, the photomask is equipped with a pellicle as a dust-proof cover having translucency on the surface.

ペリクルを装着したフォトマスクにおいても、近年では、使用環境によっては欠陥が発生している。これは、周囲を浮遊する異物以外にも、露光、保管を繰り返す事で、ペリクルを構成する部材内部から生じた曇り原因物質が変質して異物となり、フォトマスク上に該異物が徐々に堆積する影響によるものである。   Even in a photomask with a pellicle mounted, defects have recently occurred depending on the usage environment. This is because, in addition to the foreign matter floating around, the exposure and storage are repeated, and the fogging cause substance generated from the inside of the member constituting the pellicle is changed into a foreign matter, and the foreign matter gradually accumulates on the photomask. It is due to influence.

フォトマスク上に異物が一定以上堆積すると、フォトマスクに曇りが発生し、半導体製品に欠陥が現れる。このため、曇りを除去するためにフォトマスクを洗浄する必要があるが、洗浄により、製品製造のためのコストが増大したり、フォトマスクのパターンが磨耗したりする。   If foreign matter accumulates over a certain amount on the photomask, the photomask becomes cloudy and defects appear in the semiconductor product. For this reason, it is necessary to clean the photomask in order to remove fogging. However, the cleaning increases the cost for manufacturing the product and wears the pattern of the photomask.

さらに近年においてはペリクル膜とフォトマスクの間の空間に、露光により発生するオゾンにより酸化された有機物の堆積や、ペリクル部材から発生する物質の酸化堆積に起因する有機系曇り(以下、一般的に有機HAZEと記す。)の発生も懸念されており、ペリクル膜内側の露光される空間の有機ガス、発ガス性部材の挙動に注目が集まっている。   Furthermore, in recent years, organic clouding (hereinafter generally referred to as “organic cloudiness”) caused by the deposition of organic matter oxidized by ozone generated by exposure or the oxidation deposition of substances generated from the pellicle member in the space between the pellicle film and the photomask. The occurrence of organic HAZE) is also a concern, and attention is focused on the behavior of the organic gas and the gas generating member in the exposed space inside the pellicle film.

従来、この露光操作で発生するHAZEのサイズは非常に小さいため、ウエハに露光する際の影響も小さく、検査時にも検出されず大きな問題とされてこなかった。 しかし、ウエハに転写されるパターンの微細化が進むにつれ問題となってきており、検査技術もこれらのHAZE異物についても検出できるようになってきた。   Conventionally, since the size of the HAZE generated by this exposure operation is very small, the influence on exposure to the wafer is small, and it has not been detected at the time of inspection and has not been regarded as a big problem. However, it has become a problem as the pattern transferred to the wafer is miniaturized, and the inspection technology can detect these HAZE foreign matters.

このため、ペリクル内でHAZEを発生させないために、硫酸系HAZEに対しては硫酸を使用しての洗浄後の硫酸残渣の低減、有機系HAZEに対してはペリクル部材の低発ガス化等により改善が進められてきた。   For this reason, in order not to generate HAZE in the pellicle, the sulfuric acid type HAZE reduces sulfuric acid residue after washing with sulfuric acid, and the organic type HAZE reduces gas generation of the pellicle member. Improvements have been made.

これらのHAZE抑制対策並びに一定期間毎のフォトマスクの洗浄により、フォトマスク透過部に主として発生する硫酸アンモニウムHAZE、燐酸アンモニウムHAZE、遮光部のみに主として発生していた有機系HAZE、シアヌール酸HAZE、蓚酸系HAZE等は沈静化された。   By these HAZE suppression measures and photomask cleaning at regular intervals, ammonium sulfate HAZE, ammonium phosphate HAZE mainly generated in the photomask transmission part, organic HAZE, cyanuric acid HAZE mainly generated only in the light shielding part, oxalic acid type HAZE and the like were calmed down.

しかしながら高精細化されるパターンに対応する為に、MoSiを遮光膜とするフォトマスクであるOMOG(Opaque MoSi on glass)が採用されたことにより、硫酸残渣の低減、ペリクル部材の低発ガス化、一定期間毎のフォトマスクの洗浄等、上記に記載した従来の対策では除去しきれない新たなHAZEモードが発生した。このHAZEは露光によりMoSi膜の遮光部に主に発生し、時間が経っても消えないモードである。   However, OMOG (Opaque MoSi on glass), which is a photomask using MoSi as a light-shielding film, is adopted to cope with high definition patterns, thereby reducing sulfuric acid residue and reducing gas generation of pellicle members. A new HAZE mode has occurred that cannot be removed by the conventional measures described above, such as cleaning a photomask at regular intervals. This HAZE is a mode that occurs mainly in the light shielding portion of the MoSi film by exposure and does not disappear even after a long time.

以下にHAZE抑制法並びにOMOGに関する公知の文献を記す。   The following is a list of known documents related to HAZE suppression methods and OMOG.

特開2009-294432号公報JP 2009-294432 A

SPIE, Volume 7122, pp. 712209-712209-12 (2008).SPIE, Volume 7122, pp. 712209-712209-12 (2008).

本発明は、上記問題点に鑑み考案されたもので、ArF露光によってMoSiを含む遮光膜上に発生するHAZEの発生を抑制するための抑制手段の提供である。   The present invention has been devised in view of the above problems, and provides a suppression means for suppressing generation of HAZE generated on a light-shielding film containing MoSi by ArF exposure.

本発明に於いて上記問題を解決するための、請求項1記載の発明は、MoSiを含む遮光膜を備えるフォトマスクの遮光部に発生するHAZEを、ArF露光の前後にArFランプからの光を照射して分解、除去することを特長とするフォトマスクのHAZE抑制方法としたものである。   In order to solve the above-mentioned problems in the present invention, the invention according to claim 1 is characterized in that HAZE generated in a light-shielding portion of a photomask having a light-shielding film containing MoSi is emitted from an ArF lamp before and after ArF exposure. This is a HAZE suppression method for a photomask characterized by being decomposed and removed by irradiation.

請求項2に記載の発明は、前記HAZEがアンモニアまたは有機物であることを特長とする請求項1記載のフォトマスクのHAZE抑制方法としたものである。   The invention described in claim 2 is the photomask HAZE suppressing method according to claim 1, wherein the HAZE is ammonia or an organic substance.

請求項3に記載の発明は、MoSiを含む遮光膜を備えるフォトマスクの表裏に、ArFランプからの光を照射する機構を備えたことを特徴とするフォトマスクの保管庫としたものである。   According to a third aspect of the present invention, there is provided a photomask storage comprising a mechanism for irradiating light from an ArF lamp on the front and back of a photomask provided with a light-shielding film containing MoSi.

請求項4に記載の発明は、MoSiを含む遮光膜を備えるフォトマスクの表裏に、ArFランプからの光を照射する機構を備えたことを特徴とする露光装置としたものである。   According to a fourth aspect of the present invention, there is provided an exposure apparatus comprising a mechanism for irradiating light from an ArF lamp on the front and back of a photomask having a light shielding film containing MoSi.

本発明のフォトマスクでは、フォトマスクのMoSi遮光膜およびその周辺を、ArF本露光の前後に、波長が193nmであるArF光で照射をすることで、ペリクル内に発生する硫酸アンモニウム、有機系モードなどの従来型のHAZEだけでなく、MoSi上に生じるHAZEを除去することができる。その結果、半導体製品の生産性が向上し、洗浄回数も低減するなどフォトマスクのさらなる長寿命化が可能となる。   In the photomask of the present invention, the MoSi light-shielding film of the photomask and its periphery are irradiated with ArF light having a wavelength of 193 nm before and after the ArF main exposure, whereby ammonium sulfate generated in the pellicle, organic mode, etc. In addition to conventional HAZE, the HAZE generated on MoSi can be removed. As a result, the productivity of the semiconductor product is improved and the life of the photomask can be further extended, for example, the number of cleanings can be reduced.

(a)OMOGマスクの状面視の図、(b)AA’における断面視の図。(A) OMOG mask in plan view, (b) AA ′ cross-sectional view. 各種HAZEの発生状況を説明する図。The figure explaining the generation | occurrence | production situation of various HAZE. 露光前後におけるQzとCrの硫酸の挙動を示すToF−SIMS面分析結果を示す図。左側は露光前、右側は露光後である。The figure which shows the ToF-SIMS surface analysis result which shows the behavior of the sulfuric acid of Qz and Cr before and behind exposure. The left side is before exposure, and the right side is after exposure. QzとCrの硫酸残渣比率(Crにおける硫酸残渣量で規格化)を示す図。The figure which shows the sulfuric-acid-residue ratio of Qz and Cr (normalized with the sulfuric-acid-residue amount in Cr). 有機HAZEの発生個数と時間依存性の関係を示す図。The figure which shows the relationship between the generation number of organic HAZE, and time dependence. 露光実験におけるMAGICSの結果を示す図。左側は露光直後、右側は露光から1ヶ月経過後である。The figure which shows the result of MAGICS in exposure experiment. The left side is immediately after exposure, and the right side is one month after exposure. 発生したHAZEの模式図。The schematic diagram of generated HAZE. 本発明になるArFランプとArFレーザの照射タイミングを説明する図。The figure explaining the irradiation timing of the ArF lamp and ArF laser which become this invention. 従来からのArFレーザの照射タイミングを説明する図。The figure explaining the irradiation timing of the conventional ArF laser.

以下に本発明の実施の形態を詳細に説明する。本実施形態に記された条件はあくまでも一実施例であり、以下に記された条件等に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail. The conditions described in the present embodiment are merely examples, and are not limited to the conditions described below.

図1(a)は、本発明の曇り抑制法で使用されるOMOGマスクの一例を示す模式上面視図を、図1(b)は、図1(a)をAA’線で切断した断面視図を示す。   1A is a schematic top view showing an example of an OMOG mask used in the fog suppression method of the present invention, and FIG. 1B is a cross-sectional view of FIG. 1A taken along line AA ′. The figure is shown.

図1(a)及び(b)に示すHAZE抑制法で用いられるフォトマスク10は、MoSiの遮光膜12がパターン形成された合成石英基板11とフォトマスクに載せるペリクル膜21とペリクルフレーム22とマスク接着剤23とペリクル接着剤24とフィルタ25からなる。   A photomask 10 used in the HAZE suppression method shown in FIGS. 1A and 1B includes a synthetic quartz substrate 11 on which a MoSi light-shielding film 12 is patterned, a pellicle film 21 placed on the photomask, a pellicle frame 22, and a mask. It consists of an adhesive 23, a pellicle adhesive 24 and a filter 25.

フォトマスク10は、合成石英基板11の表面にMoSiからなる遮光膜12を具備してなる。遮光膜12は高精度化に伴い、MoSiの遮光膜であることからOMOG(Opaque MoSi on glass)と記される。   The photomask 10 includes a light shielding film 12 made of MoSi on the surface of a synthetic quartz substrate 11. The light-shielding film 12 is referred to as OMOG (Opaque MoSi on glass) because it is a MoSi light-shielding film as the accuracy increases.

ペリクルは、フォトマスク10上に設置する透光性を有する防塵カバーであり、ペリクル膜21を保持し、展開するためのペリクルフレーム22と、ペリクルフレーム22とペリクル膜を接着するためのペリクル接着剤24と、ペリクルフレーム22とフォトマスク10とを接着するためのマスク接着剤23から構成されている。   The pellicle is a light-transmitting dustproof cover installed on the photomask 10, a pellicle frame 22 for holding and spreading the pellicle film 21, and a pellicle adhesive for bonding the pellicle frame 22 and the pellicle film 24 and a mask adhesive 23 for bonding the pellicle frame 22 and the photomask 10 together.

ペリクル膜21は、ペリクルフレーム22により保持され、フォトマスク10の露光エリアを覆うように設けられる。このため、ペリクル膜21は露光によるエネルギーを遮断しないように透光性を有する。また、シワなどによりフォトマスク表面に影を作らないようペリクルフレーム22から均一の力を受けるようにして張られている。
ペリクル膜としては、フッ素系や酢酸セルロース等の透明性膜や、石英ガラスなどが用いられている。
The pellicle film 21 is held by the pellicle frame 22 and is provided so as to cover the exposure area of the photomask 10. For this reason, the pellicle film 21 has translucency so as not to cut off energy by exposure. Further, it is stretched so as to receive a uniform force from the pellicle frame 22 so as not to make a shadow on the photomask surface due to wrinkles or the like.
As the pellicle film, a transparent film such as fluorine-based or cellulose acetate, quartz glass, or the like is used.

マスク接着剤23は、ペリクルフレームとフォトマスクを接着するために用いられる。マスク接着剤としては、シリコン樹脂系やアクリル樹脂系の接着剤が好適である。  The mask adhesive 23 is used for bonding the pellicle frame and the photomask. As the mask adhesive, a silicon resin-based or acrylic resin-based adhesive is suitable.

ペリクル接着剤24は、ペリクルフレームとペリクル膜21を接着するために用いられ
る。ペリクル接着剤としては、シリコン樹脂系、ポリ酢酸ビニル樹脂系、アクリル樹脂系の接着剤が好適である。
The pellicle adhesive 24 is used for bonding the pellicle frame and the pellicle film 21. As the pellicle adhesive, a silicon resin-based, polyvinyl acetate resin-based, or acrylic resin-based adhesive is suitable.

ペリクル膜21はフォトマスクに付着する異物に焦点が合わさることを防ぎ、ウェハへの解像不良を防ぐため、フォトマスク上に装着される。このとき、ペリクルはフォトマスクの露光エリアを覆うように装着される。   The pellicle film 21 is mounted on the photomask in order to prevent the foreign matter adhering to the photomask from being focused and to prevent poor resolution on the wafer. At this time, the pellicle is mounted so as to cover the exposure area of the photomask.

このように作成されたOMOGフォトマスクについて発明者らによる解析に則れば、図2に示すとおり、MoSi膜の遮光部に発生するHAZEの場合、Qz部にも発生することが知られており、その成分は硫酸アンモニウム系である。しかしながら、OMOGではその遮光部にArFのエネルギーは加わらないことから、Crの遮光体と同じ挙動を示す
ことが予想される。但し、これまでの発明者らの解析の結果では図3に示すとおり硫酸残渣が多いCrの場合においても遮光部上に硫酸系凝集物は発生しない傾向が得られている。
According to the analysis by the inventors of the OMOG photomask produced in this way, as shown in FIG. 2, in the case of HAZE that occurs in the light shielding portion of the MoSi film, it is known that it also occurs in the Qz portion. The component is ammonium sulfate. However, in OMOG, ArF energy is not applied to the light shielding portion, and therefore, it is expected to exhibit the same behavior as the Cr light shielding body. However, as a result of analysis by the inventors so far, as shown in FIG. 3, even in the case of Cr having a large amount of sulfuric acid residue, there is a tendency that sulfuric acid aggregates do not occur on the light shielding portion.

また、図4に示すとおりMoSi膜の特徴として膜中に含まれる硫酸量はCrと比較して一桁低いことが知られている。これに上記に記したとおり、エネルギーが遮光部には加わらないことを勘案すると、Qz上にHAZEが発生する前に遮光部上に硫安が発生することは考えにくい。   As shown in FIG. 4, it is known that the amount of sulfuric acid contained in the MoSi film is one order of magnitude lower than that of Cr as a feature of the MoSi film. Considering that energy is not applied to the light shielding portion as described above, it is unlikely that ammonium sulfate is generated on the light shielding portion before HAZE is generated on Qz.

また、有機HAZEの可能性については、従来の有機HAZEの特徴として図5に示すとおり常温での揮発性があり、時間に依存して減少することがわかっている。さらに硫安モードの場合、図6に示すとおり時間に依存して数、サイズともに増大することが知られていることからも、MoSiの全遮光膜上に発生するHAZEは発生場所やその挙動から勘案しても従来のモードに該当しない可能性が見出された。   Further, the possibility of organic HAZE is known to be volatile at room temperature as shown in FIG. 5 as a characteristic of conventional organic HAZE, and decreases depending on time. Furthermore, in the case of the ammonium sulfate mode, it is known that both the number and size increase depending on the time as shown in FIG. 6, so that HAZE generated on the entire MoSi light-shielding film is considered from the generation location and its behavior. Even so, the possibility of not falling under the conventional mode was found.

それに基づいて以下のようなメカニズム仮説並びに抑制策を発明した。OMOGは通常のハーフトーン膜と異なり全遮光膜であることから、MoSi膜表面に直接露光エネルギーは加わらない。従来のハーフトーン膜であればフォトマスクの露光時にArFエネルギーにより除去されていた有機物が、OMOGでは除去されずに残留する。   Based on this, we invented the following mechanism hypothesis and suppression measures. Since OMOG is a total light-shielding film unlike a normal halftone film, exposure energy is not directly applied to the surface of the MoSi film. In the case of a conventional halftone film, organic substances that have been removed by ArF energy during exposure of the photomask remain without being removed by OMOG.

さらにMoSi膜は膜に含まれる窒素比率がCr膜と比較して高く、含有する窒素が空気中の水との反応しアンモニアを発生させる事が知られている。
これまでのMoSiのハーフトーンフォトマスクではアンモニアが発生したとしても露光によりエネルギーが加わるため、アンモニアは分解されてきた。また、有機物についてもMoSiのハーフトーン膜では露光により表面にArFによるエネルギーが加わる為、有機物は分解されてきた。
Furthermore, it is known that the MoSi film has a higher ratio of nitrogen contained in the film than the Cr film, and the contained nitrogen reacts with water in the air to generate ammonia.
In conventional MoSi halftone photomasks, even if ammonia is generated, energy is applied by exposure, so ammonia has been decomposed. As for the organic matter, since the energy of ArF is added to the surface of the MoSi halftone film by exposure, the organic matter has been decomposed.

しかし、OMOGはMoSiの全遮光膜のため、ArFのエネルギーが透過しないので、本来は分解されてきた有機物が遮光部上に残留するようになり、さらにアンモニアが膜に付着することで、これまでとは異なるモードのHAZEの可能性が見出された。また、アンモニアと有機物のみならず、遮光膜表面に残留する水成分についてもアンモニアが水と反応する水和物の可能性についても見出された。   However, since OMOG is a light shielding film of MoSi, the energy of ArF does not pass through, so the organic matter that was originally decomposed remains on the light shielding part, and further, ammonia adheres to the film, so far The possibility of a different mode of HAZE was found. Further, not only ammonia and organic substances but also water components remaining on the surface of the light-shielding film were found to be possible hydrates in which ammonia reacts with water.

これらの現象の原因を明確にするために、ArFの露光後並びに、露光前にArFランプによる照射を遮光膜側より実施し、アンモニアと有機物の発生と吸着を抑えられるかどうか検討したところ、抑制効果があることが判明した。具体的に照射を遂行するには、ArF照射用ランプは露光機又はフォトマスクの保管庫に設置されていることが望ましい。   In order to clarify the cause of these phenomena, irradiation with an ArF lamp was performed from the light shielding film side after exposure of ArF and before exposure, and it was examined whether generation and adsorption of ammonia and organic substances could be suppressed. It turned out to be effective. In order to perform irradiation specifically, it is desirable that the ArF irradiation lamp is installed in an exposure machine or a photomask storage.

照射されるエネルギーについては、露光波長はN−Hの結合解離エネルギー(約93kcal/mol)よりも大きいエネルギーであればよいが、CYTOP(旭硝子株式会社製)を材料に用いたペリクルの透過率や劣化状況を鑑み、実露光との波長を合わせるためにもArF波長が好適である。   As for the energy to be irradiated, the exposure wavelength may be an energy larger than the bond dissociation energy of NH (about 93 kcal / mol), but the transmittance of the pellicle using CYTOP (made by Asahi Glass Co., Ltd.) as the material In view of the deterioration state, the ArF wavelength is suitable for matching the wavelength with the actual exposure.

また、有機物の分解について波長はC−C、C−Hの結合解離エネルギー(それぞれ約83、100kcal/mol)よりも大きいエネルギーであればよいが、CYTOP(旭硝子株式会社製)を材料に用いたペリクルの透過率や劣化状況を鑑み、実露光との波長を合わせるためにもArF波長が好適である。   In addition, the wavelength of the organic matter decomposition may be any energy that is larger than the bond dissociation energy of CC and CH (approximately 83 and 100 kcal / mol, respectively), but CYTOP (Asahi Glass Co., Ltd.) was used as the material. In view of the transmittance and deterioration state of the pellicle, the ArF wavelength is suitable for matching the wavelength with the actual exposure.

またコスト面等から鑑みてレーザータイプの装置よりもArFランプのようなユニットを露光機内のローダー部や、保管庫内に遮光部をクリーニング可能な状態で設置すること
が好適である。
In view of cost and the like, it is preferable to install a unit such as an ArF lamp in the exposure unit in the exposure machine or in a storage room in a state where the light-shielding unit can be cleaned rather than a laser type apparatus.

以下、実施例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

Qz上に遮光膜にOMOG膜を用いたブランクを6枚準備し、パターンを形成しフォトマスクを作成した。2枚は50kJまで露光して検査をした。4枚は10kJまで露光後、ArFランプの照射効果を確認する為に、IC、GC/MS分析を実施した。
2枚のサンプルについてポリカーボネート製ケースに72時間保管した。このケースはクリーンドラフト内にて保管され、そこに流入するガスはケミカルフィルタ(ルミナスガード Entgris社製)を通し、パーティクル、湿度、有機、酸アルカリが制御されている環境とした。
Six blanks using an OMOG film as a light-shielding film were prepared on Qz, a pattern was formed, and a photomask was created. Two sheets were exposed to 50 kJ and inspected. Four sheets were exposed to 10 kJ and then subjected to IC and GC / MS analysis in order to confirm the irradiation effect of the ArF lamp.
Two samples were stored in a polycarbonate case for 72 hours. This case was stored in a clean draft, and the gas flowing into the case was passed through a chemical filter (manufactured by Luminous Guard Entgris) to create an environment in which particles, humidity, organic and acid-alkali were controlled.

OMOGのテストプレートについてQz側からArFレーザー(ximer−300 MPB社製)を50mW/cm、200Hzの周期で所定量照射した。この時、エネルギーの変動はなかった。露光雰囲気は環境由来の汚染が含有されない条件とし、窒素ガスと酸素ガスを4対1の割合で導入した。 An OMOG test plate was irradiated with a predetermined amount of ArF laser (produced by ximer-300 MPB) from the Qz side at a cycle of 50 mW / cm 2 and 200 Hz. At this time, there was no energy fluctuation. The exposure atmosphere was such that no environmental contamination was contained, and nitrogen gas and oxygen gas were introduced at a ratio of 4 to 1.

露光後に露光機のローダー部に設置したArFランプ(ウシオ電機株式会社製)をフォトマスクの遮光部側から1mW/cmの出力でペリクルフレームにエネルギーが加わらないよう100mm×65mmの範囲内で100J/cm照射し保管した。 An ArF lamp (manufactured by Ushio Electric Co., Ltd.) installed in the loader section of the exposure machine after the exposure is 100 J within a range of 100 mm × 65 mm so that no energy is applied to the pellicle frame with an output of 1 mW / cm 2 from the light shielding part side of the photomask. / Cm 2 and stored.

保管は有機、酸、アルカリについてケミカルフィルタを設置した保管庫内にて保管され、シッピングケースは発ガスの少ないPCケースにドライ窒素を導入して使用した。   The organic, acid, and alkali were stored in a storage room equipped with chemical filters, and the shipping case was used by introducing dry nitrogen into a PC case that generates less gas.

次に、一定期間の保管を経て露光前に堆積した有機物を除去する目的で、フォトマスクの遮光部側から1mW/cmの出力でペリクルフレームにエネルギーが加わらないよう100mm×65mmの範囲内で100J/cm照射し露光機に導入した。 Next, for the purpose of removing organic matter accumulated before exposure after storage for a certain period, within a range of 100 mm × 65 mm so that energy is not applied to the pellicle frame with an output of 1 mW / cm 2 from the light shielding part side of the photomask. Irradiated with 100 J / cm 2 and introduced into an exposure machine.

上記条件下で露光と保管を繰り返した結果、トータルで50kJを露光した後、検査をした結果、HAZEの発生は確認されなかった。   As a result of repeating exposure and storage under the above conditions, as a result of inspection after exposure of 50 kJ in total, generation of HAZE was not confirmed.

次に、ArFレーザーで露光したフォトマスク上に残存したアンモニア量が照射の有無により異なるか評価する為に、同じ量だけArFレーザーで露光したマスク2枚について、片方はArFランプで遮光部を照射し、もう片方は保管庫内で保管をした。   Next, in order to evaluate whether the amount of ammonia remaining on the photomask exposed with the ArF laser differs depending on the presence or absence of irradiation, one of the two masks exposed with the same amount of ArF laser is irradiated with a light shielding portion with an ArF lamp. The other was stored in the storage.

続いて100mlの純水中に入れ、オーブンである一定温度に加熱した。抽出液についてイオンクロマトグラフ(ダイオネクス株式会社製DX−320)で分析した。抽出されたNH4の量はArFランプを照射したサンプルは1.2ng/枚、照射させないサンプル3.6ng/枚であった。   Subsequently, it was placed in 100 ml of pure water and heated to a certain temperature which is an oven. The extract was analyzed with an ion chromatograph (DX-320, manufactured by Dionex Co., Ltd.). The amount of NH4 extracted was 1.2 ng / sheet for the sample irradiated with the ArF lamp and 3.6 ng / sheet for the sample not irradiated.

次に、一定期間保管後のフォトマスク上に残存した有機物をArFランプの照射で分解できるか評価する為に、同じ量だけ露光したフォトマスク2枚について、片方はArFランプで遮光部を照射し、もう片方は保管庫で保管をした。   Next, in order to evaluate whether the organic matter remaining on the photomask after storage for a certain period of time can be decomposed by irradiation with an ArF lamp, one of the two photomasks exposed by the same amount is irradiated with a light shielding portion with an ArF lamp. The other was stored in a storage.

フォトマスク上に残存したTOC量(全有機物量)をMSTD−GC/MS(GLサイエンス株式会社製MSTD258/アジレントテクノロジー株式会社製6890/5973MSD)を用いて分析した。TOC量をC16換算にて測定した結果、ArFランプにて露光をしたフォトマスクのTOC量は15ng/枚に対して保管したフォトマスクのTOC量は900ng/枚であった。(但し、ArFランプを照射しないフォトマスクからはフタル酸エステル類が大量に検出されており、Qz基板に存在すると思われるフタル酸エステル類(DBP、DEP、DOP)を除くと118ng/枚であった。)
(比較例1)
実施例1と同様に3枚のOMOGによるフォトマスクを作成し、パターニングされたOMOGテストプレート上に、ArFレーザー(ximer−300 MPB社製)を50mW/cm、200Hzの周期で所定量露光した。この時、エネルギーの変動はなかった。露光雰囲気は環境由来の汚染が含有されない条件とし、窒素ガスと酸素ガスを4対1の割合で導入した。
The amount of TOC (total amount of organic substances) remaining on the photomask was analyzed using MSTD-GC / MS (MSTD258 manufactured by GL Sciences Inc./6890/5973 MSD manufactured by Agilent Technologies Inc.). As a result of measuring the TOC amount in terms of C16, the TOC amount of the photomask exposed with the ArF lamp was 15 ng / sheet, and the TOC amount of the stored photomask was 900 ng / sheet. (However, a large amount of phthalates were detected from a photomask that was not irradiated with an ArF lamp, and it was 118 ng / sheet excluding phthalates (DBP, DEP, DOP) that are considered to be present on the Qz substrate. )
(Comparative Example 1)
As in Example 1, three OMOG photomasks were prepared, and a predetermined amount of ArF laser (made by ximer-300 MPB) was exposed on the patterned OMOG test plate at a cycle of 50 mW / cm 2 and 200 Hz. . At this time, there was no energy fluctuation. The exposure atmosphere was such that no environmental contamination was contained, and nitrogen gas and oxygen gas were introduced at a ratio of 4 to 1.

露光後、ArFランプの照射をせずに実施例1と同様に、有機、酸、アルカリについてケミカルフィルタを設置した保管庫内にて保管され、シッピングケースは発ガスの少ないPCケースにドライ窒素を導入して使用した。   After exposure, it is stored in a storage room with chemical filters for organic, acid, and alkali as in Example 1 without irradiation with an ArF lamp. The shipping case is made of dry nitrogen in a PC case that generates less gas. Introduced and used.

次に、実施例1と同じ期間の保管を経て事前にArFランプの照射をせずに、ArFレーザー露光を行った。   Next, ArF laser exposure was performed without storage with an ArF lamp in advance after storage for the same period as in Example 1.

上記条件下で露光と保管を繰り返し、50kJを露光した後に検査を実施した結果、図7に示すようなHAZEの発生が確認された。図8に実施例1と比較例1の説明を記す。   Exposure and storage were repeated under the above conditions. As a result of inspection after exposure of 50 kJ, generation of HAZE as shown in FIG. 7 was confirmed. The description of Example 1 and Comparative Example 1 is shown in FIG.

それぞれの分析についてArFランプの使用によりアンモニア残渣量で、90%、TOC量においても90%の削減が確認され、本手法の効果が確認された。
また、ペリクルの劣化についてもArF露光機と同じ波長であるArFランプを使用していたことから、膜の劣化や位相差透過率変動も見られなかった。
For each analysis, the use of an ArF lamp confirmed that the ammonia residue amount was reduced by 90%, and the TOC amount was also reduced by 90%, confirming the effect of this method.
Moreover, since the ArF lamp having the same wavelength as that of the ArF exposure apparatus was used for deterioration of the pellicle, neither film deterioration nor phase difference transmittance fluctuation was observed.

ArFレーザーを利用したOMOGのフォトマスクについて、HAZEの抑制する事ができ安定的なフォトマスクの使用が可能となる。   With respect to an OMOG photomask using an ArF laser, HAZE can be suppressed and a stable photomask can be used.

10…フォトマスク
11…合成石英ガラス
12…遮光膜
13…HAZE
20…ペリクル
21…ペリクル膜
22…ペリクルフレーム
23…マスク接着剤
24…ペリクル膜接着剤
25…フィルタ
DESCRIPTION OF SYMBOLS 10 ... Photomask 11 ... Synthetic quartz glass 12 ... Light-shielding film 13 ... HAZE
20 ... Pellicle 21 ... Pellicle film 22 ... Pellicle frame 23 ... Mask adhesive 24 ... Pellicle film adhesive 25 ... Filter

Claims (4)

MoSiを含む遮光膜を備えるフォトマスクの遮光部に発生するHAZEを、ArF露光の前後にArFランプからの光を照射して分解、除去することを特長とするフォトマスクのHAZE抑制方法。   A HAZE suppression method for a photomask, characterized in that HAZE generated in a light-shielding portion of a photomask having a light-shielding film containing MoSi is decomposed and removed by irradiating light from an ArF lamp before and after ArF exposure. 前記HAZEがアンモニアまたは有機物であることを特長とする請求項1記載のフォトマスクのHAZE抑制方法。   2. The method of suppressing HAZE of a photomask according to claim 1, wherein the HAZE is ammonia or an organic substance. MoSiを含む遮光膜を備えるフォトマスクの表裏に、ArFランプからの光を照射する機構を備えたことを特徴とするフォトマスク保管庫。   A photomask storage comprising a mechanism for irradiating light from an ArF lamp on the front and back of a photomask having a light-shielding film containing MoSi. MoSiを含む遮光膜を備えるフォトマスクの表裏に、ArFランプからの光を照射する機構を備えたことを特徴とする露光装置。   An exposure apparatus comprising a mechanism for irradiating light from an ArF lamp on the front and back of a photomask having a light-shielding film containing MoSi.
JP2010071770A 2010-03-26 2010-03-26 Method for suppressing haze of photomask, storage warehouse for photomask, and exposure apparatus Pending JP2011203565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010071770A JP2011203565A (en) 2010-03-26 2010-03-26 Method for suppressing haze of photomask, storage warehouse for photomask, and exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010071770A JP2011203565A (en) 2010-03-26 2010-03-26 Method for suppressing haze of photomask, storage warehouse for photomask, and exposure apparatus

Publications (1)

Publication Number Publication Date
JP2011203565A true JP2011203565A (en) 2011-10-13

Family

ID=44880251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071770A Pending JP2011203565A (en) 2010-03-26 2010-03-26 Method for suppressing haze of photomask, storage warehouse for photomask, and exposure apparatus

Country Status (1)

Country Link
JP (1) JP2011203565A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191184A (en) * 2003-12-25 2005-07-14 Kawasaki Microelectronics Kk Method for preventing occurrence of foreign substance, reticle and exposure system
JP2008051986A (en) * 2006-08-24 2008-03-06 Dainippon Printing Co Ltd Method for cleaning photomask
JP2008083509A (en) * 2006-09-28 2008-04-10 Toppan Printing Co Ltd Method of suppressing photomask dulling
JP2009294432A (en) * 2008-06-05 2009-12-17 Toppan Printing Co Ltd Method and apparatus for preventing fogging of photomask
JP2010002863A (en) * 2008-06-23 2010-01-07 Fujitsu Microelectronics Ltd Method for processing photomask and method for manufacturing electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191184A (en) * 2003-12-25 2005-07-14 Kawasaki Microelectronics Kk Method for preventing occurrence of foreign substance, reticle and exposure system
JP2008051986A (en) * 2006-08-24 2008-03-06 Dainippon Printing Co Ltd Method for cleaning photomask
JP2008083509A (en) * 2006-09-28 2008-04-10 Toppan Printing Co Ltd Method of suppressing photomask dulling
JP2009294432A (en) * 2008-06-05 2009-12-17 Toppan Printing Co Ltd Method and apparatus for preventing fogging of photomask
JP2010002863A (en) * 2008-06-23 2010-01-07 Fujitsu Microelectronics Ltd Method for processing photomask and method for manufacturing electronic device

Similar Documents

Publication Publication Date Title
JP4802937B2 (en) Photomask cleaning method
US6734443B2 (en) Apparatus and method for removing photomask contamination and controlling electrostatic discharge
US9658526B2 (en) Mask pellicle indicator for haze prevention
CN111913346A (en) Photomask assembly and photoetching system
JP2009139879A (en) Pellicle
US9418847B2 (en) Lithography system and method for haze elimination
JP2011118091A (en) Lithographic pellicle
JP2006091667A (en) Photomask, and method and device for cleaning the same
JP2011203565A (en) Method for suppressing haze of photomask, storage warehouse for photomask, and exposure apparatus
JP5515238B2 (en) Method and apparatus for preventing fogging of photomask
JP2006208210A (en) Method and device of inspecting optical component of exposing optical system
JP5391689B2 (en) HAZE generation prediction substrate and HAZE generation prediction method
Singh et al. A study on EUV reticle surface molecular contamination under different storage conditions in a HVM foundry fab
KR101197346B1 (en) Method of manufacturing photomask and pattren transfer method using the smae
JP2008083509A (en) Method of suppressing photomask dulling
JP2010066619A (en) Pellicle and method for manufacturing the same
JP2007183328A (en) Photomask
JP2009139881A (en) Pellicle
JP2007225720A (en) Pellicle
JP2004101868A (en) Method for manufacturing photomask
Grenon et al. Identification of a new source of reticle contamination
JP2008053392A (en) Method for cleaning storage case
Penley et al. Characterization and reduction of pellicle degradation due to haze formation on leading edge technology photomasks
KR100779371B1 (en) Apparatus for preventing haze defect of reticle using arf laser
Yang et al. P‐6.1: Review of Mask Haze in TFT Manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407