JP2004101868A - Method for manufacturing photomask - Google Patents

Method for manufacturing photomask Download PDF

Info

Publication number
JP2004101868A
JP2004101868A JP2002263626A JP2002263626A JP2004101868A JP 2004101868 A JP2004101868 A JP 2004101868A JP 2002263626 A JP2002263626 A JP 2002263626A JP 2002263626 A JP2002263626 A JP 2002263626A JP 2004101868 A JP2004101868 A JP 2004101868A
Authority
JP
Japan
Prior art keywords
light
resist
photomask
scum
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002263626A
Other languages
Japanese (ja)
Inventor
Toshihiko Tanaka
田中 稔彦
Shiho Sasaki
佐々木 志保
Akiko Fujii
藤井 明子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Hitachi Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd, Hitachi Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2002263626A priority Critical patent/JP2004101868A/en
Publication of JP2004101868A publication Critical patent/JP2004101868A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a photomask, using as a mask material specially a resist which is low-cost and shortens a manufacturing TAT (Turn Around Time), with less scum and less mask defects. <P>SOLUTION: The present invention is characterized in that after a resist pattern is formed on a transparent substrate, the resist pattern is irradiated with VUV light in an environment wherein oxygen is present near the resist pattern. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、リソグラフィの時に用いるフォトマスクの製造方法に関する。特に、コストが低く製造TAT(Turn Around Time)が短くなるレジストをマスク材としたフォトマスクを、スカムが少なく、マスク欠陥少なく製造する方法に関するものである。
【0002】
【従来の技術】
半導体集積回路装置の製造においては、微細パターンを半導体ウエハ上に転写する方法として、リソグラフィ技術が用いられる。リソグラフィ技術においては、主に投影露光装置が用いられる。投影露光装置に装着したフォトマスクのパターンを半導体ウエハ上に転写してデバイスパターンを形成する。
【0003】
通常のフォトマスクは、透明石英基板上に形成されたクロム(Cr)等の金属遮光材あるいはMoSi、 ZrSiO、 SiN等の無機膜減光材を加工して作製される。すなわち、通常のフォトマスクは石英基板上にクロム等の金属あるいは無機膜からなる遮光膜あるいは減光膜が所望の形状で形成されて構成されている。これらの膜は通常スパッタ法で形成される。遮光膜の加工は、例えば次の通りである。遮光膜上に電子線感応レジストを塗布した後、その電子線感応レジストに電子線描画装置にて所望のパターンを描画する。続いて、現像により所望の形状のレジストパターンを形成した後、そのレジストパターンをマスクとしてドライエッチングやウエットエッチングで遮光膜を加工する。その後、レジストを除去した後、洗浄等を行い、所望の形状の遮光パターンを透明石英基板上に形成している。減光膜の場合も同様である。
【0004】
近年、LSIの開発競争が進みデバイスデバッグを加速する必要から多数のフォトマスクが必要となり、フォトマスクを低コストで作る必要性が高まった。また、フォトマスクを短い作製期間(TAT)で作製する必要も高まった。
特に、少量多品種のシステムLSIの需要が高まっているため、この要求は強まっている。
【0005】
フォトマスクの製造工程の簡略化および低コスト化を目的として、遮光膜をレジスト膜で形成する、いわゆるレジストマスク法が開示されている(例えば、特許文献1参照)。この方法は、通常の電子線感応レジストや光感応レジストが波長が200nm 程度以下の真空紫外光(VUV光)を遮光する性質を利用したものである。この方法によれば遮光膜のエッチング工程やレジストの除去工程が不要となり、フォトマスクのコスト低減、工程の簡略化によるTATの短縮が可能である。
なお、この方法は吸光性のレジストをマスク材に用いることによりVUV光に限らずDUV光、例えば波長248nmのKrFエキシマレーザを用いたリソグラフィにも用いることができる。
【0006】
【特許文献1】
特開平5−2189307号公報
【0007】
【発明が解決しようとする課題】
上記レジストマスクでは、マスク材として用いているレジストが露光光を強く吸収するためガラス面にレジストがスカムとして残ると転写欠陥になるという問題があった。
【0008】
図4に代表的な電子線(EB)感応レジスト樹脂を示すが、この樹脂の分光吸収特性を示した図5からわかるように波長193nmのArFエキシマレーザ光に対しては吸収係数20/μm以上の極めて強い光吸収を示す。このため特に波長193nmの光を用いたArFエキシマリソグラフィでは、パターン線間に厚さが5nmもレジストが残るとパターン寸法異常を生じる。通常の検査では5nmの厚さの残渣の検査は困難である。しかも通常のCrマスクなどでスカム除去法として用いているアッシャは真空排気などを行うためパーティクルが発生しやすく、ブラシ洗浄などハードな洗浄を行えないレジストマスクに使用するのは困難という問題があった。このため本来はコストやTATに有利なレジストマスクであるが、スカムの問題で歩留まりが低下し、上記メリットを享受できないという問題があった。
【0009】
【課題を解決するための手段】
上記レジストマスクの課題を解決するために、透明基板上にレジストパターンを形成した後、レジストパターン付近に酸素が存在する環境でVUV光を照射する。本方法によって上記課題は解決される。さらに、レジストパターンが形成されている面とは逆面のガラス面側からVUV光を照射すると一層のクリーニング効率の向上とパターン寸法変化の低減が得られる。
【0010】
【発明の実施の形態】
本願発明を詳細に説明する前に、本願における用語の意味を説明すると次の通りである。
1.「減光領域」、「減光膜」、「減光パターン」と言うときは、その領域に照射される露光光のうち、25%未満を透過させる光学特性を有することを示す。一般に15%未満のものが使われる。「遮光領域」、「遮光膜」、「遮光パターン」と言うときは、その領域に照射される露光光のうち、2%未満を透過させる光学特性を有することを示す。一般に1%以下のものが使われる。一方、「透明」、「透明膜」と言うときは、その領域に照射される露光光のうち、60%以上を透過させる光学特性を有することを示す。一般に90%以上のものが使用される。
2.「フォトレジストパターン」は、感光性の有機膜をホトリソグラフィの手法により、パターニングした膜パターンを言う。
なお、このパターンには当該部分に関して全く開口のない単なるレジスト膜を含む。感光線源としては光のほか電子線、X線、荷電粒子線がある。感光性の有機膜としては有機物のみで構成されるものに加え、Si等の無機物を含有しているものも含む。
【0011】
(実施の形態1)
本発明のフォトマスク製造工程を図1に示す。まず図1(a)に示すようにガラス基板10上に電子線感応レジスト11を塗布形成する。ここで用いた電子線感応レジストは図4に示すフェノール樹脂ベースの化学増幅系レジストであるがこれに限るものではない。次に述べる描画線に対し感応性を持ち、且つリソグラフィを行うときの露光光に対し減光性を持つフォトレジストであればよい。
ここではArFリソグラフィに使うフォトマスクを製造するので、図5に示すようにこのノボラック樹脂ベースの化学増幅系レジストで波長193nmのArFエキシマレーザ光に対し十分な減光性が得られた。KrFリソグラフィ用のフォトマスクを製造する場合はアントラセンメタノールのような吸光剤を混合させたり、樹脂に結合させたりして、波長248nmのKrFエキシマレーザ光を十分に吸収するフォトレジストを用いればよい。
【0012】
次ぎに図1(b)に示すように所望の回路パターンを電子線13により描画する。なお、ここでは描画法として電子線を用いた場合を示したが、電子線に限らず波長が365nmや248nmなどのレーザを用いてもかまわない。
ただし、その場合はレジスト11としてそれらのレーザ光に感応するフォトレジストを用いる必要がある。その後現像を行って図1(c)に示すようにレジストパターン14を石英ガラス基板10上に形成した。このときレジストスカム(異物)がガラス基板上に(15)、およびレジスト上に(16)形成された。不定形なので膜厚は一定していないが平均的に言って10nmの膜厚のスカムであった。
ここでレジストパターン14上のスカム16は元々遮光するべき場所の上についた黒欠陥なのでパターン転写に悪影響はないが、ガラス上のスカム15は黒欠陥となる。図6にスカムが与える転写への影響を示す。レンズの開口数NAが0.7のArFリソグラフィを用いて130nmのラインアンドスペースパターンを形成した場合である。フォーカスを振った場合の光学像を示す。フォーカスの設定値は0、 0.1、 0.2、 0.25μmである。デフォーカスするほど光学像の振幅が小さくなる。
【0013】
図6(a)のGに示すパターン間のみ、レジストがわずかに残った場合の光学像である。図6(b)はスカムレスの場合で、図6(c)はレジストが2.5nmの膜厚で残った場合、図6(d)は5nmの膜厚で残った場合を示す。レジストが線間にわずかに残るだけで光強度が急減し、寸法変化を引き起こし、解像不良の源となる。
【0014】
次ぎに図1(d)に示すようにレジストパターンが形成された面側にVUV光18を照射し、スカムを除去した。このとき少なくともその面側の雰囲気を酸素の存在する環境とした。ここでは大気としたが、酸素濃度をより高めるとスカム除去のレートが速くなり、TAT短縮効果が得られる。VUV光としては波長200nm以下の光を用いることができるが、ピーク波長が172nmとなるXeエキシマランプ光を用いるとアッシング効果のあるオゾン発生効率が高く、またレジストの化学結合を切るに十分なフォトンエネルギーを持つので効率良くスカムを除去できる。さらにエキシマランプは連続光であるため取り扱いが容易で、コスト的にも安く、ランプなのでメンテも容易である。Xeエキシマランプ光の他にはピーク波長が146nmとなるKrエキシマランプ光も有効である。Krエキシマランプ光はフォトンエネルギーがXeエキシマランプより高のでベンゼン環の含有率が高く結合の強固なフォトレジストのスカム除去に有効である。Xeエキシマランプは酸素による光吸収がKrエキシマランプ光より弱いので雰囲気環境での光減衰が少なく通常のレジストに対して効率良くスカムを除去できる。
【0015】
大気環境でスカム除去処理できるので、アッシャのような真空排気に伴うパーティクルの付着も少なく、また試料交換も容易である。
ただし、オゾンが発生するので排気するか、オゾンが漏洩しないよう例えばボックスの中で処理する必要がある。
【0016】
(実施の形態2)
第2の実施例で用いたスカム除去方法の概要を図2に示す。図1 (c)に示す工程まで実施の形態1と同様の工程で作製した石英ガラス基板10とレジストパターン14からなるフォトマスク1は図2に示すようにスカム除去装置2の上に置かれる。スカム除去装置2はVUVランプ21とハウジング20および石英ガラスからなる窓材24からなる。ハウジング20と窓材24で囲まれたスカム除去装置内23は不活性ガスで満たし、VUVランプ光が減衰しないようにした。
ここで、VUV光の吸収率が高い酸素と水蒸気は極力低減しておくことが望ましい。ここでは不活性ガスとして窒素を用いたが、この他のVUV光吸収率の低いガスを用いてもよい。真空にしてもよいが真空にするとVUVランプの冷却効率が下がるのでその場合は水冷をするなどしてランプの熱対策を施す必要がある。石英ガラス基板10は窓材24に接して置き、VUVランプ光22が窓材24および石英ガラス基板10を通して照射されるようにした。スカム除去装置の外側、レジストパターン付近25は酸素が存在する環境とした。大気環境でも良いが酸素照射すると有害なオゾンが発生するのでこのシステムを囲い26で囲い、酸素導入口をパージして酸素濃度を高めておくことが望ましい。VUV光を酸素に27から酸素を供給し、排気口28から排気した。
なお、ここではVUVランプとしてXeエキシマランプを用いた。
【0017】
このときのVUV照射光の光強度分布を図3に示す。図中のA, B, CおよびDは図2に示すA, B, CおよびDの位置に対応する。ランプボックス内に位置するA点は不活性ガスで満たされているため光強度の減衰は極僅かである。B点からC点にかけては石英ガラス内であるためピーク波長172nmのXeエキシマランプ光の減衰は小さい。ガラス面の外側のD点では酸素が大量に存在するため急激に光強度が減衰する。急激に光強度が減衰するが、転写欠陥となるスカムはガラス基板に付着したスカムなのでそこの強度は強く効率的にスカムを除去できる。酸素の濃度が十分多い環境で十分なVUV光がガラスに付着したスカムに集中的に照射されるため、ガラス面部に大量のオゾンとVUV光が集中し、スカム除去能率が高い。レジストパターン上面側に向かうほどVUV光が弱くなるので、VUV光照射によるレジストパターンの変形、劣化は少ない。Xeエキシマランプ光は溶融石英ガラスを透過し、オゾン発生効率が高く、フォトンエネルギーも高いためスカム除去に適している。またXeエキシマランプ光は連続光で扱いやすく、コストも低い。
【0018】
VUV光はXeエキシマランプ光に限らないが、マスク基板10や窓材24を透過する波長の光とする必要がある。波長が短くなるほどフォトンエネルギーは増し有機物を分解しやすくなるが、これらの窓材料を透過する波長の光でなければならない。例えばより波長の短いピーク波長146nmのKrエキシマランプは石英ガラス基板で吸収されるため適さない。
【0019】
【発明の効果】
本願によって簡便にスカムのないレジストマスクを製造することが可能となる。スカムレスとなることから転写欠陥の発生が少なくなる。またスカムレスのためスカム検査を省くことができ、この観点からもコスト低減と製造TAT向上が図れる。すなわち、僅かなスカムを検査するには通常8時間は必要であるが、その時間を短縮する効果もある。
【図面の簡単な説明】
【図1】本発明のフォトマスク製造工程を示した工程図である。
【図2】本発明のフォトマスクの第2の製造工程を示した説明図である。
【図3】VUV照射光の光強度特性を示した特性図である。
【図4】代表的な電子線感応レジストの材料構造を示す分子式である。
【図5】代表的な電子線感応レジストの分光吸収特性を示す特性図である。
【図6】パターン転写の光学像分布を示す特性図である。
【符号の説明】
1…フォトマスク、 2…スカム除去装置、 10…石英ガラス、 11…レジスト、13…電子線、 14…レジストパターン、 15…スカム、 16…スカム、 17…酸素存在雰囲気、 18…VUV光、 20…ハウジング、 21…VUVランプ、 22…VUV光、 23…不活性ガス雰囲気、 24…窓材(ガラス)、 25…酸素存在雰囲気、 26…ボックス、 27…酸素導入口、 28…排気口。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a photomask used in lithography. In particular, the present invention relates to a method of manufacturing a photomask using a resist having low cost and a short production TAT (Turn Around Time) as a mask material with less scum and less mask defects.
[0002]
[Prior art]
In manufacturing a semiconductor integrated circuit device, a lithography technique is used as a method of transferring a fine pattern onto a semiconductor wafer. In lithography, a projection exposure apparatus is mainly used. A pattern of a photomask mounted on the projection exposure apparatus is transferred onto a semiconductor wafer to form a device pattern.
[0003]
An ordinary photomask is manufactured by processing a metal light-shielding material such as chromium (Cr) formed on a transparent quartz substrate or an inorganic film dimming material such as MoSi, ZrSiO, or SiN. That is, an ordinary photomask is configured such that a light-shielding film or a light-reducing film made of a metal such as chromium or an inorganic film is formed in a desired shape on a quartz substrate. These films are usually formed by a sputtering method. The processing of the light shielding film is, for example, as follows. After applying an electron beam sensitive resist on the light shielding film, a desired pattern is drawn on the electron beam sensitive resist by an electron beam drawing apparatus. Subsequently, after a resist pattern having a desired shape is formed by development, the light-shielding film is processed by dry etching or wet etching using the resist pattern as a mask. Thereafter, after removing the resist, washing or the like is performed to form a light-shielding pattern of a desired shape on the transparent quartz substrate. The same applies to the case of a darkening film.
[0004]
In recent years, competition for the development of LSIs has progressed, and the need for accelerating device debugging has necessitated a large number of photomasks, and the necessity for producing photomasks at low cost has increased. Further, the necessity of manufacturing a photomask in a short manufacturing period (TAT) has also increased.
In particular, the demand is increasing because of the demand for small-quantity and various kinds of system LSIs.
[0005]
A so-called resist mask method in which a light-shielding film is formed of a resist film has been disclosed for the purpose of simplifying the manufacturing process of a photomask and reducing costs (for example, see Patent Document 1). This method utilizes the property that ordinary electron beam-sensitive resists or light-sensitive resists shield vacuum ultraviolet light (VUV light) having a wavelength of about 200 nm or less. According to this method, the step of etching the light-shielding film and the step of removing the resist become unnecessary, so that the cost of the photomask can be reduced and the TAT can be reduced by simplifying the steps.
This method can be used not only for VUV light but also for lithography using DUV light, for example, a KrF excimer laser having a wavelength of 248 nm, by using a light-absorbing resist as a mask material.
[0006]
[Patent Document 1]
JP-A-5-2189307
[Problems to be solved by the invention]
In the above-described resist mask, there is a problem that the resist used as the mask material strongly absorbs the exposure light, so that if the resist remains as a scum on the glass surface, a transfer defect occurs.
[0008]
FIG. 4 shows a typical electron beam (EB) sensitive resist resin. As can be seen from FIG. 5 which shows the spectral absorption characteristics of this resin, the absorption coefficient of ArF excimer laser light having a wavelength of 193 nm is 20 / μm or more. Exhibit extremely strong light absorption. For this reason, especially in ArF excimer lithography using light having a wavelength of 193 nm, if a resist having a thickness of 5 nm remains between pattern lines, pattern dimension abnormality occurs. Inspection of a residue having a thickness of 5 nm is difficult in ordinary inspection. Moreover, the asher used as a scum removal method with a normal Cr mask or the like performs vacuum evacuation and the like, so particles are easily generated, and there is a problem that it is difficult to use a resist mask which cannot perform hard cleaning such as brush cleaning. . For this reason, the resist mask is originally advantageous in terms of cost and TAT, but there is a problem that the yield is reduced due to the problem of scum and the above advantages cannot be enjoyed.
[0009]
[Means for Solving the Problems]
In order to solve the problem of the resist mask, after forming a resist pattern on a transparent substrate, VUV light is irradiated in an environment where oxygen exists near the resist pattern. This method solves the above problem. Further, when VUV light is irradiated from the glass surface side opposite to the surface on which the resist pattern is formed, further improvement in cleaning efficiency and reduction in pattern dimensional change can be obtained.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Before describing the present invention in detail, the meanings of terms in the present application will be described as follows.
1. The terms “darkening area”, “darkening film”, and “darkening pattern” indicate that the exposure light applied to the area has an optical characteristic of transmitting less than 25%. Generally, less than 15% is used. The terms “light-shielding region”, “light-shielding film”, and “light-shielding pattern” indicate that the region has an optical property of transmitting less than 2% of exposure light applied to the region. Generally, less than 1% is used. On the other hand, the terms “transparent” and “transparent film” indicate that they have an optical property of transmitting 60% or more of the exposure light applied to the area. Generally, 90% or more is used.
2. “Photoresist pattern” refers to a film pattern obtained by patterning a photosensitive organic film by a photolithographic technique.
Note that this pattern includes a simple resist film having no opening in the relevant portion. The photosensitive beam source includes, in addition to light, an electron beam, an X-ray, and a charged particle beam. Photosensitive organic films include those containing inorganic substances such as Si, in addition to those composed only of organic substances.
[0011]
(Embodiment 1)
FIG. 1 shows a photomask manufacturing process of the present invention. First, as shown in FIG. 1A, an electron beam sensitive resist 11 is applied and formed on a glass substrate 10. The electron beam sensitive resist used here is a phenol resin-based chemically amplified resist shown in FIG. 4, but is not limited thereto. Any photoresist that has sensitivity to a drawing line described below and has a dimming property with respect to exposure light when performing lithography may be used.
Here, since a photomask used for ArF lithography is manufactured, as shown in FIG. 5, this novolak resin-based chemically amplified resist has obtained sufficient dimming property with respect to ArF excimer laser light having a wavelength of 193 nm. In the case of manufacturing a photomask for KrF lithography, a photoresist capable of sufficiently absorbing a KrF excimer laser beam having a wavelength of 248 nm by mixing a light absorbing agent such as anthracenemethanol or binding to a resin may be used.
[0012]
Next, a desired circuit pattern is drawn by the electron beam 13 as shown in FIG. Although the case where an electron beam is used as a drawing method is described here, a laser having a wavelength of 365 nm or 248 nm may be used instead of the electron beam.
However, in that case, it is necessary to use a photoresist responsive to the laser beam as the resist 11. Thereafter, development was performed to form a resist pattern 14 on the quartz glass substrate 10 as shown in FIG. At this time, resist scum (foreign matter) was formed on the glass substrate (15) and on the resist (16). The film thickness was not constant because it was indefinite, but it was a scum having a film thickness of 10 nm on average.
Here, since the scum 16 on the resist pattern 14 is originally a black defect on the place to be shielded from light, there is no adverse effect on the pattern transfer, but the scum 15 on the glass becomes a black defect. FIG. 6 shows the effect of scum on transfer. This is a case where a 130 nm line and space pattern is formed using ArF lithography with a lens numerical aperture NA of 0.7. 4 shows an optical image when the focus is changed. The set value of the focus is 0, 0.1, 0.2, 0.25 μm. As the defocus increases, the amplitude of the optical image decreases.
[0013]
This is an optical image in the case where a slight amount of resist remains only between the patterns indicated by G in FIG. FIG. 6B shows the case where the scum is absent, FIG. 6C shows the case where the resist has a thickness of 2.5 nm, and FIG. 6D shows the case where the resist has a thickness of 5 nm. Even a small amount of resist remains between the lines, causing a sharp decrease in light intensity, causing dimensional changes and a source of poor resolution.
[0014]
Next, as shown in FIG. 1D, the surface on which the resist pattern was formed was irradiated with VUV light 18 to remove scum. At this time, at least the atmosphere on the surface side was an environment in which oxygen was present. Here, the atmosphere was used, but if the oxygen concentration is further increased, the rate of scum removal is increased, and a TAT shortening effect is obtained. As the VUV light, light having a wavelength of 200 nm or less can be used. However, when a Xe 2 excimer lamp light having a peak wavelength of 172 nm is used, the ozone generation efficiency having an ashing effect is high, and sufficient for breaking the chemical bond of the resist. Since it has photon energy, scum can be removed efficiently. Furthermore, since the excimer lamp is continuous light, it is easy to handle and inexpensive, and the lamp is easy to maintain. In addition to the Xe 2 excimer lamp light, a Kr 2 excimer lamp light having a peak wavelength of 146 nm is also effective. Since the Kr 2 excimer lamp light has a higher photon energy than that of the Xe 2 excimer lamp, it is effective for removing scum of a photoresist having a high benzene ring content and a strong bond. Since the Xe 2 excimer lamp absorbs less light due to oxygen than the Kr 2 excimer lamp light, the light attenuation in an atmosphere environment is small and the scum can be efficiently removed from a normal resist.
[0015]
Since scum removal processing can be performed in an air environment, adhesion of particles due to vacuum evacuation such as asher is small, and sample replacement is easy.
However, since ozone is generated, it is necessary to exhaust the gas or to treat it in, for example, a box so that ozone does not leak.
[0016]
(Embodiment 2)
FIG. 2 shows an outline of the scum removing method used in the second embodiment. The photomask 1 including the quartz glass substrate 10 and the resist pattern 14 manufactured in the same steps as in the first embodiment up to the step shown in FIG. 1C is placed on the scum removing device 2 as shown in FIG. The scum removing device 2 includes a VUV lamp 21, a housing 20, and a window member 24 made of quartz glass. The interior of the scum removal device 23 surrounded by the housing 20 and the window material 24 was filled with an inert gas so that the VUV lamp light was not attenuated.
Here, it is desirable to reduce oxygen and water vapor having a high absorption rate of VUV light as much as possible. Here, nitrogen is used as the inert gas, but other gases having low VUV light absorption may be used. A vacuum may be used, but if the vacuum is applied, the cooling efficiency of the VUV lamp decreases. In this case, it is necessary to take measures against the heat of the lamp, for example, by cooling with water. The quartz glass substrate 10 was placed in contact with the window material 24 so that the VUV lamp light 22 was irradiated through the window material 24 and the quartz glass substrate 10. The outside of the scum removing device and the vicinity 25 of the resist pattern were in an environment where oxygen was present. Although it may be in an atmospheric environment, harmful ozone is generated by irradiating oxygen. Therefore, it is desirable to enclose this system with an enclosure 26 and purge the oxygen inlet to increase the oxygen concentration. VUV light was supplied to oxygen from oxygen 27 and exhausted from an exhaust port 28.
Here, a Xe 2 excimer lamp was used as the VUV lamp.
[0017]
FIG. 3 shows the light intensity distribution of the VUV irradiation light at this time. A, B, C and D in the figure correspond to the positions of A, B, C and D shown in FIG. Since the point A located in the lamp box is filled with the inert gas, the attenuation of the light intensity is very small. From the point B to the point C, the attenuation of the Xe 2 excimer lamp light having a peak wavelength of 172 nm is small because the light is in the quartz glass. At point D outside the glass surface, the light intensity is rapidly attenuated due to the presence of a large amount of oxygen. Although the light intensity is abruptly attenuated, the scum that becomes a transfer defect is scum attached to the glass substrate, and the intensity is strong and the scum can be efficiently removed. Sufficient VUV light is intensively applied to the scum attached to the glass in an environment having a sufficiently high oxygen concentration, so that a large amount of ozone and VUV light are concentrated on the glass surface, and the scum removal efficiency is high. Since the VUV light becomes weaker toward the upper surface of the resist pattern, deformation and deterioration of the resist pattern due to VUV light irradiation are small. The Xe 2 excimer lamp light is transmitted through the fused silica glass, has high ozone generation efficiency, and has high photon energy, so that it is suitable for removing scum. In addition, Xe 2 excimer lamp light is easy to handle as continuous light, and the cost is low.
[0018]
The VUV light is not limited to the Xe 2 excimer lamp light, but needs to be light having a wavelength that transmits through the mask substrate 10 and the window material 24. The shorter the wavelength, the higher the photon energy and the easier it is to decompose organic matter, but the light must be of a wavelength that transmits these window materials. For example, a Kr 2 excimer lamp having a shorter peak wavelength of 146 nm is not suitable because it is absorbed by a quartz glass substrate.
[0019]
【The invention's effect】
According to the present application, a resist mask without scum can be easily manufactured. Since it is scumless, the occurrence of transfer defects is reduced. In addition, since scum is not required, scum inspection can be omitted, and from this viewpoint, cost can be reduced and manufacturing TAT can be improved. That is, it usually takes eight hours to inspect a slight scum, but there is also an effect of reducing the time.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a photomask manufacturing process of the present invention.
FIG. 2 is an explanatory diagram showing a second manufacturing process of the photomask of the present invention.
FIG. 3 is a characteristic diagram showing light intensity characteristics of VUV irradiation light.
FIG. 4 is a molecular formula showing a material structure of a typical electron beam sensitive resist.
FIG. 5 is a characteristic diagram showing a spectral absorption characteristic of a typical electron beam sensitive resist.
FIG. 6 is a characteristic diagram showing an optical image distribution of pattern transfer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Photomask, 2 ... Scum removal apparatus, 10 ... Quartz glass, 11 ... Resist, 13 ... Electron beam, 14 ... Resist pattern, 15 ... Scum, 16 ... Scum, 17 ... Oxygen presence atmosphere, 18 ... VUV light, 20 ... Housing, 21 ... VUV lamp, 22 ... VUV light, 23 ... Inert gas atmosphere, 24 ... Window material (glass), 25 ... Oxygen present atmosphere, 26 ... Box, 27 ... Oxygen introduction port, 28 ... Exhaust port.

Claims (7)

レジストパターンを遮光部としたフォトマスクの製造方法において、
前記レジストパターンが形成された透明基板の一主面側を酸素を含有する雰囲気にさらし、
前記透明基板の他主面側より前記透明基板を透過するように光を照射することを特徴とするフォトマスクの製造方法。
In a method for manufacturing a photomask using a resist pattern as a light-shielding portion,
Exposing one main surface side of the transparent substrate on which the resist pattern is formed to an atmosphere containing oxygen,
A method for manufacturing a photomask, comprising irradiating light from the other main surface side of the transparent substrate so as to transmit through the transparent substrate.
前記光の照射には、前記酸素を含有する雰囲気から遮断され、前記真空紫外光の吸収率が低いガス中に設けられた真空紫外光発生源を用いることを特徴とする請求項1に記載のフォトマスクの製造方法。The method according to claim 1, wherein the light irradiation uses a vacuum ultraviolet light source provided in a gas that is cut off from the atmosphere containing oxygen and has a low absorptivity of the vacuum ultraviolet light. Photomask manufacturing method. 前記光は、真空紫外光であることを特徴とする請求項1に記載のフォトマスクの製造方法。The method according to claim 1, wherein the light is vacuum ultraviolet light. 前記真空紫外光の照射に、Xeエキシマランプを用いることを特徴とする請求項3に記載のフォトマスクの製造方法。The method according to claim 3, wherein an Xe 2 excimer lamp is used for the irradiation with the vacuum ultraviolet light. 前記雰囲気が大気であることを特徴とする請求項1に記載のフォトマスクの製造方法。2. The method according to claim 1, wherein the atmosphere is air. 前記真空紫外光の吸収率が低いガスに、窒素を用いることを特徴とする請求項2に記載のフォトマスクの製造方法。3. The method according to claim 2, wherein nitrogen is used as the gas having a low vacuum ultraviolet light absorption rate. レジストパターンを遮光部としたフォトマスクの製造方法において、
透明基板上に前記レジストパターンを形成した後に、酸素の存在する環境下でVUV光を照射することを特徴としたフォトマスクの製造方法。
In a method for manufacturing a photomask using a resist pattern as a light-shielding portion,
A method for manufacturing a photomask, comprising irradiating VUV light in an environment where oxygen is present after forming the resist pattern on a transparent substrate.
JP2002263626A 2002-09-10 2002-09-10 Method for manufacturing photomask Pending JP2004101868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263626A JP2004101868A (en) 2002-09-10 2002-09-10 Method for manufacturing photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263626A JP2004101868A (en) 2002-09-10 2002-09-10 Method for manufacturing photomask

Publications (1)

Publication Number Publication Date
JP2004101868A true JP2004101868A (en) 2004-04-02

Family

ID=32263295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263626A Pending JP2004101868A (en) 2002-09-10 2002-09-10 Method for manufacturing photomask

Country Status (1)

Country Link
JP (1) JP2004101868A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057821A (en) * 2005-08-24 2007-03-08 Toshiba Corp Method for correcting mask defect and method for manufacturing semiconductor device
KR100817066B1 (en) 2006-10-11 2008-03-27 삼성전자주식회사 Euv exposure apparatus in-situ performing exposing substrate and cleaning optical element and cleaning method of optical element included in the apparatus
KR100865560B1 (en) * 2007-09-18 2008-10-28 주식회사 하이닉스반도체 Method for repairing pattern defect in photomask
JP2009145827A (en) * 2007-12-18 2009-07-02 Tsukuba Semi Technology:Kk Apparatus and method for cleaning mask
JP2012504865A (en) * 2008-10-02 2012-02-23 モレキュラー・インプリンツ・インコーポレーテッド In-situ cleaning of imprint lithography tools

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057821A (en) * 2005-08-24 2007-03-08 Toshiba Corp Method for correcting mask defect and method for manufacturing semiconductor device
JP4607705B2 (en) * 2005-08-24 2011-01-05 株式会社東芝 Mask defect correcting method and semiconductor device manufacturing method
KR100817066B1 (en) 2006-10-11 2008-03-27 삼성전자주식회사 Euv exposure apparatus in-situ performing exposing substrate and cleaning optical element and cleaning method of optical element included in the apparatus
KR100865560B1 (en) * 2007-09-18 2008-10-28 주식회사 하이닉스반도체 Method for repairing pattern defect in photomask
JP2009145827A (en) * 2007-12-18 2009-07-02 Tsukuba Semi Technology:Kk Apparatus and method for cleaning mask
JP4734315B2 (en) * 2007-12-18 2011-07-27 つくばセミテクノロジー株式会社 Mask cleaning apparatus and mask cleaning method
JP2012504865A (en) * 2008-10-02 2012-02-23 モレキュラー・インプリンツ・インコーポレーテッド In-situ cleaning of imprint lithography tools

Similar Documents

Publication Publication Date Title
US6734443B2 (en) Apparatus and method for removing photomask contamination and controlling electrostatic discharge
TWI592743B (en) Mask pellicle indicator for haze prevention and method of manufacturing thereof
US20050208393A1 (en) Photomask and method for creating a protective layer on the same
US11022874B2 (en) Chromeless phase shift mask structure and process
JP4478568B2 (en) Method of using an amorphous carbon layer for the production of an improved reticle
KR100849714B1 (en) Structure and method for manufacturing pellicle of photo-mask
US6656646B2 (en) Fabrication method of semiconductor integrated circuit device
JP2003302745A (en) Method for making foreign matter harmless
US9418847B2 (en) Lithography system and method for haze elimination
JP2004101868A (en) Method for manufacturing photomask
US20220373876A1 (en) Euv photomask
US8148054B2 (en) Immersion multiple-exposure method and immersion exposure system for separately performing multiple exposure of micropatterns and non-micropatterns
JPH01265513A (en) Reduction projection aligner
JP3061790B1 (en) Mask manufacturing method and pattern forming method
JP4202770B2 (en) Photomask with dustproof device, exposure method, inspection method and correction method
KR20120081661A (en) Method for fabricating of photomask using self assembly monolayer
KR101153998B1 (en) Method for repairing pattern bridge defects of photo mask
KR100755077B1 (en) Method for repairing defects of photo mask
JP2004241740A (en) Dust-proofing device, stencil mask with dust-proofing device, exposure method, inspection method and defect correcting method
JP2004109592A (en) Photomask and its manufacturing method
JPH03263048A (en) Method for peeling resist for photomask
KR20110028983A (en) Method for fabricating photo mask and method for demounting pellicle from photo mask
KR20060136170A (en) Apparatus for lithography
JP2004356403A (en) Storing vessel for pattern transfer mask, cleaning device for pattern transfer mask and washing method thereof
KR20080084371A (en) Method for fabricating in photo mask