JP2011202876A - Centrifugal oil separator and outdoor unit of air conditioning device - Google Patents

Centrifugal oil separator and outdoor unit of air conditioning device Download PDF

Info

Publication number
JP2011202876A
JP2011202876A JP2010070216A JP2010070216A JP2011202876A JP 2011202876 A JP2011202876 A JP 2011202876A JP 2010070216 A JP2010070216 A JP 2010070216A JP 2010070216 A JP2010070216 A JP 2010070216A JP 2011202876 A JP2011202876 A JP 2011202876A
Authority
JP
Japan
Prior art keywords
container body
diameter
oil separator
cylindrical portion
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010070216A
Other languages
Japanese (ja)
Inventor
Tomiya Hirose
登美也 廣瀬
Mizuki Tsuda
瑞樹 津田
Masayuki Okabe
眞幸 岡部
Fukuji Tsukada
福治 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010070216A priority Critical patent/JP2011202876A/en
Publication of JP2011202876A publication Critical patent/JP2011202876A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a centrifugal oil separator reducing its size and weight without degrading oil separating performance.SOLUTION: This centrifugal oil separator 100 includes a container body 1 having a cylindrical part 1a, an inlet pipe 2 connected in the tangential direction of an inner wall surface of the cylindrical part at an upper part of the cylindrical part of the container body, an outlet pipe 3 connected to the upper part of the container body by being inserted coaxially with the container body, and a discharge pipe 4 connected to a lower part of the container body. This centrifugal oil separator is configured to satisfy 0.40≤d/D≤0.44, when a diameter of the inlet pipe is d, and a diameter of the cylindrical part of the container body is D.

Description

本発明は、ガス中に含まれる油を遠心分離する遠心式油分離器及び空気調和装置の室外機に関し、特に高圧冷媒を使用した空気調和装置や冷凍装置に搭載される遠心分離式油分離器として好適なものである。   The present invention relates to a centrifugal oil separator and an air conditioner outdoor unit that centrifuge oil contained in a gas, and in particular, a centrifugal oil separator that is mounted on an air conditioner or a refrigeration apparatus using a high-pressure refrigerant. Is suitable.

この種遠心分離式油分離器としては、特開2004−169983号公報(特許文献1)に記載されたものがある。この特許文献1のものでは、圧縮機から吐出されたガス冷媒中に含まれる冷凍機油を遠心分離式油分離器で遠心分離することが記載されている。   As this type of centrifugal separator, there is one described in Japanese Patent Application Laid-Open No. 2004-169983 (Patent Document 1). The thing of this patent document 1 describes centrifuging the refrigerating machine oil contained in the gas refrigerant discharged from the compressor with a centrifugal oil separator.

特開2004−169983号公報JP 2004-169983 A

近年、店舗やオフィス用の空気調和装置においても一つの室外機に対して複数の室内機を接続するマルチ化が拡大し、それに伴い室外機と室内機間を接続するための冷媒配管(現地冷媒配管)の長さも長くなってきている。このため、圧縮機から冷媒ガスと共に流出した冷凍機油が冷媒配管や室内機の熱交換器内に滞留してしまい、圧縮機に戻り難くなるため、圧縮機内の冷凍機油量の確保が課題となっている。   In recent years, in air conditioners for stores and offices, the number of multi-units for connecting a plurality of indoor units to one outdoor unit has increased, and as a result, refrigerant piping for connecting the outdoor unit and the indoor unit (local refrigerant) The length of piping is also getting longer. For this reason, since the refrigeration oil which flowed out with the refrigerant gas from the compressor stays in the refrigerant pipe and the heat exchanger of the indoor unit, and it becomes difficult to return to the compressor, securing the amount of refrigeration oil in the compressor becomes an issue. ing.

この課題を解決するためには、特許文献1にも記載のように、圧縮機の吐出側、即ち室外機内に油分離器を設けることが知られているが、室外機の小型・軽量化を図ろうとすると油分離器を収めるスペースを確保できず、室外機の小型・軽量化を図ることは難しいという課題もあった。   In order to solve this problem, as described in Patent Document 1, it is known to provide an oil separator on the discharge side of the compressor, that is, in the outdoor unit. However, the outdoor unit is reduced in size and weight. When trying to do so, there was a problem that it was difficult to secure a space for accommodating the oil separator, and it was difficult to reduce the size and weight of the outdoor unit.

本発明の目的は、油分離性能を低下させることなく、小型・軽量化を図れる遠心分離式油分離器を得ることにある。   An object of the present invention is to obtain a centrifugal oil separator that can be reduced in size and weight without deteriorating oil separation performance.

本発明の他の目的は、小型・軽量化を図ることのできる遠心分離式油分離器を備えた室外機を得ることにある。   Another object of the present invention is to obtain an outdoor unit equipped with a centrifugal oil separator that can be reduced in size and weight.

本発明の更に他の目的は、油分離性能を向上させることができ、しかも小型・軽量化も図れる遠心分離式油分離器を得ることにある。   Still another object of the present invention is to provide a centrifugal oil separator that can improve oil separation performance and can be reduced in size and weight.

上記目的を達成するため、本発明は、円筒部分を有する容器本体と、前記容器本体の円筒部分の上部で該円筒部分の内壁面の接線方向に接続された導入管と、前記容器本体の上部に、該容器本体と同軸となるように挿入して接続された導出管と、前記容器本体の下部に接続された排出管とを備えた遠心分離式油分離器において、前記導入管の径をd、前記容器本体の円筒部分の径をDとしたとき、
0.40≦d/D≦0.44
となるように構成したことを特徴とする。
In order to achieve the above object, the present invention provides a container body having a cylindrical portion, an introduction pipe connected at an upper portion of the cylindrical portion of the container body in a tangential direction of an inner wall surface of the cylindrical portion, and an upper portion of the container body. In addition, in a centrifugal oil separator comprising a lead-out pipe inserted and connected so as to be coaxial with the container body, and a discharge pipe connected to the lower part of the container body, the diameter of the introduction pipe is d, when the diameter of the cylindrical portion of the container body is D,
0.40 ≦ d / D ≦ 0.44
It is comprised so that it may become.

本発明の他の特徴は、円筒部分と、該円筒部分の上部と下部に絞られて一体に形成されたテーパ部分とを有する容器本体と、前記円筒部分の上部で該円筒部分の内壁面の接線方向に接続された導入管と、前記容器本体の上部に、該容器本体と同軸となるように挿入して接続された導出管と、前記容器本体の下部に接続された排出管とを備えた遠心分離式油分離器において、前記導入管の径をd、前記容器本体の円筒部分の径をDとしたとき、
0.40≦d/D≦0.44
となるように構成し、且つ前記導出管の容器本体内下端位置と、前記容器本体下部の前記テーパ部上端位置とが高さ方向にほぼ同位置としたことにある。
Another feature of the present invention is that a container body having a cylindrical portion, a tapered portion formed integrally with the upper and lower portions of the cylindrical portion, and an inner wall surface of the cylindrical portion at the upper portion of the cylindrical portion. An introduction pipe connected in a tangential direction; an outlet pipe connected to the upper portion of the container main body so as to be coaxial with the container main body; and a discharge pipe connected to the lower portion of the container main body. In the centrifugal oil separator, when the diameter of the introduction pipe is d and the diameter of the cylindrical portion of the container body is D,
0.40 ≦ d / D ≦ 0.44
And the lower end position in the container body of the outlet pipe and the upper end position of the tapered portion at the lower part of the container body are substantially the same position in the height direction.

本発明の更に他の特徴は、圧縮機、油分離器、室外熱交換器、室外膨張弁を備える空気調和装置の室外機において、前記油分離器は圧縮機の吐出側に設けられ、吐出された冷媒ガスから冷凍機油を遠心分離して前記圧縮機の吸入側に戻す遠心分離式油分離器であって、この遠心分離式油分離器は、円筒部分を有する容器本体と、前記容器本体の円筒部分の上部で該円筒部分の内壁面の接線方向に接続され、前記圧縮機から吐出された冷媒ガスを前記容器本体内に流入させるための導入管と、前記容器本体の上部に、該容器本体と同軸となるように挿入して接続され、前記容器本体で冷凍機油が分離された冷媒ガスを容器外へ流出させるための導出管と、前記容器本体内で冷媒ガスから分離された冷凍機油を前記圧縮機へ戻すために前記容器本体の下部に接続された油戻し管とを備え、前記導入管の径をd、前記容器本体の円筒部分の径をDとしたとき、
0.40≦d/D≦0.44
となるように構成したことにある。
According to still another aspect of the present invention, in the outdoor unit of an air conditioner including a compressor, an oil separator, an outdoor heat exchanger, and an outdoor expansion valve, the oil separator is provided on a discharge side of the compressor and discharged. A centrifugal oil separator that centrifuges refrigeration oil from the refrigerant gas and returns it to the suction side of the compressor, the centrifugal oil separator comprising: a container body having a cylindrical portion; and An inlet pipe connected to a tangential direction of an inner wall surface of the cylindrical portion at an upper portion of the cylindrical portion, and for introducing a refrigerant gas discharged from the compressor into the container main body; A lead-out pipe for allowing refrigerant gas, which is inserted and connected so as to be coaxial with the main body and from which the refrigerating machine oil is separated in the container main body, to flow out of the container, and the refrigerating machine oil separated from the refrigerant gas in the container main body To return the container to the compressor When the provided connected to the oil return pipe to the lower, the diameter of the inlet tube to d, the diameter of the cylindrical portion of the container body is D,
0.40 ≦ d / D ≦ 0.44
It is that it was constituted so that.

本発明によれば、油分離性能を低下させることなく、或いは油分離性能を向上させつつ、小型・軽量化を図ることができる遠心分離式油分離器を得ることができる。   According to the present invention, it is possible to obtain a centrifugal oil separator that can be reduced in size and weight without reducing the oil separation performance or while improving the oil separation performance.

また、本発明の空気調和装置の室外機によれば、室外機の小型・軽量化を図ることができる効果がある。   Moreover, according to the outdoor unit of the air conditioning apparatus of this invention, there exists an effect which can achieve size reduction and weight reduction of an outdoor unit.

本発明の遠心分離式油分離器の実施例1を示す縦断面図。The longitudinal cross-sectional view which shows Example 1 of the centrifugal oil separator of this invention. 図1のA−A線矢視断面図。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. 空気調和装置の全体構成を示す図。The figure which shows the whole structure of an air conditioning apparatus. 導入管の径dと容器本体の径Dとの比(d/D)と油分離効率の関係を示す線図。The diagram which shows the relationship between ratio (d / D) of the diameter d of an introductory tube, and the diameter D of a container main body, and oil separation efficiency. 実施例1に示す遠心分離式油分離器の他の例を示す図で、図1のA−A断面に相当する図。FIG. 5 is a view showing another example of the centrifugal oil separator shown in the first embodiment and corresponding to the AA cross section of FIG. 1. 空気調和装置の一例を示す冷凍サイクル構成図。The refrigeration cycle block diagram which shows an example of an air conditioning apparatus.

以下、本発明の実施例を図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図3は、空気調和装置の全体構成を示す図で、図において、5は室外機、6は室内機で、これら室外機5と室内機6とは現地冷媒配管7,8で接続されている。7はガス側の冷媒配管、8は液側の冷媒配管で、ガス側冷媒配管の径φは液側冷媒配管径より大きく構成されている。   FIG. 3 is a diagram showing the overall configuration of the air conditioner. In the figure, 5 is an outdoor unit, 6 is an indoor unit, and the outdoor unit 5 and the indoor unit 6 are connected by local refrigerant pipes 7 and 8. . 7 is a gas side refrigerant pipe, 8 is a liquid side refrigerant pipe, and the diameter φ of the gas side refrigerant pipe is larger than the liquid side refrigerant pipe diameter.

図6は一般的な空気調和装置の冷凍サイクル構成図で、図において、5は室外機、6は室内機である。
室外機5は、圧縮機10、油分離器100、四方弁11、室外熱交換器12、室外膨張弁13、液タンク14、液阻止弁15、ガス阻止弁16、気液分離器17などが冷媒配管18で接続されている。なお、19は室外ファン、20,21は温度検出器、22,23は圧力検出器である。前記油分離器100の下部と前記気液分離器17の上流側は油戻し管4で接続され、この油戻し管4には絞り機構24が設けられている。
FIG. 6 is a configuration diagram of a refrigeration cycle of a general air conditioner, in which 5 is an outdoor unit and 6 is an indoor unit.
The outdoor unit 5 includes a compressor 10, an oil separator 100, a four-way valve 11, an outdoor heat exchanger 12, an outdoor expansion valve 13, a liquid tank 14, a liquid blocking valve 15, a gas blocking valve 16, a gas-liquid separator 17, and the like. The refrigerant pipe 18 is connected. In addition, 19 is an outdoor fan, 20 and 21 are temperature detectors, and 22 and 23 are pressure detectors. The lower part of the oil separator 100 and the upstream side of the gas-liquid separator 17 are connected by an oil return pipe 4, and a throttle mechanism 24 is provided in the oil return pipe 4.

前記室内機6は室内熱交換器25、室内膨張弁26、室内ファン27、温度検出器28などにより構成されている。
前記室外機5と室内機6とは現地冷媒配管であるガス側冷媒配管7と液側冷媒配管8で接続されている。
The indoor unit 6 includes an indoor heat exchanger 25, an indoor expansion valve 26, an indoor fan 27, a temperature detector 28, and the like.
The outdoor unit 5 and the indoor unit 6 are connected by a gas-side refrigerant pipe 7 and a liquid-side refrigerant pipe 8 which are local refrigerant pipes.

圧縮機10で圧縮された冷媒は、油分離器100に流入して、冷媒ガス中に含まれている冷凍機油が分離され、冷媒ガスは前記四方弁11に流れて、冷房時であれば室外熱交換器12側に流れ、暖房時であれば前記室内機6の室内熱交換器25側に流れる。前記油分離器100で分離された冷凍機油は、油戻し管4及び絞り機構24を介して、圧縮機10の吸入側である気液分離器17の上流側に戻され、再び前記圧縮機10内に流れる構成となっている。   The refrigerant compressed by the compressor 10 flows into the oil separator 100, and the refrigerating machine oil contained in the refrigerant gas is separated. The refrigerant gas flows into the four-way valve 11 and is outdoor during cooling. It flows to the heat exchanger 12 side, and flows to the indoor heat exchanger 25 side of the indoor unit 6 during heating. The refrigerating machine oil separated by the oil separator 100 is returned to the upstream side of the gas-liquid separator 17 which is the suction side of the compressor 10 via the oil return pipe 4 and the throttle mechanism 24, and again the compressor 10 It has a configuration that flows inside.

前記油分離器で分離できなかった冷凍機油は冷媒と共に冷凍サイクル内を循環するが、室外熱交換器12や室内熱交換器25の内面に付着すると、冷媒の熱交換を阻害する要因となるため、油が冷凍サイクルに循環する量をできるだけ減らすことを目的に前記油分離器100が設置されている。この例では分離した冷凍機油を気液分離器17の上流に戻すようにしたが、圧縮機10と気液分離器17との間などに戻すようにしても良い。   The refrigerating machine oil that could not be separated by the oil separator circulates in the refrigeration cycle together with the refrigerant. However, if it adheres to the inner surface of the outdoor heat exchanger 12 or the indoor heat exchanger 25, the refrigerant exchanges heat. The oil separator 100 is installed for the purpose of reducing the amount of oil circulating in the refrigeration cycle as much as possible. In this example, the separated refrigeration oil is returned to the upstream side of the gas-liquid separator 17, but may be returned between the compressor 10 and the gas-liquid separator 17.

図6に示す油分離器100は遠心分離式油分離器が使用されており、その遠心分離式油分離器の本発明における具体的実施例を図1、図2に及び図4により説明する。
図1は本発明の実施例1を示す遠心分離式油分離器の縦断面図、図2は図1のA−A線矢視断面図である。
The oil separator 100 shown in FIG. 6 uses a centrifugal oil separator. Specific examples of the centrifugal oil separator according to the present invention will be described with reference to FIGS.
1 is a longitudinal sectional view of a centrifugal oil separator showing Embodiment 1 of the present invention, and FIG. 2 is a sectional view taken along line AA in FIG.

図1、図2において、1は円筒部分1aを有する容器本体で、円筒形状のものをその上端側と下端側をテーパ形状に絞り加工して、上部テーパ部1bと下部テーパ部1cを形成している。2は、前記円筒部分の上部で該円筒部分の内壁面の接線方向に接続された導入管である。即ち、前記導入管2は容器本体1の円筒部部(テーパ形状となっていない部分)を内壁面の接線方向に貫通して挿入されている。3は、前記容器本体1の上部に、該容器本体と同軸になるように挿入して接続されている導出管である。即ち、この導出管3は容器本体1の上部テーパ部1bの中央を貫通して容器内部に深く挿入されると共に、この導出管3と容器本体1の中心線は同軸上になるように配置されている。4は前記容器本体1の下部に接続された排出管(油戻し管)で、この排出管4は前記下部テーパ部1cの中央に固定され、この排出管4と容器本体1の中心線は同軸上に配置されている。   1 and 2, reference numeral 1 denotes a container body having a cylindrical portion 1a. A cylindrical body is drawn into a tapered shape at its upper end side and lower end side to form an upper tapered portion 1b and a lower tapered portion 1c. ing. Reference numeral 2 denotes an introduction pipe connected in the tangential direction of the inner wall surface of the cylindrical portion at the upper portion of the cylindrical portion. That is, the introduction tube 2 is inserted through the cylindrical portion (the portion not having the tapered shape) of the container body 1 in the tangential direction of the inner wall surface. Reference numeral 3 denotes a lead-out pipe that is inserted and connected to the upper part of the container body 1 so as to be coaxial with the container body. That is, the lead-out pipe 3 penetrates the center of the upper taper portion 1b of the container body 1 and is inserted deep into the container, and the center line of the lead-out pipe 3 and the container body 1 is arranged so as to be coaxial. ing. Reference numeral 4 denotes a discharge pipe (oil return pipe) connected to the lower portion of the container main body 1. The discharge pipe 4 is fixed to the center of the lower tapered portion 1c, and the center line of the discharge pipe 4 and the container main body 1 is coaxial. Is placed on top.

圧縮機から吐出された冷媒ガスと冷凍機油の気液二相流は、前記導入管2から容器本体1内に流入する。容器本体1内に流入した気液二相流は容器本体内面に沿って螺旋状に旋回しながら下降する。この旋回による遠心力により冷凍機油は容器本体1の内面に付着し、冷媒ガスから分離される。冷凍機油が分離された冷媒ガスは導出管3から冷凍サイクルに導出される。容器本体1の内面に付着した冷凍機油は重力により容器内面に沿って下降し、排出管(油戻し管)4から排出されて圧縮機の吸入側に戻される。   The gas-liquid two-phase flow of the refrigerant gas and the refrigerating machine oil discharged from the compressor flows into the container body 1 from the introduction pipe 2. The gas-liquid two-phase flow that flows into the container body 1 descends while spirally turning along the inner surface of the container body. The refrigerating machine oil adheres to the inner surface of the container body 1 due to the centrifugal force generated by the swirling and is separated from the refrigerant gas. The refrigerant gas from which the refrigerating machine oil has been separated is led out from the lead-out pipe 3 to the refrigeration cycle. The refrigerating machine oil adhering to the inner surface of the container body 1 descends along the inner surface of the container due to gravity, and is discharged from the discharge pipe (oil return pipe) 4 and returned to the suction side of the compressor.

本実施例では、遠心分離式油分離器の構成を次のようにしている。即ち、容器本体1の円筒部分1aの径をD、容器本体の上部テーパ部1bの端部から下部テーパ部1cの端部までの高さ寸法をHとしたとき、前記高さ寸法Hは円筒部分1aの径Dの5倍以上、即ち、
H≧5D
としている。また、前記導出管3の下端は、前記容器本体1の下部テーパ部の上部付近まで挿入することで、前記高さ寸法Hを最小限にすることができる。即ち、導入管2の位置から導出管3の下端位置までの寸法は長いほど、油を含んだ冷媒ガスが旋回して流れる距離が長くなるので、より多くの油を分離することができ、油分離性能を向上できるためである。
In this embodiment, the configuration of the centrifugal oil separator is as follows. That is, when the diameter of the cylindrical portion 1a of the container body 1 is D and the height dimension from the end of the upper tapered portion 1b to the end of the lower tapered portion 1c is H, the height dimension H is cylindrical. More than 5 times the diameter D of the portion 1a, that is,
H ≧ 5D
It is said. Further, the height dimension H can be minimized by inserting the lower end of the outlet pipe 3 to the vicinity of the upper portion of the lower tapered portion of the container body 1. That is, the longer the dimension from the position of the inlet pipe 2 to the lower end position of the outlet pipe 3, the longer the distance that the refrigerant gas containing oil swirls and flows, so that more oil can be separated. This is because the separation performance can be improved.

本実施例で特に重要な特徴は、導入管2の径dと容器本体の円筒部1aの径Dとの関係である。図4は、導入管の径dと容器本体の径Dとの比(d/D)と油分離効率の関係を示す線図である。なお、この図4に示す実験データは、容器本体1の高さ寸法Hを容器本体の径Dの5倍または5倍以上のものを使用して実験したものである。また、ここで油分離効率とは、油分離器に流入する単位時間当りの冷凍機油の流入量に対する排出管(油戻し管)4から単位時間当りに排出される冷凍機油の流量の割合である。   A particularly important feature in this embodiment is the relationship between the diameter d of the introduction pipe 2 and the diameter D of the cylindrical portion 1a of the container body. FIG. 4 is a diagram showing the relationship between the ratio (d / D) between the diameter d of the introduction pipe and the diameter D of the container body and the oil separation efficiency. The experimental data shown in FIG. 4 is an experiment using a container body 1 having a height H of 5 times or more than the diameter D of the container body. Here, the oil separation efficiency is the ratio of the flow rate of refrigerating machine oil discharged per unit time from the discharge pipe (oil return pipe) 4 to the inflow amount of refrigerating machine oil per unit time flowing into the oil separator. .

従来の遠心分離式油分離器では前記比(d/D)は大きいものでも0.375(37.5%)で、通常はそれ以下である。しかし、前記比(d/D)を種々変えて実験したところ、図4に示すように、40.5%付近から急激に油分離効率が向上し、42.8%付近をピークに、44%以上になると急激に油分離効率が低下することがわかった。従来は容器本体の径Dが大きいほど、また容器本体の高さ寸法Hも大きいほど分離効率が向上すると考えられていたが、前記実験の結果、容器本体の径Dについては大きくすれば良いというものではなく、図4に示すように、導入管の径dとの関係で油分離効率を向上できる範囲があることが判明した。図4に示す結果になった理由を検討すると、容器本体の径Dを小さくするほど旋回半径が小さくなるため、導入管から流入する冷媒ガスの流速が同一であれば、遠心力が上昇して遠心分離作用が上昇するためと考えられる。しかし、容器本体の径Dを小さくし過ぎると、導入管2と導出管3とが重なる面積が大きくなると共に、導出管2の出口部と導出管3の側面とが接近し過ぎるため、衝突による乱流が発生して油分離効率が急激に低下していくことが理由と考えられる。また、前記衝突による乱流と共に騒音も大きくなるため、前記比(d/D)は0.44以下、好ましくは0.43以下とするのが良い。   In a conventional centrifugal oil separator, the ratio (d / D) is 0.375 (37.5%) even if it is large, and is usually less than that. However, when the ratio (d / D) was variously changed and experimented, as shown in FIG. 4, the oil separation efficiency was drastically improved from around 40.5%, and the peak at around 42.8% was 44%. It has been found that the oil separation efficiency is drastically reduced when the above is reached. Conventionally, it has been considered that the separation efficiency is improved as the diameter D of the container body is larger and the height dimension H of the container body is larger. However, as a result of the experiment, the diameter D of the container body may be increased. However, as shown in FIG. 4, it has been found that there is a range in which the oil separation efficiency can be improved in relation to the diameter d of the introduction pipe. Examining the reason for the results shown in FIG. 4, since the turning radius decreases as the diameter D of the container body decreases, if the flow velocity of the refrigerant gas flowing from the introduction pipe is the same, the centrifugal force increases. This is thought to be due to an increase in centrifugal action. However, if the diameter D of the container body is too small, the area where the introduction pipe 2 and the outlet pipe 3 overlap increases, and the outlet portion of the outlet pipe 2 and the side surface of the outlet pipe 3 are too close to each other. The reason is considered to be that turbulent flow occurs and the oil separation efficiency decreases rapidly. Further, since the noise increases with the turbulent flow due to the collision, the ratio (d / D) is 0.44 or less, preferably 0.43 or less.

図4の結果から、導入管の径dと容器本体の径Dとの比(d/D)は、
0.40≦d/D≦0.44
となるように構成することで、遠心分離式油分離器に導入される冷媒ガス流量が同一(即ち、前記導入管の径dが同じ)であれば、従来よりも容器本体の径Dを大幅に小さくすることが可能となり、油分離性能を低下させることなく、或いは油分離性能を向上させつつ、遠心分離式油分離器の小型・軽量化を達成できる効果が得られる。
From the result of FIG. 4, the ratio (d / D) between the diameter d of the introduction tube and the diameter D of the container body is
0.40 ≦ d / D ≦ 0.44
If the refrigerant gas flow rate introduced into the centrifugal oil separator is the same (that is, the diameter d of the introduction pipe is the same), the diameter D of the container body is made larger than before. The centrifugal separation type oil separator can be reduced in size and weight without reducing the oil separation performance or improving the oil separation performance.

前記導入管の径dと容器本体の径Dとの比(d/D)のより好ましい範囲は、図4から、
0.41≦d/D≦0.43
であり、更に好ましい範囲は、
0.42≦d/D≦0.43
となる。
A more preferable range of the ratio (d / D) between the diameter d of the introduction pipe and the diameter D of the container body is as shown in FIG.
0.41 ≦ d / D ≦ 0.43
And a more preferable range is
0.42 ≦ d / D ≦ 0.43
It becomes.

容器本体1の高さ寸法Hも大きいほど分離効率が向上すると考えられているが、導出管3の下端部よりも容器本体1の円筒部分1aの下端を下方に延長しても分離効率はほとんど向上しないことがわかった。これは、導出管3の下端よりも前記円筒部分1cを下方に延長しても、旋回流による遠心分離作用が有効なのは導出管3の下端部までで、これ以上に円筒部分1cを長くしても、旋回してきた冷媒ガスは導出管3の下端位置から導出管に流入してしまうためと考えられる。従って、油分離器の小型化のためには、前記導出管3の容器本体1内下端位置と、前記容器本体下部の前記テーパ部1c上端位置とを高さ方向にほぼ同位置にすることが好ましい。   Although it is considered that the separation efficiency is improved as the height dimension H of the container body 1 is larger, the separation efficiency is almost improved even if the lower end of the cylindrical portion 1a of the container body 1 is extended downward from the lower end portion of the outlet pipe 3. It turns out that it does not improve. This is because even if the cylindrical portion 1c is extended downward from the lower end of the outlet tube 3, the centrifugal separation action by the swirling flow is effective up to the lower end portion of the outlet tube 3, and the cylindrical portion 1c is made longer than this. It is also considered that the swirling refrigerant gas flows into the outlet pipe from the lower end position of the outlet pipe 3. Therefore, in order to reduce the size of the oil separator, the lower end position in the container main body 1 of the outlet pipe 3 and the upper end position of the tapered portion 1c at the lower portion of the container main body should be substantially the same position in the height direction. preferable.

本実施例によれば、前述したように、容器本体の径Dを従来のものより小さくしているので、容器本体の高さHはその5倍以上とすれば良いから、容器本体の径Dを小さくできる分、容器本体の高さHも小さくすることができる。また、仮に、容器本体の高さHを容器本体の径Dの5倍としても、導出管3の下端位置と、容器本体の下部テーパ部1c上端位置とを高さ方向にほぼ同位置とすることで油分離性能の低下を防止できる。   According to the present embodiment, as described above, since the diameter D of the container body is smaller than the conventional one, the height H of the container body may be set to 5 times or more, so the diameter D of the container body. Therefore, the height H of the container body can be reduced. Even if the height H of the container body is set to 5 times the diameter D of the container body, the lower end position of the outlet tube 3 and the upper end position of the lower tapered portion 1c of the container body are substantially the same position in the height direction. This can prevent the oil separation performance from being lowered.

前記導入管2の径dは、圧縮機10から導入管2までの冷媒配管の径よりも1〜2割程度大きく形成するのが通常である。従って、導入管2の径dを1〜2割程度小さくしても流体損失は増加しない。導入管2の径dを小さくするほど流速は上昇するので、遠心分離作用を向上できる。従って、導入管2の径dを、圧縮機10から導入管2までの冷媒配管の径に対して1〜1.1倍程度に構成すると、油分離効率を更に向上できると共に容器本体の径D及び高さHも更に小さくできる効果がある。   The diameter d of the introduction pipe 2 is usually formed to be about 10 to 20% larger than the diameter of the refrigerant pipe from the compressor 10 to the introduction pipe 2. Therefore, even if the diameter d of the introduction pipe 2 is reduced by about 10 to 20%, the fluid loss does not increase. Since the flow velocity increases as the diameter d of the introduction tube 2 decreases, the centrifugal action can be improved. Therefore, when the diameter d of the introduction pipe 2 is configured to be about 1 to 1.1 times the diameter of the refrigerant pipe from the compressor 10 to the introduction pipe 2, the oil separation efficiency can be further improved and the diameter D of the container body. In addition, the height H can be further reduced.

なお、本実施例では、導出管3の径を、圧縮機10から導入管2までの冷媒配管の径と同等にし、前記導入管2の径dよりも小さく構成している。これにより、油分離器内で分離された油が導出管3から排出される冷媒ガスに再混入し難くなるため、分離効率向上に効果がある。また、導出管の径を圧縮機から導入管までの冷媒配管の径と同等にしているから圧力損失も増加しない。   In the present embodiment, the diameter of the outlet pipe 3 is made equal to the diameter of the refrigerant pipe from the compressor 10 to the introduction pipe 2 and is smaller than the diameter d of the introduction pipe 2. This makes it difficult for the oil separated in the oil separator to be mixed again into the refrigerant gas discharged from the outlet pipe 3, which is effective in improving the separation efficiency. Further, since the diameter of the outlet pipe is made equal to the diameter of the refrigerant pipe from the compressor to the inlet pipe, the pressure loss does not increase.

本実施例では、図1に示す冷凍サイクルの冷媒として、R410A、R32、COなどの高圧冷媒を使用している。また、前記導入管2の径dは、空気調和装置の室外機と室内機とを接続するガス側の冷媒配管の径φ(図3参照)に対して、
d/φ=0.75〜1.0
となる範囲で導入管の径dを決めることにより、冷凍サイクル全体の圧力損失が増加するのを抑制し、且つ油分離性能を維持或いは向上しつつ、遠心分離式油分離器の小型・軽量化を達成することができる。
In the present embodiment, high-pressure refrigerants such as R410A, R32, and CO 2 are used as the refrigerant in the refrigeration cycle shown in FIG. Further, the diameter d of the introduction pipe 2 is smaller than the diameter φ (see FIG. 3) of the refrigerant pipe on the gas side connecting the outdoor unit and the indoor unit of the air conditioner.
d / φ = 0.75-1.0
By determining the diameter d of the introduction pipe within the range, the increase in pressure loss of the entire refrigeration cycle is suppressed, and the oil separation performance is maintained or improved, and the centrifugal oil separator is reduced in size and weight. Can be achieved.

図5は図4に示す線図で最高の油分離効率が得られた(d/D)が0.428(42.8%)の場合の遠心分離式油分離器の水平断面図(図1のA−A断面に相当する図)である。この例では、容器内面に沿ってテーパ状に形成された導入管2の先端部分の外周面2aが、前記容器本体1の円筒部分の内壁面に対して接線方向に接するように配置されている。また、前記導入管2の容器本体1中心側の外周面2bは容器本体1の中心線cに近接するが、該中心線cは超えない位置となっている。これにより、導入管2から流出した冷媒ガスの一部は導出管3に衝突するもののほとんど乱流になることなく容器本体1の内壁面に沿った旋回流となる。容器本体1の径Dは従来に比べ小さくなっている分遠心力は増大し、油分離効率を向上できる。   FIG. 5 is a horizontal sectional view of the centrifugal oil separator when the maximum oil separation efficiency (d / D) is 0.428 (42.8%) in the diagram shown in FIG. 4 (FIG. 1). It is a figure equivalent to the AA cross section of. In this example, the outer peripheral surface 2a of the distal end portion of the introduction tube 2 formed in a tapered shape along the inner surface of the container is disposed so as to contact the inner wall surface of the cylindrical portion of the container body 1 in the tangential direction. . In addition, the outer peripheral surface 2b of the introduction pipe 2 on the center side of the container body 1 is close to the center line c of the container body 1, but the center line c is not exceeded. As a result, a part of the refrigerant gas flowing out from the inlet pipe 2 collides with the outlet pipe 3 but becomes a turbulent flow along the inner wall surface of the container body 1 with almost no turbulent flow. As the diameter D of the container body 1 is smaller than the conventional one, the centrifugal force is increased, and the oil separation efficiency can be improved.

以上述べたように、本実施例によれば、油分離効率は従来と同等以上で、小型・軽量化を可能とする遠心分離式油分離器を得ることができる。また、遠心分離式油分離器の小型化により材料費を低減でき、安価に製作することもできる。更に、この遠心分離式油分離器を空気調和装置の室外機に適用することで、室外機の小型化及び原価低減を図ることができる。   As described above, according to this embodiment, it is possible to obtain a centrifugal oil separator that has an oil separation efficiency equal to or higher than that of the conventional one and can be reduced in size and weight. Further, the material cost can be reduced by making the centrifugal oil separator smaller, and the centrifugal separator can be manufactured at a low cost. Furthermore, by applying this centrifugal oil separator to an outdoor unit of an air conditioner, it is possible to reduce the size and cost of the outdoor unit.

1:容器本体(1a:円筒部分、1b:上部テーパ部、1c:下部テーパ部、2:導入管)
2 導入管(2a:導入管の先端部分の外周面、2b:導入管の容器本体中心側の外周面)
3 導出管
4 排出管(油戻し管)
5 室外機
6 室内機
7 ガス側冷媒配管(現地冷媒配管)
8 液側冷媒配管(現地冷媒配管)
10 圧縮機
11 四方弁
12 室外熱交換器
13 室外膨張弁
17 気液分離器
24 絞り機構
25 室内熱交換器
26 室内膨張弁
100 油分離器。
1: Container body (1a: cylindrical portion, 1b: upper taper portion, 1c: lower taper portion, 2: introduction pipe)
2 Introducing pipe (2a: outer peripheral surface of the tip of the introducing pipe, 2b: outer peripheral surface of the introducing pipe at the center side of the container body)
3 Outlet pipe 4 Drain pipe (oil return pipe)
5 Outdoor unit 6 Indoor unit 7 Gas side refrigerant piping (local refrigerant piping)
8 Liquid side refrigerant piping (local refrigerant piping)
DESCRIPTION OF SYMBOLS 10 Compressor 11 Four-way valve 12 Outdoor heat exchanger 13 Outdoor expansion valve 17 Gas-liquid separator 24 Throttle mechanism 25 Indoor heat exchanger 26 Indoor expansion valve 100 Oil separator.

Claims (10)

円筒部分を有する容器本体と、
前記容器本体の円筒部分の上部で該円筒部分の内壁面の接線方向に接続された導入管と、
前記容器本体の上部に、該容器本体と同軸となるように挿入して接続された導出管と、
前記容器本体の下部に接続された排出管と
を備えた遠心分離式油分離器において、
前記導入管の径をd、前記容器本体の円筒部分の径をDとしたとき、
0.40≦d/D≦0.44
となるように構成したことを特徴とする遠心分離式油分離器。
A container body having a cylindrical portion;
An introduction pipe connected to a tangential direction of an inner wall surface of the cylindrical portion at an upper portion of the cylindrical portion of the container body;
A lead-out pipe connected to the upper part of the container body so as to be coaxial with the container body;
In the centrifugal oil separator provided with a discharge pipe connected to the lower part of the container body,
When the diameter of the introduction pipe is d and the diameter of the cylindrical portion of the container body is D,
0.40 ≦ d / D ≦ 0.44
A centrifugal oil separator characterized by being configured as follows.
円筒部分と、該円筒部分の上部と下部に絞られて一体に形成されたテーパ部分とを有する容器本体と、
前記円筒部分の上部で該円筒部分の内壁面の接線方向に接続された導入管と、
前記容器本体の上部に、該容器本体と同軸となるように挿入して接続された導出管と、
前記容器本体の下部に接続された排出管と
を備えた遠心分離式油分離器において、
前記導入管の径をd、前記容器本体の円筒部分の径をDとしたとき、
0.40≦d/D≦0.44
となるように構成し、且つ
前記導出管の容器本体内下端位置と、前記容器本体下部の前記テーパ部上端位置とが高さ方向にほぼ同位置としたことを特徴とする遠心分離式油分離器。
A container body having a cylindrical portion, and a tapered portion formed integrally with the upper and lower portions of the cylindrical portion;
An introduction pipe connected in the tangential direction of the inner wall surface of the cylindrical part at the upper part of the cylindrical part;
A lead-out pipe connected to the upper part of the container body so as to be coaxial with the container body;
In the centrifugal oil separator provided with a discharge pipe connected to the lower part of the container body,
When the diameter of the introduction pipe is d and the diameter of the cylindrical portion of the container body is D,
0.40 ≦ d / D ≦ 0.44
And a bottom end position in the container body of the outlet pipe and a top end position of the tapered portion at the bottom of the container body are substantially the same in the height direction. vessel.
請求項1または2において、前記容器本体の高さをHとしたとき、
H≧5D
となるように構成したことを特徴とする遠心分離式油分離器。
In Claim 1 or 2, when the height of the container body is H,
H ≧ 5D
A centrifugal oil separator characterized by being configured as follows.
請求項1〜3の何れかにおいて、 前記導入管の径をd、前記容器本体の円筒部分の径をDとしたとき、
0.41≦d/D≦0.43
となるように構成したことを特徴とする遠心分離式油分離器。
In any one of Claims 1-3, when the diameter of the said introduction pipe is set to d and the diameter of the cylindrical part of the said container main body is set to D,
0.41 ≦ d / D ≦ 0.43
A centrifugal oil separator characterized by being configured as follows.
請求項1〜3の何れかにおいて、 前記導入管の径をd、前記容器本体の円筒部分の径をDとしたとき、
0.42≦d/D≦0.43
となるように構成したことを特徴とする遠心分離式油分離器。
In any one of Claims 1-3, when the diameter of the said introduction pipe is set to d and the diameter of the cylindrical part of the said container main body is set to D,
0.42 ≦ d / D ≦ 0.43
A centrifugal oil separator characterized by being configured as follows.
請求項1〜5の何れかにおいて、前記導入管の先端の外周面が、前記容器本体の円筒部分の内壁面に対して接線方向に接するように配置されていることを特徴とする遠心分離式油分離器。   The centrifugal separation type according to any one of claims 1 to 5, wherein an outer peripheral surface of the leading end of the introduction tube is disposed so as to be in tangential contact with an inner wall surface of a cylindrical portion of the container body. Oil separator. 請求項1〜6の何れかにおいて、前記導入管の径dよりも前記導出管3の径を小さく構成していることを特徴とする遠心分離式油分離器。   7. The centrifugal oil separator according to claim 1, wherein a diameter of the outlet pipe 3 is smaller than a diameter d of the introduction pipe. 圧縮機、油分離器、室外熱交換器、室外膨張弁を備える空気調和装置の室外機において、
前記油分離器は圧縮機の吐出側に設けられ、吐出された冷媒ガスから冷凍機油を遠心分離して前記圧縮機の吸入側に戻す遠心分離式油分離器であって、この遠心分離式油分離器は、
円筒部分を有する容器本体と、
前記容器本体の円筒部分の上部で該円筒部分の内壁面の接線方向に接続され、前記圧縮機から吐出された冷媒ガスを前記容器本体内に流入させるための導入管と、
前記容器本体の上部に、該容器本体と同軸となるように挿入して接続され、前記容器本体で冷凍機油が分離された冷媒ガスを容器外へ流出させるための導出管と、
前記容器本体内で冷媒ガスから分離された冷凍機油を前記圧縮機へ戻すために前記容器本体の下部に接続された油戻し管とを備え、
前記導入管の径をd、前記容器本体の円筒部分の径をDとしたとき、
0.40≦d/D≦0.44
となるように構成したことを特徴とする空気調和装置の室外機。
In an outdoor unit of an air conditioner including a compressor, an oil separator, an outdoor heat exchanger, and an outdoor expansion valve,
The oil separator is a centrifugal oil separator that is provided on the discharge side of the compressor and that centrifuges refrigeration oil from the discharged refrigerant gas and returns it to the suction side of the compressor. The separator
A container body having a cylindrical portion;
An introduction pipe connected to a tangential direction of an inner wall surface of the cylindrical portion at an upper portion of the cylindrical portion of the container main body, and for allowing refrigerant gas discharged from the compressor to flow into the container main body;
A lead-out pipe for allowing the refrigerant gas separated from the container main body to be inserted into and connected to the upper part of the container main body so as to be coaxial with the container main body and outflowing the refrigerant gas from the container main body;
An oil return pipe connected to the lower part of the container body for returning the refrigeration oil separated from the refrigerant gas in the container body to the compressor;
When the diameter of the introduction pipe is d and the diameter of the cylindrical portion of the container body is D,
0.40 ≦ d / D ≦ 0.44
The outdoor unit of the air conditioner characterized by being comprised.
請求項8において、前記冷媒は、R410A、R32、COなどの高圧冷媒であることを特徴とする空気調和装置の室外機。 According to claim 8, wherein the refrigerant is an outdoor unit of an air conditioner which is a high-pressure refrigerant such as R410A, R32, CO 2. 請求項8または9において、空気調和装置の室外機と室内機とを接続するガス側の冷媒配管の径をφとしたとき、前記導入管の径dが、
d/φ=0.75〜1.0
となるように構成したことを特徴とする空気調和装置の室外機。
In Claim 8 or 9, when the diameter of the refrigerant pipe on the gas side connecting the outdoor unit and the indoor unit of the air conditioner is φ, the diameter d of the introduction pipe is
d / φ = 0.75-1.0
The outdoor unit of the air conditioner characterized by being comprised.
JP2010070216A 2010-03-25 2010-03-25 Centrifugal oil separator and outdoor unit of air conditioning device Pending JP2011202876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070216A JP2011202876A (en) 2010-03-25 2010-03-25 Centrifugal oil separator and outdoor unit of air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070216A JP2011202876A (en) 2010-03-25 2010-03-25 Centrifugal oil separator and outdoor unit of air conditioning device

Publications (1)

Publication Number Publication Date
JP2011202876A true JP2011202876A (en) 2011-10-13

Family

ID=44879716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070216A Pending JP2011202876A (en) 2010-03-25 2010-03-25 Centrifugal oil separator and outdoor unit of air conditioning device

Country Status (1)

Country Link
JP (1) JP2011202876A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102767925A (en) * 2012-07-02 2012-11-07 西安交通大学 Cyclone oil-gas separator for multi-online system
CN102914105A (en) * 2012-10-18 2013-02-06 青岛海信日立空调系统有限公司 Oil separator
CN103486769A (en) * 2013-08-31 2014-01-01 江苏春兰空调设备有限公司 Oil returning device and oil recovering method of frequency conversion multi-union air conditioning unit
JP2014112021A (en) * 2012-12-05 2014-06-19 Nichirei Kogyo Kk Gas-liquid separator and refrigeration device with gas-liquid separator
CN105716336A (en) * 2016-04-14 2016-06-29 福建欣隆环保有限公司 Industrial and commercial MW-grade transcritical carbon dioxide heat pump oil separator
WO2017111239A1 (en) * 2015-12-25 2017-06-29 Samsung Electronics Co., Ltd. Oil separator
KR20170077012A (en) 2015-12-25 2017-07-05 삼성전자주식회사 Oil separator
EP3144608A4 (en) * 2014-05-13 2017-12-27 Daikin Industries, Ltd. Oil separation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061993A (en) * 2000-08-21 2002-02-28 Mitsubishi Electric Corp Oil separator and outdoor unit
JP2004052710A (en) * 2002-07-23 2004-02-19 Hokuetsu Kogyo Co Ltd Receiver tank for oil-cooled compressor
JP2004097995A (en) * 2002-09-11 2004-04-02 Ishikawajima Harima Heavy Ind Co Ltd Gas-liquid separator
JP2004169983A (en) * 2002-11-19 2004-06-17 Mitsubishi Electric Corp Centrifugal oil separator and its manufacturing method, and refrigerant device
JP2008196760A (en) * 2007-02-13 2008-08-28 Daikin Ind Ltd Refrigerating device
JP2009074756A (en) * 2007-09-21 2009-04-09 Mitsubishi Electric Corp Compressor muffler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061993A (en) * 2000-08-21 2002-02-28 Mitsubishi Electric Corp Oil separator and outdoor unit
JP2004052710A (en) * 2002-07-23 2004-02-19 Hokuetsu Kogyo Co Ltd Receiver tank for oil-cooled compressor
JP2004097995A (en) * 2002-09-11 2004-04-02 Ishikawajima Harima Heavy Ind Co Ltd Gas-liquid separator
JP2004169983A (en) * 2002-11-19 2004-06-17 Mitsubishi Electric Corp Centrifugal oil separator and its manufacturing method, and refrigerant device
JP2008196760A (en) * 2007-02-13 2008-08-28 Daikin Ind Ltd Refrigerating device
JP2009074756A (en) * 2007-09-21 2009-04-09 Mitsubishi Electric Corp Compressor muffler

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102767925A (en) * 2012-07-02 2012-11-07 西安交通大学 Cyclone oil-gas separator for multi-online system
CN102914105A (en) * 2012-10-18 2013-02-06 青岛海信日立空调系统有限公司 Oil separator
JP2014112021A (en) * 2012-12-05 2014-06-19 Nichirei Kogyo Kk Gas-liquid separator and refrigeration device with gas-liquid separator
CN103486769A (en) * 2013-08-31 2014-01-01 江苏春兰空调设备有限公司 Oil returning device and oil recovering method of frequency conversion multi-union air conditioning unit
CN103486769B (en) * 2013-08-31 2016-05-04 江苏春兰空调设备有限公司 A kind of oil return apparatus of multi-evaporator inverter air conditioner unit and oily restoration methods thereof
EP3144608A4 (en) * 2014-05-13 2017-12-27 Daikin Industries, Ltd. Oil separation device
WO2017111239A1 (en) * 2015-12-25 2017-06-29 Samsung Electronics Co., Ltd. Oil separator
KR20170077012A (en) 2015-12-25 2017-07-05 삼성전자주식회사 Oil separator
JP2017120173A (en) * 2015-12-25 2017-07-06 三星電子株式会社Samsung Electronics Co.,Ltd. Oil-separator
EP3341663A4 (en) * 2015-12-25 2018-07-11 Samsung Electronics Co., Ltd. Oil separator
CN108474599A (en) * 2015-12-25 2018-08-31 三星电子株式会社 Oil eliminator
US10655899B2 (en) 2015-12-25 2020-05-19 Samsung Electronics Co., Ltd. Oil separator
KR102404245B1 (en) 2015-12-25 2022-06-02 삼성전자주식회사 Oil separator
CN105716336A (en) * 2016-04-14 2016-06-29 福建欣隆环保有限公司 Industrial and commercial MW-grade transcritical carbon dioxide heat pump oil separator

Similar Documents

Publication Publication Date Title
JP2011202876A (en) Centrifugal oil separator and outdoor unit of air conditioning device
JP4356214B2 (en) Oil separator and outdoor unit
JP5858187B2 (en) Oil separator
JPWO2012026004A1 (en) Accumulator, vapor compression refrigeration cycle apparatus, and gas-liquid separation method
JP2013044456A (en) Oil separator and refrigerating cycle apparatus
JP2013148308A (en) Oil separator
JP2008241064A (en) Gas-liquid separator for air conditioner
JP2008101831A (en) Oil separator
JP2017020768A (en) Centrifugal separation-type oil separator and refrigeration cycle device using the same
JP2006266524A (en) Accumulator
KR100766249B1 (en) Accumulator of air conditioner
JP2007322001A (en) Mixed fluid separating device
JP2008175432A (en) Refrigerating cycle device
JP6797675B2 (en) Oil separator
JP6131621B2 (en) Oil separator
JP2007139250A (en) Refrigeration cycle device
JP2014145497A (en) Oil separator
JP2006284135A (en) Refrigerating cycle device
JP2010048483A (en) Gas-liquid separator and air compression device and air conditioner equipped with the gas-liquid separator
JP6296322B2 (en) Oil separator
WO2021229649A1 (en) Accumulator and refrigeration cycle device
KR101785669B1 (en) Oil separator and Air conditioner having it
JP3780834B2 (en) Air conditioner
CN105091432B (en) Oil eliminator and the air-conditioning with the oil eliminator
JP7130838B2 (en) Gas-liquid separator and refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001