JP2014112021A - Gas-liquid separator and refrigeration device with gas-liquid separator - Google Patents

Gas-liquid separator and refrigeration device with gas-liquid separator Download PDF

Info

Publication number
JP2014112021A
JP2014112021A JP2012278650A JP2012278650A JP2014112021A JP 2014112021 A JP2014112021 A JP 2014112021A JP 2012278650 A JP2012278650 A JP 2012278650A JP 2012278650 A JP2012278650 A JP 2012278650A JP 2014112021 A JP2014112021 A JP 2014112021A
Authority
JP
Japan
Prior art keywords
gas
separation chamber
liquid
oil
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012278650A
Other languages
Japanese (ja)
Other versions
JP2014112021A5 (en
JP6055673B2 (en
Inventor
Koji Shida
浩二 志田
Ryohei Sakamoto
亮平 坂本
Takeshi Yamamoto
剛 山本
Yoko Yamashita
陽子 山下
Hiroshi Iwata
博 岩田
Naoki Shikazono
直毅 鹿園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIREI KOGYO KK
University of Tokyo NUC
Original Assignee
NICHIREI KOGYO KK
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIREI KOGYO KK, University of Tokyo NUC filed Critical NICHIREI KOGYO KK
Priority to JP2012278650A priority Critical patent/JP6055673B2/en
Priority to CN201310649117.8A priority patent/CN103851843B/en
Publication of JP2014112021A publication Critical patent/JP2014112021A/en
Publication of JP2014112021A5 publication Critical patent/JP2014112021A5/ja
Application granted granted Critical
Publication of JP6055673B2 publication Critical patent/JP6055673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an oil separator which improves an oil separation performance, improves mass-productivity, is low-priced and improves pressure resistance.SOLUTION: A cylindrical oil separator comprises, in an upper part of an oil storage chamber, a separation chamber which is formed with a diameter equal to or smaller than that of the oil storage chamber. In the oil separator, an oil feed pipe is connected to a lower-end diameter-reduced part of the oil storage chamber, a discharge pipe is connected to an upper-end diameter-reduced part of the separation chamber, further, an inflow pipe for a two-phase flow of oil and a gas refrigerant is introduced from a tangential direction of a separation chamber rising wall, and oil in the refrigerant is separated within the separation chamber using a centrifugal force. When an average height of a space formed from an upper end portion of the inflow pipe, an inner surface of a rising wall higher than the upper end portion of the inflow pipe and an inner surface of a ceiling wall is defined as Hm and an inner diameter of the separation chamber is defined as Di, Hm/Di≤0.25 is satisfied. The separation chamber is configured by contraction, forging or pressing and further the rising wall and the ceiling wall of the separation chamber are configured integrally or separately.

Description

本発明は冷凍サイクルや蒸気サイクル等の液相と気相の二相流から液相を分離する気液分離器およびこれを用いた冷凍装置や蒸気サイクル等の装置を得る技術に関する。  The present invention relates to a gas-liquid separator that separates a liquid phase from a liquid phase and a gas phase two-phase flow such as a refrigeration cycle and a vapor cycle, and a technique for obtaining a device such as a refrigeration apparatus and a vapor cycle using the same.

従来の気液分離器の例には、特許文献1(特開2009−109102号)がある。
このものには、特許文献1の説明にもあるように流入管31よりチャンバ35に取り込まれたオイルと気体冷媒の二相流を、遠心力で旋回させ、このチャンバ35内で気体冷媒からオイルを分離し、そのオイルを貯油部に溜め、底部の送油管40より圧縮機等に帰還させたものである。
このものは、チャンバ35および貯油部を丸棒から機械加工で円筒管を作り、これをチャンバ35および貯油部37としているために材料費は勿論のこと加工費等が高くなり、これを備えた冷凍装置は高価となっていた。
また、このものは流入管31をチャンバ35の接線方向よりチャンバ35内に導入しているものであるが、流入管31より上部に形成される流入管上部空間が油分離性能におよぼす影響については全く考慮していなかった。
There exists patent document 1 (Unexamined-Japanese-Patent No. 2009-109102) in the example of the conventional gas-liquid separator.
In this case, as described in Patent Document 1, the two-phase flow of the oil and the gas refrigerant taken into the chamber 35 from the inflow pipe 31 is swirled by centrifugal force, and the oil is converted from the gas refrigerant to the oil in the chamber 35. The oil is stored in the oil storage part and returned to the compressor or the like through the oil feed pipe 40 at the bottom.
In this, a cylindrical tube is made by machining the chamber 35 and the oil storage part from a round bar, and this is used as the chamber 35 and the oil storage part 37. Therefore, the material cost as well as the processing cost are increased, and this is provided. The refrigeration equipment was expensive.
Further, in this case, the inflow pipe 31 is introduced into the chamber 35 from the tangential direction of the chamber 35. Regarding the influence of the upper space of the inflow pipe formed above the inflow pipe 31 on the oil separation performance. I did not consider it at all.

特許文献2(特許2011−247575号)の気液分離器は、容器1の上部に入口管2と気相出口管3を設け、入口管から流入した二相流を遠心力により液相と気相に分離しているが、入口管2の上部空間が気液分離性能におよぼす影響については全く考慮していなかった。  In the gas-liquid separator of Patent Document 2 (Patent No. 2011-247575), an inlet pipe 2 and a gas-phase outlet pipe 3 are provided at the upper part of the container 1, and the two-phase flow flowing from the inlet pipe is separated from the liquid phase and the gas by centrifugal force. Although they are separated into phases, no consideration was given to the influence of the upper space of the inlet pipe 2 on the gas-liquid separation performance.

特開2009−109102号  JP 2009-109102 A 特開2011−247575号  JP2011-247575A

特許文献1に示された油分離器は旋回部、貯油室それぞれを機械加工しているので、量産性が悪く、高価になる等の課題があった。
また、流入管より上部に形成される流入管上部空間が油分離性能におよぼす影響を明らかにすることが課題であった。
Since the oil separator shown in Patent Document 1 is machined in each of the swivel unit and the oil storage chamber, there are problems such as poor mass productivity and high cost.
Another problem is to clarify the influence of the upper space of the inflow pipe formed above the inflow pipe on the oil separation performance.

特許文献2の図1に示されるように従来の遠心力式の油分離器では、流入管の流入口と吐出管の吸込口の位置関係は、流入管の流入口と吐出管の吸込口までの距離が確保され、且つ、吐出管の吸込口は流入管よりも低い位置に構成されるのが一般的である。
また、絞り等により加工した油分離器では、特許文献2の図1に示されるように流入管の上端面の上部に必然的に流入管上部空間が形成され、その空間が油分離性能低下におよぼす影響は考慮されていなかった。
As shown in FIG. 1 of Patent Document 2, in the conventional centrifugal force type oil separator, the positional relationship between the inlet of the inlet pipe and the inlet of the outlet pipe is from the inlet of the inlet pipe to the inlet of the outlet pipe. And the suction port of the discharge pipe is generally configured at a position lower than the inflow pipe.
In addition, in an oil separator processed by a throttle or the like, an inflow pipe upper space is inevitably formed in the upper part of the upper end surface of the inflow pipe, as shown in FIG. The effects were not considered.

本発明は上記課題を解決するためになされたものであって、その目的とする所は油分離性能が良いとともに、量産性が良く、安価で、耐圧性に優れた油分離器を提供することにある。  The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide an oil separator having good oil separation performance, mass productivity, low cost, and excellent pressure resistance. It is in.

本発明は上記課題を解決することを目的としてなされたものである。
即ち、貯液室の上部に該貯液室径と同径若しくは小さな径に作られた分離室を有する円筒状気液分離器であり、且つ、上記貯液室の下端縮径部に送液管を、また分離室の上端縮径部に吐出管をそれぞれ接続し、さらに、液相と気相の二相流の流入管を分離室立ち上がり壁の接線方向より導入し、遠心力を使って分離室内で液相と気相の二相流を分離するようにした気液分離器において、流入管上端部と流入管上端部より上部の立ち上がり壁内面と天井壁内面とで構成された空間の平均高さをHm、分離室の内径をDiとしたとき、Hm/Di≦0.25とするとともに、分離室を絞り加工、鍛造加工、若しくはプレス加工で構成し、さらに分離室の立ち上がり壁と天井壁を一体若しくは別体で構成した気液分離器である。
The present invention has been made for the purpose of solving the above problems.
That is, a cylindrical gas-liquid separator having a separation chamber formed at the upper part of the liquid storage chamber having the same diameter as or smaller than the diameter of the liquid storage chamber, and the liquid is fed to the lower diameter reduced portion of the liquid storage chamber. Connect the pipe and the discharge pipe to the reduced diameter part of the upper end of the separation chamber, and introduce the inflow pipe of the two-phase flow of liquid phase and gas phase from the tangential direction of the rising wall of the separation chamber, and use centrifugal force In a gas-liquid separator configured to separate a liquid phase and a gas phase two-phase flow in a separation chamber, a space formed by an upper end of the inflow pipe, an inner surface of the rising wall above the upper end of the inflow pipe, and an inner surface of the ceiling wall When the average height is Hm and the inner diameter of the separation chamber is Di, Hm / Di ≦ 0.25, and the separation chamber is configured by drawing, forging, or pressing, and the rising wall of the separation chamber This is a gas-liquid separator in which the ceiling wall is constructed as a single body or as a separate body.

また、立ち上がり壁内面と天井壁内面を接続する半径Rの円弧(以下、コーナー円弧の半径Rと称す)と滑らかに接続する天井壁内面円弧との接続点Xにおける半径Rの円の接線に対し外郭体の軸芯に垂直な平面とがなす角度θ(以下、角度θと称す)を5度≦θ≦28度とした気液分離器である。  Further, with respect to a tangent of a circle with a radius R at a connection point X between an arc having a radius R (hereinafter referred to as a corner arc radius R) connecting the rising wall inner surface and the ceiling wall inner surface and a ceiling wall inner surface arc connecting smoothly. This is a gas-liquid separator in which an angle θ (hereinafter referred to as an angle θ) formed by a plane perpendicular to the axis of the outer body is 5 degrees ≦ θ ≦ 28 degrees.

また、上記コーナー円弧の半径Rを、R≦2.5mmとした気液分離器である。  Further, the gas-liquid separator has a radius R of the corner arc of R ≦ 2.5 mm.

また、分離室立ち上がり壁の接線方向から、分離室に導入される流入管先端部に、該管の吐出管に対向する側の一部を該管中心側に向う方向に潰した傾斜部を設け、この傾斜部で分離室の略軸芯に設けられた吐出管を避けるようにした気液分離器である。  In addition, from the tangential direction of the rising wall of the separation chamber, an inclined portion is formed by crushing a part of the side of the pipe facing the discharge pipe toward the center of the pipe at the tip of the inflow pipe introduced into the separation chamber. This is a gas-liquid separator that avoids the discharge pipe provided at the substantially axial center of the separation chamber at the inclined portion.

また、分離室を構成する天井壁内面は粗面とし、旋回流速を低下させ液体および液相と気相の二相流の上昇を抑えるようにした気液分離器である。  Further, the inner surface of the ceiling wall constituting the separation chamber is a rough surface, which is a gas-liquid separator in which the swirling flow velocity is reduced to suppress the rise of the two-phase flow of liquid, liquid phase and gas phase.

また、分離室において上部径より下部径を細くし、遠心力を増大または低下防止させるようにした気液分離器である。  In addition, the gas-liquid separator has a lower diameter smaller than an upper diameter in the separation chamber to prevent the centrifugal force from increasing or decreasing.

また、分離器の吐出管とサイクルに接続する接続具を、一体にした気液分離器である。  In addition, the separator is a gas-liquid separator in which the discharge pipe of the separator and a connector connected to the cycle are integrated.

また、円筒状気液分離器において構成する外郭体の吐出管を接続する絞り部と、分離室と、貯液室とを一体に成形するとともに、蓋体を貯液室の下端部に構成した気液分離器である。  In addition, the throttle, the separation chamber, and the liquid storage chamber that connect the discharge pipe of the outer shell configured in the cylindrical gas-liquid separator are integrally formed, and the lid is configured at the lower end of the liquid storage chamber. It is a gas-liquid separator.

また、円筒状気液分離器を構成する外郭体の吐出管を接続する絞り部と、分離室と、貯液室とを一体に成形した気液分離器である。  In addition, the gas-liquid separator is formed by integrally forming a throttle portion that connects a discharge pipe of an outer shell constituting the cylindrical gas-liquid separator, a separation chamber, and a liquid storage chamber.

また、円筒状気液分離器の外郭体外周部に補強用のビードを設けた気液分離器である。  Further, the gas-liquid separator is provided with a reinforcing bead on the outer periphery of the outer shell of the cylindrical gas-liquid separator.

また、円筒状気液分離器を構成する外郭体をA外郭体とB外郭体とし、A外郭体は、吐出管を接続する上端縮径部、分離室および貯液室を形成した円筒状外郭体とし、B外郭体は貯液室底部を覆う蓋体とし、この蓋体に液を送液管側に導く液溜め部、および送液管が接続される下端縮径部を形成した気液分離器である。  In addition, the outer body constituting the cylindrical gas-liquid separator is an A outer body and a B outer body, and the A outer body is a cylindrical outer shell formed with an upper diameter-reduced portion connecting a discharge pipe, a separation chamber, and a liquid storage chamber. The outer shell B is a lid that covers the bottom of the liquid storage chamber, a liquid reservoir that guides the liquid to the liquid feed pipe side, and a gas-liquid formed with a lower diameter reduced diameter portion to which the liquid feed pipe is connected. Separator.

また、バッフル板の外周に設けた係止片を分離室の下部に設けた凹溝内に、該バッフル板の弾性変形を利用して係止した気液分離器である。  In addition, the gas-liquid separator is configured such that a locking piece provided on the outer periphery of the baffle plate is locked in a concave groove provided in a lower portion of the separation chamber by utilizing elastic deformation of the baffle plate.

また、分離室を構成する立ち上がり壁の肉厚を貯液室の肉厚より厚く構成し、この厚く構成した位置にバッフル板固定用の凹溝を形成するようにした気液分離器である。  Further, the gas-liquid separator is configured such that the wall of the rising wall constituting the separation chamber is thicker than the thickness of the liquid storage chamber, and a concave groove for fixing the baffle plate is formed at the thickly configured position.

また、上記構成を備えた気液分離器を、冷凍サイクルに設けた冷凍装置である。  Moreover, the gas-liquid separator provided with the said structure is the freezing apparatus provided in the refrigerating cycle.

また、上記構成を備えた気液分離器を、蒸気サイクルに設けた蒸気サイクル装置である。  Moreover, it is a steam cycle apparatus which provided the gas-liquid separator provided with the said structure in the steam cycle.

本発明の油分離器は分離室を絞り加工、鍛造加工、若しくはプレス加工で構成し、さらに分離室の立ち上がり壁と天井壁を一体若しくは別体で構成して分離室上部に形成される流入管上部空間を最小にしたものであるから、油分離性能が良いとともに、量産性が良く、安価で、耐圧性に優れた油分離器とすることができる。  In the oil separator of the present invention, the separation chamber is formed by drawing, forging, or pressing, and the rising wall and the ceiling wall of the separation chamber are formed integrally or separately to form an inflow pipe formed at the upper part of the separation chamber. Since the upper space is minimized, the oil separator has good oil separation performance, mass productivity, low cost, and excellent pressure resistance.

本発明を備えた油分離器の実施の形態1を示す断面説明図である。  It is a section explanatory view showing Embodiment 1 of an oil separator provided with the present invention. 図1のA−A断面図である。  It is AA sectional drawing of FIG. 図1の油分離器の要部拡大図である。  It is a principal part enlarged view of the oil separator of FIG. 図1の油分離器の要部説明図である。  It is principal part explanatory drawing of the oil separator of FIG. 図3のQ部拡大図である。  It is the Q section enlarged view of FIG. Hm/Diと油分離性能との関係を示す説明図である。  It is explanatory drawing which shows the relationship between Hm / Di and oil separation performance. 角度θと油分離性能との関係を示す説明図である。  It is explanatory drawing which shows the relationship between angle (theta) and oil separation performance. コーナー円弧の半径Rと油分離性能との関係を示す説明図である。  It is explanatory drawing which shows the relationship between the radius R of a corner circular arc, and oil separation performance. 図1とは異なる実施の形態2を示す断面図で分離室上部に天井仕切り板を設けた例である。  It is an example in which a ceiling partition plate is provided in the upper part of the separation chamber in a sectional view showing the second embodiment different from FIG. 本発明の他の実施の形態2を説明する分離器の断面図であり、分離室上部に別体分離室天井壁を設けた例である。  It is sectional drawing of the separator explaining other Embodiment 2 of this invention, and is the example which provided the separate separation chamber ceiling wall in the separation chamber upper part. 図1とは異なる実施の形態3を説明する油分離器の断面図である。  It is sectional drawing of the oil separator explaining Embodiment 3 different from FIG. 図1とは異なる実施の形態4を説明する油分離器の断面図である。  It is sectional drawing of the oil separator explaining Embodiment 4 different from FIG. 図1に使用しているバッフル板と異なるバッフル板の固定構造を説明する断面図である。(実施の形態5)  It is sectional drawing explaining the fixing structure of the baffle board different from the baffle board used for FIG. (Embodiment 5) 図1とは異なる分離室構造を説明する油分離器の断面図である。(実施の形態6)  It is sectional drawing of the oil separator explaining the separation chamber structure different from FIG. (Embodiment 6) 図1の分離室と貯油室を同径で構成し、更にA外郭体とB外郭体を一体で構成した油分離器の断面図である。(実施の形態7)  FIG. 2 is a cross-sectional view of an oil separator in which a separation chamber and an oil storage chamber of FIG. (Embodiment 7) 図1の分離室と貯油室を同径で構成した油分離器の断面図である。(実施の形態8)  It is sectional drawing of the oil separator which comprised the separation chamber and oil storage chamber of FIG. 1 with the same diameter. (Embodiment 8) 本発明の他の実施の形態9を説明する油分離器である。  It is an oil separator explaining other Embodiment 9 of this invention. 図1とは異なる実施の形態10を説明する油分離器の斜視図である。  It is a perspective view of the oil separator explaining Embodiment 10 different from FIG. 図18の正面図である。(実施の形態10)  It is a front view of FIG. (Embodiment 10) 図18の平面図である。(実施の形態10)  It is a top view of FIG. (Embodiment 10) 図1とは異なる実施の形態10を説明する油分離器の正面図である。  It is a front view of the oil separator explaining Embodiment 10 different from FIG. 図1とは異なる実施の形態10を説明する油分離器の正面図である。  It is a front view of the oil separator explaining Embodiment 10 different from FIG. 図1とは異なる実施の形態10を説明する油分離器の正面図である。  It is a front view of the oil separator explaining Embodiment 10 different from FIG. 図1とは異なる実施の形態10を説明する油分離器の正面図である。  It is a front view of the oil separator explaining Embodiment 10 different from FIG. 図1とは異なる実施の形態10を説明する油分離器の正面図である。  It is a front view of the oil separator explaining Embodiment 10 different from FIG. 本発明を備えた油分離器を冷凍装置に組込んだ説明図である。(実施の形態11)  It is explanatory drawing which incorporated the oil separator provided with this invention in the freezing apparatus. (Embodiment 11) 本発明を備えた油分離器を蒸気サイクル装置にミスト分離器として組込んだ説明図である。(実施の形態12)  It is explanatory drawing which incorporated the oil separator provided with this invention in the steam cycle apparatus as a mist separator. (Embodiment 12)

以下本発明の実施の形態について、図を参照しながら説明する。なお、この実施の形態によって、この発明が限定されるものではない。  Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited by this embodiment.

実施の形態1Embodiment 1

図1から図5を用いて実施の形態1について説明する。
図1は本発明を備えた実施の形態1の油分離器を示す断面図であり、図2は図1のA−A断面図であり、図3は本発明を備えた油分離器の要部拡大図であり、図4は本発明を備えた油分離器の要部説明図であり、図5は図3のQ部拡大図である。
上記図1から図5において、1は冷凍サイクル中等に組み込まれる円筒状の油分離器であり、この油分離器1は貯油室3の上部に該貯油室3の径より小さい径に作られた分離室4を有している。12は貯油室3の上部に設けられた斜面である。この斜面12により貯油室3の内径と分離室4の内径は連接されている。この油分離器1の外郭体2は絞り加工、鍛造加工、若しくはプレス加工等により貯油室3と分離室4が−体で構成されている。分離室4は立ち上がり壁4aと下向きベルマウス形状の天井壁4bにより構成されている。そして、上端縮径部6は下向きベルマウス形状の天井壁4bに連接して形成されている。さらに上端縮径部6に吐出管8が接続されている。さらに、分離室4は油と気体冷媒の二相流を分離室4の接線方向より分離室4内に取り込む流入管9を有している。この流入管9は油分離器1の上部に位置している。
The first embodiment will be described with reference to FIGS.
1 is a cross-sectional view showing an oil separator according to a first embodiment including the present invention, FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, and FIG. 3 is a schematic diagram of the oil separator including the present invention. FIG. 4 is an explanatory view of a main part of an oil separator provided with the present invention, and FIG. 5 is an enlarged view of a Q part in FIG.
In FIG. 1 to FIG. 5, reference numeral 1 denotes a cylindrical oil separator that is incorporated in a refrigeration cycle or the like. The oil separator 1 is formed in the upper part of the oil storage chamber 3 to have a diameter smaller than the diameter of the oil storage chamber 3. A separation chamber 4 is provided. Reference numeral 12 denotes a slope provided at the upper portion of the oil storage chamber 3. The slope 12 connects the inner diameter of the oil storage chamber 3 and the inner diameter of the separation chamber 4 together. The outer body 2 of the oil separator 1 is composed of an oil storage chamber 3 and a separation chamber 4 which are formed by drawing, forging, pressing or the like. The separation chamber 4 includes a rising wall 4a and a downward bellmouth shaped ceiling wall 4b. The upper diameter reduced portion 6 is formed so as to be connected to the downward bellmouth-shaped ceiling wall 4b. Further, a discharge pipe 8 is connected to the upper diameter reduced diameter portion 6. Further, the separation chamber 4 has an inflow pipe 9 for taking the two-phase flow of oil and gas refrigerant into the separation chamber 4 from the tangential direction of the separation chamber 4. The inflow pipe 9 is located in the upper part of the oil separator 1.

上記流入管9は図2にも示す如く分離室4の接線方向より分離室4内に導入されている。また、この流入管9は先端部に該管の吐出管8に対向する側の一部を該管中心側に向う方向に潰した傾斜部9aを有している。流入管9は、この傾斜部9aにより分離室4の略軸芯に導入されている吐出管8を通り越し、分離室4を構成する立ち上がり壁内面4cに接近するように配設されているとともに、吐出管8に当らないように構成されている。そして、流入管9より流入する油滴30と気体冷媒の二相流を分離室4の立ち上がり壁4aに勢い良く当て、該油滴30と気体冷媒の二相流を旋回させ遠心力で油の分離が効率良く行なわれるよう構成されている。
なお、上記吐出管8の吐出管吸込口8aは、分離室4の底部に設けられた平板状バッフル板13a近くにまで至っている。
As shown in FIG. 2, the inflow pipe 9 is introduced into the separation chamber 4 from the tangential direction of the separation chamber 4. In addition, the inflow pipe 9 has an inclined part 9a at the distal end portion, which is a part of the pipe facing the discharge pipe 8 in a direction toward the pipe center side. The inflow pipe 9 is disposed so as to pass through the discharge pipe 8 introduced into the substantially axial center of the separation chamber 4 by the inclined portion 9a and to approach the rising wall inner surface 4c constituting the separation chamber 4, It is configured not to hit the discharge pipe 8. Then, the two-phase flow of the oil droplet 30 and the gas refrigerant flowing in from the inflow pipe 9 is vigorously applied to the rising wall 4a of the separation chamber 4, and the two-phase flow of the oil droplet 30 and the gas refrigerant is swirled to cause the oil to flow by centrifugal force. The separation is performed efficiently.
The discharge pipe suction port 8a of the discharge pipe 8 reaches the vicinity of the flat baffle plate 13a provided at the bottom of the separation chamber 4.

平板状バッフル板13aは、立ち上がり壁4aに係止されている。さらにA外郭体2aにはビード11が設けられている。さらにA外郭体2aの下端には貯油室3の底部を覆うA蓋体14aと下端縮径部5を形成するB外郭体2bが溶接され、B外郭体2bの下端縮径部5には送油管7が接続されている。なお、A蓋体14a絞り加工または鍛造加工またはプレス加工されたものである。  The flat baffle plate 13a is locked to the rising wall 4a. Further, a bead 11 is provided on the outer shell 2a. Further, an A lid 14a covering the bottom of the oil storage chamber 3 and a B outer body 2b forming a lower end reduced diameter portion 5 are welded to the lower end of the A outer body 2a, and the lower end reduced diameter portion 5 of the B outer body 2b is fed to the lower end reduced diameter portion 5. An oil pipe 7 is connected. The A lid 14a has been drawn, forged, or pressed.

以上の構成において、分離室4内における油分離の作用について以下に説明する。
分離室4内における油分離を促す作用は、図3に示した油分離器1において、流入管9から分離室4に流入する油と気体冷媒の二相流の大部分は、分離室4の立ち上がり壁内面4cに沿ってA旋回流37aのように旋回しながら流入管9の下方に流れる。その間、気体冷媒に比べて比重の大きな油滴30は、A旋回流37aにより発生する遠心力により分離室4の立ち上がり壁内面4cに沿い下向油膜31となり旋回しながら下方の貯油室3に流れる。一方、油分離を妨げる作用としては、図3に示した油分離器1において、油を分離した気体冷媒は分離室4内を旋回しながらA旋回流37aとなり、吐出管8の下方に至り吐出管吸込口8aから吸い込まれる。なお、この種の油分離器では、その使用条件によっては微細な油滴30を遠心力により分離室4の立ち上がり壁内面4cに捕捉できない場合もあり、捕捉できなかった微細な油滴30は吐出管吸込口8aから気体冷媒とともに吸い込まれ、その現象が油分離性能を100%にすることを難しくしている。
In the above configuration, the operation of oil separation in the separation chamber 4 will be described below.
In the oil separator 1 shown in FIG. 3, the action of promoting oil separation in the separation chamber 4 is that most of the two-phase flow of oil and gas refrigerant flowing into the separation chamber 4 from the inflow pipe 9 is in the separation chamber 4. It flows below the inflow pipe 9 while swirling along the rising wall inner surface 4c like the A swirl flow 37a. Meanwhile, the oil droplets 30 having a larger specific gravity than the gas refrigerant become a downward oil film 31 along the rising wall inner surface 4c of the separation chamber 4 by the centrifugal force generated by the A swirl flow 37a and flow into the lower oil storage chamber 3 while swirling. . On the other hand, as an action to prevent oil separation, in the oil separator 1 shown in FIG. 3, the gas refrigerant from which the oil has been separated turns into the A swirl flow 37 a while swirling in the separation chamber 4, and reaches the lower part of the discharge pipe 8 to be discharged. It is sucked from the tube suction port 8a. In this type of oil separator, depending on the use conditions, fine oil droplets 30 may not be captured on the rising wall inner surface 4c of the separation chamber 4 by centrifugal force, and the fine oil droplets 30 that could not be captured are discharged. It is sucked together with the gaseous refrigerant from the pipe suction port 8a, and this phenomenon makes it difficult to make the oil separation performance 100%.

一方、油分離性能を低下させる要因は流入管上端部9bの上の流入管上部空間4eにもある。以下にその問題を説明する。なお、流入管上部空間4eは流入管上端部9bと流入管上端部9bより上部の立ち上がり壁内面4cと天井壁内面4dとで構成された空間である。図3および図4に示したように、流入管上端部9bの上に流入管上部空間4eが存在すると流入管9から分離室4に流入した二相流の一部は流入管上部空間4eにも流入し、その二相流は流入管上部空間4eでB旋回流37bのように旋回しながら上方に流れる。ここで、気体冷媒に比べて比重の大きな油滴30は旋回により発生する遠心力により分離室4の立ち上がり壁内面4cに沿い上向油膜32となり旋回しながら上方に流れて、立ち上がり壁内面4cと天井壁内面4dを接続する半径Rの円弧(以下、コーナー円弧の半径Rと称す)と、立ち上がり壁内面4cとの接続点Q(以下、Q点と称す)に達する。このとき図5に示すように、コーナー円弧の半径Rと、滑らかに接続する天井壁内面円弧との接続点Xにおける半径Rの円の接線と外郭体の軸芯に垂直な平面がなす角度θ(以下、角度θと称す)が大きい場合、分離室立ち上がり壁内面4cに沿い旋回しながらQ点に達した油はさらに天井壁内面4dに沿い流れる。その後油は、吐出管の外表面に沿う油膜33となり、落下し吐出管吸込口8aの下端から気体冷媒とともに吸い込まれるので、油分離性能の低下の原因となる。この油分離性能の低下を防止するためには、角度θを小さくし、Q点を通り、天井壁内面4d側に上がろうとする上向油膜32の流れを分断することである。なお、B旋回流37bのように旋回しながら上昇する流れが上向油膜32である。さらに、コーナー円弧の半径R(図5に図示)を小さくすることでも可能である。  On the other hand, the factor that lowers the oil separation performance is also in the inflow pipe upper space 4e above the inflow pipe upper end portion 9b. The problem will be described below. The inflow pipe upper space 4e is a space constituted by an inflow pipe upper end portion 9b, a rising wall inner surface 4c and a ceiling wall inner surface 4d above the inflow tube upper end portion 9b. As shown in FIG. 3 and FIG. 4, when the inflow pipe upper space 4e exists on the inflow pipe upper end portion 9b, a part of the two-phase flow that flows into the separation chamber 4 from the inflow pipe 9 enters the inflow pipe upper space 4e. The two-phase flow flows upward while swirling like a B swirl flow 37b in the inflow pipe upper space 4e. Here, the oil droplet 30 having a larger specific gravity than the gas refrigerant becomes an upward oil film 32 along the rising wall inner surface 4c of the separation chamber 4 due to the centrifugal force generated by swirling, and flows upward while swirling. It reaches a connection point Q (hereinafter referred to as Q point) between the arc R of radius R (hereinafter referred to as corner radius R) connecting the ceiling wall inner surface 4d and the rising wall inner surface 4c. At this time, as shown in FIG. 5, the angle θ formed by the tangent of the circle of radius R at the connection point X between the radius R of the corner arc and the ceiling wall inner surface arc smoothly connected and the plane perpendicular to the axis of the outer shell When the angle (hereinafter referred to as the angle θ) is large, the oil that has reached the point Q while turning along the separation chamber rising wall inner surface 4c further flows along the ceiling wall inner surface 4d. Thereafter, the oil becomes an oil film 33 along the outer surface of the discharge pipe, falls, and is sucked together with the gaseous refrigerant from the lower end of the discharge pipe suction port 8a, which causes a decrease in oil separation performance. In order to prevent the deterioration of the oil separation performance, the flow of the upward oil film 32 that attempts to rise to the ceiling wall inner surface 4d side through the Q point is reduced by reducing the angle θ. The upward rising oil film 32 is a flow that rises while swirling like the B swirling flow 37b. Further, it is possible to reduce the radius R (shown in FIG. 5) of the corner arc.

一方、流入管上部空間4eに流入した二相流の気体冷媒も流入管上部で旋回しながら上方に流れるが、流入管上部空間4eの天井壁内面4dで図3に破線で示した様に吐出管近傍に沿う下向気体流34となる。そのとき、分離しきれずに残っている微細な油滴30を巻き込み、吐出管吸込口8aから気体冷媒とともにその微細な油滴30が吸い込まれ、油分離性能の低下の原因となる。  On the other hand, the two-phase gaseous refrigerant flowing into the inflow pipe upper space 4e also flows upward while swirling in the upper part of the inflow pipe, but is discharged from the inner surface 4d of the ceiling wall of the inflow pipe upper space 4e as shown by the broken line in FIG. A downward gas flow 34 along the vicinity of the pipe is obtained. At that time, the fine oil droplets 30 that cannot be separated are entrained, and the fine oil droplets 30 are sucked together with the gaseous refrigerant from the discharge pipe suction port 8a, which causes a decrease in oil separation performance.

以上に述べた現象はいずれも流入管上部空間4eの油滴30に起因しており、流入管上部空間4eの容積Vが小さい程その空間に存在する油滴30の量も少なくなるため、流入管上部空間4eの容積Vを小さくすることにより油分離性能の低下の原因を取り除くことができる。
以上の考え方に基づき、Hm/Diと油分離性能、角度θと油分離性能、およびコーナー円弧の半径Rと油分離性能の関係を、それぞれ実験により明らかにした結果を図6、図7および図8に示す。
All the phenomena described above are caused by the oil droplets 30 in the inflow pipe upper space 4e. The smaller the volume V of the inflow pipe upper space 4e, the smaller the amount of oil droplets 30 present in that space. By reducing the volume V of the pipe upper space 4e, the cause of the decrease in oil separation performance can be eliminated.
Based on the above concept, the relationship between Hm / Di and oil separation performance, angle θ and oil separation performance, and the radius R of the corner arc and oil separation performance are clarified through experiments, respectively. It is shown in FIG.

図6は、Hm/Diに対する油分離性能の関係を示したものである。ここで、流入管上部空間4eの容積Vを分離室水平断面積Sで除した値は流入管上部空間4eの平均高さHmである。したがって、Hm/Diは平均高さHmを分離室内径Diで除した無次元平均高さを意味する。縦軸の油分離性能は、流入管9から流入する二相流の油含有率をOCR1、吐出管8から流出する二相流の油含有率をOCR2としたとき、次式で求められる値である。

Figure 2014112021
なお、OCRとは、Oil Circulation Ratio の略である。
図6に示すとおり、油分離性能にはHm/Di=0.25に変曲点があり、Hm/Di≦0.25とすることで良好な油分離効果を発揮する。
なお、このときの入口流量をGi、当該油分離器の許容最大流量をGmaxとしたとき、Gi/Gmax=0.4〜0.6の場合である。FIG. 6 shows the relationship of oil separation performance with respect to Hm / Di. Here, the value obtained by dividing the volume V of the inflow pipe upper space 4e by the separation chamber horizontal sectional area S is the average height Hm of the inflow pipe upper space 4e. Therefore, Hm / Di means a dimensionless average height obtained by dividing the average height Hm by the separation chamber diameter Di. The oil separation performance on the vertical axis is a value obtained by the following equation when the oil content of the two-phase flow flowing in from the inflow pipe 9 is OCR1 and the oil content of the two-phase flow flowing out of the discharge pipe 8 is OCR2. is there.
Figure 2014112021
OCR is an abbreviation for Oil Circulation Ratio.
As shown in FIG. 6, the oil separation performance has an inflection point at Hm / Di = 0.25, and a good oil separation effect is exhibited by setting Hm / Di ≦ 0.25.
In this case, Gi / Gmax = 0.4 to 0.6, where Gi is the inlet flow rate and Gmax is the maximum allowable flow rate of the oil separator.

図7は角度θと油分離性能との関係を示したもので、横軸が角度θ、縦軸が油分離性能である。この図より、角度28度より大きくなると性能低下が著しくなる。したがって、角度θ≦28度とすることで天井壁内面4d側に上がろうとする油の流れが分断されるので良好な油分離効果を発揮する。
また、角度θの下限値の考え方を以下に述べる。図4において、4は分離室であり、4aは立ち上がり壁であり、4bは分離室天井壁、6は上端縮径部である。
図において、天井壁4bの加工時、先に説明した流入管上部空間4eの容積Vを小さくするために天井壁内面4dを角度で0度になるよう加工すれば良い訳であるが、0度に加工すると加工時の塑性変形量が大きくなることから加工時間が長くなる。したがって、角度θを0度ではなく5度以上とすることで加工時間を短くすることができるため、下限角度を5度とし、角度θの範囲を5度≦角度θ≦28度の範囲とした。
FIG. 7 shows the relationship between the angle θ and the oil separation performance, where the horizontal axis is the angle θ and the vertical axis is the oil separation performance. From this figure, the performance degradation becomes significant when the angle is larger than 28 degrees. Therefore, by setting the angle θ ≦ 28 degrees, the flow of oil going up to the ceiling wall inner surface 4d side is divided, so that a good oil separation effect is exhibited.
The concept of the lower limit value of the angle θ will be described below. In FIG. 4, 4 is a separation chamber, 4a is a rising wall, 4b is a ceiling wall of the separation chamber, and 6 is a reduced diameter portion at the upper end.
In the figure, when processing the ceiling wall 4b, the ceiling wall inner surface 4d may be processed to have an angle of 0 degrees in order to reduce the volume V of the inflow pipe upper space 4e described above. When processing is performed, the amount of plastic deformation at the time of processing increases, so the processing time becomes longer. Therefore, since the machining time can be shortened by setting the angle θ to 5 degrees or more instead of 0 degrees, the lower limit angle is set to 5 degrees, and the range of the angle θ is set to 5 degrees ≦ angle θ ≦ 28 degrees. .

図8はコーナー円弧の半径Rと油分離性能との関係を示したもので、横軸がコーナー円弧の半径R、縦軸が油分離性能である。この図より、コーナー円弧の半径Rが2.5mmより大きくなると、性能低下が著しくなる。したがって、コーナー円弧の半径R≦2.5mmとすることで天井壁内面4d側に上がろうとする油の流れが分断されるので良好な油分離効果を発揮する。  FIG. 8 shows the relationship between the radius R of the corner arc and the oil separation performance. The horizontal axis is the radius R of the corner arc, and the vertical axis is the oil separation performance. From this figure, when the radius R of the corner arc is larger than 2.5 mm, the performance deterioration becomes remarkable. Therefore, by setting the radius of the corner arc R ≦ 2.5 mm, the flow of the oil going to rise toward the ceiling wall inner surface 4d side is divided, so that a good oil separation effect is exhibited.

以上に述べたように角度θを小さくし、コーナー円弧の半径Rを小さくし、また図1に示すように天井壁内面4dを下向きベルマウス形状にすることにより、流入管上部空間4eの容積Vを小さくでき、良好な油分離性能が得られるとともに全体の高さ寸法を低くすることができる。  As described above, the volume V of the inflow pipe upper space 4e is reduced by reducing the angle θ, reducing the radius R of the corner arc, and making the ceiling wall inner surface 4d downward bellows as shown in FIG. Can be reduced, good oil separation performance can be obtained, and the overall height can be reduced.

さらに、天井壁内面4dを粗面とすることで、旋回流速を低下させ天井壁内面4d側に上昇しようとする油および油と気体冷媒の二相流の上昇を抑制でき良好な油分離性能が得られる。  Furthermore, by making the ceiling wall inner surface 4d rough, it is possible to suppress the increase in the two-phase flow of oil and oil and gas refrigerant that lowers the swirling flow velocity and rises toward the ceiling wall inner surface 4d side, and has good oil separation performance. can get.

さらに図1の本実施の形態においては、貯油室3の底部を覆うA蓋体14aに油溜め部10を備え、油分離器1が傾いても油を送油管7に導き易くしている。  Further, in the present embodiment of FIG. 1, an oil sump 10 is provided in the A lid 14 a that covers the bottom of the oil storage chamber 3, and oil is easily guided to the oil feed pipe 7 even when the oil separator 1 is inclined.

本実施の形態では外郭体2の下端部径に合わせてA蓋体14aを溶接し二分割で構成することで、A外郭体2aの加工方法として絞り加工、鍛造加工、プレス加工など選択肢が広がるとともに、内部構成の仕上がり確認が可能になり信頼性が増す。  In this embodiment, the A lid body 14a is welded in accordance with the diameter of the lower end portion of the outer body 2 to be divided into two parts, so that options such as drawing, forging, and pressing can be expanded as a processing method for the A outer body 2a. At the same time, it is possible to check the finish of the internal configuration, increasing reliability.

次に、バッフル板について説明する。
バッフル板の作用および効果は、貯油室内部での油の旋回流による巻き上げ防止や、貯油室での油の旋回抑制である。このバッフル板は、用途によって設けないで油分離器を構成する場合もある。
図1において、13aは平板状バッフル板であり、13cはこの平板状バッフル板13aに設けられた油を流すための孔である。
Next, the baffle plate will be described.
The action and effect of the baffle plate are prevention of winding-up due to the swirling flow of oil in the oil storage chamber and suppression of oil swirling in the oil storage chamber. The baffle plate may constitute an oil separator without being provided depending on the application.
In FIG. 1, 13a is a flat baffle plate, and 13c is a hole for flowing oil provided in the flat baffle plate 13a.

平板状バッフル板13aの軸方向、高さ方向の位置を精度よく係止するために、A外郭体2aの立ち上がり壁内面4cを切削加工する場合があるが、切削加工しても耐圧性が低下しないよう、本発明は貯油室3側肉厚(t1)より厚く加工した分離室立ち上がり壁4aの肉厚(t2)を予め厚肉にして切削加工の寸法を考慮している。  In order to lock the position of the flat baffle plate 13a in the axial direction and the height direction with high accuracy, the rising wall inner surface 4c of the A outer body 2a may be cut. In the present invention, the thickness (t2) of the separation chamber rising wall 4a processed to be thicker than the oil storage chamber 3 side wall thickness (t1) is set to be thick in advance, and the dimensions of the cutting process are taken into consideration.

平板状バッフル板13aの固定は、立ち上がり壁4aの外周を塑性変形させて構成することが一般的であるが、上記平板状バッフル板13aの固定は、立ち上がり壁4aの外周をポンチ等を使って部分的に打ち出し、A突起片15aを形成し固定している。この場合についても、予め立ち上がり壁4aを厚肉化しているため耐圧性を損なうことなく平板状バッフル板13aの軸方向、高さ方向の位置を精度よく係止できる。また、平板状バッフル板13aの固定は、図16で示すB突起片15bのように外郭体2の外周方向に連続して形成し、固定する方法もある。  The flat baffle plate 13a is generally fixed by plastically deforming the outer periphery of the rising wall 4a. The flat plate baffle plate 13a is fixed using a punch or the like on the outer periphery of the rising wall 4a. It is partially punched to form and fix the A protrusion piece 15a. Also in this case, since the rising wall 4a is thickened in advance, the axial and height positions of the flat baffle plate 13a can be accurately locked without impairing pressure resistance. Further, the flat baffle plate 13a can be fixed by continuously forming the baffle plate 13a in the outer peripheral direction of the outer shell 2 like a B projection piece 15b shown in FIG.

11は補強用のビードである。この補強用ビード11は外郭体2の外周部に設け、外郭体2の剛性を上げ耐圧性を増すとともに貯油室の変形を最小に抑えるために設けている。この補強用ビード11は必要に応じて複数条形成することで薄肉材でも耐圧性を有するとともに安価にすることが可能である。  Reference numeral 11 denotes a reinforcing bead. This reinforcing bead 11 is provided on the outer peripheral portion of the outer body 2 to increase the rigidity of the outer body 2 and increase the pressure resistance, and to minimize deformation of the oil storage chamber. By forming a plurality of reinforcing beads 11 as required, even a thin-walled material can have pressure resistance and can be made inexpensive.

実施の形態2Embodiment 2

図9および図10を用いて実施の形態2について説明する。
実施の形態1では、分離室4を形成する立ち上がり壁4aと天井壁4bを一体にし、流入管上部空間4eを図4に示す如く、天井壁4bが構成する空間まで含んでいたが、実施の形態2に説明するものは、上記天井壁4bが構成する空間をなくしたものである。即ち、図9に示すものは、天井仕切り板35を設けたものであり、図10は分離室4の天井壁を別体としたものである。こうすることにより流入管上部空間4eの容積Vを小さくし、油分離性能を良好にすることができるものである。なお、図9および図10に示した実施の形態では、先に述べたコーナーRを無くすことができる構成である。
即ち実施の形態3の図9および図10を図8で説明すると、R=0を示す構造である。
また、図6で説明すると、実施の形態1よりもさらにHm/Diを小さくすることができるので、高い油分離性能を得ることができる。
その第一の手段は図9に示すように天井仕切板35を立ち上がり壁4aの上部に設け、天井仕切板下面35aが実質的に分離室4の天井壁として機能する。なお、天井仕切板35は吐出管8に固定されている。このような構成において、天井仕切板下面35aと流入管上端部9bとの距離Hを可能な限り小さくすることにより、流入管上部空間4eの容積Vを小さくでき、Hm/Di≦0.25を実現できる。また、天井仕切板下面35a位置より上の部分を埋める構造にしても、作用および効果は同じである。
図9における上記構成以外は図1と同じ構成であり、その作用および効果は同じである。
第二の手段は図10に示す分離部4の天井壁を別体分離室天井壁36とし、分離部4の立ち上がり壁4aに接合している。このような構成において、別体分離室天井壁内面36aと流入管上端部9bとの距離Hを可能な限り小さくすることにより、流入管上部空間4eの容積Vを小さくでき、Hm/Di≦0.25を実現できる。
図10における上記構成以外は図1と同じ構成であり、その作用および効果は同じである。
The second embodiment will be described with reference to FIGS. 9 and 10.
In Embodiment 1, the rising wall 4a and the ceiling wall 4b forming the separation chamber 4 are integrated, and the inflow pipe upper space 4e is included up to the space formed by the ceiling wall 4b as shown in FIG. In the second embodiment, the space formed by the ceiling wall 4b is eliminated. That is, what is shown in FIG. 9 is provided with a ceiling partition plate 35, and FIG. 10 is a separate ceiling wall of the separation chamber 4. By doing so, the volume V of the inflow pipe upper space 4e can be reduced and the oil separation performance can be improved. In the embodiment shown in FIGS. 9 and 10, the above-described corner R can be eliminated.
That is, FIG. 9 and FIG. 10 of the third embodiment will be described with reference to FIG.
6, since Hm / Di can be further reduced as compared with the first embodiment, high oil separation performance can be obtained.
As the first means, as shown in FIG. 9, the ceiling partition plate 35 is provided on the upper portion of the rising wall 4 a, and the ceiling partition plate lower surface 35 a substantially functions as the ceiling wall of the separation chamber 4. The ceiling partition plate 35 is fixed to the discharge pipe 8. In such a configuration, the volume V of the inflow pipe upper space 4e can be reduced by reducing the distance H between the ceiling partition plate lower surface 35a and the inflow pipe upper end portion 9b as much as possible, and Hm / Di ≦ 0.25. realizable. Moreover, even if it is the structure which fills the part above the ceiling partition plate lower surface 35a position, an effect | action and an effect are the same.
9 is the same as that of FIG. 1 except for the above-described configuration, and the operation and effect thereof are the same.
The second means uses the ceiling wall of the separation unit 4 shown in FIG. 10 as a separate separation chamber ceiling wall 36 and is joined to the rising wall 4 a of the separation unit 4. In such a configuration, by reducing the distance H between the separate separation chamber ceiling wall inner surface 36a and the inflow pipe upper end portion 9b as much as possible, the volume V of the inflow pipe upper space 4e can be reduced, and Hm / Di ≦ 0. .25 can be realized.
Except for the above-described configuration in FIG. 10, the configuration is the same as that in FIG. 1, and the operation and effect are the same.

実施の形態3Embodiment 3

図11を用いて実施の形態3について説明する。
実施の形態1では、外郭体2の下端部径に合わせてA蓋体14aを溶接して構成しているが、実施の形態3では、図11に示すように貯油室3の底部を覆う切削加工等で形成したB蓋体14bを溶接して構成しており、B蓋体14bを備えている。
B蓋体14bを切削加工とすることで、送油管7の位置をB蓋体の任意の位置に容易に変更できる。さらにB蓋体14bの厚みを変えることにより溶接方法の選択肢を広げる構造としている。また、このB蓋体14bには、B蓋体傾斜部29を設け油分離器1が傾いても油を送油管7に導き易くしている。
図11における上記構成以外は図1と同じ構成であり、その作用および効果は同じである。
The third embodiment will be described with reference to FIG.
In the first embodiment, the A lid 14a is welded in accordance with the diameter of the lower end portion of the outer body 2, but in the third embodiment, the cutting that covers the bottom of the oil storage chamber 3 as shown in FIG. A B lid body 14b formed by processing or the like is welded to form a B lid body 14b.
By cutting the B lid 14b, the position of the oil feeding pipe 7 can be easily changed to an arbitrary position of the B lid. Furthermore, it is set as the structure which expands the choice of the welding method by changing the thickness of B cover 14b. Further, the B lid 14b is provided with a B lid inclined portion 29 so that the oil can be easily guided to the oil feeding pipe 7 even when the oil separator 1 is inclined.
Except for the above configuration in FIG. 11, the configuration is the same as that in FIG. 1, and the operation and effect are the same.

実施の形態4Embodiment 4

図12を用いて実施の形態4について説明する。
実施の形態1では、外郭体2の下端部径に合わせてA蓋体14aを溶接して構成しているが、実施の形態4では、図12に示すように外郭体2の貯油室縮径部B21を縮径し、C蓋体14cの径を上記縮径した径に合わせて溶接している。
外郭体2の下端の径を縮径化することで、C蓋体14cとの溶接長さが短くなり、信頼性をあげることができる。さらにC蓋体14cの受圧面積が小さくなり、ここに作用する力が小さくなるため耐圧性に優れる。C蓋体14cが溶接される外郭体2の絞り部内径をバッフル板の外径より大きくし、バッフル板を貯油室3側より分離室4に組み込み可能とした油分離器1である。
図12における上記構成以外は図1と同じ構成であり、その作用および効果は同じである。
The fourth embodiment will be described with reference to FIG.
In the first embodiment, the A lid 14a is welded according to the diameter of the lower end portion of the outer body 2. However, in the fourth embodiment, the oil reservoir chamber diameter of the outer body 2 is reduced as shown in FIG. The diameter of the part B21 is reduced, and the C lid 14c is welded in accordance with the reduced diameter.
By reducing the diameter of the lower end of the outer body 2, the weld length with the C lid 14c is shortened, and the reliability can be increased. Furthermore, since the pressure receiving area of the C lid 14c is reduced and the force acting on the C lid 14c is reduced, the pressure resistance is excellent. The oil separator 1 is configured such that the inner diameter of the throttle portion 2 of the outer body 2 to which the C lid 14c is welded is larger than the outer diameter of the baffle plate, and the baffle plate can be incorporated into the separation chamber 4 from the oil storage chamber 3 side.
Other than the above-described configuration in FIG. 12, the configuration is the same as in FIG. 1, and the operation and effect are the same.

実施の形態5Embodiment 5

図13を用いて実施の形態5について説明する。
実施の形態1では、平板状バッフル板13aは、貯油室3側肉厚(t1)より厚く加工した分離室立ち上がり壁4aの肉厚(t2)を外周よりポンチ等を使って部分的に打ち出し、それをA突起片15aで固定する構造であった。このほかの手段として実施の形態5で図13を用いて説明する。図13に示すように、バネ性バッフル板13bには、油を流すための孔13cがあり、バネ性バッフル板13bの外周に弾性のある係止片13dを設けている。また、17は分離室4の立ち上がり壁内面4c側に設けられた凹溝で、バネ性バッフル板13の係止片13dを係止する溝であり、この溝は分離室4の立ち上がり壁4aに機械加工等で設けられている。バネ性バッフル板13bの係止片13dを弾性変形させながら凹溝17に嵌め込み、容易に固定できる。
図13における上記構成以外は図1と同じ構成であり、その作用および効果は同じである。
Embodiment 5 will be described with reference to FIG.
In the first embodiment, the flat baffle plate 13a is partially punched from the outer periphery using a punch or the like (t2) of the separation chamber rising wall 4a processed to be thicker than the oil storage chamber 3 side wall thickness (t1). It was the structure which fixes it with A protrusion piece 15a. Another means will be described in Embodiment 5 with reference to FIG. As shown in FIG. 13, the spring baffle plate 13b has a hole 13c for flowing oil, and an elastic locking piece 13d is provided on the outer periphery of the spring baffle plate 13b. Reference numeral 17 denotes a groove provided on the rising wall inner surface 4 c side of the separation chamber 4, which is a groove for locking the locking piece 13 d of the spring baffle plate 13, and this groove is formed on the rising wall 4 a of the separation chamber 4. It is provided by machining. The locking piece 13d of the spring baffle plate 13b can be fitted into the concave groove 17 while being elastically deformed, and can be easily fixed.
Except for the above-described configuration in FIG. 13, the configuration is the same as in FIG. 1, and the operations and effects are the same.

実施の形態6Embodiment 6

図14を用いて実施形態6について説明する。
図14において、1は油分離器、2は外郭体、3は貯油室、4は分離室、5は下端縮径部、6は上端縮径部、7は送油管、8は吐出管、9は流入管、13aは平板状バッフル板である。
本実施の形態に示す油分離器1は、実施の形態1に対して分離室4の上部径27より下部径28を細くしたものである。
このように構成することにより分離室4では、下に向って徐々に遠心力を増加または低下防止させることにより油分離性能の向上が図れる。
なお、図14における上記構成以外は図1と同じ構成である。
Embodiment 6 will be described with reference to FIG.
In FIG. 14, 1 is an oil separator, 2 is an outer body, 3 is an oil storage chamber, 4 is a separation chamber, 5 is a reduced diameter portion at the lower end, 6 is a reduced diameter portion at the upper end, 7 is an oil supply pipe, 8 is a discharge pipe, 9 Is an inflow pipe, and 13a is a flat baffle plate.
In the oil separator 1 shown in the present embodiment, the lower diameter 28 is made thinner than the upper diameter 27 of the separation chamber 4 with respect to the first embodiment.
With this configuration, in the separation chamber 4, the oil separation performance can be improved by gradually increasing or preventing the centrifugal force from decreasing downward.
14 is the same as FIG. 1 except for the above-described configuration in FIG.

実施の形態7Embodiment 7

図15を用いて実施形態7について説明する。
図15において、1は油分離器、2cは分離室4および貯油室3を同径、且つ、一体にした一体外郭体であり、該一体外郭体2cの上部には下向きベルマウス形状の天井壁4bが、天井壁4bの上部には上端縮径部6が連接され、吐出管8が接続されている。また、下部には貯油室縮径部20を備え、貯油室縮径部20の下部には下端縮径部5が連接され、送油管7が接続されている。
なお、図15ではバッフル板なしの構造としているが、この時の分離室4は、ほぼ2点鎖線の上部となる。この場合、外郭体を分割することなく一体に構成することが可能になるとともに、接合箇所を減らすことで信頼性が向上し、加工工数が短縮される。また、バッフル板を構成する場合は、上端縮径部6または下端縮径部5をバッフル板挿入および固定後に縮径させても良い。
図15における上記構成以外は図1と同じ構成である。
Embodiment 7 will be described with reference to FIG.
In FIG. 15, 1 is an oil separator, 2c is an integral outer body having the same diameter and integrated with the separation chamber 4 and the oil storage chamber 3, and a downward bellmouth shaped ceiling wall is formed on the upper portion of the integral outer body 2c. 4b is connected to an upper end reduced diameter portion 6 at the upper part of the ceiling wall 4b, and a discharge pipe 8 is connected thereto. An oil storage chamber reduced diameter portion 20 is provided at the lower portion, a lower end reduced diameter portion 5 is connected to the lower portion of the oil storage chamber reduced diameter portion 20, and an oil feed pipe 7 is connected thereto.
In FIG. 15, the structure without the baffle plate is used, but the separation chamber 4 at this time is substantially above the two-dot chain line. In this case, the outer body can be integrally formed without being divided, and the reliability is improved by reducing the number of joints, and the number of processing steps is shortened. When a baffle plate is configured, the diameter of the upper diameter reduced portion 6 or the lower diameter reduced portion 5 may be reduced after the baffle plate is inserted and fixed.
Other than the above configuration in FIG. 15, the configuration is the same as that in FIG.

実施の形態8Embodiment 8

図16を用いて実施形態8について説明する。
図16において、1は油分離器、2は外郭体、3は貯油室、4は分離室、5は下端縮径部、6は上端縮径部、7は送油管、8は吐出管、9は流入管、13aは平板状バッフル板である。
本実施の形態に示す油分離器1は先に説明した分離室4と貯油室3が同径でつくられている。
また、平板状バッフル板の上下を突起片15bで固定している。この突起片15bにより、ビード11と同様の作用および効果を得ることができる。
図16における上記構成以外は図1と同じ構成であり、その作用および効果は同じである。
Embodiment 8 will be described with reference to FIG.
In FIG. 16, 1 is an oil separator, 2 is an outer body, 3 is an oil storage chamber, 4 is a separation chamber, 5 is a reduced diameter portion at a lower end, 6 is a reduced diameter portion at an upper end, 7 is an oil supply pipe, 8 is a discharge pipe, 9 Is an inflow pipe, and 13a is a flat baffle plate.
In the oil separator 1 shown in the present embodiment, the separation chamber 4 and the oil storage chamber 3 described above are formed with the same diameter.
Further, the upper and lower sides of the flat baffle plate are fixed by the protruding pieces 15b. By the protruding piece 15b, the same operation and effect as the bead 11 can be obtained.
Except for the above-described configuration in FIG. 16, the configuration is the same as in FIG. 1, and the operation and effect are the same.

実施の形態9Embodiment 9

図17を用いて実施形態9について説明する。
16は一体型接続具であり、4aは立ち上がり壁、4cは立ち上がり壁内面、4bは下向きベルマウス形状の天井壁、4dは天井壁内面、9は流入管、9bは流入管上端面、6は上端縮径部、19はロウ材、18はロウ材受け部である。なお、このロウ材受け部18は先のA外郭体2aの製作時点で形成される。
ここで、この一体型接続具16の内側は、図1の吐出管8の内径にあわせ、外側は流入管9の流入管上端部9aに可能な限り近づけた位置まで外径を大きく構成することで、流入管上部空間4eを小さくし、分離性能の向上が得られる。
また、一体型接続具16を使用することで、製品の小型化が図れる他、溶接における信頼性を増すようにしている。
そのほか、上端縮径部6構成時に、ロウ材受け部18を厚肉加工することで、一体型接続具16を溶接するときに用いるロウ材19をロウ材受け部18に保持させて、天井壁4bに溢れることを防止する構造としている。
図17における上記構成以外は図1と同じ構成であり、その作用および効果は同じである。
Embodiment 9 will be described with reference to FIG.
16 is an integrated connector, 4a is a rising wall, 4c is an inner surface of the rising wall, 4b is a ceiling wall having a downward bell mouth shape, 4d is an inner surface of the ceiling wall, 9 is an inflow pipe, 9b is an upper end surface of the inflow pipe, 6 The upper diameter reduced portion, 19 is a brazing material, and 18 is a brazing material receiving portion. The brazing material receiving portion 18 is formed at the time of manufacturing the previous A outer body 2a.
Here, the inner side of the integrated connector 16 is configured to match the inner diameter of the discharge pipe 8 of FIG. 1, and the outer side is configured to have a larger outer diameter as close as possible to the inflow pipe upper end portion 9a of the inflow pipe 9. Thus, the inflow pipe upper space 4e can be reduced, and the separation performance can be improved.
Further, by using the integrated connector 16, the product can be reduced in size and the reliability in welding is increased.
In addition, when the upper diameter reduced portion 6 is configured, the brazing material receiving portion 18 is processed to be thick so that the brazing material 19 used when welding the integrated connector 16 is held by the brazing material receiving portion 18, and the ceiling wall 4b is prevented from overflowing.
Except for the above-described configuration in FIG. 17, the configuration is the same as that in FIG. 1, and the operation and effect are the same.

実施の形態10Embodiment 10

図18から図25を用いて、実施形態10について説明する。
図において、1は油分離器、2は外郭体、3は貯油室、4は分離室、5は下端縮径部、6は上端縮径部、7は送油管、8は吐出管、9は流入管である。
本実施の形態に示す油分離器1は図18が外郭体2を一体(A外郭体、B外郭体)に形成したものであり、図19は図18の正面図であり、図20は図18の平面図である。図21はA外郭体2aで分離室4および貯油室の一部を形成し、B外郭体2bで貯油室3を形成したものであり、図22は図21のB外郭体2bをさらに二つの部品に分けたものである。また、図23から図25に示すものは上記外郭体2を本発明の範囲内において分割或いは組み合わせを変えたものである。
上記図18から図25において、A外郭体2aは何れも分離室を絞り加工、鍛造加工、若しくはプレス加工で構成し、さらに分離室の立ち上がり壁と天井壁を一体若しくは別体で構成したものである。
また、図18から図25における、送油管7、吐出管8、流入管9は直管ではなく、任意の方向に曲げたものであっても良い。さらに、分離室と貯油室との外径比は限定することなく、適宜変えることができ、製品への適用を容易にしている。また、図18から図24の分離室の天井壁は、図10の如く別体分離室天井壁36のように構成してもよい。
他は実施の形態1と同様の構成を備えており、同じ効果を奏するものである。
The tenth embodiment will be described with reference to FIGS.
In the figure, 1 is an oil separator, 2 is an outer body, 3 is an oil storage chamber, 4 is a separation chamber, 5 is a reduced diameter portion at the lower end, 6 is a reduced diameter portion at the upper end, 7 is an oil supply pipe, 8 is a discharge pipe, 9 is It is an inflow pipe.
In the oil separator 1 shown in the present embodiment, FIG. 18 is formed by integrally forming the outer body 2 (A outer body, B outer body), FIG. 19 is a front view of FIG. 18, and FIG. FIG. FIG. 21 shows the separation chamber 4 and a part of the oil storage chamber formed by the A outer body 2a, and the oil storage chamber 3 formed by the B outer body 2b, and FIG. 22 shows that the B outer body 2b of FIG. It is divided into parts. Further, what is shown in FIG. 23 to FIG. 25 is one in which the outer body 2 is divided or changed in combination within the scope of the present invention.
In FIGS. 18 to 25, each of the outer shells 2a is configured such that the separation chamber is formed by drawing, forging, or pressing, and the rising wall and the ceiling wall of the separation chamber are formed integrally or separately. is there.
18 to 25, the oil feeding pipe 7, the discharge pipe 8, and the inflow pipe 9 are not straight pipes but may be bent in an arbitrary direction. Furthermore, the outer diameter ratio between the separation chamber and the oil storage chamber is not limited and can be changed as appropriate, facilitating application to a product. 18 to 24 may be configured as a separate separation chamber ceiling wall 36 as shown in FIG.
Others have the same configuration as the first embodiment, and have the same effect.

実施の形態11Embodiment 11

図26を用いて上記した油分離器を空気調和機等の冷凍装置に適用した例を説明する。
図26において、冷媒が蒸発器25で蒸発し、そこで熱を奪ってガス化し、気体冷媒が圧縮機22で吸入圧縮される。圧縮機22から吐出される高温および高圧の気体冷媒には、圧縮機内で必要とする潤滑、シール作用をするための油が圧縮機22より流出される。この含まれている油が圧縮機22以外の部品に滞留した場合、圧縮機22の潤滑作用が失われ、場合によっては圧縮機22が故障する可能性がある。また、熱交換するための凝縮器23および蒸発器25内に滞留した場合は熱交換効率が低下し、空気調和機全体の能力が低下してしまうので、圧縮機22の下流には油分離器が設けられる。
この油分離器に上記した油分離器1を適用したものである。
An example in which the oil separator described above is applied to a refrigeration apparatus such as an air conditioner will be described with reference to FIG.
In FIG. 26, the refrigerant evaporates in the evaporator 25, where it takes heat and gasifies, and the gaseous refrigerant is sucked and compressed by the compressor 22. The high-temperature and high-pressure gas refrigerant discharged from the compressor 22 flows out of the compressor 22 with oil for lubricating and sealing required in the compressor. When the contained oil stays in parts other than the compressor 22, the lubricating action of the compressor 22 is lost, and in some cases, the compressor 22 may break down. In addition, if the heat stays in the condenser 23 and the evaporator 25 for heat exchange, the heat exchange efficiency is lowered and the capacity of the entire air conditioner is lowered. Therefore, an oil separator is disposed downstream of the compressor 22. Is provided.
The oil separator 1 described above is applied to this oil separator.

圧縮機22から流入管9を介して分離室4に入った油と気体冷媒の二相流は遠心力により旋回し油を分離する。そして、分離された気体冷媒は吐出管8から凝縮器23側に出ていき、分離された油は貯油室3に溜る。溜った油は、圧縮機22内に高低圧の圧力差により送油管7を通って圧縮機22に戻り、圧縮機22の軸受部および摺動部等を潤滑する。
油分離器1の吐出管8から出た気体冷媒は、凝縮器23で外部と熱交換することによって液冷媒となり、膨張弁24を通って、蒸発器25に入る。
これを繰り返すことにより空気調和機は所定の性能を確保する。
このとき、本発明を備えた油分離器1は先に説明する作用効果を奏するものである。
The two-phase flow of oil and gaseous refrigerant that has entered the separation chamber 4 from the compressor 22 via the inflow pipe 9 is swirled by centrifugal force to separate the oil. Then, the separated gas refrigerant goes out to the condenser 23 side from the discharge pipe 8, and the separated oil is accumulated in the oil storage chamber 3. The accumulated oil returns to the compressor 22 through the oil feed pipe 7 due to a high-low pressure difference in the compressor 22, and lubricates the bearing portion and the sliding portion of the compressor 22.
The gaseous refrigerant discharged from the discharge pipe 8 of the oil separator 1 becomes a liquid refrigerant by exchanging heat with the outside in the condenser 23, and enters the evaporator 25 through the expansion valve 24.
By repeating this, the air conditioner ensures a predetermined performance.
At this time, the oil separator 1 provided with the present invention has the effects described above.

実施の形態12Embodiment 12

図27について実施の形態12について説明する。
以上の実施例では、油を分離する例として説明したが、この分離器は油に限らず、水のミストでも同様にミスト分離器として使用できる。
次に図27を用いて、上記したミスト分離器を、蒸気サイクル装置に適用した例を説明する。
図27において、給水ポンプ38で圧縮された水は、ボイラ39で加熱され高圧水蒸気となる。このとき、高圧水蒸気には水滴ミストが混入しており、水滴ミストがタービン40に流入するとタービンブレードに損傷を与える。したがって、タービン40に入る前にミスト分離器1を設け、流入管9から水滴ミストが混入した高圧水蒸気を、ミスト分離器1に導き、水滴ミストを除去した高圧水蒸気を吐出管8からタービン40に導く。タービン40で高圧水蒸気が膨張することにより、動力を発生し、発電機41で発電する。膨張した低圧蒸気は復水器42で凝縮し、水となり給水ポンプ38に供給される。一方、ミスト分離器1で分離した水滴ミストは、送液管7より給水ポンプ38の吸込み側に戻される。
これを繰り返すことにより蒸気サイクル装置は所定の機能を確保する。
上記の如く本発明の気液分離装置は上記サイクルに適用を拡大することもできる。
Embodiment 12 will be described with reference to FIG.
In the above embodiment, the oil was separated as an example. However, this separator is not limited to oil, and water mist can be used as a mist separator.
Next, an example in which the above-described mist separator is applied to a steam cycle device will be described with reference to FIG.
In FIG. 27, the water compressed by the feed water pump 38 is heated by the boiler 39 to become high-pressure steam. At this time, water droplet mist is mixed in the high-pressure steam, and when the water droplet mist flows into the turbine 40, the turbine blade is damaged. Therefore, the mist separator 1 is provided before entering the turbine 40, the high-pressure steam mixed with the water droplet mist is introduced from the inflow pipe 9 to the mist separator 1, and the high-pressure steam from which the water droplet mist has been removed is transferred from the discharge pipe 8 to the turbine 40. Lead. The high-pressure steam expands in the turbine 40 to generate power, and the generator 41 generates power. The expanded low-pressure steam condenses in the condenser 42, becomes water, and is supplied to the feed water pump 38. On the other hand, the water droplet mist separated by the mist separator 1 is returned to the suction side of the water supply pump 38 from the liquid feeding pipe 7.
By repeating this, the steam cycle apparatus ensures a predetermined function.
As described above, the gas-liquid separator of the present invention can be extended to the above cycle.

本発明は以上説明した如き構成を有するものであるから、次の効果を有するものである。
即ち、貯油室の上部に該貯油室径と同径若しくは小さな径に作られた分離室を有する円筒状油分離器であり、且つ、上記貯油室の下端縮径部に送油管を、また分離室の上端縮径部に吐出管をそれぞれ接続し、さらに、油と気体冷媒の二相流の流入管を分離室立ち上がり壁の接線方向より導入し、遠心力を使って分離室内で油と気体冷媒の二相流を分離するようにした油分離器において、流入管上端部と流入管上端部より上部の立ち上がり壁内面と天井壁内面とで構成された空間の平均高さをHm、分離室の内径をDiとしたとき、Hm/Di≦0.25とするとともに、分離室を絞り加工、鍛造加工、若しくはプレス加工で構成し、さらに分離室の立ち上がり壁と天井壁を一体若しくは別体で構成した油分離器である。
このことにより、性能を阻害する空間(=流入管上部空間)を小さくし、効率の良い油分離ができるとともに油分離器の小形化が図れるものである。
Since the present invention has the configuration described above, it has the following effects.
That is, a cylindrical oil separator having a separation chamber formed in the upper part of the oil storage chamber having the same diameter as or smaller than the diameter of the oil storage chamber, and an oil feed pipe is separated at the lower diameter reduced portion of the oil storage chamber. A discharge pipe is connected to each of the upper diameter-reduced portions of the chamber, and an inflow pipe for two-phase flow of oil and gas refrigerant is introduced from the tangential direction of the rising wall of the separation chamber, and the oil and gas are separated in the separation chamber using centrifugal force. In the oil separator configured to separate the two-phase flow of the refrigerant, the average height of the space formed by the rising pipe inner surface and the ceiling wall inner surface above the inlet pipe upper end and the inlet pipe upper end is Hm, and the separation chamber When the inner diameter of the separator is Di, Hm / Di ≦ 0.25, the separation chamber is formed by drawing, forging, or pressing, and the rising wall and ceiling wall of the separation chamber are integrated or separated. It is the comprised oil separator.
This makes it possible to reduce the space that impedes performance (= inlet pipe upper space), perform efficient oil separation, and reduce the size of the oil separator.

また、立ち上がり壁内面と天井壁内面を接続する半径Rの円弧と滑らがに接続する天井壁内面円弧との接続点Xにおける半径Rの円の接線と外郭体の軸芯に垂直な平面とがなす角度θを5度≦θ≦28度とした油分離器である。
このことにより、量産性が良いことは勿論、性能を阻害する空間(=流入管上部空間)を小さくとすることができ、且つ、油と気体冷媒の二相流の天井壁側への流れを抑制できるので、効率の良い油分離ができるとともに油分離器の小形化が図れるものである。
Further, a tangent line of a circle of radius R at a connection point X between an arc of radius R connecting the inner surface of the rising wall and the inner surface of the ceiling wall and an arc of the ceiling wall inner surface connected to the slider and a plane perpendicular to the axis of the outer shell In this oil separator, the angle θ formed is 5 degrees ≦ θ ≦ 28 degrees.
This makes it possible to reduce the space that hinders performance (= the upper space of the inflow pipe) as well as the mass productivity, and to reduce the two-phase flow of oil and gas refrigerant toward the ceiling wall. Since it can suppress, efficient oil separation can be performed and the size of the oil separator can be reduced.

また、立ち上がり壁内面と天井壁内面を接続する半径Rの円弧を、R≦2.5mmとした油分離器である。
このことにより、性能を阻害する空間(=流入管上部空間)の容積を小さくし、且つ、油と気体冷媒の二相流の天井壁側への流れを抑制し、効率の良い油分離ができるとともに油分離器の小形化が図れるものである。
Further, the oil separator has an arc of radius R connecting the inner surface of the rising wall and the inner surface of the ceiling wall, with R ≦ 2.5 mm.
This reduces the volume of the space that hinders performance (= inlet pipe upper space), suppresses the flow of oil and gas refrigerant to the ceiling wall side, and enables efficient oil separation. In addition, the oil separator can be miniaturized.

また、分離室立ち上がり壁の接線方向から、分離室に導入される流入管先端部に、該管の吐出管に対向する側の一部を該管中心側に向う方向に潰した傾斜部を設け、この傾斜部で分離室の略軸芯に設けられた吐出管を避けるようにした油分離器である。
このことにより、流入管から分離室内に流入した油と気体冷媒の二相流が分離室中心側に広がるのを防止できるので、効率の良い油分離ができるとともに油分離器の小形化が図れるものである。
In addition, from the tangential direction of the rising wall of the separation chamber, an inclined portion is formed by crushing a part of the side of the pipe facing the discharge pipe toward the center of the pipe at the tip of the inflow pipe introduced into the separation chamber. The oil separator is configured to avoid the discharge pipe provided in the substantially axial center of the separation chamber at the inclined portion.
As a result, it is possible to prevent the two-phase flow of oil and gas refrigerant flowing into the separation chamber from the inflow pipe from spreading to the center side of the separation chamber, so that efficient oil separation can be achieved and the size of the oil separator can be reduced. It is.

また、分離室を構成する天井壁内面は粗面とし、旋回流速を低下させ油および油と気体冷媒の二相流の上昇を抑えるようにした油分離器である。
このことにより、油および油と気体冷媒の二相流の天井壁側への流れを抑制でき、効率の良い油分離ができるものである。
In addition, the ceiling wall inner surface constituting the separation chamber is a rough surface, and is an oil separator that reduces the swirling flow rate and suppresses the increase in the two-phase flow of oil and oil and gas refrigerant.
As a result, the flow of oil and the two-phase flow of oil and gas refrigerant to the ceiling wall side can be suppressed, and efficient oil separation can be achieved.

また、分離室において上部径より下部径を細くし、遠心力を増大または低下防止させるようにした油分離器である。
このことにより、遠心力が確保され、効率の良い油分離ができるものである。
Further, the oil separator is configured such that the lower diameter is made thinner than the upper diameter in the separation chamber to prevent the centrifugal force from increasing or decreasing.
This ensures a centrifugal force and enables efficient oil separation.

また、分離器の吐出管とサイクルに接続する接続具を、一体にした油分離器である。
このことにより、小形化できる他、接続箇所が少なくなり信頼性が増すものである。
In addition, the separator is an oil separator in which a discharge pipe of the separator and a connector connected to the cycle are integrated.
As a result, the size can be reduced, and the number of connection points is reduced and the reliability is increased.

また、円筒状油分離器において構成する外郭体の吐出管を接続する絞り部と、分離室と、貯油室とを一体に成形するとともに、蓋体を貯油室の下端部に構成した油分離器である。
このことにより、加工方法として絞り加工、鍛造加工、プレス加工など選択肢が広がる。バッフル板を外郭体製作後に組み込むことが可能になり量産性に優れる油分離器が得られる。さらに外郭体と蓋体を分割することで内部構成の仕上がり確認ができ、信頼性に優れる油分離器が得られる。
In addition, an oil separator in which a throttle portion, a separation chamber, and an oil storage chamber for connecting a discharge pipe of an outer shell configured in a cylindrical oil separator are integrally formed, and a lid is formed at the lower end portion of the oil storage chamber It is.
This expands options such as drawing, forging, and pressing as processing methods. Since the baffle plate can be assembled after the outer body is manufactured, an oil separator excellent in mass productivity can be obtained. Furthermore, by dividing the outer body and the lid, the finish of the internal configuration can be confirmed, and an oil separator with excellent reliability can be obtained.

また、円筒状油分離器を構成する外郭体の吐出管を接続する絞り部と、分離室と、貯油室とを一体に成形した油分離器である。
このことにより、接合箇所を減らすことで信頼性が向上する。さらに量産性がよく安価な油分離器を得ることができる。
In addition, the oil separator is formed by integrally forming a throttle portion that connects a discharge pipe of an outer shell constituting the cylindrical oil separator, a separation chamber, and an oil storage chamber.
This improves reliability by reducing the number of joints. Furthermore, it is possible to obtain an oil separator that has good mass productivity and is inexpensive.

また、円筒状油分離器の外郭体外周部に補強用のビードを設けた油分離器である。
このことにより、貯油室の剛性を上げて、薄肉材でも耐圧性を有するとともに安価な油分離器が得られる。
Further, the oil separator is provided with a reinforcing bead on the outer peripheral portion of the outer shell of the cylindrical oil separator.
This increases the rigidity of the oil storage chamber, so that an oil separator that has pressure resistance even with a thin material and is inexpensive can be obtained.

また、円筒状油分離器を構成する外郭体をA外郭体とB外郭体とし、A外郭体は、吐出管を接続する上端縮径部と、分離室と、貯油室とを形成した円筒状外郭体とし、B外郭体は貯油室底部を覆う蓋体とし、この蓋体に油を送油管側に導く油溜め部、および送油管が接続される下端縮径部を形成したことを特徴とする油分離器である。このことにより、外郭体を二部品に分けて製作することにより、A外郭体は絞り加工等の一体成形が可能となり、B外郭体には油を導く油溜め部等が容易に形成できるものである。  Further, the outer body constituting the cylindrical oil separator is an A outer body and a B outer body, and the A outer body has a cylindrical shape in which an upper diameter reduced portion for connecting a discharge pipe, a separation chamber, and an oil storage chamber are formed. The outer shell is a lid that covers the bottom of the oil storage chamber, and an oil reservoir that guides oil to the oil feed pipe and a lower diameter reduced portion to which the oil feed pipe is connected are formed on the lid. Oil separator. As a result, the outer body can be manufactured by dividing it into two parts, so that the outer body A can be integrally formed by drawing and the like, and an oil reservoir for guiding oil can be easily formed on the outer body B. is there.

また、バッフル板の外周に設けた係止片を分離室の下部に設けた凹溝内に、該バッフル板の弾性変形を利用して係止した油分離器である。
このことにより、特別な部品を使用することなくバッフル板を取り付けることができるので、量産性に優れ安価な油分離器が得られるものである。
In addition, the oil separator is configured such that a locking piece provided on the outer periphery of the baffle plate is locked in a concave groove provided in a lower portion of the separation chamber by utilizing elastic deformation of the baffle plate.
As a result, the baffle plate can be attached without using any special parts, so that an oil separator that is excellent in mass productivity and inexpensive can be obtained.

また、分離室を構成する立ち上がり壁の肉厚を貯油室の肉厚より厚く構成し、この厚く構成した位置にバッフル板固定用の凹溝を形成するようにした油分離器である。
このことにより、耐圧性を損なわずに凹溝を構成することができるとともに厚肉材を使用する必要が無いため安価な油分離器を得ることができる。
Further, the oil separator is configured such that the wall of the rising wall constituting the separation chamber is thicker than the thickness of the oil storage chamber, and a concave groove for fixing the baffle plate is formed at the thickly configured position.
As a result, the groove can be formed without impairing pressure resistance, and an inexpensive oil separator can be obtained because it is not necessary to use a thick material.

上記構成を備えた油分離器を、冷凍サイクルに設けたことを特徴とする冷凍装置である。このことにより、効率の良い冷凍装置とすることができる他、信頼性を向上させた冷凍装置が得られるものである。  An oil separator having the above configuration is provided in a refrigeration cycle. Thus, an efficient refrigeration apparatus can be obtained, and a refrigeration apparatus with improved reliability can be obtained.

以上の本実施例では、冷凍サイクルにおける油と気体冷媒の二相流を分離する油分離器について述べたものである。  In the present embodiment, the oil separator that separates the two-phase flow of oil and gas refrigerant in the refrigeration cycle is described.

また、本発明の分離器は、蒸気サイクル等の水と水蒸気を分離するミスト分離器としても適用可能である。このことにより、蒸気サイクル装置ではタービンブレードを損傷させる水滴ミストを減少させることができ、信頼性を向上させた蒸気サイクル装置が得られるものである。  The separator of the present invention can also be applied as a mist separator for separating water and water vapor such as a steam cycle. As a result, in the steam cycle device, water droplet mist that damages the turbine blades can be reduced, and a steam cycle device with improved reliability can be obtained.

空気調和機等の冷凍装置や蒸気サイクル装置に、本発明の気液分離器を組み込むことにより、効率が良く、信頼性を向上させた、安価な冷凍装置や蒸気サイクル装置が得られるものである。By incorporating the gas-liquid separator of the present invention into a refrigeration apparatus such as an air conditioner or a steam cycle apparatus, an inexpensive refrigeration apparatus or steam cycle apparatus with improved efficiency and reliability can be obtained. .

1 油分離器(ミスト分離器)
2 外郭体 2a A外郭体 2b B外郭体 2c 一体外郭体
3 貯油室 3a 周壁
4 分離室 4a 立ち上がり壁 4b 天井壁 4c 立ち上がり壁内面
4d 天井壁内面 4e 流入管上部空間(油分離性能を阻害する空間)
5 下端縮径部
6 上端縮径部
7 送油管
8 吐出管 8a 吐出管吸込口
9 流入管 9a 傾斜部 9b 流入管上端部
10 油溜め部
11 ビード
12 斜面
13a 平板状バッフル板 13b バネ性バッフル板 13c 孔
13d 係止片
14a A蓋体 14b B蓋体 14c C蓋体
15a A突起片 15b B突起片
16 一体型接続具
17 凹溝
18 ロウ材受け部
19 ロウ材
20 貯油室縮径部A
21 貯油室縮径部B
22 圧縮機
23 凝縮器
24 膨張弁
25 蒸発器
26 粗面
27 上部径
28 下部径
29 B蓋体傾斜部
30 油滴
31 下向油膜
32 上向油膜
33 吐出管の外表面に沿う油膜
34 下向気体流
35 天井仕切板 35a 天井仕切板下面
36 別体分離室天井壁 36a 別体分離室天井壁内面
37a A旋回流 37b B旋回流
38 給水ポンプ
39 ボイラ
40 タービン
41 発電機
42 復水器
1 Oil separator (mist separator)
2 outer body 2a A outer body 2b B outer body 2c integral outer body 3 oil storage chamber 3a peripheral wall 4 separation chamber 4a rising wall 4b ceiling wall 4c inner surface of rising wall
4d inner surface of ceiling wall 4e upper space of inflow pipe (space that hinders oil separation performance)
5 Lower end diameter-reduced part 6 Upper end diameter-reduced part 7 Oil supply pipe 8 Discharge pipe 8a Discharge pipe suction port 9 Inlet pipe 9a Inclined part 9b Inlet pipe upper end part 10 Oil sump part 11 Bead 12 Slope 13a Flat plate baffle plate 13b Spring baffle plate 13c Hole 13d Locking piece 14a A lid 14b B lid 14c C lid 15a A projection piece 15b B projection piece 16 Integrated connector 17 Groove 18 Brazing material receiving part 19 Brazing material 20 Oil storage chamber reduced diameter part A
21 Oil storage chamber reduced diameter part B
22 Compressor 23 Condenser 24 Expansion valve 25 Evaporator 26 Rough surface 27 Upper diameter 28 Lower diameter 29 B lid inclined part 30 Oil droplet 31 Downward oil film 32 Upward oil film 33 Oil film 34 along the outer surface of the discharge pipe Downward Gas flow 35 Ceiling partition plate 35a Ceiling partition plate lower surface 36 Separate separation chamber ceiling wall 36a Separate separation chamber ceiling wall inner surface 37a A swirl flow 37b B swirl flow 38 Water supply pump 39 Boiler 40 Turbine 41 Generator 42 Condenser

Claims (15)

貯液室の上部に該貯液室径と同径若しくは小さな径に作られた分離室を有する円筒状気液分離器であり、且つ、上記貯液室の下端縮径部に送液管を、また分離室の上端縮径部に吐出管をそれぞれ接続し、さらに、液相と気相の二相流の流入管を分離室立ち上がり壁の接線方向より導入し、遠心力を使って分離室内で液相と気相の二相流を分離するようにした気液分離器において、流入管上端部と流入管上端部より上部の立ち上がり壁内面と天井壁内面とで構成された空間の平均高さをHm、分離室の内径をDiとしたとき、Hm/Di≦0.25とするとともに、分離室を絞り加工、鍛造加工、若しくはプレス加工で構成し、さらに分離室の立ち上がり壁と天井壁を一体若しくは別体で構成したことを特徴とする気液分離器。  A cylindrical gas-liquid separator having a separation chamber having the same diameter as or smaller than the diameter of the liquid storage chamber at the upper part of the liquid storage chamber, and a liquid feed pipe at the lower diameter reduced portion of the liquid storage chamber; In addition, a discharge pipe is connected to the upper diameter reduced part of the separation chamber, and an inflow pipe of a two-phase flow of liquid phase and gas phase is introduced from the tangential direction of the rising wall of the separation chamber, and centrifugal force is used to separate the separation chamber. In the gas-liquid separator designed to separate the liquid phase and the gas phase two-phase flow, the average height of the space composed of the upper end of the inflow pipe, the inner surface of the rising wall above the upper end of the inflow pipe and the inner surface of the ceiling wall When the height is Hm and the inner diameter of the separation chamber is Di, Hm / Di ≦ 0.25, the separation chamber is configured by drawing, forging, or pressing, and the rising wall and ceiling wall of the separation chamber A gas-liquid separator characterized by comprising a single body or a separate body. 貯液室の上部に該貯液室径と同径若しくは小さな径に作られた分離室を有する円筒状気液分離器であり、且つ、上記貯液室の下端縮径部に送液管を、また分離室の上端縮径部に吐出管をそれぞれ接続し、さらに、液相と気相の二相流の流入管を分離室立ち上がり壁の接線方向より導入し、遠心力を使って分離室内で液相と気相の二相流を分離するようにした気液分離器において、立ち上がり壁内面と天井壁内面を接続する半径Rの円弧と滑らかに接続する天井壁内面円弧との接続点Xにおける半径Rの円の接線に対し、外郭体の軸芯に垂直な平面とがなす角度θを5度≦θ≦28度としたことを特徴とする気液分離器。  A cylindrical gas-liquid separator having a separation chamber having the same diameter as or smaller than the diameter of the liquid storage chamber at the upper part of the liquid storage chamber, and a liquid feed pipe at the lower diameter reduced portion of the liquid storage chamber; In addition, a discharge pipe is connected to the upper diameter reduced part of the separation chamber, and an inflow pipe of a two-phase flow of liquid phase and gas phase is introduced from the tangential direction of the rising wall of the separation chamber, and centrifugal force is used to separate the separation chamber. In the gas-liquid separator configured to separate the liquid phase and the gas phase two-phase flow, the connection point X between the arc of radius R connecting the rising wall inner surface and the ceiling wall inner surface and the ceiling wall inner surface arc connecting smoothly The gas-liquid separator is characterized in that an angle θ formed by a plane perpendicular to the axis of the outer shell with respect to a tangent line of a circle having a radius R is 5 degrees ≦ θ ≦ 28 degrees. 貯液室の上部に該貯液室径と同径若しくは小さな径に作られた分離室を有する円筒状気液分離器であり、且つ、上記貯液室の下端縮径部に送液管を、また分離室の上端縮径部に吐出管をそれぞれ接続し、さらに、液相と気相の二相流の流入管を分離室立ち上がり壁の接線方向より導入し、遠心力を使って分離室内で液相と気相の二相流を分離するようにした気液分離器において、立ち上がり壁内面と天井壁内面を接続する半径Rの円弧をR≦2.5mmとしたことを特徴とする気液分離器。  A cylindrical gas-liquid separator having a separation chamber having the same diameter as or smaller than the diameter of the liquid storage chamber at the upper part of the liquid storage chamber, and a liquid feed pipe at the lower diameter reduced portion of the liquid storage chamber; In addition, a discharge pipe is connected to the upper diameter reduced part of the separation chamber, and an inflow pipe of a two-phase flow of liquid phase and gas phase is introduced from the tangential direction of the rising wall of the separation chamber, and centrifugal force is used to separate the separation chamber. In the gas-liquid separator configured to separate the liquid-phase and gas-phase two-phase flow, an arc having a radius R connecting the inner surface of the rising wall and the inner surface of the ceiling wall is set to R ≦ 2.5 mm. Liquid separator. 分離室立ち上がり壁の接線方向から、分離室に導入される流入管先端部に、該管の吐出管に対向する側の一部を該管中心側に向う方向に潰した傾斜部を設け、この傾斜部で分離室の略軸芯に設けられた吐出管を避けるようにしたことを特徴とする請求項1から請求項3記載の気液分離器。  Provided from the tangential direction of the separation chamber rising wall to the tip of the inflow pipe introduced into the separation chamber is an inclined portion in which a part of the side of the pipe facing the discharge pipe is crushed in the direction toward the center of the pipe. The gas-liquid separator according to any one of claims 1 to 3, wherein a discharge pipe provided at a substantially axial center of the separation chamber is avoided at the inclined portion. 分離室を構成する天井壁内面は粗面とし、旋回流速を低下させ液体および液相と気相の二相流の上昇を抑えるようにしたことを特徴とする請求項1から請求項4記載の気液分離器。  The inner surface of the ceiling wall constituting the separation chamber is a rough surface, and the swirling flow rate is reduced to suppress the rise of the two-phase flow of liquid and liquid phase and gas phase. Gas-liquid separator. 分離室において上部径より下部径を細くし、遠心力を増大または低下防止させるようにしたことを特徴とする請求項1から請求項4記載の気液分離器。  The gas-liquid separator according to any one of claims 1 to 4, wherein the lower diameter is made thinner than the upper diameter in the separation chamber to prevent the centrifugal force from being increased or decreased. 分離器の吐出管とサイクルに接続する接続具を、一体にしたことを特徴とする請求項1から請求項4記載の気液分離器。  The gas-liquid separator according to any one of claims 1 to 4, wherein the discharge pipe of the separator and a connector connected to the cycle are integrated. 円筒状気液分離器において、構成する外郭体の吐出管を接続する絞り部と、分離室と、貯液室とを一体に成形するとともに、貯液室の下端部に別体の蓋体を構成したことを特徴とする請求項1から請求項4記載の気液分離器。  In the cylindrical gas-liquid separator, the throttle part for connecting the discharge pipe of the outer shell, the separation chamber, and the liquid storage chamber are integrally formed, and a separate lid is formed at the lower end of the liquid storage chamber. The gas-liquid separator according to any one of claims 1 to 4, wherein the gas-liquid separator is configured. 円筒状気液分離器を構成する外郭体の吐出管を接続する絞り部と、分離室と、貯液室とを一体に成形することを特徴とする請求項1から請求項4記載の気液分離器。  5. The gas / liquid according to claim 1, wherein a throttle part for connecting a discharge pipe of an outer shell constituting the cylindrical gas / liquid separator, a separation chamber, and a liquid storage chamber are integrally formed. Separator. 円筒状気液分離器の外郭体外周部に補強用のビードを設けたことを特徴とする請求項1から請求項4記載に気液分離器。  The gas-liquid separator according to any one of claims 1 to 4, wherein a reinforcing bead is provided on the outer periphery of the outer shell of the cylindrical gas-liquid separator. 円筒状気液分離器を構成する外郭体をA外郭体とB外郭体とし、A外郭体は、吐出管を接続する上端縮径部、分離室および貯液室を形成した円筒状外郭体とし、B外郭体は貯液室底部を覆う蓋体とし、この蓋体に液を送液管側に導く傾斜を設けた液溜め部、および送液管が接続される下端縮径部を形成したことを特徴とする請求項1から請求項4記載の気液分離器。  The outer bodies constituting the cylindrical gas-liquid separator are the A outer body and the B outer body, and the A outer body is a cylindrical outer body in which an upper diameter reducing portion connecting the discharge pipe, a separation chamber and a liquid storage chamber are formed. The outer shell B is a lid that covers the bottom of the liquid storage chamber, and a liquid reservoir portion that is inclined to guide the liquid to the liquid feeding tube side and a lower diameter reduced portion to which the liquid feeding tube is connected are formed on the lid body. The gas-liquid separator according to any one of claims 1 to 4, wherein バッフル板の外周に設けた係止片を分離室の下部に設けた凹溝内に、該バッフル板の弾性変形を利用して係止したことを特徴とする請求項1から請求項4記載の気液分離器。  The locking piece provided on the outer periphery of the baffle plate is locked in a concave groove provided in the lower part of the separation chamber by utilizing elastic deformation of the baffle plate. Gas-liquid separator. 分離室を構成する立ち上がり壁の肉厚を貯液室の肉厚より厚く構成し、この厚く構成した位置にバッフル板固定用の凹溝を形成するようにした請求項1から請求項4記載の気液分離器。  The thickness of the rising wall constituting the separation chamber is configured to be thicker than the thickness of the liquid storage chamber, and a concave groove for fixing the baffle plate is formed at the thickly configured position. Gas-liquid separator. 請求項1から請求項13を備えた気液分離器を、冷凍サイクルに設けたことを特徴とする冷凍装置。  A refrigeration apparatus comprising a gas-liquid separator comprising the first to thirteenth aspects in a refrigeration cycle. 請求項1から請求項13を備えた気液分離器を、蒸気サイクルに設けたことを特徴とする蒸気サイクル装置。  A vapor cycle apparatus comprising a vapor cycle provided with the gas-liquid separator provided with claim 1.
JP2012278650A 2012-12-05 2012-12-05 Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator Active JP6055673B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012278650A JP6055673B2 (en) 2012-12-05 2012-12-05 Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
CN201310649117.8A CN103851843B (en) 2012-12-05 2013-12-05 Gas-liquid separator, and possess the refrigerating plant and vapour-cycling device of gas-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012278650A JP6055673B2 (en) 2012-12-05 2012-12-05 Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator

Publications (3)

Publication Number Publication Date
JP2014112021A true JP2014112021A (en) 2014-06-19
JP2014112021A5 JP2014112021A5 (en) 2016-05-19
JP6055673B2 JP6055673B2 (en) 2016-12-27

Family

ID=50859800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012278650A Active JP6055673B2 (en) 2012-12-05 2012-12-05 Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator

Country Status (2)

Country Link
JP (1) JP6055673B2 (en)
CN (1) CN103851843B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020768A (en) * 2015-07-14 2017-01-26 東芝キヤリア株式会社 Centrifugal separation-type oil separator and refrigeration cycle device using the same
KR20170130867A (en) * 2016-05-19 2017-11-29 선보공업주식회사 Liquied natural gas cryogenic gas-liquid separator
JPWO2016181558A1 (en) * 2015-05-14 2018-01-11 三菱電機株式会社 Compressor muffler
WO2018198516A1 (en) * 2017-04-27 2018-11-01 三菱電機株式会社 Oil separator and refrigeration cycle device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848616B (en) * 2015-05-20 2017-06-30 深圳麦克维尔空调有限公司 Gs-oil separator in air-conditioning system
CN105423662B (en) * 2015-12-01 2018-01-05 珠海格力电器股份有限公司 Gas-liquid separator and refrigeration system
CN117366922A (en) * 2015-12-10 2024-01-09 开利公司 Economizer and refrigerating system with same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712571U (en) * 1980-06-27 1982-01-22
JPS599270U (en) * 1982-07-08 1984-01-20 三菱電機株式会社 Accumulator for refrigerant compressor
JPH04366378A (en) * 1991-06-12 1992-12-18 Izumi Giken:Kk Oil separator
JPH0618127A (en) * 1992-07-01 1994-01-25 Daikin Ind Ltd Oil separator
US5502984A (en) * 1993-11-17 1996-04-02 American Standard Inc. Non-concentric oil separator
JP2004169983A (en) * 2002-11-19 2004-06-17 Mitsubishi Electric Corp Centrifugal oil separator and its manufacturing method, and refrigerant device
WO2007055386A1 (en) * 2005-11-14 2007-05-18 Nichirei Industries Co., Ltd. Gas-liquid separator and refrigerating apparatus equipped therewith
JP2009174738A (en) * 2008-01-22 2009-08-06 Denso Corp Gas-liquid separator
JP2010185644A (en) * 2009-02-12 2010-08-26 Nichirei Kogyo Kk Gas-liquid separator, and refrigerating device with gas-liquid separator
JP2011202876A (en) * 2010-03-25 2011-10-13 Hitachi Appliances Inc Centrifugal oil separator and outdoor unit of air conditioning device
JP2011247575A (en) * 2010-04-26 2011-12-08 Nichirei Kogyo Kk Gas-liquid separator, and refrigerating device including the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712571U (en) * 1980-06-27 1982-01-22
JPS599270U (en) * 1982-07-08 1984-01-20 三菱電機株式会社 Accumulator for refrigerant compressor
JPH04366378A (en) * 1991-06-12 1992-12-18 Izumi Giken:Kk Oil separator
JPH0618127A (en) * 1992-07-01 1994-01-25 Daikin Ind Ltd Oil separator
US5502984A (en) * 1993-11-17 1996-04-02 American Standard Inc. Non-concentric oil separator
JP2004169983A (en) * 2002-11-19 2004-06-17 Mitsubishi Electric Corp Centrifugal oil separator and its manufacturing method, and refrigerant device
WO2007055386A1 (en) * 2005-11-14 2007-05-18 Nichirei Industries Co., Ltd. Gas-liquid separator and refrigerating apparatus equipped therewith
JP2009174738A (en) * 2008-01-22 2009-08-06 Denso Corp Gas-liquid separator
JP2010185644A (en) * 2009-02-12 2010-08-26 Nichirei Kogyo Kk Gas-liquid separator, and refrigerating device with gas-liquid separator
JP2011202876A (en) * 2010-03-25 2011-10-13 Hitachi Appliances Inc Centrifugal oil separator and outdoor unit of air conditioning device
JP2011247575A (en) * 2010-04-26 2011-12-08 Nichirei Kogyo Kk Gas-liquid separator, and refrigerating device including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016181558A1 (en) * 2015-05-14 2018-01-11 三菱電機株式会社 Compressor muffler
JP2017020768A (en) * 2015-07-14 2017-01-26 東芝キヤリア株式会社 Centrifugal separation-type oil separator and refrigeration cycle device using the same
KR20170130867A (en) * 2016-05-19 2017-11-29 선보공업주식회사 Liquied natural gas cryogenic gas-liquid separator
WO2018198516A1 (en) * 2017-04-27 2018-11-01 三菱電機株式会社 Oil separator and refrigeration cycle device
JPWO2018198516A1 (en) * 2017-04-27 2019-12-12 三菱電機株式会社 Oil separator and refrigeration cycle apparatus

Also Published As

Publication number Publication date
CN103851843A (en) 2014-06-11
CN103851843B (en) 2017-11-10
JP6055673B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP6055673B2 (en) Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
JP6767196B2 (en) Economizer
US7131292B2 (en) Gas-liquid separator
US10155188B2 (en) Oil separator, and compressor provided with same
CN207019351U (en) The gas-liquid separator of compression refrigerating machine
US20170276415A1 (en) Oil separator
EP3627076B1 (en) Oil separator, compressor and air conditioner
JP2008202894A (en) Oil separator
JP2009030950A (en) Gas-liquid separator and air conditioner with the same
JP7146207B2 (en) Refrigeration equipment with gas-liquid separator and gas-liquid separator
US9863675B2 (en) Oil separator and method for producing oil separator
JP5620736B2 (en) Refrigerant tank and its header
JP5657061B2 (en) Cyclone oil separator, compression refrigeration apparatus and air compression apparatus provided with the same
JP6621132B2 (en) Centrifugal oil separator and refrigeration cycle apparatus using the same
US9022230B2 (en) Oil separation means and refrigeration device equipped with the same
JP5498715B2 (en) Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
JP6403061B2 (en) Oil separator
JP5887157B2 (en) Gas-liquid separator
JP2012057924A (en) Gas-liquid separator and refrigeration device including the same
CN111108333B (en) Oil separator and air conditioner provided with same
JP5982114B2 (en) Gas-liquid separator
JP2020159633A (en) Oil separation device and compressor
JP6501876B2 (en) Compressor muffler
US20230106373A1 (en) Accumulator and refrigeration cycle apparatus
JP5429233B2 (en) Ejector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160323

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R150 Certificate of patent or registration of utility model

Ref document number: 6055673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250