JP2011202271A - Method for utilizing gas containing carbon oxides - Google Patents

Method for utilizing gas containing carbon oxides Download PDF

Info

Publication number
JP2011202271A
JP2011202271A JP2011017404A JP2011017404A JP2011202271A JP 2011202271 A JP2011202271 A JP 2011202271A JP 2011017404 A JP2011017404 A JP 2011017404A JP 2011017404 A JP2011017404 A JP 2011017404A JP 2011202271 A JP2011202271 A JP 2011202271A
Authority
JP
Japan
Prior art keywords
carbon
carbon dioxide
gas
carbon monoxide
monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011017404A
Other languages
Japanese (ja)
Other versions
JP5810537B2 (en
Inventor
Hitoshi Saima
等 斉間
Yasuhiro Mogi
康弘 茂木
Minoru Asanuma
稔 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011017404A priority Critical patent/JP5810537B2/en
Priority to EP11750656.8A priority patent/EP2543743B1/en
Priority to KR1020127021177A priority patent/KR101464056B1/en
Priority to PCT/JP2011/054647 priority patent/WO2011108546A1/en
Priority to CN2011800115527A priority patent/CN102782161A/en
Publication of JP2011202271A publication Critical patent/JP2011202271A/en
Application granted granted Critical
Publication of JP5810537B2 publication Critical patent/JP5810537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for utilizing gas containing carbon oxides by which the gas containing carbon oxides (carbon-dioxide or mixed gas containing carbon-dioxide and carbon-monoxide) in blast furnace gas, converter gas, etc.SOLUTION: The method includes the steps of: recovering the gas containing the carbon-oxides (the carbon-dioxide or the mixed gas containing the carbon-dioxide and the carbon monoxide) in the blast furnace, the converter, etc.; separating the carbon-oxides (the carbon-dioxide or the mixed gas containing the carbon-dioxide and the carbon-monoxide) from the recovered gas containing the carbon-oxides; converting the carbon-dioxide in the separated carbon-oxides into the carbon-monoxide by reducing with hydrocarbon-series reducing agent; and utilizing the thus obtained carbon-monoxide (the carbon-monoxide obtained by reducing the carbon-dioxide separated from the gas containing the carbon-oxides, and the carbon-monoxide obtained by separating the gas containing the carbon-oxides) in the blast furnace.

Description

本発明は、酸化炭素含有ガス(二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガス)の利用方法に関するものである。   The present invention relates to a method of using a carbon oxide-containing gas (carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide).

二酸化炭素の増加による地球温暖化は、国際的な問題として大きく取り上げられており、その排出量を削減することは、全世界的な課題となっている。二酸化炭素を分離・回収するために様々な技術開発(例えば、特許文献1〜3、非特許文献1等)が試みられている。しかしながら、回収した二酸化炭素の利用方法については、余り有効な手段は提案されていない。   Global warming due to an increase in carbon dioxide has been taken up as an international issue, and reducing its emissions has become a global issue. Various technological developments (for example, Patent Documents 1 to 3 and Non-Patent Document 1) have been attempted in order to separate and recover carbon dioxide. However, no very effective means has been proposed for using the recovered carbon dioxide.

例えば、回収した二酸化炭素を地中に埋める技術、いわゆるCCS(Carbon dioxide Capture and Storage)が欧州や米国、日本などを中心に盛んに開発されている。しかし、この方法は、地中に埋めた後の安全性に関して、特に地震国である日本においては、合意が得ることが難しいばかりでなく、地球環境研究機構(RITE)の試算によれば、近海を含む日本付近での二酸化炭素の埋設可能量を排出量で除した値、すなわち寿命は、わずか50年〜100年程度であるとされている。このような状況では、循環型社会の構築はおぼつかないと言わざるを得ない。   For example, a so-called CCS (Carbon Dioxide Capture and Storage) technique for filling the collected carbon dioxide into the ground has been actively developed mainly in Europe, the United States, Japan and the like. However, this method is not only difficult to obtain an agreement on safety after being buried in the ground, especially in Japan, which is an earthquake-prone country, but according to a calculation by the Institute for Global Environmental Research (RITE) It is said that the value obtained by dividing the amount of carbon dioxide that can be buried in the vicinity of Japan including emissions by the amount of emissions, that is, the lifetime is only about 50 to 100 years. In such a situation, it must be said that building a recycling-oriented society is uncertain.

ちなみに、統計によれば、日本における二酸化炭素の排出量は、発電にともなう排出が約30%、鉄鋼生産にともなう排出が10%、その他、運輸部門、民生部門での排出が大きな割合を占めている。   By the way, according to statistics, the amount of carbon dioxide emissions in Japan is about 30% due to power generation, 10% due to steel production, and the transportation sector and civilian sector account for a large percentage. Yes.

例えば、発電所では、石炭、石油、天然ガスの化学エネルギーを、それら化石燃料の完全酸化による二酸化炭素を発生させながら、電力エネルギーに変換しているため、二酸化炭素が排出されている。それゆえ化石燃料を使用する以上、見合う量の二酸化炭素は必然的に発生してしまう。ただし、これらは、風力発電、潮力発電などのいわゆるソフト・エネルギーの利用、バイオマス発電、原子力発電の普及により徐々に減少していくものと考えられる。   For example, in a power plant, carbon dioxide is emitted because chemical energy of coal, oil, and natural gas is converted into electric energy while generating carbon dioxide by complete oxidation of these fossil fuels. Therefore, as long as fossil fuels are used, a reasonable amount of carbon dioxide is inevitably generated. However, these are expected to decrease gradually due to the use of so-called soft energy such as wind power generation and tidal power generation, biomass power generation, and nuclear power generation.

一方、鉄鋼生産における二酸化炭素の発生は、酸化鉄である鉄鉱石の炭素(コークス)による還元およびその炭素分の除去にともなうものである。これは高炉における操業においても、転炉における操業においても同様であるといえる。このため、二酸化炭素の発生は、鉄鋼生産において不可避であると言える。   On the other hand, the generation of carbon dioxide in steel production is accompanied by the reduction of iron ore, which is iron oxide, with carbon (coke) and the removal of the carbon content. This can be said to be the same in the operation in the blast furnace and in the operation in the converter. For this reason, it can be said that the generation of carbon dioxide is inevitable in steel production.

鉄鋼業において、高炉ガスの一部を高炉に循環することが提案されている(特許文献4)。すなわち、特許文献4には、高炉ガスあるいは高炉ガスとコークス炉ガスの混合物あるいは高炉ガスから炭酸ガスを除去したガスを燃焼し、高炉シャフト部に導入する技術が示されている。高炉の温度が低下すると、水分の凝縮による炉壁の腐食など不具合な現象が生じる。そこで、特許文献4では、炉頂温度が110℃以下となった場合に、高炉ガスあるいはコークス炉ガスとの混合物あるいは炭酸ガスを除去した高炉ガスを高炉シャフト部に導入することにより、高炉操業上の不具合を抑制しようとするものである。   In the steel industry, it has been proposed to circulate a part of blast furnace gas to the blast furnace (Patent Document 4). That is, Patent Document 4 discloses a technique for burning a blast furnace gas, a mixture of a blast furnace gas and a coke oven gas, or a gas obtained by removing carbon dioxide from a blast furnace gas and introducing the gas into a blast furnace shaft portion. When the temperature of the blast furnace decreases, troubles such as corrosion of the furnace wall due to condensation of moisture occur. Therefore, in Patent Document 4, when the furnace top temperature becomes 110 ° C. or lower, the blast furnace gas or the mixture with the coke oven gas or the blast furnace gas from which carbon dioxide gas is removed is introduced into the blast furnace shaft portion. It is intended to suppress the problem.

ただし、高炉ガスは、不活性ガスである窒素が主成分であり、体積割合で50〜60%を占める。炭酸ガスおよび一酸化炭素は各々20〜25%程度である。特許文献4には、炭酸ガスを除去して高炉シャフト部へ戻す方法が示されているが、炭酸ガスよりも窒素を除去しなければ、その効果は小さく、さらに循環・導入された窒素分だけ、高炉ガスの窒素分が増え、高炉ガスの熱量が低下することになる。元来、高炉ガスは1000kcal/m以下の低熱量であり、他の高熱量ガスと混合することにより、燃料ガスとして利用されるのが一般的である。高炉ガスの熱量低下は、高熱量ガスの混合比率を上げる必要があるなど負の効果をもたらし、結果的には炭酸ガス排出量を増やす結果となる。 However, the blast furnace gas is mainly composed of nitrogen, which is an inert gas, and occupies 50 to 60% by volume. Carbon dioxide and carbon monoxide are each about 20 to 25%. Patent Document 4 shows a method of removing carbon dioxide and returning it to the blast furnace shaft. However, if nitrogen is not removed more than carbon dioxide, the effect is small, and only the nitrogen that is circulated and introduced is used. The nitrogen content of the blast furnace gas increases and the amount of heat of the blast furnace gas decreases. Originally, the blast furnace gas has a low calorific value of 1000 kcal / m 3 or less, and is generally used as a fuel gas by mixing with other high calorific gas. Decreasing the calorific value of the blast furnace gas has a negative effect such as the need to increase the mixing ratio of the high calorific gas, resulting in an increase in carbon dioxide emission.

特開平11−137960号公報JP 11-137960 A 特開2007−44677号公報JP 2007-44677 A 特開2009−214101号公報JP 2009-214101 A 特開2008−214735号公報JP 2008-214735 A

小野田、日本エネルギー学会誌、88(4)278〜283(2009)Onoda, Journal of the Japan Institute of Energy, 88 (4) 278-283 (2009)

上記のように、鉄鋼生産においては二酸化炭素の発生は不可避である。また、同時に一酸化炭素も発生し、その一酸化炭素が二酸化炭素に変化してしまう。   As described above, the production of carbon dioxide is inevitable in steel production. At the same time, carbon monoxide is generated, and the carbon monoxide is changed to carbon dioxide.

このため、発生した二酸化炭素や一酸化炭素を含有する混合ガスをいかに効率的に再利用して、実質の二酸化炭素発生量を削減するかが重要な課題となる。   For this reason, it becomes an important subject how to effectively reuse the generated mixed gas containing carbon dioxide and carbon monoxide to reduce the actual carbon dioxide generation amount.

本発明は、上記のような事情に鑑みてなされたものであり、酸化炭素含有ガス(二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガス)を効率的に利用することができる酸化炭素含有ガスの利用方法を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and carbon oxide that can efficiently use carbon oxide-containing gas (carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide). The object is to provide a method of using the contained gas.

本発明者らは前記の課題を解決するために鋭意検討した結果、鉄鋼業あるいはその他の産業等で発生した二酸化炭素を回収し、これを還元して一酸化炭素として高炉で再利用することにより、実質的な二酸化炭素の削減を果たすことが出来ることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors recovered carbon dioxide generated in the steel industry or other industries, etc., and reduced and reused it as carbon monoxide in a blast furnace. And found that it can achieve substantial carbon dioxide reduction.

すなわち、製鉄所において発生する高炉ガスや転炉ガスなどの酸化炭素含有ガス(二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガス)を回収し、回収した酸化炭素含有ガスから酸化炭素(二酸化炭素または、二酸化炭素と一酸化炭素)を分離し、分離した酸化炭素中の二酸化炭素を炭化水素系還元剤により還元して一酸化炭素に変換し、それらによって得られた一酸化炭素(酸化炭素含有ガスから分離した二酸化炭素を還元して得られた一酸化炭素、および/または、酸化炭素含有ガスから分離して得られた一酸化炭素)を高炉にて再利用することを着想した。   That is, carbon oxide-containing gas (carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide) such as blast furnace gas and converter gas generated at steelworks is recovered, and carbon oxide ( Carbon dioxide or carbon dioxide and carbon monoxide) is separated, and the carbon dioxide in the separated carbon oxide is reduced by a hydrocarbon-based reducing agent and converted to carbon monoxide, and the carbon monoxide (oxidation) obtained by them is converted The idea was to recycle carbon monoxide obtained by reducing carbon dioxide separated from a carbon-containing gas and / or carbon monoxide obtained by separating carbon dioxide-containing gas in a blast furnace.

上記の着想に基づいて、本発明は以下の特徴を有している。   Based on the above idea, the present invention has the following features.

[1]二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガスから二酸化炭素または、二酸化炭素と一酸化炭素を分離した後、分離した前記二酸化炭素または、前記二酸化炭素と一酸化炭素を炭化水素系還元剤と接触させて一酸化炭素と水素に転化させ、得られた一酸化炭素を高炉に導入することを特徴とする酸化炭素含有ガスの利用方法。   [1] After carbon dioxide or carbon dioxide and carbon monoxide are separated from carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide, the separated carbon dioxide or carbon dioxide and carbon monoxide are carbonized. A method of using a carbon oxide-containing gas, wherein the carbon monoxide is converted into carbon monoxide and hydrogen by contacting with a hydrogen-based reducing agent, and the obtained carbon monoxide is introduced into a blast furnace.

[2]二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガスが、製鉄所で副生する高炉ガスであることを特徴とする前記[1]に記載の酸化炭素含有ガスの利用方法。   [2] The method for using a carbon oxide-containing gas according to the above [1], wherein the carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide is a blast furnace gas by-produced at an ironworks.

[3]二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガスが、製鉄所で副生する転炉ガスであることを特徴とする前記[1]に記載の酸化炭素含有ガスの利用方法。   [3] The method for using a carbon oxide-containing gas according to [1], wherein the carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide is a converter gas by-produced at an ironworks. .

[4]二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガスから二酸化炭素または、二酸化炭素と一酸化炭素を分離する方法が、吸着分離法であることを特徴とする前記[1]〜[3]のいずれかに記載の酸化炭素含有ガスの利用方法。   [4] The above-mentioned [1], wherein the method for separating carbon dioxide or carbon dioxide and carbon monoxide from carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide is an adsorption separation method. The utilization method of the carbon oxide containing gas in any one of [3].

[5]炭化水素系還元剤が、メタンを主成分とするガスであることを特徴とする前記[1]〜[4]のいずれかに記載の酸化炭素含有ガスの利用方法。   [5] The method for using a carbon oxide-containing gas according to any one of [1] to [4], wherein the hydrocarbon-based reducing agent is a gas containing methane as a main component.

[6]炭化水素系還元剤が、液化石油ガスを主成分とするガスであることを特徴とする前記[1]〜[4]のいずれかに記載の酸化炭素ガス含有ガスの利用方法。   [6] The method for using a carbon oxide gas-containing gas according to any one of [1] to [4], wherein the hydrocarbon-based reducing agent is a gas mainly composed of liquefied petroleum gas.

[7]炭化水素系還元剤が、メタノールおよび/またはジメチルエーテルを主成分とするガスおよび/または液であることを特徴とする前記[1]〜[4]のいずれかに記載の酸化炭素ガス含有ガスの利用方法。   [7] The carbon oxide gas-containing product as described in any one of [1] to [4] above, wherein the hydrocarbon-based reducing agent is a gas and / or a liquid mainly containing methanol and / or dimethyl ether. How to use gas.

[8]分離した前記二酸化炭素または、前記二酸化炭素と一酸化炭素を炭化水素系還元剤と接触させて一酸化炭素と水素に転化させる際の熱源の一部あるいは全部として、製鉄所の排熱を用いることを特徴とする前記[1]〜[7]のいずれかに記載の酸化炭素ガス含有ガスの利用方法。   [8] Waste heat from a steel mill as part or all of the heat source when the separated carbon dioxide or the carbon dioxide and carbon monoxide are brought into contact with a hydrocarbon-based reducing agent to be converted into carbon monoxide and hydrogen. The method for using a carbon oxide gas-containing gas according to any one of [1] to [7], wherein:

本発明は、酸化炭素含有ガス(二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガス)を効率的に再利用し、実質的に二酸化炭素を抑制することができるという効果がある。   The present invention has an effect that carbon dioxide-containing gas (carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide) can be efficiently reused to substantially suppress carbon dioxide.

本発明の実施例1を示す図である。It is a figure which shows Example 1 of this invention. 本発明の実施例2を示す図である。It is a figure which shows Example 2 of this invention. 本発明の実施例3を示す図である。It is a figure which shows Example 3 of this invention.

本発明の一実施形態を以下に述べる。なお、以下で述べるガス濃度は体積%である。   One embodiment of the present invention is described below. The gas concentration described below is volume%.

本発明の一実施形態は、鉄鋼業あるいはその他の産業等で発生した酸化炭素含有ガス(二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガス)の利用方法であり、さらに詳しくは、鉄鋼業あるいはその他の産業等で発生した酸化炭素含有ガスから酸化炭素(二酸化炭素または、二酸化炭素と一酸化炭素)を分離・回収し、その酸化炭素中の二酸化炭素を還元して一酸化炭素とし、得られた一酸化炭素を高炉で再利用することにより、実質的な二酸化炭素の削減を行う酸化炭素含有ガスの利用方法である。   One embodiment of the present invention is a method of using a carbon oxide-containing gas (carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide) generated in the steel industry or other industries. Carbon dioxide (carbon dioxide or carbon dioxide and carbon monoxide) is separated and recovered from carbon oxide-containing gas generated in industry or other industries, and the carbon dioxide in the carbon oxide is reduced to carbon monoxide, This is a method of using a carbon oxide-containing gas that substantially reduces carbon dioxide by reusing the obtained carbon monoxide in a blast furnace.

すなわち、本発明の一実施形態においては、製鉄過程で発生する高炉ガスや転炉ガスなどの酸化炭素含有ガス(二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガス)を回収し、回収した酸化炭素含有ガスから、酸化炭素の濃度(二酸化炭素と一酸化炭素の合計の濃度)が80%以上となるガスを分離し、分離したガス(二酸化炭素と一酸化炭素の合計の濃度が80%以上となるガス)中の二酸化炭素を還元剤により還元して、一酸化炭素および水素を主成分としたガスに変換し、得られた一酸化炭素と水素を高炉にて再利用する方法である。   That is, in one embodiment of the present invention, a carbon oxide-containing gas (carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide) such as blast furnace gas and converter gas generated in the iron making process is recovered and recovered. The gas having a carbon oxide concentration (total concentration of carbon dioxide and carbon monoxide) of 80% or more is separated from the carbon oxide-containing gas, and the separated gas (total concentration of carbon dioxide and carbon monoxide is 80%). In a method of reducing carbon dioxide in the gas) to a gas mainly composed of carbon monoxide and hydrogen, and reusing the obtained carbon monoxide and hydrogen in a blast furnace. is there.

なお、回収した酸化炭素含有ガス中の酸化炭素の濃度が80%未満であると、その後工程である還元工程において、反応器が大きくなる、他成分の顕熱の影響が大きくなるなど経済的でない。   In addition, when the concentration of carbon oxide in the recovered carbon oxide-containing gas is less than 80%, in the subsequent reduction process, the reactor becomes large, and the influence of sensible heat of other components increases, which is not economical. .

本発明の一実施形態では、原料となる酸化炭素含有ガス(二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガス)は、製鉄過程で発生したガスに限る必要はないが、後に還元剤(炭化水素系還元剤)にて還元する工程があるため、その酸素濃度が5%以下であることが望ましい。酸素濃度が5%より高いと燃焼により消費される還元剤が多くなるからである。   In one embodiment of the present invention, the carbon oxide-containing gas (carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide) as a raw material is not necessarily limited to a gas generated in the iron making process, but a reducing agent is used later. Since there is a step of reducing with (hydrocarbon reducing agent), the oxygen concentration is desirably 5% or less. This is because if the oxygen concentration is higher than 5%, more reducing agent is consumed by combustion.

そして、原料である酸化炭素含有ガス(二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガス)から酸化炭素(二酸化炭素または、二酸化炭素と一酸化炭素)を分離・回収する方法は、様々な既知の方法が利用できる。すなわち、二酸化炭素を分離・回収した後、一酸化炭素を分離・回収する方法や、あるいはその逆に一酸化炭素を分離・回収した後、二酸化炭素を分離・回収する方法や、さらには二酸化炭素および一酸化炭素を同時に分離・回収する方法である。   There are various methods for separating and recovering carbon oxide (carbon dioxide or carbon dioxide and carbon monoxide) from the raw material carbon oxide-containing gas (carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide). Any known method can be used. That is, after separating and collecting carbon dioxide, separating and collecting carbon monoxide, or conversely, separating and collecting carbon monoxide and then separating and collecting carbon dioxide, and further, carbon dioxide. And carbon monoxide are simultaneously separated and recovered.

ここで、二酸化炭素を分離・回収する方法としては、例えば、活性炭やゼオライトなどに吸着させ加熱あるいは減圧により分離・回収する方法(吸着分離法)、加圧あるいは冷却により液化あるいは固化する方法、苛性ソーダ、アミンなどの塩基性水溶液に吸収し加熱あるいは減圧により分離・回収する方法、二酸化炭素分離膜により分離・回収する方法、チタン酸バリウムなどの固体炭酸ガス吸収剤に吸収させ加熱あるいは減圧により分離・回収する方法など、既知の方法のいずれをも採用することが出来る。その中でも、特に後工程への影響が少なく、技術的に確立されている吸着分離法を用いることが好ましい。   Here, as a method for separating and recovering carbon dioxide, for example, a method in which it is adsorbed on activated carbon or zeolite and separated and recovered by heating or reduced pressure (adsorption separation method), a method in which it is liquefied or solidified by pressurization or cooling, caustic soda , Absorbed into a basic aqueous solution such as amine, and separated and recovered by heating or reduced pressure, separated and recovered by a carbon dioxide separation membrane, absorbed by a solid carbon dioxide absorbent such as barium titanate and separated by heating or reduced pressure Any known method such as a recovery method can be employed. Among them, it is particularly preferable to use an adsorption separation method that has little influence on the post-process and is technically established.

また、一酸化炭素を分離・回収する方法としては、例えば、銅/活性炭、銅/アルミナ、銅/ゼオライトなどの一酸化炭素吸着剤に吸着させ加熱あるいは減圧により分離・回収する方法(吸着分離法)、銅を主要成分とする一酸化炭素吸収液に吸収させ加熱あるいは減圧により分離・回収する方法など、既知の方法のいずれをも採用することが出来る。その中でも、特に後工程への影響が少なく、技術的に確立されている吸着分離法を用いることが好ましい。   In addition, as a method for separating and recovering carbon monoxide, for example, a method in which carbon monoxide is adsorbed on a carbon monoxide adsorbent such as copper / activated carbon, copper / alumina, copper / zeolite, and separated and recovered by heating or reduced pressure (adsorption separation method Any known method such as a method of absorbing in a carbon monoxide absorbing solution containing copper as a main component and separating and recovering by heating or decompressing can be employed. Among them, it is particularly preferable to use an adsorption separation method that has little influence on the post-process and is technically established.

さらに、上記の二酸化炭素を分離・回収する方法と一酸化炭素を分離・回収する方法とを同時あるいは複合的に実施し、二酸化炭素および一酸化炭素を同時に分離しても良い。   Furthermore, the method for separating and collecting carbon dioxide and the method for separating and collecting carbon monoxide may be performed simultaneously or in combination to separate carbon dioxide and carbon monoxide simultaneously.

次に、上記のようにして分離・回収した酸化炭素中の二酸化炭素を還元して一酸化炭素を得る方法についても、既知の方法を用いることができる。例えば、下記(1)式のようなメタンを還元剤としたドライ・リフォーミングが挙げられる。   Next, as a method for obtaining carbon monoxide by reducing carbon dioxide in carbon oxide separated and recovered as described above, a known method can be used. For example, dry reforming using methane as a reducing agent such as the following formula (1) can be mentioned.

CO + CH → 2CO + 2H ・・・(1)
このメタンを還元剤としたドライ・リフォーミング法は、触媒を用いれば700〜900℃にて反応が進行するが、1000℃を越えるような高温では熱的に反応が進行する。高炉へガスを吹き込む場合、高温であるほど望ましく、触媒を用いる方法でも熱的に反応を進行させる方法でも、いずれでも採用することが出来、反応後冷却する必要は無く、そのまま高炉に導入することが出来ると望ましい。このように高温の反応を行うためには、外部より熱を加える必要があるが、例えば高炉スラグや転炉スラグなどの未利用の顕熱を用いることも可能であり、加熱により不必要な炭酸ガスを発生させない意味からも望ましい。
CO 2 + CH 4 → 2CO + 2H 2 (1)
In the dry reforming method using methane as a reducing agent, the reaction proceeds at 700 to 900 ° C. when a catalyst is used, but the reaction proceeds thermally at a high temperature exceeding 1000 ° C. When gas is blown into the blast furnace, the higher the temperature, the more desirable. Either a method using a catalyst or a method in which the reaction proceeds thermally can be adopted, and it is not necessary to cool after the reaction. It is desirable to be able to. In order to carry out such a high-temperature reaction, it is necessary to apply heat from the outside. For example, unused sensible heat such as blast furnace slag and converter slag can be used, and unnecessary carbonation by heating is possible. It is also desirable from the viewpoint of not generating gas.

このドライ・リフォーミング法においては、使用する還元剤はメタンに限る必要はなく、液化石油ガス(LPG;Liquefied Petroleum Gas)などの炭化水素、メタノール、ジメチルエーテル(DME)などのアルコール類やエーテル類、アルデヒド類、ケトン類を用いることが可能である。   In this dry reforming method, the reducing agent to be used need not be limited to methane, hydrocarbons such as liquefied petroleum gas (LPG), alcohols such as methanol and dimethyl ether (DME), and ethers, Aldehydes and ketones can be used.

ここで、還元剤としてLPGを使用した場合の二酸化炭素の還元反応式を下記(2)式に示し、還元剤としてDMEを使用した場合の二酸化炭素の還元反応式を下記(3)式に示す。   Here, the reduction reaction formula of carbon dioxide when LPG is used as the reducing agent is shown in the following formula (2), and the reduction reaction formula of carbon dioxide when DME is used as the reducing agent is shown in the following formula (3). .

3CO + C → 6CO + 4H ・・・(2)
CO + (CHO → 3CO + 3H ・・・(3)
なお、上記において、酸化炭素含有ガスから酸化炭素を分離・回収し、分離・回収した酸化炭素中の二酸化炭素を還元することによって、一酸化炭素(酸化炭素含有ガスから分離して得られた一酸化炭素と、酸化炭素含有ガスから分離した二酸化炭素を還元して得られた一酸化炭素)の濃度が80%以上となるガスを得る際には、別々に分離・回収した二酸化炭素と一酸化炭素を混合した後、還元してもよいし、あるいは、二酸化炭素を還元した後、別途分離・回収してあった一酸化炭素と混合してもよい。さらには、二酸化炭素と一酸化炭素を同時に分離・回収し、それを還元してもよい。
3CO 2 + C 3 H 8 → 6CO + 4H 2 (2)
CO 2 + (CH 3 ) 2 O → 3CO + 3H 2 (3)
In the above, carbon monoxide (one obtained by separating from the carbon oxide-containing gas) is obtained by separating and collecting carbon oxide from the carbon oxide-containing gas and reducing carbon dioxide in the separated and collected carbon oxide. When obtaining a gas with a concentration of 80% or more of carbon oxide and carbon monoxide obtained by reducing carbon dioxide separated from the carbon oxide-containing gas, carbon dioxide and monoxide separated and recovered separately After carbon is mixed, it may be reduced, or after carbon dioxide is reduced, it may be mixed with carbon monoxide that has been separately separated and recovered. Furthermore, carbon dioxide and carbon monoxide may be separated and recovered simultaneously and reduced.

これらの二酸化炭素と還元剤との反応では、二酸化炭素の転化率を50%以上とする条件を設定するのが好ましく、70%以上とすることが特に好ましい。   In the reaction between these carbon dioxide and the reducing agent, it is preferable to set conditions for setting the conversion rate of carbon dioxide to 50% or more, and particularly preferably 70% or more.

上記の二酸化炭素とメタン、LPG、DME等の還元剤との反応は吸熱反応である。それゆえ、これらの反応を進行させるためには、外部より熱を加える必要がある。一方、製鉄所や化学工場では、利用されていない排熱がある場合がある。そこで、本発明の一実施形態においては、これらの排熱を吸熱反応を進行させるための熱源の一部または全部として用いても良い。具体的には、製鉄所における高炉スラグや転炉スラグの顕熱、赤熱コークスの顕熱などが挙げられる。   The reaction between the carbon dioxide and a reducing agent such as methane, LPG, or DME is an endothermic reaction. Therefore, in order to advance these reactions, it is necessary to apply heat from the outside. On the other hand, there may be waste heat that is not used in steelworks and chemical factories. Therefore, in one embodiment of the present invention, these exhaust heats may be used as a part or all of a heat source for advancing the endothermic reaction. Specifically, the sensible heat of blast furnace slag and converter slag, the sensible heat of red hot coke, etc. in an ironworks are mentioned.

そして、その一酸化炭素の濃度が80%以上のガスを高炉に導入する際の位置は、高炉の羽口付近であってもよいし、高炉上部であってもよい。   And the position at the time of introducing the gas whose carbon monoxide concentration is 80% or more into the blast furnace may be in the vicinity of the tuyere of the blast furnace, or may be the upper part of the blast furnace.

上記のようにして、この実施形態においては、酸化炭素含有ガス(二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガス)を効率的に再利用し、実質的に二酸化炭素を抑制することができる。   As described above, in this embodiment, carbon dioxide-containing gas (carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide) is efficiently reused to substantially suppress carbon dioxide. Can do.

なお、上記において、二酸化炭素を還元して得られた水素は、その一部または全部を高炉に導入せずに、他の用途に用いてもよい。   In the above, hydrogen obtained by reducing carbon dioxide may be used for other purposes without introducing part or all of the hydrogen into the blast furnace.

また、上記において、酸化炭素含有ガスが一酸化炭素を含有していない場合は、上記に示した一酸化炭素の分離・回収は行わない。また、酸化炭素含有ガスが一酸化炭素を含有していても、その含有量が少ない等で一酸化炭素を分離・回収しない場合も同様である。   Further, in the above, when the carbon oxide-containing gas does not contain carbon monoxide, the above-described separation and recovery of carbon monoxide is not performed. Further, even when the carbon oxide-containing gas contains carbon monoxide, the same applies to the case where carbon monoxide is not separated and recovered due to its low content.

図1に本発明の実施例1(本発明例1)を示す。   FIG. 1 shows Example 1 of the present invention (Invention Example 1).

本発明例1として、図1に示すように、高炉1から発生した高炉ガス(窒素:52%、二酸化炭素:22%、一酸化炭素:23%、水素:3%)を、二酸化炭素吸着剤と一酸化炭素吸着剤とを混合した吸着剤を充填した吸着塔(PSAユニット)2において、絶対圧力200kPaにて吸着させ、これを絶対圧力7kPaにて脱着させ、二酸化炭素と一酸化炭素の合計の濃度が99%のガスを得た。そして、この二酸化炭素と一酸化炭素の混合ガスを、二酸化炭素と同量のDME(還元剤)と混合し、改質反応器3において、銅系触媒存在下、常圧、280℃にて改質反応を行ったところ、二酸化炭素の90%が転化し、改質反応による生成酸化炭素中の一酸化炭素の濃度が95%となった。全生成物中の一酸化炭素および水素の濃度は、それぞれ49%、47%となった。これを高炉の羽口にそのまま導入した。   As Example 1 of the present invention, as shown in FIG. 1, a blast furnace gas (nitrogen: 52%, carbon dioxide: 22%, carbon monoxide: 23%, hydrogen: 3%) generated from the blast furnace 1 is used as a carbon dioxide adsorbent. In an adsorption tower (PSA unit) 2 filled with an adsorbent mixed with carbon monoxide adsorbent, it is adsorbed at an absolute pressure of 200 kPa, desorbed at an absolute pressure of 7 kPa, and the total of carbon dioxide and carbon monoxide A gas with a concentration of 99% was obtained. Then, this mixed gas of carbon dioxide and carbon monoxide is mixed with the same amount of DME (reducing agent) as carbon dioxide, and the reforming reactor 3 is modified at atmospheric pressure and 280 ° C. in the presence of a copper catalyst. As a result of the quality reaction, 90% of the carbon dioxide was converted, and the concentration of carbon monoxide in the carbon oxide produced by the reforming reaction was 95%. The concentrations of carbon monoxide and hydrogen in the total product were 49% and 47%, respectively. This was directly introduced into the tuyere of the blast furnace.

これにより、本発明においては、酸化炭素含有ガス(高炉ガス等)を効率的に再利用し、実質的に二酸化炭素を抑制することができることが確認された。   Thereby, in this invention, it was confirmed that carbon oxide containing gas (blast furnace gas etc.) can be reused efficiently and carbon dioxide can be suppressed substantially.

図2に本発明の実施例2(本発明例2)を示す。   FIG. 2 shows Example 2 (Example 2) of the present invention.

本発明例2として、図2に示すように、高炉1から発生した高炉ガス(窒素:52%、二酸化炭素:22%、一酸化炭素:23%、水素:3%)を、30℃に保持されたMEA(モノエタノールアミン)水溶液を入れた吸収塔4に流通させ、二酸化炭素を吸収させた。二酸化炭素を吸収させたMEA水溶液を回収塔5において100℃に加温し、二酸化炭素を放出させ、この発生ガスを冷却することにより、水を凝縮させ、二酸化炭素を回収した。二酸化炭素の純度は99%であった。この二酸化炭素とメタンを主成分とする天然ガスと混合し、900℃にてニッケル系触媒の存在下で改質反応を行った。この結果、二酸化炭素の98%が反応し、生成物中の一酸化炭素および水素の濃度は、共に49%となった。これを高炉の羽口にそのまま導入した。   As Example 2 of the present invention, as shown in FIG. 2, the blast furnace gas (nitrogen: 52%, carbon dioxide: 22%, carbon monoxide: 23%, hydrogen: 3%) generated from the blast furnace 1 is maintained at 30 ° C. The obtained MEA (monoethanolamine) aqueous solution was circulated through the absorption tower 4 to absorb carbon dioxide. The aqueous MEA solution in which carbon dioxide was absorbed was heated to 100 ° C. in the recovery tower 5 to release carbon dioxide, and this generated gas was cooled to condense water and collect carbon dioxide. The purity of carbon dioxide was 99%. This carbon dioxide and natural gas mainly composed of methane were mixed, and a reforming reaction was performed at 900 ° C. in the presence of a nickel-based catalyst. As a result, 98% of the carbon dioxide reacted, and the concentrations of carbon monoxide and hydrogen in the product were both 49%. This was directly introduced into the tuyere of the blast furnace.

これにより、本発明においては、酸化炭素含有ガス(高炉ガス等)を効率的に再利用し、実質的に二酸化炭素を抑制することができることが確認された。   Thereby, in this invention, it was confirmed that carbon oxide containing gas (blast furnace gas etc.) can be reused efficiently and carbon dioxide can be suppressed substantially.

図3に本発明の実施例3(本発明例3)を示す。   FIG. 3 shows Example 3 (Example 3) of the present invention.

本発明例3として、図3に示すように、前述の本発明例1における改質反応器3の熱源として、高温の高炉スラグ10を用いた。その他は本発明例1と同様の方法で行った。高温の高炉スラグ10は、スラグ顕熱回収装置6において、熱媒を加熱し、さらにジメチルエーテル9を加熱して、低温の高炉スラグ11となる。スラグ顕熱回収装置6にて加熱されたジメチルエーテル9は、改質反応器3に送られる。一方、加熱された熱媒は、熱媒循環ライン7によって改質反応器3に送られ、炭酸ガスとジメチルエーテルが一酸化炭素と水素に改質される吸熱反応へ反応熱を供給することによって冷却され、熱媒循環ポンプ8によって再度スラグ顕熱回収装置6に送られる。   As Example 3 of the present invention, as shown in FIG. 3, a high-temperature blast furnace slag 10 was used as the heat source of the reforming reactor 3 in Example 1 of the present invention. Others were carried out in the same manner as Example 1 of the present invention. In the slag sensible heat recovery device 6, the high-temperature blast furnace slag 10 heats the heat medium and further heats the dimethyl ether 9 to become a low-temperature blast furnace slag 11. Dimethyl ether 9 heated by the slag sensible heat recovery device 6 is sent to the reforming reactor 3. On the other hand, the heated heat medium is sent to the reforming reactor 3 through the heat medium circulation line 7 and cooled by supplying reaction heat to an endothermic reaction in which carbon dioxide gas and dimethyl ether are reformed to carbon monoxide and hydrogen. Then, it is sent again to the slag sensible heat recovery device 6 by the heat medium circulation pump 8.

そして、本発明例1と同じ条件にて試験を行ったところ、二酸化炭素の88%が転化し、改質反応による生成酸化炭素中の一酸化炭素の濃度が93%となった。全生成物中の一酸化炭素および水素の濃度は、それぞれ48%、46%となった。これを高炉の羽口にそのまま導入した。   And when it tested on the same conditions as this invention example 1, 88% of the carbon dioxide converted, and the density | concentration of the carbon monoxide in the carbon oxide produced | generated by the reforming reaction became 93%. The concentrations of carbon monoxide and hydrogen in the total product were 48% and 46%, respectively. This was directly introduced into the tuyere of the blast furnace.

これにより、本発明においては、酸化炭素含有ガス(高炉ガス等)を効率的に再利用し、実質的に二酸化炭素を抑制することができることが確認された。   Thereby, in this invention, it was confirmed that carbon oxide containing gas (blast furnace gas etc.) can be reused efficiently and carbon dioxide can be suppressed substantially.

1 高炉
2 PSAユニット
3 改質反応器
4 吸収塔
5 回収塔
6 スラグ顕熱回収装置
7 熱媒循環ライン
8 熱媒循環ポンプ
9 ジメチルエーテル
10 高炉スラグ(高温)
11 高炉スラグ(低温)
DESCRIPTION OF SYMBOLS 1 Blast furnace 2 PSA unit 3 Reforming reactor 4 Absorption tower 5 Recovery tower 6 Slag sensible heat recovery device 7 Heat medium circulation line 8 Heat medium circulation pump 9 Dimethyl ether 10 Blast furnace slag (high temperature)
11 Blast furnace slag (low temperature)

Claims (8)

二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガスから二酸化炭素または、二酸化炭素と一酸化炭素を分離した後、分離した前記二酸化炭素または、前記二酸化炭素と一酸化炭素を炭化水素系還元剤と接触させて一酸化炭素と水素に転化させ、得られた一酸化炭素を高炉に導入することを特徴とする酸化炭素含有ガスの利用方法。   After separating carbon dioxide or carbon dioxide and carbon monoxide from carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide, the separated carbon dioxide or the carbon dioxide and carbon monoxide are reduced by hydrocarbons. A method of using a carbon oxide-containing gas, wherein the carbon monoxide is converted into carbon monoxide and hydrogen by being brought into contact with an agent, and the obtained carbon monoxide is introduced into a blast furnace. 二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガスが、製鉄所で副生する高炉ガスであることを特徴とする請求項1に記載の酸化炭素含有ガスの利用方法。   The method for using a carbon oxide-containing gas according to claim 1, wherein the carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide is a blast furnace gas by-produced at an ironworks. 二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガスが、製鉄所で副生する転炉ガスであることを特徴とする請求項1に記載の酸化炭素含有ガスの利用方法。   The method of using a carbon oxide-containing gas according to claim 1, wherein the carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide is a converter gas by-produced at an ironworks. 二酸化炭素または、二酸化炭素と一酸化炭素を含有する混合ガスから二酸化炭素または、二酸化炭素と一酸化炭素を分離する方法が、吸着分離法であることを特徴とする請求項1〜3のいずれかに記載の酸化炭素含有ガスの利用方法。   The method for separating carbon dioxide or carbon dioxide and carbon monoxide from carbon dioxide or a mixed gas containing carbon dioxide and carbon monoxide is an adsorptive separation method. The utilization method of carbon oxide containing gas as described in 1. 炭化水素系還元剤が、メタンを主成分とするガスであることを特徴とする請求項1〜4のいずれかに記載の酸化炭素含有ガスの利用方法。   The method for using a carbon oxide-containing gas according to any one of claims 1 to 4, wherein the hydrocarbon-based reducing agent is a gas containing methane as a main component. 炭化水素系還元剤が、液化石油ガスを主成分とするガスであることを特徴とする請求項1〜4のいずれかに記載の酸化炭素ガス含有ガスの利用方法。   The method for using a carbon oxide gas-containing gas according to any one of claims 1 to 4, wherein the hydrocarbon-based reducing agent is a gas containing liquefied petroleum gas as a main component. 炭化水素系還元剤が、メタノールおよび/またはジメチルエーテルを主成分とするガスおよび/または液であることを特徴とする請求項1〜4のいずれかに記載の酸化炭素ガス含有ガスの利用方法。   The method for using a carbon oxide gas-containing gas according to any one of claims 1 to 4, wherein the hydrocarbon-based reducing agent is a gas and / or a liquid mainly composed of methanol and / or dimethyl ether. 分離した前記二酸化炭素または、前記二酸化炭素と一酸化炭素を炭化水素系還元剤と接触させて一酸化炭素と水素に転化させる際の熱源の一部あるいは全部として、製鉄所の排熱を用いることを特徴とする請求項1〜7のいずれかに記載の酸化炭素ガス含有ガスの利用方法。   Use the waste heat of the steelworks as part or all of the heat source when the separated carbon dioxide or the carbon dioxide and carbon monoxide are brought into contact with a hydrocarbon-based reducing agent to convert to carbon monoxide and hydrogen. A method of using a carbon oxide gas-containing gas according to any one of claims 1 to 7.
JP2011017404A 2010-03-02 2011-01-31 How to use carbon oxide-containing gas Active JP5810537B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011017404A JP5810537B2 (en) 2010-03-02 2011-01-31 How to use carbon oxide-containing gas
EP11750656.8A EP2543743B1 (en) 2010-03-02 2011-03-01 Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
KR1020127021177A KR101464056B1 (en) 2010-03-02 2011-03-01 Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
PCT/JP2011/054647 WO2011108546A1 (en) 2010-03-02 2011-03-01 Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
CN2011800115527A CN102782161A (en) 2010-03-02 2011-03-01 Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010045392 2010-03-02
JP2010045392 2010-03-02
JP2011017404A JP5810537B2 (en) 2010-03-02 2011-01-31 How to use carbon oxide-containing gas

Publications (2)

Publication Number Publication Date
JP2011202271A true JP2011202271A (en) 2011-10-13
JP5810537B2 JP5810537B2 (en) 2015-11-11

Family

ID=44879205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017404A Active JP5810537B2 (en) 2010-03-02 2011-01-31 How to use carbon oxide-containing gas

Country Status (1)

Country Link
JP (1) JP5810537B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140059923A (en) * 2012-11-08 2014-05-19 재단법인 포항산업과학연구원 Apparatus and method for quenching cokes using a gas containing carbon monoxide and carbon dioxide
CN104212506A (en) * 2014-08-19 2014-12-17 中海石油气电集团有限责任公司 Two-segment heating reducing method of coal-prepared natural gas methanation catalyst
WO2015146872A1 (en) * 2014-03-26 2015-10-01 Jfeスチール株式会社 Method for operating oxygen blast furnace
JP2015181992A (en) * 2014-03-20 2015-10-22 Jfeスチール株式会社 Method for recovery of carbon oxide from gaseous mixture
JP2015182907A (en) * 2014-03-20 2015-10-22 Jfeスチール株式会社 Method for producing carbon monoxide and hydrogen
WO2017111415A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 Method for decomposing and recycling carbon dioxide using hot stove
JP2019206453A (en) * 2018-05-29 2019-12-05 Jfeエンジニアリング株式会社 Reforming device and reforming method for by-product gas of steel plant
JP6843490B1 (en) * 2020-08-04 2021-03-17 積水化学工業株式会社 Gas manufacturing equipment, gas manufacturing system, steel manufacturing system, chemical manufacturing system and gas manufacturing method
CN115196590A (en) * 2022-06-22 2022-10-18 上海富禧友好能源科技有限公司 Process for co-producing hydrogen by capturing blast furnace gas carbon
CN115449573A (en) * 2022-09-09 2022-12-09 云南曲靖钢铁集团呈钢钢铁有限公司 Energy-saving environment-friendly blast furnace and blast furnace ironmaking process
JP7383592B2 (en) 2020-09-30 2023-11-20 大陽日酸株式会社 Method for producing oxygen isotope-labeled carbon monoxide and method for producing oxygen isotope-labeled carbon dioxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117668A (en) * 1991-10-30 1993-05-14 Nippon Steel Corp High-efficiency reforming of converter gas
JP2001048614A (en) * 1999-08-04 2001-02-20 Tomohiro Akiyama Production of cement or cement additive
JP2009120897A (en) * 2007-11-14 2009-06-04 Jfe Steel Corp Method for utilizing blast furnace gas
JP2009120896A (en) * 2007-11-14 2009-06-04 Jfe Steel Corp Method for utilizing blast furnace gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117668A (en) * 1991-10-30 1993-05-14 Nippon Steel Corp High-efficiency reforming of converter gas
JP2001048614A (en) * 1999-08-04 2001-02-20 Tomohiro Akiyama Production of cement or cement additive
JP2009120897A (en) * 2007-11-14 2009-06-04 Jfe Steel Corp Method for utilizing blast furnace gas
JP2009120896A (en) * 2007-11-14 2009-06-04 Jfe Steel Corp Method for utilizing blast furnace gas

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140059923A (en) * 2012-11-08 2014-05-19 재단법인 포항산업과학연구원 Apparatus and method for quenching cokes using a gas containing carbon monoxide and carbon dioxide
KR101898733B1 (en) * 2012-11-08 2018-09-13 재단법인 포항산업과학연구원 Apparatus and Method for quenching cokes using a gas containing carbon monoxide and carbon dioxide
JP2015182907A (en) * 2014-03-20 2015-10-22 Jfeスチール株式会社 Method for producing carbon monoxide and hydrogen
JP2015181992A (en) * 2014-03-20 2015-10-22 Jfeスチール株式会社 Method for recovery of carbon oxide from gaseous mixture
WO2015146872A1 (en) * 2014-03-26 2015-10-01 Jfeスチール株式会社 Method for operating oxygen blast furnace
JPWO2015146872A1 (en) * 2014-03-26 2017-04-13 Jfeスチール株式会社 Oxygen blast furnace operation method
CN104212506A (en) * 2014-08-19 2014-12-17 中海石油气电集团有限责任公司 Two-segment heating reducing method of coal-prepared natural gas methanation catalyst
JP2019501103A (en) * 2015-12-23 2019-01-17 ポスコPosco Method for decomposing and recycling carbon dioxide using a hot stove
KR101758521B1 (en) * 2015-12-23 2017-07-17 주식회사 포스코 Apparatus and Method of Recycling and Decomposition of Carbon Dioxide via Accumulated Energy of Hot Stove
WO2017111415A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 Method for decomposing and recycling carbon dioxide using hot stove
JP2019206453A (en) * 2018-05-29 2019-12-05 Jfeエンジニアリング株式会社 Reforming device and reforming method for by-product gas of steel plant
JP6843490B1 (en) * 2020-08-04 2021-03-17 積水化学工業株式会社 Gas manufacturing equipment, gas manufacturing system, steel manufacturing system, chemical manufacturing system and gas manufacturing method
JP7383592B2 (en) 2020-09-30 2023-11-20 大陽日酸株式会社 Method for producing oxygen isotope-labeled carbon monoxide and method for producing oxygen isotope-labeled carbon dioxide
CN115196590A (en) * 2022-06-22 2022-10-18 上海富禧友好能源科技有限公司 Process for co-producing hydrogen by capturing blast furnace gas carbon
CN115196590B (en) * 2022-06-22 2024-02-09 上海富禧友好能源科技有限公司 Process for co-production of hydrogen by capturing carbon in blast furnace gas
CN115449573A (en) * 2022-09-09 2022-12-09 云南曲靖钢铁集团呈钢钢铁有限公司 Energy-saving environment-friendly blast furnace and blast furnace ironmaking process
CN115449573B (en) * 2022-09-09 2023-09-29 云南曲靖钢铁集团呈钢钢铁有限公司 Energy-saving environment-friendly blast furnace and blast furnace ironmaking process

Also Published As

Publication number Publication date
JP5810537B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5810537B2 (en) How to use carbon oxide-containing gas
EP2543743B1 (en) Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
JP5796672B2 (en) How to operate a blast furnace or steelworks
RU2546266C2 (en) Method of producing direct reduced iron with limited emissions of co2 into atmosphere
KR101321072B1 (en) Apparatus for manufacturing syngas containing co and h2 and method thereof
AU2010272097B2 (en) Hydrogen Production Method and Hydrogen Production System
JP5280343B2 (en) Hydrogen separation type hydrogen production system with carbon dioxide separation and recovery equipment
CN103242134A (en) Pyrolysis gasification and purification method of household garbage
JP4580310B2 (en) Generation method of high calorific gas
JP2014005510A (en) Blast furnace operation method
KR101321823B1 (en) Apparatus for manufacturing syngas containing co and h2 and method thereof
JP6019893B2 (en) Blast furnace operation method
US20100210885A1 (en) System and process of light chain hydrocarbon synthesis
JP5640786B2 (en) How to operate a blast furnace or steelworks
CN105883851B (en) A kind of Novel gasification and pyrolysis coupling coal gas multi-production process
CN105431219A (en) Method for sustainable energy production in a power plant comprising a solid oxide fuel cell
KR20100078749A (en) Apparatus for manufacturing molten irons
JP5270903B2 (en) Blast furnace gas calorie increase method
JP2010173985A (en) Method and facility for manufacturing hydrocarbon fuel
JP2015507031A (en) Counterflow gasification method using synthesis gas as working medium
WO2013064870A1 (en) Process for producing direct reduced iron (dri) with less co2 emissions to the atmosphere
JP2007051181A (en) Method for recovering sensible heat of coke oven gas
CN106241736A (en) A kind of technique utilizing coke-stove gas extraction metallurgy reducing gases
JP5154968B2 (en) Method for reforming and separating mixed gas containing carbon dioxide
JP2005279361A (en) Method for treating waste

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R150 Certificate of patent or registration of utility model

Ref document number: 5810537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250