JP6019893B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP6019893B2
JP6019893B2 JP2012169030A JP2012169030A JP6019893B2 JP 6019893 B2 JP6019893 B2 JP 6019893B2 JP 2012169030 A JP2012169030 A JP 2012169030A JP 2012169030 A JP2012169030 A JP 2012169030A JP 6019893 B2 JP6019893 B2 JP 6019893B2
Authority
JP
Japan
Prior art keywords
blast furnace
gas
hydrogen
containing hydrogen
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012169030A
Other languages
Japanese (ja)
Other versions
JP2014028984A (en
Inventor
泰平 野内
泰平 野内
浅沼 稔
稔 浅沼
高木 克彦
克彦 高木
藤林 晃夫
晃夫 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012169030A priority Critical patent/JP6019893B2/en
Publication of JP2014028984A publication Critical patent/JP2014028984A/en
Application granted granted Critical
Publication of JP6019893B2 publication Critical patent/JP6019893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、羽口などから水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上を高炉内に吹き込む高炉の操業方法に関する。   The present invention relates to a method for operating a blast furnace in which one or more of a reducing gas containing hydrogen, a liquid fuel containing hydrogen, and a solid substance containing hydrogen are blown into a blast furnace from a tuyere or the like.

COの増加による地球温暖化が、国際的な問題として大きく取り上げられており、その排出量を削減することが全世界的な課題となっている。発生ガスからCOを分離・回収するために様々な技術開発が試みられているが、回収したCOをどのように利用するかについては、有効な手段は提案されていない。回収したCOを地中に埋める技術、いわゆるCCS(Carbon dioxide Capture and Storage)が欧州や米国、日本などを中心に盛んに研究されている。しかし、この方法は、COを地中に埋めた後の安全性の観点から、特に地震国である日本においては、社会的な合意が得られにくいだけでなく、財団法人地球環境産業技術研究機構(RITE)の試算によれば、近海を含む日本付近でのCOの埋設可能量を排出量で除した値、すなわち寿命は、わずか50年〜100年程度であるとされている。したがって、少なくとも日本においては、CCSはCO排出削減のための抜本的な解決策にはなりにくいと考えられる。 Global warming due to an increase in CO 2 has been widely taken up as an international problem, and reducing its emissions has become a global issue. Various technological developments have been attempted to separate and recover CO 2 from the generated gas, but no effective means has been proposed for how to use the recovered CO 2 . Technology for burying the collected CO 2 in the ground, so-called carbon dioxide capture and storage (CCS), has been actively researched mainly in Europe, the United States, Japan, and the like. However, this method is not only difficult to obtain social consensus in Japan, which is an earthquake country, from the viewpoint of safety after CO 2 is buried in the ground. According to a trial calculation by the Organization (RITE), the value obtained by dividing the CO 2 embeddable amount in the vicinity of Japan including the near sea by the emission amount, that is, the lifetime is only about 50 to 100 years. Therefore, at least in Japan, CCS is unlikely to be a fundamental solution for reducing CO 2 emissions.

統計によれば、日本のCO排出量は、発電に伴う排出が約30%、鉄鋼生産に伴う排出が10%で、その他では、運輸部門、民生部門が大きな割合を占めている。発電所では、石炭、石油、天然ガスの化学エネルギーを、それら化石燃料の完全酸化によって電力エネルギーに変換するため、COが排出される。それ故、化石燃料の使用に見合う量のCOは必然的に発生してしまうが、このような化石燃料による発電は、長期的には太陽光発電、風力発電、潮力発電などのいわゆるソフト・エネルギーの利用、バイオマス発電、原子力発電の普及により、徐々に減少していくものと考えられる。 According to statistics, Japan's CO 2 emissions are about 30% due to power generation, 10% due to steel production, and in other areas, the transportation and civilian sectors account for a large proportion. In the power plant, CO 2 is emitted in order to convert chemical energy of coal, oil, and natural gas into electric energy by complete oxidation of these fossil fuels. Therefore, an amount of CO 2 commensurate with the use of fossil fuel is inevitably generated, but such fossil fuel power generation is so-called soft power generation such as solar power generation, wind power generation, tidal power generation in the long term.・ It is thought that the number will gradually decrease with the spread of energy use, biomass power generation, and nuclear power generation.

一方、鉄鋼生産では種々のプロセスでCOが発生するが、最大の発生源は高炉プロセスである。この高炉プロセスにおけるCOの発生は、酸化鉄である鉄鉱石を還元材の炭素により還元し、鉄鉱石中の酸素を除去することに起因する。このため鉄鋼生産においては、COの発生は不可避であると言える。
高炉プロセスでは、高炉下部から1000℃以上の熱風を送風し、コークスを燃焼させ、鉄鉱石の還元・溶解に必要な熱を供給するとともに、還元ガス(CO)を生成させ、この還元ガスで鉄鉱石を還元し、溶銑を得る。
On the other hand, in steel production, CO 2 is generated in various processes, but the largest source is the blast furnace process. The generation of CO 2 in this blast furnace process results from the reduction of oxygen in the iron ore by reducing iron ore, which is iron oxide, with carbon as a reducing material. For this reason, in steel production, it can be said that generation of CO 2 is inevitable.
In the blast furnace process, hot air of 1000 ° C or higher is blown from the bottom of the blast furnace, coke is burned, and heat necessary for the reduction and melting of iron ore is generated and reducing gas (CO) is generated. Reduce stones and get hot metal.

COを発生させない鉄鉱石の還元方法としては、還元ガスとして水素を用いることが考えられる。高炉に水素を吹き込んだ場合、鉄鉱石の水素による還元は下記(1)式で表される。また、コークスなどの燃焼により発生するCOによる還元は下記(2)式で表される。
Fe2O3+3H2=2Fe+3H2O ΔH=100.1kJ/mol(吸熱) …(1)
Fe2O3+3CO=2Fe+3CO2 ΔH=-23.4kJ/mol(発熱) …(2)
上記のように水素による還元は吸熱反応であるため、水素を高炉に直接吹き込んだ場合、炉下部の熱を奪い、鉄鉱石の還元・溶解に必要な熱が不足する恐れがあり、炉下部の熱補償が必要となる。
As a method for reducing iron ore without generating CO 2 , it is conceivable to use hydrogen as a reducing gas. When hydrogen is blown into the blast furnace, the reduction of iron ore with hydrogen is expressed by the following equation (1). Further, reduction by CO generated by combustion of coke or the like is expressed by the following equation (2).
Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O ΔH = 100.1kJ / mol (endothermic)… (1)
Fe 2 O 3 + 3CO = 2Fe + 3CO 2 ΔH = -23.4kJ / mol (exothermic)… (2)
Since reduction with hydrogen is an endothermic reaction as described above, when hydrogen is blown directly into the blast furnace, the heat in the lower part of the furnace may be taken away, and there is a risk that the heat necessary for the reduction or dissolution of iron ore will be insufficient. Thermal compensation is required.

一方、特許文献1には、高炉でのコークスなどの還元材比を削減するために、LNGなどの炭化水素系ガスを吹き込む高炉操業方法が開示されている。
また、特許文献2には、高炉で低還元材比操業を指向した場合には、炉上部の熱補償のために、高炉ガスの一部を燃焼させ、高温ガスとして高炉シャフト部に吹き込む技術が開示されている。同文献には、必要に応じて高炉ガス中のCOを除去する技術も開示されている。
On the other hand, Patent Document 1 discloses a blast furnace operating method in which a hydrocarbon-based gas such as LNG is blown in order to reduce the ratio of reducing materials such as coke in a blast furnace.
Further, Patent Document 2 discloses a technique for burning a part of blast furnace gas and injecting it into a blast furnace shaft portion as a high-temperature gas in order to compensate for the heat of the upper part of the furnace when the low reductant ratio operation is directed at the blast furnace. It is disclosed. This document also discloses a technique for removing CO 2 in the blast furnace gas as necessary.

特開2006−233332号公報JP 2006-233332 A 特開2008−214735号公報JP 2008-214735 A

上述したように鉄鋼生産においてCOの発生は不可避である。このため、発生したCOをいかに有効に利用し、実質のCO発生量を削減するかが重要な課題となる。
特許文献1の方法は、高炉にLNGを吹き込むことにより、還元材(コークスなど)の使用量が低減でき、間接的に高炉で発生するCO量を低減できるが、発生したCOを有効利用し、実質のCO発生量を削減するというものではない。また、特許文献2の方法も、特許文献1と同様に実質のCO発生量を削減する技術ではなく、また、分離されたCOを有効利用することについては何も記載されていない。
As described above, generation of CO 2 is inevitable in steel production. Thus, by utilizing the generated CO 2 how effectively, or reduces the amount of CO 2 produced substantially becomes an important issue.
The method of Patent Document 1 can reduce the amount of reducing material (coke etc.) used by blowing LNG into the blast furnace and indirectly reduce the amount of CO 2 generated in the blast furnace, but effectively use the generated CO 2. However, this does not mean that the actual amount of generated CO 2 is reduced. Also, the method of Patent Document 2 is not a technique for reducing the substantial amount of CO 2 generation as in Patent Document 1, and nothing is described about effective use of separated CO 2 .

また、特許文献1の方法では、水素(炭化水素)を高炉内に吹き込むことにより水素還元を増加させ、炭素還元を減らすことによりCOを削減できるが、投入された水素はすべて還元に使用されて水蒸気になるわけではなく、ほぼ半分は水素のまま高炉ガス組成の一部として排出されてしまい、必ずしもCO削減に有効に使われているとは言えない。
したがって本発明の目的は、水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上を高炉内に吹き込む高炉の操業方法において、高炉内に供給される水素を有効に利用し、高炉のCO発生量を実質的に低減させることができる高炉の操業方法を提供することにある。
Further, in the method of Patent Document 1, hydrogen (hydrocarbon) is blown into a blast furnace to increase hydrogen reduction, and carbon reduction can be reduced to reduce CO 2. However, all of the hydrogen that is input is used for reduction. However, almost half of it is discharged as part of the blast furnace gas composition as hydrogen, and it cannot be said that it is necessarily used effectively for CO 2 reduction.
Accordingly, an object of the present invention is to provide hydrogen supplied to a blast furnace in a blast furnace operating method in which one or more of a reducing gas containing hydrogen, a liquid fuel containing hydrogen, and a solid substance containing hydrogen are blown into the blast furnace. An object of the present invention is to provide a method of operating a blast furnace that can be effectively used and can substantially reduce the amount of CO 2 generated in the blast furnace.

本発明者らは、上記のような従来技術の課題を解決すべく鋭意検討した結果、水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上を高炉内に吹き込む高炉の操業方法において、高炉ガスの主成分である窒素、水素、CO、CO、HOのうち、水素とCOを高炉ガスから取り出してCHに変換(改質)し、このCHを熱源及び還元剤として高炉に吹き込むことで、高炉内に投入された水素を使い切り、水素の投入によるCO削減効果を最大限発揮させることができる新たな高炉操業方法を創案した。すなわち、本発明の要旨は以下のとおりである。 As a result of intensive studies to solve the problems of the conventional technology as described above, the inventors have found that one or more of a reducing gas containing hydrogen, a liquid fuel containing hydrogen, and a solid substance containing hydrogen are contained in a blast furnace. In the operation method of the blast furnace that is blown into the blast furnace gas, out of nitrogen, hydrogen, CO, CO 2 and H 2 O, which are the main components of the blast furnace gas, hydrogen and CO 2 are taken out from the blast furnace gas and converted into CH 4 (reforming), By blowing this CH 4 into the blast furnace as a heat source and a reducing agent, a new blast furnace operation method has been devised that can use up the hydrogen introduced into the blast furnace and maximize the CO 2 reduction effect by the introduction of hydrogen. That is, the gist of the present invention is as follows.

[1]水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上を高炉内に吹き込む高炉の操業方法において、高炉の炉頂部から排出される高炉ガスからCOと水素を取り出す工程(A)と、該工程(A)で取り出されたCOと水素をCHに変換する工程(B)と、該工程(B)を経たガスから、工程(B)でCHに変換されることなく残存したCOを分離除去する工程(D)を有し、該工程(D)により余剰のCO を分離除去した後のガスを、水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上とともに高炉内に吹き込むことを特徴とする高炉の操業方法。
[2]上記[1]の操業方法において、さらに、工程(D)により余剰のCO を分離除去した後のガスからHOを分離除去する工程(C)を有し、該工程(C)によりH Oを分離除去した後のガスを、水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上とともに高炉内に吹き込むことを特徴とする請求項1に記載の高炉の操業方法。
[3]上記[1]又は[2]の操業方法において、工程(A)では、さらに高炉ガスからCOを取り出し、該COを高炉内に吹き込むことを特徴とする高炉の操業方法。
[1] In a method of operating a blast furnace in which one or more of a reducing gas containing hydrogen, a liquid fuel containing hydrogen, and a solid substance containing hydrogen are blown into the blast furnace, CO is discharged from the blast furnace gas discharged from the top of the blast furnace. and step (a) to take out 2 and hydrogen, the CO 2 and hydrogen extracted in the step (a) and the step (B) to be converted to CH 4, the gas passed through the step (B), step (B) A step (D) of separating and removing CO 2 remaining without being converted to CH 4 in step (D), and the gas after separating and removing excess CO 2 in the step (D) is a reducing gas containing hydrogen. A method of operating a blast furnace, wherein the blast furnace is blown into a blast furnace together with at least one of a liquid fuel containing hydrogen and a solid substance containing hydrogen.
[2] In the operation method of the above-mentioned [1], further have a step process for separating and removing of H 2 O from the gas after separating and removing excess CO 2 by (D) (C), said step (C The gas after separation and removal of H 2 O by the above is blown into the blast furnace together with one or more of a reducing gas containing hydrogen, a liquid fuel containing hydrogen, and a solid substance containing hydrogen. A method for operating a blast furnace according to 1.
[3] The operating method of [1] or [2] above, wherein in step (A), CO is further extracted from the blast furnace gas, and the CO is blown into the blast furnace.

本発明によれば、羽口などから水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上を高炉内に吹き込む高炉の操業方法において、高炉ガスからCOと水素を取り出してCHに変換し、このCHを高炉内に吹き込むことにより、高炉内に投入された水素を使い切り、水素投入によるCO削減効果を最大限発揮させることができる。 According to the present invention, a reducing gas containing hydrogen from such tuyere, liquid fuel containing hydrogen, the operation method of the blast furnace blowing at least one of the blast furnace of the solid material containing hydrogen, CO 2 from the blast furnace gas The hydrogen is taken out and converted into CH 4 , and this CH 4 is blown into the blast furnace, so that the hydrogen charged into the blast furnace can be used up and the CO 2 reduction effect by the hydrogen input can be maximized.

本発明の高炉操業方法の一実施態様(ガスの処理フロー)を示す説明図Explanatory drawing which shows one embodiment (gas processing flow) of the blast furnace operating method of this invention 従来の高炉操業方法の一実施態様を示す説明図Explanatory drawing which shows one embodiment of the conventional blast furnace operating method

以下、本発明の高炉の操業方法について説明する。
本発明は、羽口などから水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上を高炉内に吹き込む高炉の操業方法である。ここで、水素を含む還元性ガスとしては、例えば、天然ガス(ほぼ100%CH)、都市ガス、コークス炉ガス、プロパン、アンモニアなどが挙げられる。また、水素を含む液体燃料としては、例えば、重油、タール、エタノール、メタノール、ナフサなどが挙げられる。また、水素を含む固形物質としては、プラスチックが代表的なものとして挙げられるが、これ以外に、例えば、バイオマスなどを用いてもよい。この水素を含む固形物質は、通常、粉粒物として高炉内に吹き込まれる。
Hereinafter, the operation method of the blast furnace of this invention is demonstrated.
The present invention is a method of operating a blast furnace in which one or more of a reducing gas containing hydrogen, a liquid fuel containing hydrogen, and a solid substance containing hydrogen are blown into the blast furnace from a tuyere or the like. Here, examples of the reducing gas containing hydrogen include natural gas (approximately 100% CH 4 ), city gas, coke oven gas, propane, and ammonia. Examples of the liquid fuel containing hydrogen include heavy oil, tar, ethanol, methanol, and naphtha. In addition, as a solid substance containing hydrogen, plastic is a typical example, but in addition to this, for example, biomass or the like may be used. This solid substance containing hydrogen is normally blown into the blast furnace as a powdery granule.

これら水素を含む還元性ガス、液体燃料、固形物質のうちの1種以上を高炉内に吹き込むことができる。高炉内への吹き込みは、通常、羽口を通じて行うが、これに限定されない。羽口から吹き込む場合、羽口に吹込みランスを設置し、この吹込みランスから吹き込むのが一般的である。
羽口などから水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上を炉内に吹き込む高炉操業において、炉頂部から排出される高炉ガスの組成は、一般に、CO:20〜27vol%、水素:3〜10vol%、CO:25〜30vol%、窒素:50〜55vol%、HO:3〜10vol%程度である。
One or more of these reducing gases containing hydrogen, liquid fuel, and solid substances can be blown into the blast furnace. Blowing into the blast furnace is usually performed through tuyere, but is not limited thereto. When blowing from a tuyere, it is common to install a blowing lance at the tuyere and blow from this blowing lance.
In a blast furnace operation in which one or more of a reducing gas containing hydrogen from a tuyere, a liquid fuel containing hydrogen, or a solid substance containing hydrogen is blown into the furnace, the composition of the blast furnace gas discharged from the top of the furnace is generally , CO 2: 20~27vol%, hydrogen: 3~10vol%, CO: 25~30vol% , nitrogen: 50~55vol%, H 2 O: is about 3~10vol%.

本発明法は、高炉の炉頂部から排出される高炉ガスからCOと水素を取り出す工程(A)と、この工程(A)で取り出されたCOと水素をCHに変換(改質)する工程(B)を有し、この工程(B)で得られたCHを熱源及び還元剤として高炉内に吹き込むものである。また、好ましい形態として、(i)さらに、工程(B)を経たガスからHOを分離除去する工程(C)を有すること、(ii)さらに、工程(B)を経たガスから、工程(B)でCHに変換されることなく残存したCOを分離除去する工程(D)を有すること、(iii)工程(A)では、さらに高炉ガスからCOを取り出し、該COを高炉内に吹き込むこと、の少なくとも1つを有することが好ましい。 The present invention method converts a step (A) to take out CO 2 and hydrogen from a blast furnace gas discharged from the furnace top of the blast furnace, the CO 2 and hydrogen retrieved in this step (A) in CH 4 (modified) The step (B) is performed, and CH 4 obtained in this step (B) is blown into the blast furnace as a heat source and a reducing agent. As a preferred embodiment, from (i) further having a step separating removal of H 2 O from the gas passed through the (B) (C), (ii) Further, through the steps (B) Gas, step ( B) having a step (D) of separating and removing CO 2 remaining without being converted to CH 4 ; and (iii) in step (A), CO is further extracted from the blast furnace gas, and the CO is put into the blast furnace. It is preferable to have at least one of blowing.

前記工程(A)において、高炉ガスからCOと水素を取り出す形態としては、分離装置を用いて、高炉ガスから実質的にCOと水素のみを分離してもよいが、通常は、COと水素を主成分とするガス(好ましくは、COと水素が多くCOが少ないガス)として分離すればよい。取り出されるCOと水素は、高炉ガスに含まれるCO、水素の一部又は全部である。また、高炉ガスに含まれる窒素とHOは工程(B)での反応に寄与せず、また、COと水素が取り出された後の高炉ガスは、通常、改質高炉ガスとして燃料などに利用されるため、窒素とHOはなるべく含まれない方がよい。このため工程(A)では、高炉ガスから窒素、HOを分離除去し、系外に排出することが好ましい。 In the step (A), as a form to take out CO 2 and hydrogen from a blast furnace gas by using the separating device, but may be separated substantially only CO 2 and hydrogen from a blast furnace gas, typically, CO 2 And a gas mainly containing hydrogen (preferably, a gas containing a large amount of CO 2 and hydrogen and a small amount of CO). The extracted CO 2 and hydrogen are part or all of CO 2 and hydrogen contained in the blast furnace gas. Further, nitrogen and H 2 O contained in the blast furnace gas do not contribute to the reaction in the step (B), and the blast furnace gas after CO 2 and hydrogen are taken out is usually a fuel such as a reformed blast furnace gas. Therefore, nitrogen and H 2 O should not be contained as much as possible. For this reason, in the step (A), it is preferable to separate and remove nitrogen and H 2 O from the blast furnace gas and discharge them out of the system.

高炉ガスからCOと水素を取り出すには、例えば、以下のような方法を採ることができる。まず、混合ガスからCOを分離回収する方法としては、例えば、加圧又は冷却によりCOを液化又は固化する方法、苛性ソーダやアミンなどの塩基性水溶液にCOを吸収させた後、加熱又は減圧により分離回収する方法、活性炭やゼオライトなどにCOを吸着させた後、加熱又は減圧により分離回収する方法、CO分離膜により分離回収する方法などが知られており、これらを含む任意の方法を採用することができる。また、水素を分離する方法としては、PSA(物理吸着)法などの方法を採ることができる。 In order to extract CO 2 and hydrogen from the blast furnace gas, for example, the following method can be employed. First, as a method of separating and recovering CO 2 from a mixed gas, for example, a method of liquefying or solidifying CO 2 by pressurization or cooling, a method of heating or absorbing CO 2 in a basic aqueous solution such as caustic soda or amine, etc. A method of separating and recovering by reduced pressure, a method of separating and recovering CO 2 by adsorption on activated carbon, zeolite, etc., and then separating and recovering by heating or reduced pressure, a method of separating and recovering by a CO 2 separation membrane, etc. are known. The method can be adopted. In addition, as a method for separating hydrogen, a method such as a PSA (physical adsorption) method can be employed.

また、高炉ガスからCOと水素を分離する順序などに特別な制限はないが、後述するように、高炉ガス中の水素量は、高炉ガス中に含まれるCOを全量改質するには十分な量でないのが通常であるから、高炉ガス中の水素は全量回収することが好ましく、このため、最初に高炉ガスから水素を分離回収し(好ましくは水素の全量を分離回収)、残りの高炉ガスから必要な量のCOを分離回収するのが効率的である。
なお、高炉ガスから理想的に水素とCO以外のガスを除去した場合、体積率でCOが70〜80%、残りが水素となる。
In addition, there is no particular limitation on the order of separating CO 2 and hydrogen from the blast furnace gas, but as will be described later, the amount of hydrogen in the blast furnace gas is to reform the entire amount of CO 2 contained in the blast furnace gas. Since the amount of hydrogen in the blast furnace gas is usually not sufficient, it is preferable to recover the entire amount of hydrogen in the blast furnace gas. For this reason, hydrogen is first separated and recovered from the blast furnace gas (preferably the entire amount of hydrogen is separated and recovered), and the remaining It is efficient to separate and recover the required amount of CO 2 from the blast furnace gas.
Note that when ideally remove hydrogen and other than CO 2 gas from the blast furnace gas, CO 2 is 70-80% by volume, the remainder is hydrogen.

前記工程(B)では、工程(A)で高炉ガスから取り出されたCOと水素をCHに変換(改質)するが、この改質には、特定の触媒などを用いる公知の方法を適用することができる。水素によるCOの還元反応を下記(1)式に示す。
CO+4H=CH+2HO ΔH=-39.4kJ/mol(発熱) …(1)
上記は発熱反応である。この反応は平衡的には低温が有利であり、300℃におけるCO平衡転化率は約95%を示す。この反応には通常使用されているメタン化触媒を利用できる。具体的には、鉄、Ni、Co、Ruなどの遷移金属系触媒を用いることにより、COをCHに改質可能である。なかでもNi系触媒は活性が高く、また耐熱性も高く500℃程度の温度まで使用可能であるので、特に好ましい。また、鉄鉱石を触媒として用いてもよく、特に高結晶水鉱石は、結晶水を脱水すると比表面積が増加し、触媒として好適に利用できる。
この工程(B)で得られるガス(以下、「改質後ガス」という)は、通常、CHを主成分とするガス又は実質的にCHからなるガスである。
In the step (B), CO 2 and hydrogen extracted from the blast furnace gas in the step (A) are converted (reformed) into CH 4. For this reforming, a known method using a specific catalyst or the like is used. Can be applied. The reduction reaction of CO 2 with hydrogen is shown in the following formula (1).
CO 2 + 4H 2 = CH 4 + 2H 2 O ΔH = -39.4kJ / mol (exotherm)… (1)
The above is an exothermic reaction. In this reaction, low temperature is advantageous in equilibrium, and the CO 2 equilibrium conversion at 300 ° C. shows about 95%. For this reaction, a commonly used methanation catalyst can be used. Specifically, CO 2 can be reformed to CH 4 by using a transition metal catalyst such as iron, Ni, Co, and Ru. Among these, Ni-based catalysts are particularly preferable because they have high activity and high heat resistance and can be used up to a temperature of about 500 ° C. In addition, iron ore may be used as a catalyst, and particularly high crystal water ore increases its specific surface area when dehydrated crystal water and can be suitably used as a catalyst.
Obtained in this step (B) gas (hereinafter, referred to as "reformed gas") is usually a gas composed of the gas or substantially CH 4 as a main component CH 4.

COと水素を触媒を用いてCHに変換(改質)するには、通常、COと水素(COと水素を主成分とするガス)を触媒が充填されているメタン化反応器に導入し、COと水素をCHに変換(改質)する反応を生じさせる。反応器としては、固定層反応器、流動層反応器、気流層反応器などを用いることができる。なお、これら反応器の形式によって、触媒の物理的な性状が適宜選択される。
ここで、上記反応式に示されるように1molのCOに必要な水素は4molである。一般的には高炉ガス中に含まれるCOを全量改質するには高炉ガス中の水素は不十分な量である。そのため、余剰なCOについては、改質前に適正な量を残して排出するか、改質後に分離除去することが好ましい。すなわち、後者の場合には、工程(D)において、工程(B)を経た改質後ガスから、工程(B)でCHに変換されることなく残存したCOを分離除去する。
In order to convert (reform) CO 2 and hydrogen into CH 4 using a catalyst, a methanation reactor in which CO 2 and hydrogen (a gas mainly composed of CO 2 and hydrogen) are usually packed with a catalyst is used. To convert CO 2 and hydrogen into CH 4 (reforming). As the reactor, a fixed bed reactor, a fluidized bed reactor, a gas bed reactor, or the like can be used. The physical properties of the catalyst are appropriately selected depending on the type of the reactor.
Here, as shown in the above reaction formula, 4 mol of hydrogen is required for 1 mol of CO 2 . In general, the amount of hydrogen in the blast furnace gas is insufficient to reform the entire amount of CO 2 contained in the blast furnace gas. For this reason, it is preferable that excess CO 2 is discharged while leaving an appropriate amount before reforming or separated and removed after reforming. That is, in the latter case, in the step (D), CO 2 remaining without being converted into CH 4 in the step (B) is separated and removed from the reformed gas that has passed through the step (B).

また、高炉ガスから分離された水素に、他所から調達した水素(例えば、高炉に吹き込んでいる水素系ガス)や外部から調達した水素を加えて、COの改質量をさらに増やしてもよい。そして、それでも余剰なCOが生じる場合には、上記のように改質前に適正な量を残して排出するか、改質後に分離除去すればよい。
水素によってCOをCHに改質した場合、HOが生成する。HOが高炉に導入されると、高炉内のコークスを消費し、逆にCO排出量が増加する。したがって、工程(C)として、工程(B)を経た改質後ガスからHOを分離除去することが好ましい。
Further, the amount of CO 2 reformed may be further increased by adding hydrogen procured from other places (for example, hydrogen-based gas blown into the blast furnace) or hydrogen procured from outside to the hydrogen separated from the blast furnace gas. If excess CO 2 still occurs, it may be discharged with a proper amount before reforming as described above, or separated and removed after reforming.
When CO 2 is reformed to CH 4 by hydrogen, H 2 O is generated. When H 2 O is introduced into the blast furnace, coke in the blast furnace is consumed, and conversely, CO 2 emission increases. Therefore, it is preferable to separate and remove H 2 O from the reformed gas that has undergone the step (B) as the step (C).

改質後ガスからHOを分離除去する方法としては、冷却方式、吸着方式などを適用できる。冷却方式では、改質後ガスを露点温度以下に冷却し、HOを凝縮除去する。露点温度は改質ガス中のHO濃度によって決まるが、通常、改質後ガスを30℃以下まで冷却すれば、HOを適切に凝縮除去することができ、通常高炉に吹き込まれる送風空気湿分濃度と同程度となるので、高炉操業上好ましい。また、吸着方式では、シリカゲルなどの除湿用吸着剤を用いるが、吸着塔内で吸着と再生を繰り返す方式、ハニカム状に成型された吸着剤が回転しながら再生・吸着を連続的に繰り返すハニカムローター方式などを適宜採用できる。また、改質後ガスを冷却する方法としては、例えば、HOを分離除去する工程(C)を経て高炉に供給される途中の改質後ガス(通常、常温)と熱交換させるようにしてもよい。 As a method for separating and removing H 2 O from the reformed gas, a cooling method, an adsorption method, or the like can be applied. In the cooling method, the reformed gas is cooled to a dew point temperature or lower, and H 2 O is condensed and removed. Although the dew point temperature is determined by the concentration of H 2 O in the reformed gas, normally, if the reformed gas is cooled to 30 ° C. or less, H 2 O can be appropriately condensed and removed, and air blown into a normal blast furnace. Since it becomes comparable to the air moisture concentration, it is preferable for blast furnace operation. In addition, the adsorption method uses a dehumidifying adsorbent such as silica gel, but repeats adsorption and regeneration in an adsorption tower, and a honeycomb rotor that repeats regeneration and adsorption continuously while the adsorbent formed in a honeycomb shape rotates. A system etc. can be suitably adopted. In addition, as a method of cooling the reformed gas, for example, heat exchange is performed with the reformed gas (usually normal temperature) in the middle of being supplied to the blast furnace through the step (C) of separating and removing H 2 O. May be.

本発明では、上記改質で得られたCH(改質後ガス)を熱源及び還元剤として高炉内に吹き込む。本発明の高炉操業は「水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上」を炉内に吹き込むものであり、したがって、上記CH(改質後ガス)は、その「水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上」の一部を代替するものとして炉内に吹き込まれる。 In the present invention, CH 4 (reformed gas) obtained by the above reforming is blown into the blast furnace as a heat source and a reducing agent. Blast furnace operation of the present invention has blown "reducing gas containing hydrogen, liquid fuel containing hydrogen, one or more of the solid material containing hydrogen" into the furnace, thus, the CH 4 (after modification Gas) is blown into the furnace as a substitute for part of “one or more of a reducing gas containing hydrogen, a liquid fuel containing hydrogen, and a solid substance containing hydrogen”.

改質後ガスは、高炉操業を考慮するとガス温度を高めて高炉内に吹き込むことが好ましく、このため工程(B)を経た直後の高温の改質後ガスと熱交換して昇温させてから高炉に吹き込んでもよい。また、他の熱源を用いて間接加熱により改質後ガスを昇温させてもよい。
改質後ガスの高炉内への吹き込み形態は任意であるが、通常、上記「水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上」とともに羽口から吹き込む。
In consideration of blast furnace operation, the reformed gas is preferably blown into the blast furnace after raising the gas temperature. For this reason, after the heat is exchanged with the high-temperature reformed gas immediately after the step (B), the temperature is raised. It may be blown into a blast furnace. Further, the temperature of the reformed gas may be raised by indirect heating using another heat source.
The reformed gas can be blown into the blast furnace in any manner, but usually from the tuyere together with the above-mentioned “one or more of a reducing gas containing hydrogen, a liquid fuel containing hydrogen, and a solid substance containing hydrogen”. Infuse.

また、工程(A)において、さらに高炉ガスからCOを取り出し、このCOを羽口などから高炉内に吹き込むようにしてもよい。取り出されるCOは、高炉ガスに含まれているCOの一部又は全部である。高炉ガスから取り出されたCOは、上述した「水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上」とともに、或いは工程(B)で得られたCH(改質後ガス)とともに高炉内に吹き込んでもよいし、これらとは別に吹き込んでもよい。
なお、高炉ガスからCOを取り出さない場合は、その分のCOは改質高炉ガス(通常、燃料として用いられる)に含まれることになる。
高炉ガスからCOを取り出すには、例えば、銅/活性炭、銅/アルミナ、銅/ゼオライトなどの吸着剤にCOを吸着させた後、加熱又は減圧により分離回収する方法、銅を主要成分とする吸収液にCOを吸収させた後、加熱又は減圧により分離回収する方法などが知られており、これらを含む任意の方法を採用することができる。
In the step (A), CO may be further extracted from the blast furnace gas, and this CO may be blown into the blast furnace from a tuyere or the like. The extracted CO is a part or all of the CO contained in the blast furnace gas. The CO taken out from the blast furnace gas is the CH 4 obtained in the step (B) together with the above-mentioned “one or more kinds of reducing gas containing hydrogen, liquid fuel containing hydrogen, and solid substance containing hydrogen”. It may be blown into the blast furnace together with (the gas after reforming) or may be blown separately.
When CO is not taken out from the blast furnace gas, the corresponding amount of CO is included in the reformed blast furnace gas (usually used as fuel).
In order to extract CO from blast furnace gas, for example, a method in which CO is adsorbed on an adsorbent such as copper / activated carbon, copper / alumina, copper / zeolite, etc., and then separated and recovered by heating or decompression, absorption using copper as a main component. A method of separating and collecting CO by absorbing CO in the liquid and then heating or reducing pressure is known, and any method including these can be adopted.

図1は、本発明の一実施態様(ガスの処理フロー)を示したものである。
この実施形態では、まず、工程(A)として、分離装置において高炉ガスからCOと水素(COと水素を主成分とするガス)が取り出される。また、高炉ガスは窒素やHOを含んでいるので、これらを分離除去する。これにより、工程(B)において反応に寄与しないガス成分を少なくできるとともに、燃料などとして利用される残部ガス(改質高炉ガス)の品位を高めることができる。
FIG. 1 shows one embodiment (gas treatment flow) of the present invention.
In this embodiment, first, as a step (A), CO 2 and hydrogen from a blast furnace gas (CO 2 and gas mainly composed of hydrogen) is taken out in the separation device. Moreover, since the blast furnace gas contains nitrogen and H 2 O, these are separated and removed. As a result, the gas components that do not contribute to the reaction in the step (B) can be reduced, and the quality of the remaining gas (reformed blast furnace gas) used as fuel or the like can be improved.

次に、工程(B)として、前記工程(A)で高炉ガスから取り出されたCOと水素(COと水素を主成分とするガス)をメタン化反応器に導入し、CHに変換(改質)する。この工程(B)を経た改質後ガスは、高炉に導入される直前の改質後ガスと熱交換されることで冷却された後、工程(C)としてHOが分離除去される。また、改質後ガス中に工程(B)で改質されなかったCOが残存している場合には、工程(D)として、このCOを分離除去してもよい。このようにして工程(C)(さらに工程(D))を経た改質後ガスは、上記工程(B)を経た直後の高温の改質後ガスと熱交換して昇温させた後、羽口から「水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上」(図1では「水素系還元剤」と記載した)とともに高炉内に吹き込まれる。また、工程(A)において、さらに高炉ガスからCOを取り出し、図中破線で示すように、そのCOを改質後ガスとともに高炉内に吹き込むようにしてもよい。 Next, as step (B), CO 2 and hydrogen (gas mainly composed of CO 2 and hydrogen) extracted from the blast furnace gas in the step (A) are introduced into a methanation reactor and converted to CH 4 . (Modify). The reformed gas that has undergone this step (B) is cooled by heat exchange with the reformed gas immediately before being introduced into the blast furnace, and then H 2 O is separated and removed as step (C). Further, if the CO 2 that has not been modified in step (B) after the reformed gas is remaining, as a step (D), the CO 2 may be separated and removed. The reformed gas that has undergone the step (C) (further step (D)) is heated and exchanged with the high-temperature reformed gas immediately after the step (B). It is blown into the blast furnace together with “one or more of a reducing gas containing hydrogen, a liquid fuel containing hydrogen, and a solid substance containing hydrogen” (described as “hydrogen-based reducing agent” in FIG. 1). Further, in the step (A), CO may be further taken out from the blast furnace gas, and the CO may be blown into the blast furnace together with the reformed gas as indicated by a broken line in the figure.

羽口から50kg/t-pの天然ガス(ほぼ100%CH)吹き込みを実施している高炉において、高炉ガスの改質設備を設置し、図1に示すような処理フローに準じた本発明による高炉操業を実施した。
本発明例では、高炉ガスから取り出されたCOは、同じく高炉ガスから取り出された水素のmol数の1/4だけが改質器(メタン化反応器)に供給され、残りは改質高炉ガスの一部として排出した。また、高炉ガスから分離されたCOについては、再度高炉へ戻すこと(図1の破線)はせず、これも改質高炉ガスの一部として排出した。これは、本発明の効果を定量的に評価するためには、CO循環の効果を除外する必要があるためである。
In a blast furnace in which natural gas (nearly 100% CH 4 ) is blown in from a tuyere at 50 kg / tp, a blast furnace gas reforming facility is installed, and the blast furnace according to the present invention conforms to the processing flow shown in FIG. The operation was carried out.
In the present invention example, as for CO 2 taken out from the blast furnace gas, only 1/4 of the number of moles of hydrogen taken out from the blast furnace gas is supplied to the reformer (methanation reactor), and the rest is the reformed blast furnace. Exhausted as part of the gas. In addition, the CO separated from the blast furnace gas was not returned again to the blast furnace (broken line in FIG. 1), and was also discharged as part of the reformed blast furnace gas. This is because it is necessary to exclude the effect of CO circulation in order to quantitatively evaluate the effect of the present invention.

図1に示すような処理フローに従い、高炉ガスの一部を改質・循環させた。
・工程(A)
高炉から発生した高炉ガスの全量を、H吸着剤が充填された吸着塔に導入して絶対圧200kPaでHを吸着させ、しかる後、このHを絶対圧7kPaで脱着させH(H濃度99vol%)を得た。
を分離回収した後の高炉ガスの10vol%をCO吸着剤が充填された吸着塔に導入して絶対圧200kPaでCOを吸着させ、しかる後、このCOを絶対圧7kPaで脱着させ、CO(CO濃度99vol%)を得た。高炉ガスの残り90vol%は、従来からある高炉ガス排出系に排出した。
A part of the blast furnace gas was reformed and circulated according to the processing flow as shown in FIG.
・ Process (A)
The total amount of blast furnace gas generated from the blast furnace, is adsorbed and H 2 at an absolute pressure 200kPa is introduced into the adsorption tower H 2 adsorbent is filled, thereafter, H 2 is desorbed the H 2 absolute pressure 7 kPa ( to obtain a concentration of H 2 99 vol%).
The 10 vol% of the blast furnace gas after separating and recovering of H 2 was absorbed the CO 2 in the absolute pressure 200kPa is introduced into the adsorption tower CO 2 adsorbent is filled, thereafter, desorbing the CO 2 in the absolute pressure 7kPa And CO 2 (CO 2 concentration 99 vol%) was obtained. The remaining 90 vol% of the blast furnace gas was discharged to a conventional blast furnace gas discharge system.

・工程(B)
上記のように分離回収されたCOを改質器(反応器)に導き、これに高炉ガスから分離回収されたHを添加し(H/CO:4モル比)、Ni系触媒を用いて反応温度:500℃、SV(Space Velocity):100h−1の条件でCHに改質(変換)した。CO転化率は約100%であった。この改質後ガスを熱交換器で冷却し、水分除去装置でHOを除去した後、高炉羽口から吹き込んだ。
また、従来例の高炉操業では、羽口から50kg/t-pの天然ガス(ほぼ100%CH)吹き込みのみを実施した(図2)。
・ Process (B)
The CO 2 separated and recovered as described above is led to a reformer (reactor), and H 2 separated and recovered from the blast furnace gas is added to this (H 2 / CO 2 : 4 molar ratio), and the Ni-based catalyst Was reformed (converted) to CH 4 under conditions of reaction temperature: 500 ° C. and SV (Space Velocity): 100 h −1 . The CO 2 conversion was about 100%. After the reforming, the gas was cooled with a heat exchanger, H 2 O was removed with a moisture removing device, and then blown from the blast furnace tuyere.
In the conventional blast furnace operation, only 50 kg / tp of natural gas (almost 100% CH 4 ) was blown from the tuyere (FIG. 2).

本発明例と従来例におけるCO排出量(高炉ガス中のCO量)を、操業条件と高炉ガスの排出量(炉頂排ガス量)及びガス組成とともに表1に示す。
本発明例では、COの改質により得られたCHが高炉に吹き込まれる天然ガスの一部と置換されるため、吹込み還元ガス量を含む還元材比は従来例から変化することなく、安定した操業が可能であった。本発明例では、高炉ガスから取り出した水素とCOの一部をCHに変換し、これを高炉で再利用したため、従来例に較べて炉頂排ガス量は11%減少し、炉頂から排出されるCO量も9%減少した。
CO 2 emissions in the present invention and a conventional example of (CO 2 amount in the blast furnace gas), shown in Table 1 together with the emissions (furnace top exhaust gas amount) and gas composition of the operating conditions and the blast furnace gas.
In the example of the present invention, CH 4 obtained by the reforming of CO 2 is replaced with a part of the natural gas blown into the blast furnace, so that the reducing material ratio including the amount of blown reducing gas does not change from the conventional example. Stable operation was possible. In the example of the present invention, part of hydrogen and CO 2 taken out from the blast furnace gas was converted to CH 4 and reused in the blast furnace, so the amount of exhaust gas at the top of the furnace was reduced by 11% compared to the conventional example, and from the top of the furnace. The amount of CO 2 emitted was also reduced by 9%.

Figure 0006019893
Figure 0006019893

Claims (3)

水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上を高炉内に吹き込む高炉の操業方法において、
高炉の炉頂部から排出される高炉ガスからCOと水素を取り出す工程(A)と、該工程(A)で取り出されたCOと水素をCHに変換する工程(B)と、該工程(B)を経たガスから、工程(B)でCHに変換されることなく残存したCOを分離除去する工程(D)を有し、該工程(D)により余剰のCO を分離除去した後のガスを、水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上とともに高炉内に吹き込むことを特徴とする高炉の操業方法。
In a method of operating a blast furnace in which one or more of a reducing gas containing hydrogen, a liquid fuel containing hydrogen, and a solid substance containing hydrogen are blown into the blast furnace,
A step (A) for extracting CO 2 and hydrogen from blast furnace gas discharged from the top of the blast furnace, a step (B) for converting CO 2 and hydrogen extracted in the step (A) into CH 4 , and the step (B) from the gas passing through the, and a step (B) step (D) for separating and removing the CO 2 that remained without being converted into CH 4, the separating and removing excess CO 2 by the step (D) A method of operating a blast furnace, characterized by blowing the gas into the blast furnace together with at least one of a reducing gas containing hydrogen, a liquid fuel containing hydrogen, and a solid substance containing hydrogen.
さらに、工程(D)により余剰のCO を分離除去した後のガスからHOを分離除去する工程(C)を有し、該工程(C)によりH Oを分離除去した後のガスを、水素を含む還元性ガス、水素を含む液体燃料、水素を含む固形物質のうちの1種以上とともに高炉内に吹き込むことを特徴とする請求項1に記載の高炉の操業方法。 Furthermore, it has a step (D) Step (C) separating off of H 2 O from the gas after separating and removing excess CO 2 by, after separating and removing of H 2 O by the step (C) Gas The blast furnace operating method according to claim 1, wherein the blast furnace is blown into a blast furnace together with at least one of a reducing gas containing hydrogen, a liquid fuel containing hydrogen, and a solid substance containing hydrogen . 工程(A)では、さらに高炉ガスからCOを取り出し、該COを高炉内に吹き込むことを特徴とする請求項1又は2に記載の高炉の操業方法。   3. The method of operating a blast furnace according to claim 1 or 2, wherein in step (A), CO is further extracted from the blast furnace gas, and the CO is blown into the blast furnace.
JP2012169030A 2012-07-31 2012-07-31 Blast furnace operation method Active JP6019893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169030A JP6019893B2 (en) 2012-07-31 2012-07-31 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169030A JP6019893B2 (en) 2012-07-31 2012-07-31 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2014028984A JP2014028984A (en) 2014-02-13
JP6019893B2 true JP6019893B2 (en) 2016-11-02

Family

ID=50201729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169030A Active JP6019893B2 (en) 2012-07-31 2012-07-31 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP6019893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220099573A (en) 2019-11-29 2022-07-13 닛폰세이테츠 가부시키가이샤 How to operate a blast furnace

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9970071B2 (en) * 2014-09-23 2018-05-15 Midrex Technologies, Inc. Method for reducing iron oxide to metallic iron using coke oven gas
KR102022680B1 (en) * 2018-11-23 2019-09-18 포항공과대학교 산학협력단 Method for producing pig iron
WO2021220555A1 (en) * 2020-04-27 2021-11-04 Jfeスチール株式会社 Iron manufaturing facility and method for manufacturing reduced iron
IT202100011189A1 (en) * 2021-05-03 2022-11-03 Nextchem S P A LOW ENVIRONMENTAL IMPACT PROCESS FOR THE REDUCTION OF IRON MINERALS IN A BLAST FURNACE USING SYNTHETIC GAS
KR20230128797A (en) * 2022-02-28 2023-09-05 현대제철 주식회사 Steelmaking method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157897A (en) * 1982-03-15 1983-09-20 Kobe Steel Ltd Method for increasing calorific power of gas generated from iron manufacturing plant
JP4720260B2 (en) * 2005-04-06 2011-07-13 Jfeスチール株式会社 Method and apparatus for injecting reducing material into blast furnace
JP5319140B2 (en) * 2008-03-19 2013-10-16 住友精化株式会社 Blast furnace gas separation method and blast furnace gas separation system
EP2543743B1 (en) * 2010-03-02 2017-11-29 JFE Steel Corporation Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220099573A (en) 2019-11-29 2022-07-13 닛폰세이테츠 가부시키가이샤 How to operate a blast furnace

Also Published As

Publication number Publication date
JP2014028984A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5796672B2 (en) How to operate a blast furnace or steelworks
WO2011108546A1 (en) Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
Flores-Granobles et al. Minimizing CO 2 emissions with renewable energy: a comparative study of emerging technologies in the steel industry
JP5810537B2 (en) How to use carbon oxide-containing gas
JP6019893B2 (en) Blast furnace operation method
JP2014005510A (en) Blast furnace operation method
EP2516326B1 (en) Conversion of hydrocarbons to carbon dioxide and electrical power
KR101710560B1 (en) Method for producing direct reduced iron with limited co2 emissions
KR101321072B1 (en) Apparatus for manufacturing syngas containing co and h2 and method thereof
US8926729B2 (en) Method and apparatus for direct reduction ironmaking
JP5069088B2 (en) How to use blast furnace gas
JP2004309067A (en) Method of using blast furnace gas
JP4580310B2 (en) Generation method of high calorific gas
JP5640786B2 (en) How to operate a blast furnace or steelworks
KR101142501B1 (en) Apparatus for manufacturing molten irons
CN103805728B (en) Method and device for producing reduced iron through synthetic gas prepared from high-nitrogen content retort gas
JP2018071894A (en) Method for separating and recovering hydrogen from blast furnace gas, method for producing hydrogen, and separation and recovery system of hydrogen from blast furnace gas
CN105431219A (en) Method for sustainable energy production in a power plant comprising a solid oxide fuel cell
JP2013010697A (en) Production method of methanol from gas occurring from steel plant and method for operating blast furnace
JP2017048087A (en) Method and apparatus for producing hydrogen from fossil fuel
JP2008143770A (en) System and apparatus for recovering waste heat
JP2000233918A (en) Production of carbon monoxide
CN106241736A (en) A kind of technique utilizing coke-stove gas extraction metallurgy reducing gases
JP5154968B2 (en) Method for reforming and separating mixed gas containing carbon dioxide
CN218853934U (en) Carbon dioxide adjustable system for preparing reducing gas of shaft furnace by coke oven gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6019893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250