JP2009120896A - Method for utilizing blast furnace gas - Google Patents

Method for utilizing blast furnace gas Download PDF

Info

Publication number
JP2009120896A
JP2009120896A JP2007295069A JP2007295069A JP2009120896A JP 2009120896 A JP2009120896 A JP 2009120896A JP 2007295069 A JP2007295069 A JP 2007295069A JP 2007295069 A JP2007295069 A JP 2007295069A JP 2009120896 A JP2009120896 A JP 2009120896A
Authority
JP
Japan
Prior art keywords
blast furnace
gas
furnace
furnace gas
calorific value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007295069A
Other languages
Japanese (ja)
Other versions
JP5069087B2 (en
Inventor
Taku Nasu
卓 那須
Futahiko Nakagawa
二彦 中川
Hiroyuki Ida
博之 井田
Takashi Haraoka
たかし 原岡
Hiroshi Kishimoto
啓 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Engineering Corp
Original Assignee
JFE Steel Corp
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Engineering Corp filed Critical JFE Steel Corp
Priority to JP2007295069A priority Critical patent/JP5069087B2/en
Publication of JP2009120896A publication Critical patent/JP2009120896A/en
Application granted granted Critical
Publication of JP5069087B2 publication Critical patent/JP5069087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for effectively utilizing reformed blast furnace gas having large exothermic quantity which is produced by separating and removing CO<SB>2</SB>and N<SB>2</SB>in the gas from the blast furnace gas exhausted from the furnace top part of the blast furnace. <P>SOLUTION: The reformed blast furnace gas improving the exothermic quantity in comparison with the original blast furnace gas by separating and removing CO<SB>2</SB>and N<SB>2</SB>in the gas from the blast furnace gas exhausted from the furnace top of the blast furnace, is produced. The reformed blast furnace gas is circularly used by blowing into the blast furnace, or used as the fluid gas in one or more of a heating furnace, soaking furnace, annealing furnace and holding furnace. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高炉炉頂から排出される高炉ガスからガス中のCO2及びN2を分離除去して発熱量の大きな改質高炉ガスを製造し、この改質高炉ガスを還元ガスまたは燃料ガスとして利用する方法に関するものである。 The present invention produces a reformed blast furnace gas having a large calorific value by separating and removing CO 2 and N 2 in the gas from the blast furnace gas discharged from the top of the blast furnace furnace. It is about the method of using as.

銑鋼一貫製鉄所において、鉄鉱石を還元して溶銑を製造する高炉の炉頂から排出される高炉ガスは、熱風炉燃料ガス、コークス炉燃料ガス及び発電所用燃料ガスとして有効利用されている。   Blast furnace gas discharged from the top of a blast furnace where iron ore is produced by reducing iron ore at an integrated iron and steel works is effectively used as a hot blast furnace fuel gas, a coke oven fuel gas, and a power plant fuel gas.

しかしながら高炉ガスは、その組成が、CO:21.1〜26.2体積%、CO2:19.3〜23.2体積%、H2:2.9〜5.3体積%、N2:52.5〜59.2体積%であり可燃性ガス成分が少なく、その発熱量が3031〜3784kJ(723〜903kcal/Nm3)と低く(第4版鉄鋼便覧(CD-ROM)No.1第2巻製銑・製鋼、2002年7月30日発行、表42-5・7(2000)を参照)、単独で燃料ガスとして使用すると、燃焼ガス温度が低くて高温用途には適していない。そこで、高炉ガスと同様に製鉄所の副生ガスであるコークス炉ガスや転炉ガスなどの2000kcal/Nm3以上の発熱量を有する高カロリー副生ガスと混合して、上記用途に利用している。 However, the composition of the blast furnace gas is as follows: CO: 21.1 to 26.2% by volume, CO 2 : 19.3 to 23.2% by volume, H 2 : 2.9 to 5.3% by volume, N 2 : 52.5 to 59.2% by volume, with less combustible gas components, and its calorific value is as low as 3031 to 3784 kJ (723 to 903 kcal / Nm 3 ) (4th Edition Steel Handbook (CD-ROM) No. 1 2) Steel making and steel making, issued July 30, 2002, see Tables 42-5 and 7 (2000)), if used alone as fuel gas, the combustion gas temperature is low and it is not suitable for high temperature applications. Therefore, as well as blast furnace gas, it is mixed with high calorie by-product gas having a calorific value of 2000 kcal / Nm 3 or more such as coke oven gas or converter gas which is a by-product gas of steelworks, and used for the above applications. Yes.

製鉄所における副生ガスの発生量では、高炉ガスの発生量が他の副生ガスに比べて極めて多く、その利用のために大量のコークス炉ガスや転炉ガスが増熱用ガスとして消費されている。特に近年、高炉の操業は重油吹き込みから微粉炭吹き込みに転換していることから、高炉ガスの発生量が増大する傾向にあり、それに伴って増熱用高カロリー副生ガスの消費量が増加し、従来、製鉄所下工程の鋼材加熱炉で使用していた高カロリーの副生ガスの不足が懸念される事態となりつつある。高カロリーの副生ガスの代替としては、LPGやLNGなどの購入燃料が使用されることになる。   The amount of by-product gas generated at steelworks is extremely high compared to other by-product gases, and a large amount of coke oven gas and converter gas is consumed as a heat-up gas for its use. ing. In particular, in recent years, the operation of blast furnaces has shifted from heavy oil blowing to pulverized coal blowing, so the amount of blast furnace gas generated tends to increase. Conventionally, the shortage of high-calorie by-product gas that has been used in steel heating furnaces in the steelworks sub-process is becoming a concern. As an alternative to the high-calorie by-product gas, purchased fuel such as LPG and LNG will be used.

そこで、高炉ガスを発熱量が高くなるように改質し、単独での利用を可能とする手段が幾つか提案されている。   In view of this, several means have been proposed for reforming the blast furnace gas so as to increase the calorific value and making it possible to use it alone.

例えば、特許文献1には、高炉炉頂から排出される高炉ガスからCO2を分離除去して900kcal/Nm3以上の発熱量の改質高炉ガスを製造し、この改質高炉ガスを、熱風炉燃料ガス、コークス炉燃料ガス及び発電用燃料ガスの燃料ガスとして使用されている、高炉ガス、コークス炉ガス、転炉ガス、LPGガスの何れか1種または2種以上の一部または全部と代替することが提案されている。また、特許文献1では、前記改質高炉ガスを鉄鉱石還元用の還元ガスとして還元炉において利用することも提案されている。 For example, Patent Document 1 discloses that a reformed blast furnace gas having a calorific value of 900 kcal / Nm 3 or more is produced by separating and removing CO 2 from the blast furnace gas discharged from the top of the blast furnace furnace. A part or all of one or more of blast furnace gas, coke oven gas, converter gas, and LPG gas used as fuel gas for furnace fuel gas, coke oven fuel gas, and power generation fuel gas An alternative has been proposed. Patent Document 1 also proposes that the modified blast furnace gas be used in a reduction furnace as a reducing gas for reducing iron ore.

特許文献2には、高炉ガスからCO2を除去して製造した改質高炉ガスを、加熱した後に高炉に吹き込んで循環使用することが提案されている。 Patent Document 2 proposes that a modified blast furnace gas produced by removing CO 2 from a blast furnace gas is heated and then blown into the blast furnace for circulation.

また、特許文献3には、アルミナ系吸着剤及び多孔性ポリスチレンを用いて高炉ガス中のCO2及びN2を夫々選択的に吸着分離させて、CO及びH2リッチガスを製造する方法が提案されている。
特開2004−309067号公報 特開昭55−113814号公報 特開昭62−193622号公報
Patent Document 3 proposes a method for producing CO and H 2 rich gas by selectively adsorbing and separating CO 2 and N 2 in blast furnace gas using an alumina adsorbent and porous polystyrene. ing.
JP 2004-309067 A JP-A-55-113814 Japanese Patent Laid-Open No. 62-193622

しかしながら、上記従来技術には以下の問題点がある。   However, the above prior art has the following problems.

特許文献1及び特許文献2では、高炉ガスからCO2だけを分離除去しており、高炉ガスのおよそ50体積%を占めるN2を除去しておらず、改質後の発熱量は高々1050kcal/Nm3程度であり、発熱量の増加は少なく、改質することによって発現される効果は少ない。 In Patent Document 1 and Patent Document 2, only CO 2 is separated and removed from the blast furnace gas, N 2 occupying about 50% by volume of the blast furnace gas is not removed, and the calorific value after reforming is at most 1050 kcal / It is about Nm 3 , the increase in calorific value is small, and the effect expressed by reforming is small.

特許文献3は、高炉ガスからCO2及びN2を除去してCO及びH2リッチガスを製造することを開示しているが、このCO及びH2リッチガスをどのような用途で利用するかが提案されていない。また、特許文献3の実施例におけるCO及びH2リッチガスの発熱量は1000kcal/Nm3未満であり、十分にCO2及びN2が除去されているとはいいがたい。 Patent Document 3 discloses that the production of CO and H 2 rich gas to remove CO 2 and N 2 from the blast furnace gas, either by using this CO and H 2 rich gas in any application proposed It has not been. Further, the calorific value of CO and H 2 rich gas in the example of Patent Document 3 is less than 1000 kcal / Nm 3 , and it cannot be said that CO 2 and N 2 are sufficiently removed.

本発明はこのような事情に鑑みてなされたもので、その目的とするところは、高炉炉頂から排出される高炉ガスからガス中のCO2及びN2を分離除去して製造される発熱量の大きな改質高炉ガスを有効活用する方法を提供することである。 The present invention has been made in view of such circumstances, and its object is to produce a calorific value produced by separating and removing CO 2 and N 2 in the gas from the blast furnace gas discharged from the top of the blast furnace furnace. It is to provide a method for effectively utilizing large reformed blast furnace gas.

上記課題を解決するための第1の発明に係る高炉ガスの利用方法は、高炉炉頂から排出される高炉ガスからガス中のCO2及びN2を分離除去して前記高炉ガスに比較して発熱量を高めた改質高炉ガスを製造し、この改質高炉ガスを高炉に吹き込んで循環使用することを特徴とするものである。 The method of using the blast furnace gas according to the first aspect of the present invention for solving the above-described problem is that the CO 2 and N 2 in the gas are separated and removed from the blast furnace gas discharged from the top of the blast furnace furnace and compared with the blast furnace gas. A reformed blast furnace gas with an increased calorific value is manufactured, and the reformed blast furnace gas is blown into the blast furnace for circulation.

第2の発明に係る高炉ガスの利用方法は、高炉炉頂から排出される高炉ガスからガス中のCO2及びN2を分離除去して前記高炉ガスに比較して発熱量を高めた改質高炉ガスを製造し、この改質高炉ガスを、加熱炉、均熱炉、焼鈍炉、保持炉のなかの何れか1種または2種以上での燃料ガスとして使用することを特徴とするものである。 The method of using the blast furnace gas according to the second invention is a reforming method in which CO 2 and N 2 in the gas are separated and removed from the blast furnace gas discharged from the top of the blast furnace furnace and the calorific value is increased as compared with the blast furnace gas. A blast furnace gas is produced, and this modified blast furnace gas is used as a fuel gas in one or more of a heating furnace, a soaking furnace, an annealing furnace, and a holding furnace. is there.

第3の発明に係る高炉ガスの利用方法は、第1または第2の発明において、前記高炉ガス中のCO2及びN2は、製鉄所の排熱を利用して分離除去されることを特徴とするものである。 The method of using blast furnace gas according to the third invention is characterized in that, in the first or second invention, CO 2 and N 2 in the blast furnace gas are separated and removed by using the exhaust heat of the steelworks. It is what.

第4の発明に係る高炉ガスの利用方法は、第1ないし第3の発明の何れかにおいて、前記改質高炉ガスの発熱量は2000kcal/Nm3以上であることを特徴とするものである。 A method for using blast furnace gas according to a fourth aspect of the present invention is characterized in that, in any one of the first to third aspects, the calorific value of the modified blast furnace gas is 2000 kcal / Nm 3 or more.

本発明によれば、高炉ガスからCO2及びN2を除去するので、発熱量が従来の高炉ガスの2倍以上である2000kcal/Nm3以上の改質高炉ガスを得ることができ、この改質高炉ガスを高炉に吹き込んだ場合には、改質高炉ガスは還元剤として機能し、その分の還元剤つまりコークスや微粉炭の供給量を削減することができ、また、加熱炉や均熱炉などで燃料ガスとして使用した場合には、燃焼後の排ガス量が減少することにより排ガスにより系外へ持ち去られる熱量が減少し、燃料使用量を削減することができる。また、高炉に吹き込んだ場合もまた加熱炉や均熱炉などで燃料ガスとして使用した場合も、新たに使用する還元剤或いは燃料ガスを削減することができ、それにより製鉄所におけるCO2発生量が削減される。このように本発明により環境上及び工業上有益な効果がもたらされる。 According to the present invention, since CO 2 and N 2 are removed from the blast furnace gas, a reformed blast furnace gas having a calorific value of 2000 kcal / Nm 3 or more, which is twice or more that of the conventional blast furnace gas, can be obtained. When the quality blast furnace gas is blown into the blast furnace, the reformed blast furnace gas functions as a reducing agent, which can reduce the supply of reducing agent, that is, coke and pulverized coal. When used as a fuel gas in a furnace or the like, the amount of exhausted gas after combustion decreases, so that the amount of heat taken away from the system by the exhaust gas decreases, and the amount of fuel used can be reduced. In addition, when it is blown into a blast furnace or used as a fuel gas in a heating furnace or a soaking furnace, it is possible to reduce the reducing agent or fuel gas to be newly used, thereby reducing the amount of CO 2 generated at the steelworks. Is reduced. Thus, the present invention provides environmentally and industrially beneficial effects.

以下、本発明を具体的に説明する。   The present invention will be specifically described below.

先ず、高炉ガスからCO2及びN2を分離除去したときのガス成分及び発熱量を説明する。表1に、H2を4.4体積%、N2を49.9体積%、COを23.6体積%、CO2を22.1体積%含有する高炉ガスから、CO2のみを除去したとき、及び、CO2とN2を除去したときのガス成分と発熱量を示す。尚、CO2及びN2は、それぞれ90%除去可能(CO2:22.1体積%→2.2体積%、N2:49.9体積%→5.0体積%)として算出している。体積比は、高炉ガスの体積を1.0としたときの体積の比率である。 First, gas components and calorific value when CO 2 and N 2 are separated and removed from blast furnace gas will be described. Table 1, the H 2 4.4 vol%, the N 2 49.9% by volume, the CO 23.6 vol%, CO 2 from the blast furnace gas containing 22.1 vol%, was removed only CO 2 And the gas component and calorific value when CO 2 and N 2 are removed. CO 2 and N 2 are each calculated as 90% removable (CO 2 : 22.1% by volume → 2.2% by volume, N 2 : 49.9% by volume → 5.0% by volume). . The volume ratio is the ratio of the volume when the volume of the blast furnace gas is 1.0.

Figure 2009120896
Figure 2009120896

表1に示すように、発生ままの高炉ガスの発熱量は825kcal/Nm3であり、この高炉ガスからCO2のみを分離したときには、可燃性ガス成分の増加分はおよそ7体積%に止まり、可燃性ガス成分の合計量は35体積%程度しかなく、発熱量は1031kcal/Nm3で、発熱量の増加分は少ない。これに対して、CO2とN2を分離除去したときには、可燃性ガス成分の合計量はおよそ80体積%に達し、発熱量は2346kcal/Nm3まで増加する。 As shown in Table 1, the calorific value of as-generated blast furnace gas is 825 kcal / Nm 3 , and when only CO 2 is separated from this blast furnace gas, the increase in combustible gas component is only about 7% by volume, The total amount of combustible gas components is only about 35% by volume, the calorific value is 1031 kcal / Nm 3 , and the increase in calorific value is small. On the other hand, when CO 2 and N 2 are separated and removed, the total amount of combustible gas components reaches approximately 80% by volume, and the calorific value increases to 2346 kcal / Nm 3 .

本発明は、高炉ガス増熱用の高カロリー副生ガスの消費量を削減することを目標としており、そのためには、高炉ガスを、単独での使用を可能とする高カロリーガスとして使用する必要があり、従って、本発明は、高炉ガスからCO2及びN2を分離除去した高カロリーの改質高炉ガスを利用することを前提とする。この場合、CO2及びN2の除去率に応じて発熱量は変化するが、2000kcal/Nm3以上の発熱量が得られるようにCO2及びN2を除去することが好ましい。 The present invention aims to reduce the consumption of high calorie by-product gas for blast furnace gas heat increase, and for that purpose, blast furnace gas needs to be used as a high calorie gas that can be used alone. Therefore, the present invention presupposes the use of a high calorie modified blast furnace gas obtained by separating and removing CO 2 and N 2 from the blast furnace gas. In this case, although the calorific value changes according to the CO 2 and N 2 removal rates, it is preferable to remove CO 2 and N 2 so that a calorific value of 2000 kcal / Nm 3 or more is obtained.

即ち、本発明は、高炉ガスからCO2及びN2を分離除去して高炉ガスに比較して発熱量を高めた改質高炉ガスを製造し、この改質高炉ガスを高炉に吹き込んで循環使用する、或いは、加熱炉、均熱炉、焼鈍炉、保持炉のなかの何れか1種または2種以上での燃料ガスとして使用することを特徴とする。 That is, the present invention produces a reformed blast furnace gas having a calorific value higher than that of the blast furnace gas by separating and removing CO 2 and N 2 from the blast furnace gas, and circulating the reformed blast furnace gas by blowing it into the blast furnace gas. Alternatively, it is characterized by being used as a fuel gas in one or more of a heating furnace, a soaking furnace, an annealing furnace, and a holding furnace.

本発明において高炉炉頂から排出される高炉ガスからガス中のCO2及びN2を分離除去する方法は特に規定する必要はなく、例えば、CO2の分離方法としては、アミン法、膜分離法、PSA法などを用い、N2の分離方法としては、膜分離法、PSA法などを用いることができる。但し、CO2及びN2を同時に分離除去するのではなく、2段分離、つまりどちらか一方を除去した後に残りの他の一方を除去する。ここで、高炉ガスからのCO2及びN2の分離に費やす動力などのエネルギー源は、省エネルギー及びCO2発生量の削減などの観点から、高炉炉体の冷却水、転炉排ガスの冷却水、加熱炉排ガスなどの製鉄所の排熱から回収したエネルギーを利用することが好ましい。 In the present invention, the method for separating and removing CO 2 and N 2 in the gas from the blast furnace gas discharged from the top of the blast furnace is not particularly required. For example, as a method for separating CO 2 , an amine method, a membrane separation method, and the like. As the N 2 separation method, a membrane separation method, a PSA method, or the like can be used. However, CO 2 and N 2 are not separated and removed at the same time, but two-stage separation, that is, one of the other is removed and the other is removed. Here, energy sources such as power consumed for separation of CO 2 and N 2 from blast furnace gas are blast furnace cooling water, converter exhaust gas cooling water, from the viewpoint of energy saving and reduction of CO 2 generation amount, It is preferable to use the energy recovered from the exhaust heat of the steelworks such as the heating furnace exhaust gas.

CO2分離に関して、アミン法は、他の方法よりも安価に分離し且つ大形化が可能であることから、設備規模が大きい場合には有利であるが、N2の同時分離はできないため、2段分離構成とし、2段目にN2分離を実施する。また、膜分離法、PSA法においては、用いる材料により分離特性が異なるため、2段分離構成とした方が分離率が向上する上に可燃性ガス成分のロス率も低下する。従って、好ましくは、1段目のCO2分離は、安価で設備規模を大きくすることのできるアミン法または安価に処理が可能で中小規模の設備として実績のあるPSA法を使用し、2段目のN2の分離は、PSA法を使用することとする。 As for CO 2 separation, the amine method is advantageous when the equipment scale is large because it can be separated at a lower cost than other methods and can be enlarged, but N 2 cannot be separated simultaneously. A two-stage separation configuration is used, and N 2 separation is performed in the second stage. Further, in the membrane separation method and the PSA method, the separation characteristics differ depending on the materials used, so that the separation rate is improved and the loss rate of the combustible gas component is also reduced when the two-stage separation configuration is adopted. Therefore, preferably, the CO 2 separation in the first stage uses an amine method which can be inexpensive and can increase the scale of the equipment, or a PSA method which can be processed at a low cost and has a proven record as a small and medium-sized equipment. For the separation of N 2 , the PSA method will be used.

本発明においては、高炉ガスからCO2及びN2を除去して製造した改質高炉ガスを、高炉に吹き込んで循環使用するか、或いは、加熱炉、均熱炉、焼鈍炉、保持炉で燃料ガスとして使用するが、先ず、高炉で循環使用する場合について説明する。 In the present invention, the modified blast furnace gas produced by removing CO 2 and N 2 from the blast furnace gas is circulated and used in the blast furnace, or fuel is used in a heating furnace, a soaking furnace, an annealing furnace, and a holding furnace. Although used as a gas, first, the case of circulating in a blast furnace will be described.

高炉では炉頂から、主原料である鉄鉱石、還元剤及び燃料であるコークス、及び造滓剤である石灰石などを装入し、下部側壁に設けた羽口から1000℃以上に加熱された熱風を吹き込んで鉄鉱石を還元して溶銑を製造している。燃料として羽口から重油を吹き込む場合もあるが、近年では安価な微粉炭を吹き込むのが一般的である。熱風には、通常、1〜2体積%の酸素が富化されている。   In the blast furnace, hot ore heated from the top of the furnace to iron ore as the main raw material, coke as the reducing agent and fuel, and limestone as the slagging agent, and heated to 1000 ° C or higher from the tuyere provided on the lower side wall The iron ore is reduced to produce hot metal. In some cases, heavy oil is blown from the tuyere as fuel, but in recent years, inexpensive pulverized coal is generally blown. Hot air is typically enriched with 1-2% oxygen by volume.

鉄鉱石は、炉内を降下する間に、コークスの燃焼熱及び熱風によって加熱されるとともに、コークスや微粉炭の燃焼によって生成するCOによって還元される。この還元反応は、「FeOn+nCO→Fe+nCO2」で表され、「間接還元」と呼ばれている。また、コークス或いは微粉炭と直接反応することでも還元されている。この還元反応は、「FeOn+nC→Fe+nCO」で表され、「直接還元」と呼ばれている。 While the iron ore descends in the furnace, it is heated by coke combustion heat and hot air, and is reduced by CO produced by the combustion of coke and pulverized coal. This reduction reaction is represented by “FeOn + nCO → Fe + nCO 2 ” and is called “indirect reduction”. It is also reduced by direct reaction with coke or pulverized coal. This reduction reaction is represented by “FeOn + nC → Fe + nCO” and is called “direct reduction”.

本発明では、羽口からCO2及びN2を除去した改質高炉ガスを熱風とともに炉内に吹き込む。改質高炉ガスはCOを主成分とし、更に10体積%程度のH2を含有しており、この改質高炉ガス中のCO及びH2により、鉄鉱石は還元される。従って、改質高炉ガスの供給量に相当する当量分の還元剤、具体的には羽口から吹き込む微粉炭を削減することができる。コークスも還元剤であるが、コークスは炉内の通気性を確保する作用・効果もあるので、コークスを削減する場合にはこの点に留意する必要がある。高炉の熱効率を高める上で、改質高炉ガスも熱風と同様に1000℃程度まで加熱した後に炉内に供給することが好ましい。 In the present invention, the modified blast furnace gas from which CO 2 and N 2 have been removed from the tuyere is blown into the furnace together with hot air. The reformed blast furnace gas contains CO as a main component and further contains about 10% by volume of H 2 , and iron ore is reduced by the CO and H 2 in the reformed blast furnace gas. Therefore, the reducing agent equivalent to the supply amount of the reformed blast furnace gas, specifically, the pulverized coal blown from the tuyere can be reduced. Coke is also a reducing agent, but coke also has the action and effect of ensuring air permeability in the furnace, so it is necessary to pay attention to this point when reducing coke. In order to increase the thermal efficiency of the blast furnace, it is preferable that the reformed blast furnace gas is supplied to the furnace after being heated to about 1000 ° C. like the hot air.

炉内への熱風の供給量は、微粉炭などの還元剤の燃焼に費やされる相当量を減少する必要があり、従って、微粉炭などの還元剤の供給量の削減量に応じて、炉内への熱風の供給量を削減する。これにより、熱風の送風動力が削減される。また、炉内への熱風の供給量を削減することにより、炉頂から排出される高炉ガス中のN2含有量が減少し、排出される高炉ガスの発熱量が増加するという効果も発現する。排出されるこの高炉ガスを回収し、回収した高炉ガス中のCO2及びN2を分離除去し、得られた改質高炉ガスを羽口から高炉内に吹き込み、循環して使用する。 The amount of hot air supplied to the furnace must be reduced by a considerable amount consumed for the combustion of the reducing agent such as pulverized coal. Therefore, depending on the amount of reduction in the amount of reducing agent supplied such as pulverized coal, Reduce the amount of hot air supplied to Thereby, the blowing power of hot air is reduced. In addition, by reducing the amount of hot air supplied to the furnace, the N 2 content in the blast furnace gas discharged from the top of the furnace is reduced, and the heat generation amount of the discharged blast furnace gas is increased. . The discharged blast furnace gas is recovered, CO 2 and N 2 in the recovered blast furnace gas are separated and removed, and the obtained modified blast furnace gas is blown into the blast furnace from the tuyere and circulated for use.

このような操業形態を行うことで、従来使用していた微粉炭の使用が不必要となり、それによってCO2の発生量を削減することが可能となる。例えば、還元剤及び燃料としてコークス及び微粉炭を使用し、これらに占める微粉炭の比率が20質量%程度の高炉では、CO2及びN2を除去した分離改質高炉ガスを循環使用することにより、この高炉から排出されるCO2のおよそ30%を削減することが達成される。 By performing such an operation mode, it is unnecessary to use pulverized coal that has been used in the past, thereby reducing the amount of CO 2 generated. For example, when coke and pulverized coal are used as the reducing agent and fuel, and the ratio of pulverized coal in the blast furnace is about 20% by mass, the separated reformed blast furnace gas from which CO 2 and N 2 have been removed is circulated and used. A reduction of approximately 30% of the CO 2 emitted from this blast furnace is achieved.

次に、改質高炉ガスを加熱炉、均熱炉、焼鈍炉、保持炉で燃料ガスとして使用する場合について説明する。この場合、使用する改質高炉ガスの発熱量は2000kcal/Nm3以上であることが好ましい。 Next, the case where the modified blast furnace gas is used as a fuel gas in a heating furnace, a soaking furnace, an annealing furnace, and a holding furnace will be described. In this case, the calorific value of the reformed blast furnace gas to be used is preferably 2000 kcal / Nm 3 or more.

改質高炉ガスの発熱量は2000kcal/Nm3以上であるので、増熱用の高カロリー副生ガス(コークス炉ガス、転炉ガス)或いはLPGやLNGなどの購入燃料は不要であり、改質高炉ガスのみを、加熱炉、均熱炉、焼鈍炉、保持炉の燃料ガスとして使用する。この場合、高炉ガスにコークス炉ガスなどを混合したものを燃料ガスとしていた装置では、装置の仕様を変えることなく燃料ガスを切り替えるだけで対処することができる。 Since the calorific value of the reformed blast furnace gas is 2000 kcal / Nm 3 or more, there is no need for high calorie by-product gas (coke oven gas, converter gas) or purchased fuel such as LPG or LNG for heat increase. Only blast furnace gas is used as fuel gas for heating furnace, soaking furnace, annealing furnace and holding furnace. In this case, an apparatus that uses a mixture of blast furnace gas and coke oven gas as fuel gas can be dealt with by simply switching the fuel gas without changing the specifications of the apparatus.

改質高炉ガスを、加熱炉、均熱炉、焼鈍炉、保持炉などの燃料ガスとして使用することにより、燃料ガスに含まれるCO2及びN2によって系外に持ち去られる熱量(排熱)が減少し、加熱のために使用される燃料ガスの使用量が削減される。これにより、加熱炉、均熱炉、焼鈍炉、保持炉などにおけるCO2の排出量が削減される。 By using the modified blast furnace gas as a fuel gas for heating furnaces, soaking furnaces, annealing furnaces, holding furnaces, etc., the amount of heat (exhaust heat) carried away from the system by the CO 2 and N 2 contained in the fuel gas is reduced. This reduces the amount of fuel gas used for heating. As a result, CO 2 emissions in a heating furnace, a soaking furnace, an annealing furnace, a holding furnace, and the like are reduced.

以上説明したように、本発明により製鉄所におけるCO2発生量が削減されるのみならず、微粉炭や燃料ガスの削減が可能となり、環境上並びに工業上有益な効果がもたらされる。 As described above, according to the present invention, not only the amount of CO 2 generated at the steel works is reduced, but also the pulverized coal and fuel gas can be reduced, which brings about an environmentally and industrially beneficial effect.

Claims (4)

高炉炉頂から排出される高炉ガスからガス中のCO2及びN2を分離除去して前記高炉ガスに比較して発熱量を高めた改質高炉ガスを製造し、この改質高炉ガスを高炉に吹き込んで循環使用することを特徴とする、高炉ガスの利用方法。 By separating and removing CO 2 and N 2 in the gas from the blast furnace gas discharged from the top of the blast furnace furnace, a modified blast furnace gas having a higher calorific value than that of the blast furnace gas is manufactured, and this modified blast furnace gas is used as a blast furnace. A method of using blast furnace gas, characterized in that the blast furnace gas is circulated and used. 高炉炉頂から排出される高炉ガスからガス中のCO2及びN2を分離除去して前記高炉ガスに比較して発熱量を高めた改質高炉ガスを製造し、この改質高炉ガスを、加熱炉、均熱炉、焼鈍炉、保持炉のなかの何れか1種または2種以上での燃料ガスとして使用することを特徴とする、高炉ガスの利用方法。 Separately removing CO 2 and N 2 in the gas from the blast furnace gas discharged from the top of the blast furnace furnace to produce a modified blast furnace gas having a higher calorific value than the blast furnace gas, A method of using blast furnace gas, characterized by being used as a fuel gas in one or more of a heating furnace, a soaking furnace, an annealing furnace, and a holding furnace. 前記高炉ガス中のCO2及びN2は、製鉄所の排熱を利用して分離除去されることを特徴とする、請求項1または請求項2に記載の高炉ガスの利用方法。 3. The method of using blast furnace gas according to claim 1, wherein CO 2 and N 2 in the blast furnace gas are separated and removed using waste heat of the steelworks. 前記改質高炉ガスの発熱量は2000kcal/Nm3以上であることを特徴とする、請求項1ないし請求項3の何れか1つに記載の高炉ガスの利用方法。 The method of using a blast furnace gas according to any one of claims 1 to 3, wherein the calorific value of the modified blast furnace gas is 2000 kcal / Nm 3 or more.
JP2007295069A 2007-11-14 2007-11-14 How to use blast furnace gas Active JP5069087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007295069A JP5069087B2 (en) 2007-11-14 2007-11-14 How to use blast furnace gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007295069A JP5069087B2 (en) 2007-11-14 2007-11-14 How to use blast furnace gas

Publications (2)

Publication Number Publication Date
JP2009120896A true JP2009120896A (en) 2009-06-04
JP5069087B2 JP5069087B2 (en) 2012-11-07

Family

ID=40813366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295069A Active JP5069087B2 (en) 2007-11-14 2007-11-14 How to use blast furnace gas

Country Status (1)

Country Link
JP (1) JP5069087B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106802A (en) * 2009-10-22 2011-06-02 Jfe Steel Corp Method of burning gas of low calorific value by combustion burner and method of operating blast furnace
JP2011106803A (en) * 2009-10-22 2011-06-02 Jfe Steel Corp Method of burning blast furnace gas by combustion burner, and method of operating blast furnace
JP2011202271A (en) * 2010-03-02 2011-10-13 Jfe Steel Corp Method for utilizing gas containing carbon oxides
JP2011225968A (en) * 2010-03-30 2011-11-10 Jfe Steel Corp Method for operating blast furnace or iron mill
JP2013130375A (en) * 2011-12-22 2013-07-04 Jfe Steel Corp Method of manufacturing combustible gas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144402A (en) * 1979-04-24 1980-11-11 Foster Wheeler Corp Production of reducing gas to be blown into furnace
JPS582386A (en) * 1981-06-30 1983-01-07 Osaka Gas Co Ltd Combined treatment of blast furnace gas and coal gas
JPS6246911A (en) * 1985-08-21 1987-02-28 Mitsubishi Heavy Ind Ltd Method for concentrating gaseous co
JPS62193622A (en) * 1986-02-20 1987-08-25 Mitsubishi Heavy Ind Ltd Method and apparatus for increasing calorific value of blast furnace gas
JPH11241109A (en) * 1997-12-24 1999-09-07 Nippon Steel Corp Method for injecting pulverized fine coal and reducing gas into blast furnace
JP2004309067A (en) * 2003-04-09 2004-11-04 Nippon Steel Corp Method of using blast furnace gas
JP2007261824A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Method for separating and recovering carbon monoxide in raw gas
JP2009133601A (en) * 2007-10-31 2009-06-18 Jfe Steel Corp Separation method for blast furnace gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144402A (en) * 1979-04-24 1980-11-11 Foster Wheeler Corp Production of reducing gas to be blown into furnace
JPS582386A (en) * 1981-06-30 1983-01-07 Osaka Gas Co Ltd Combined treatment of blast furnace gas and coal gas
JPS6246911A (en) * 1985-08-21 1987-02-28 Mitsubishi Heavy Ind Ltd Method for concentrating gaseous co
JPS62193622A (en) * 1986-02-20 1987-08-25 Mitsubishi Heavy Ind Ltd Method and apparatus for increasing calorific value of blast furnace gas
JPH11241109A (en) * 1997-12-24 1999-09-07 Nippon Steel Corp Method for injecting pulverized fine coal and reducing gas into blast furnace
JP2004309067A (en) * 2003-04-09 2004-11-04 Nippon Steel Corp Method of using blast furnace gas
JP2007261824A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Method for separating and recovering carbon monoxide in raw gas
JP2009133601A (en) * 2007-10-31 2009-06-18 Jfe Steel Corp Separation method for blast furnace gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106802A (en) * 2009-10-22 2011-06-02 Jfe Steel Corp Method of burning gas of low calorific value by combustion burner and method of operating blast furnace
JP2011106803A (en) * 2009-10-22 2011-06-02 Jfe Steel Corp Method of burning blast furnace gas by combustion burner, and method of operating blast furnace
JP2011202271A (en) * 2010-03-02 2011-10-13 Jfe Steel Corp Method for utilizing gas containing carbon oxides
JP2011225968A (en) * 2010-03-30 2011-11-10 Jfe Steel Corp Method for operating blast furnace or iron mill
JP2013130375A (en) * 2011-12-22 2013-07-04 Jfe Steel Corp Method of manufacturing combustible gas

Also Published As

Publication number Publication date
JP5069087B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP2004309067A (en) Method of using blast furnace gas
CN106103746B (en) The operating method of oxygen blast furnace
JP6513680B2 (en) How to operate furnace top gas circulation blast furnace equipment
JP2022535446A (en) Method and system for producing steel or molten iron containing material with reduced emissions
TWI429753B (en) Method for separating blast furnace gas
TWI660072B (en) Method for reducing co2 emissions in the operation of a metallurgical plant
JP2020525655A (en) How to operate a steelmaking or steelmaking plant
RU2011120330A (en) METHOD AND DEVICE FOR CONTROL OF RESTORING Smelting Process
JP5069087B2 (en) How to use blast furnace gas
TW202219278A (en) Metallurgic plant for producing iron products and method of operating thereof
TWI803522B (en) Method for producing hot synthesis gas, in particular for use in blast furnace operation
CN105579593A (en) DNA-adapter-molecules for the preparation of DNA-libraries and method for producing them and use
TW202237861A (en) Smart hydrogen production for dri making
EP2940156B1 (en) Molten iron manufacturing apparatus and molten iron manufacturing method
CN101558170B (en) Arc furnace steelmaking process using palm shell charcoal
JP5851828B2 (en) Method for producing combustible gas
EP4032991A1 (en) Smart hydrogen production for dri making
JP2010275582A (en) Method for operating vertical furnace
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
TW201035327A (en) Process and installation for producing substitute gas
JP5339597B2 (en) Energy management method at steelworks
JP2019158328A (en) Method for generating CO2-containing gas
JP2020045508A (en) Operation method of blast furnace
JP7272312B2 (en) Method for producing reduced iron
JP2016176682A (en) Hydrogen manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5069087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250