JP2013130375A - Method of manufacturing combustible gas - Google Patents

Method of manufacturing combustible gas Download PDF

Info

Publication number
JP2013130375A
JP2013130375A JP2011281810A JP2011281810A JP2013130375A JP 2013130375 A JP2013130375 A JP 2013130375A JP 2011281810 A JP2011281810 A JP 2011281810A JP 2011281810 A JP2011281810 A JP 2011281810A JP 2013130375 A JP2013130375 A JP 2013130375A
Authority
JP
Japan
Prior art keywords
gas
blast furnace
hydrogen
carbon dioxide
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011281810A
Other languages
Japanese (ja)
Other versions
JP5851828B2 (en
Inventor
Takashi Haraoka
たかし 原岡
Hitoshi Saima
等 斉間
Yasuhiro Mogi
康弘 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Nippon Steel Engineering Co Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel and Sumitomo Metal Corp
Nisshin Steel Co Ltd
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel and Sumitomo Metal Corp, Nisshin Steel Co Ltd, Nippon Steel and Sumikin Engineering Co Ltd filed Critical JFE Steel Corp
Priority to JP2011281810A priority Critical patent/JP5851828B2/en
Publication of JP2013130375A publication Critical patent/JP2013130375A/en
Application granted granted Critical
Publication of JP5851828B2 publication Critical patent/JP5851828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a combustible gas of high combustibility, from a blast furnace gas.SOLUTION: A hydrogen-containing gas b as a gas composed of hydrogen and/or a compound including hydrogen, is introduced to a blast furnace 3 with the air heated by a hot-blast stove 1 or oxygen-enriched air a, then an incombustible gas g is separated and removed from the blast furnace gas c discharged from the blast furnace 3, by an incombustible gas separating/removing section 4, and a gas e of high calory is added to the obtained gas d after the separation according to the necessity to obtain the combustible gas f.

Description

本発明は、燃焼性ガスの製造方法に関し、特に高炉の炉頂から排出される副生ガスから高い燃焼性を有する燃焼性ガスを製造する方法に関するものである。   The present invention relates to a method for producing a combustible gas, and more particularly to a method for producing a combustible gas having high combustibility from a by-product gas discharged from the top of a blast furnace.

一般に、製鉄所ではコークス炉、高炉および転炉などの設備からは副生ガスと呼ばれるガスが発生し、この副生ガスには、水素、一酸化炭素およびメタンといった、燃料として利用可能な燃焼性ガスの他に、窒素や二酸化炭素等の不燃性ガスが含有されている。これらの副生ガスは、その大部分が発電所や加熱炉等において燃焼によって発生する熱を利用する用途に使用されているが、上述のように、これらの副生ガス中には窒素や二酸化炭素といった不活性な成分が含まれるために、体積当たりの熱量は700〜4500kcal/Nm程度と、一般的な燃料ガスであるプロパンガスや天然ガスに比べて低いのが特徴である。 In general, steelworks produce gas called by-product gas from equipment such as coke ovens, blast furnaces, and converters, and this by-product gas has combustibility that can be used as fuel, such as hydrogen, carbon monoxide, and methane. In addition to gas, nonflammable gases such as nitrogen and carbon dioxide are contained. Most of these by-product gases are used in applications that use heat generated by combustion in power plants, heating furnaces, etc., but as mentioned above, these by-product gases include nitrogen and carbon dioxide. Since an inert component such as carbon is contained, the heat per volume is about 700 to 4500 kcal / Nm 3 , which is lower than propane gas and natural gas, which are general fuel gases.

特に、高炉から排出される副生ガスである高炉ガスには、窒素が50〜55体積%程度、二酸化炭素が20〜23体積%程度含まれているため、単位体積当たりの熱量は700kcal/Nm程度であるとともに、含有する水素の濃度は3体積%前後である。このため、高炉ガス単体では熱量が不足するとともに水素濃度が低く燃焼性が低いことから、熱量が高く、かつ水素を含有する他の副生ガスあるいは天然ガス等を購入して混合することによって、単位体積当たりの熱量および水素濃度を増加させて使用することも多い。 In particular, since the blast furnace gas, which is a by-product gas discharged from the blast furnace, contains about 50 to 55% by volume of nitrogen and about 20 to 23% by volume of carbon dioxide, the amount of heat per unit volume is 700 kcal / Nm. While being about 3 , the concentration of hydrogen contained is around 3% by volume. For this reason, blast furnace gas alone has a shortage of heat and low hydrogen concentration and low combustibility, so by purchasing and mixing other by-product gas or natural gas containing high heat and containing hydrogen, It is often used by increasing the amount of heat and hydrogen concentration per unit volume.

また、高炉ガスは、製鉄所で発生する副生ガスの中で最も量が多いため、この高炉ガスの燃焼性改善のために使用される他の副生ガスあるいは天然ガスの量も必然的に多くなり、貴重な高熱量ガスの消耗、あるいは、高価な燃料の購入量の増加に結びつく。   In addition, since the amount of by-product gas generated at steelworks is the largest, blast furnace gas is inevitably in the amount of other by-product gas or natural gas used to improve the flammability of this blast furnace gas. This increases the consumption of valuable high calorific gas or increases the purchase of expensive fuel.

一方、昨今の化石燃料依存からの脱却というエネルギー安全保障の観点、あるいは様々な環境問題への対応から、製鉄プロセスにおける石炭系原料の使用削減努力が続けられている。その結果、製鉄所における各プロセスからの排ガスの熱量が減少しており、排ガスの構成が、単位体積当たりの熱量がより高いコークス炉ガスの割合が低下し、熱量がより低い高炉ガスの割合が増加する傾向にあり、この高炉ガスを有効利用する方法の開発が必要となっていた。   On the other hand, efforts are being made to reduce the use of coal-based raw materials in the steelmaking process from the viewpoint of energy security, which is the departure from the recent dependence on fossil fuels, or in response to various environmental problems. As a result, the calorific value of the exhaust gas from each process in the steel works is reduced, the proportion of the coke oven gas with a higher calorie per unit volume is reduced, and the proportion of the blast furnace gas with a lower calorie is reduced. There was a tendency to increase, and it was necessary to develop a method for effectively using this blast furnace gas.

そのために、これらの副生ガスから予め不活性成分を除去する方法に関して、特に、最近の二酸化炭素排出削減の要請からこれら副生ガスから二酸化炭素を分離回収する方法に関して、幾つかの提案がなされている。   For this reason, some proposals have been made regarding methods for removing inert components from these by-product gases in advance, and particularly regarding methods for separating and recovering carbon dioxide from these by-product gases in response to recent requests for reduction of carbon dioxide emissions. ing.

例えば、特許文献1には、製鉄所の副生ガスから二酸化炭素を化学回収法で分離回収する際に、製鉄所から排出される廃熱を利用することによって分離回収コストを低減する方法が提案されている。
また、特許文献2には、副生ガスからの二酸化炭素の分離に廃熱とともに工場用蒸気を併用する方法が提案されている。
For example, Patent Document 1 proposes a method of reducing separation and recovery costs by utilizing waste heat discharged from a steelworks when carbon dioxide is separated and recovered from a by-product gas of the steelworks by a chemical recovery method. Has been.
Patent Document 2 proposes a method in which factory steam is used together with waste heat for the separation of carbon dioxide from by-product gas.

さらに、特許文献3には、高炉ガスから二酸化炭素及び/または窒素を分離除去して高炉ガスの熱量を増加する際に、二酸化炭素及び/または窒素の分離除去に先立って、高炉ガス中のミスト、ダスト及び硫黄分を除去する予備処理工程を予め実施することにより、効率良く、かつ少ない投入エネルギーで高炉ガスから二酸化炭素または窒素を分離する技術について記載されている。   Further, Patent Document 3 describes that when carbon dioxide and / or nitrogen is separated and removed from the blast furnace gas to increase the amount of heat of the blast furnace gas, the mist in the blast furnace gas is separated prior to the separation and removal of carbon dioxide and / or nitrogen. A technique for separating carbon dioxide or nitrogen from blast furnace gas efficiently and with low input energy by preliminarily performing a pretreatment process for removing dust and sulfur is described.

特開2004−237167号公報JP 2004-237167 A 特開2004−292298号公報JP 2004-292298 A 特開2009−108241号公報JP 2009-108241 A

しかしながら、特許文献1〜3に記載された方法により得られるガスよりも、さらに高い燃焼性を有するガスの製造方法の開発が希求されていた。
そこで、本発明の目的は、排出量の多い高炉ガスから高い燃焼性を有する燃焼性ガスを製造する方法を提供することにある。
However, development of the manufacturing method of the gas which has still higher combustibility than the gas obtained by the method described in patent documents 1-3 was calculated | required.
Therefore, an object of the present invention is to provide a method for producing a combustible gas having a high combustibility from a blast furnace gas having a large amount of emissions.

発明者らは、上記課題を解決する方途について鋭意検討した結果、水素および/または水素を含む化合物からなるガス(以下、「水素含有ガス」と称する)を高炉に吹き込むことにより、高炉から排出される高炉ガス中に含まれる水素および二酸化炭素の濃度を高め、次いで高炉ガスから不燃性ガスを分離除去することが有効であることを見出し、本発明を完成させるに到った。   As a result of intensive investigations on how to solve the above problems, the inventors of the present invention discharged hydrogen and / or a compound containing hydrogen (hereinafter referred to as “hydrogen-containing gas”) into the blast furnace and discharged from the blast furnace. It has been found that it is effective to increase the concentration of hydrogen and carbon dioxide contained in the blast furnace gas, and then to separate and remove the nonflammable gas from the blast furnace gas, thereby completing the present invention.

即ち、本発明の要旨構成は、次のとおりである。
(1)水素および/または水素を含む化合物からなるガスを高炉に導入し、次いで該高炉から排出された排ガスから不燃性ガスを分離除去することにより燃焼性ガスを得ることを特徴とする燃焼性ガスの製造方法。
That is, the gist of the present invention is as follows.
(1) Combustibility characterized by obtaining a combustible gas by introducing a gas comprising hydrogen and / or a compound containing hydrogen into a blast furnace, and then separating and removing the non-combustible gas from the exhaust gas discharged from the blast furnace. Gas production method.

(2)前記高炉に導入するガスに含まれる水素量が溶銑トン当たり1〜18kgであることを特徴とする、(1)に記載の燃焼性ガスの製造方法。 (2) The method for producing a combustible gas according to (1), wherein the amount of hydrogen contained in the gas introduced into the blast furnace is 1 to 18 kg per ton of molten iron.

(3)前記不燃性ガスの分離除去は、圧力スイング式の物理吸着法により行うことを特徴とする、(1)または(2)に記載の燃焼性ガスの製造方法。 (3) The method for producing a combustible gas according to (1) or (2), wherein the separation and removal of the incombustible gas is performed by a pressure swing type physical adsorption method.

(4)前記水素含有ガスは、水素ガス、液化天然ガス、メタンガスのいずれかあるいはこれら2種類以上の混合ガスであることを特徴とする、(1)〜(3)のいずれか一項に記載の燃焼性ガスの製造方法。 (4) The hydrogen-containing gas is any one of hydrogen gas, liquefied natural gas, and methane gas, or a mixed gas of two or more of them, (1) to (3), Method for producing combustible gas.

本発明によれば、水素および/または水素を含む化合物からなる水素含有ガスを高炉に導入することにより、炉頂から排出される高炉ガスに含まれる水素および二酸化炭素の含有ガスを高めることができ、高炉ガスに含まれる水素の含有率が高められたことにより高炉ガス自体の燃焼性が高まるとともに、二酸化炭素の含有率が高められたために物理吸着法より高炉ガスから二酸化炭素を効率的に除去できるため、高い燃焼性を有する燃焼性ガスを製造することができる。   According to the present invention, hydrogen and / or carbon dioxide-containing gas contained in the blast furnace gas discharged from the top of the furnace can be increased by introducing hydrogen-containing gas comprising hydrogen and / or a compound containing hydrogen into the blast furnace. The increased hydrogen content in the blast furnace gas increases the flammability of the blast furnace gas itself, and the increased carbon dioxide content effectively removes carbon dioxide from the blast furnace gas by the physical adsorption method. Therefore, combustible gas having high combustibility can be produced.

本発明による燃焼性ガスの製造方法に用いる装置を示す図である。It is a figure which shows the apparatus used for the manufacturing method of the combustion gas by this invention. 高炉に導入する水素含有ガスの供給量と高炉ガスの組成との関係を示す図である。It is a figure which shows the relationship between the supply amount of the hydrogen containing gas introduce | transduced into a blast furnace, and the composition of a blast furnace gas. 高炉に導入する水素含有ガスの供給量と高炉ガスの熱量との関係を示す図である。It is a figure which shows the relationship between the supply amount of the hydrogen containing gas introduced into a blast furnace, and the calorie | heat amount of blast furnace gas. 高炉に導入する水素含有ガスの供給量と高炉ガスから二酸化炭素を分離した後のガスの組成との関係を示す図である。It is a figure which shows the relationship between the supply amount of the hydrogen-containing gas introduced into a blast furnace, and the composition of the gas after isolate | separating a carbon dioxide from blast furnace gas. 高炉に導入する水素含有ガスの供給量と、高炉ガスおよび高炉ガスから二酸化炭素を分離した後のガスの単位体積当たりの熱量との関係を示す図である。It is a figure which shows the relationship between the supply amount of the hydrogen-containing gas introduced into a blast furnace, and the calorie | heat amount per unit volume of the gas after isolate | separating carbon dioxide from blast furnace gas and blast furnace gas. 高炉に導入する水素含有ガスの供給量と、高炉ガスおよび高炉ガスから二酸化炭素を分離した後のガスの水素濃度を6体積%とするのに必要な、新たに追加すべき水素ガスの量との関係を示す図である。The supply amount of the hydrogen-containing gas introduced into the blast furnace, the amount of hydrogen gas to be newly added necessary for the hydrogen concentration of the gas after separating carbon dioxide from the blast furnace gas and the blast furnace gas to be 6% by volume, It is a figure which shows the relationship. 高炉に導入する水素含有ガスの供給量と、高炉ガスおよび高炉ガスから二酸化炭素を分離した後のガスの、単位体積当たりの熱量を1050kcal/Nmとするのに必要な、新たに追加すべきメタンガスの量との関係を示す図である。The supply amount of the hydrogen-containing gas to be introduced into the blast furnace and the amount of heat per unit volume of the gas after separating the blast furnace gas and carbon dioxide from the blast furnace gas should be newly added, which is necessary for 1050 kcal / Nm 3 It is a figure which shows the relationship with the quantity of methane gas.

本発明による燃焼性ガスの製造方法を説明する前に、まず従来技術による燃焼性ガスの製造方法について説明する。
従来の燃焼性ガスの製造方法は以下の通りである。即ち、まず熱風炉により1050〜1250℃に加温された空気または酸素濃度を30体積%程度まで高めた空気(以下、「酸素富化空気」と称する)を、溶銑トン当たり900〜1100Nm高炉の下部に吹き込む。この吹き込まれた空気または酸素富化空気は、高炉内部で炭素材料と反応することによって鉄鉱石の還元に必要な熱を発生させ、高炉内にて発生した副生ガスを高炉ガスとして炉頂から排出する。上述のように、この排出された高炉ガスに含まれる水素の濃度および熱量は低いため、次いで不燃性ガス分離除去部により二酸化炭素や窒素等の不燃性ガスを分離除去する。
Before describing the method for producing a combustible gas according to the present invention, a method for producing a combustible gas according to the prior art will be described first.
A conventional method for producing a combustible gas is as follows. That is, first, air heated to 1,050 to 1,250 ° C. by a hot air furnace or air having an oxygen concentration increased to about 30% by volume (hereinafter referred to as “oxygen-enriched air”) is used at 900 to 1100 Nm 3 blast furnace per ton of hot metal. Blow into the bottom of the. This blown air or oxygen-enriched air reacts with the carbon material inside the blast furnace to generate heat necessary for the reduction of iron ore, and by-product gas generated in the blast furnace is used as blast furnace gas from the top of the furnace. Discharge. As described above, since the concentration and heat quantity of hydrogen contained in the discharged blast furnace gas are low, nonflammable gases such as carbon dioxide and nitrogen are then separated and removed by the nonflammable gas separation and removal unit.

通常、コークスや微粉炭等の石炭系材料のみを還元材とした高炉操業では、高炉ガスの成分組成は、一酸化炭素:21〜26体積%、水素:3〜5体積%、二酸化炭素:19〜23体積%、および窒素:53〜59体積%であり、この高炉ガスを発電所における燃料として利用する際には、単位体積当たりの熱量を増大させるために、例えばコークス炉ガス(約4500kcal/Nm)や液化天然ガス(約9500kcal/Nm)等の高い熱量を有するガス(以下、「高熱量ガス」と称する)を添加することにより、熱量を1050kcal/Nm程度に調整するとともに、ガスに含まれる水素の濃度が6体積%となるように、例えばコークス炉ガスやコークス炉ガスより分離された水素を添加して調整することが必要であり、このような調整を経て燃焼性ガスが得られる。 Usually, in blast furnace operation using only coal-based materials such as coke and pulverized coal as the reducing material, the component composition of the blast furnace gas is carbon monoxide: 21-26% by volume, hydrogen: 3-5% by volume, carbon dioxide: 19 -23% by volume and nitrogen: 53-59% by volume. When this blast furnace gas is used as fuel in a power plant, in order to increase the amount of heat per unit volume, for example, coke oven gas (about 4500 kcal / Nm 3 ) and liquefied natural gas (about 9500 kcal / Nm 3 ) and other gases having a high calorific value (hereinafter referred to as “high calorific gas”) are added to adjust the calorie to about 1050 kcal / Nm 3 , For example, coke oven gas or hydrogen separated from coke oven gas must be added and adjusted so that the concentration of hydrogen contained in the gas is 6% by volume. Combustion gas is obtained through such adjustment.

次に、本発明による燃焼性ガスの製造方法について説明する。
図1は、本発明による燃焼性ガスの製造方法に用いる装置を示す図である。この燃焼性ガスの製造装置10は、高炉3における原料の反応に用いる空気または酸素富化空気を加熱する熱風炉1と、水素含有ガスbまたは高熱量ガスeを供給する高熱量ガス供給部2と、供給された空気と鉄鉱石およびコークスとを反応させて銑鉄を生産するための高炉3と、該高炉3から排出された高炉ガスcから不燃性ガスgを分離除去する不燃性ガス分離除去部4と、不燃性ガス分離除去部4により不燃性ガスgが分離除去された分離後ガスdまたは該分離後ガスdに高熱量ガスeが混合された燃焼性ガスfを用いて発電する発電所5と、不燃性ガスgを液化する不燃性ガス液化部6とを備える。
Next, a method for producing a combustible gas according to the present invention will be described.
FIG. 1 is a diagram showing an apparatus used in a method for producing a combustible gas according to the present invention. This combustible gas production apparatus 10 includes a hot stove 1 for heating air or oxygen-enriched air used for reaction of a raw material in a blast furnace 3, and a high calorific gas supply unit 2 for supplying a hydrogen-containing gas b or a high calorific gas e. A blast furnace 3 for producing pig iron by reacting the supplied air with iron ore and coke, and a non-flammable gas separation and removal for separating and removing the non-flammable gas g from the blast furnace gas c discharged from the blast furnace 3 Power generation using the part 4 and the post-separation gas d from which the non-combustible gas g is separated and removed by the non-combustible gas separation and removal part 4 or the combustible gas f in which the high-calorie gas e is mixed with the post-separation gas d And a nonflammable gas liquefying section 6 for liquefying the nonflammable gas g.

上記燃焼性ガスの製造装置10を用いた燃焼性ガスの製造方法は以下の通りである。即ち、まず熱風炉1によって加温された空気aに高熱量ガス供給部2から送られた水素含有ガスbが混合されて高炉3の下部に吹込まれ、従来技術と同様に、空気中の酸素は熱の発生に利用され、水素含有ガスbは熱の発生および鉄鉱石の還元に利用され、反応後のガスは、高炉ガスcとして炉頂より排出される。   A method for producing a combustible gas using the combustible gas production apparatus 10 is as follows. That is, first, the air a heated by the hot stove 1 is mixed with the hydrogen-containing gas b sent from the high calorific gas supply unit 2 and blown into the lower part of the blast furnace 3. Is used for heat generation, the hydrogen-containing gas b is used for heat generation and iron ore reduction, and the gas after the reaction is discharged from the top of the furnace as a blast furnace gas c.

本発明による燃焼性ガスの製造方法の大きな特徴は、高炉3の内部に、高熱量ガス供給部2から水素含有ガスbを導入することにある。即ち、熱風炉1により加熱された空気aに、水素含有ガスbを混合して高炉3に導入するのである。これにより、後述するように、高炉3から排出される高炉ガスcに含まれる水素および二酸化炭素の濃度を高めることができる。ここで、高炉ガスc中の水素濃度の向上は、高炉ガスcの熱量の増加に繋がり、また、二酸化炭素濃度の向上は、不燃性ガス分離除去部4により高炉ガスcから二酸化炭素を分離除去する効率の向上に繋がる。その結果、高炉ガスcに含まれる水素および二酸化炭素の濃度の向上は、高炉ガスcから二酸化炭素や窒素等の不燃性ガスgを分離除去した後のガス(以下、「分離後ガス」と称する)dの熱量、ひいては最終的に得られる燃焼性ガスfの熱量を高めることができるのである。以下、本発明による燃焼性ガスの製造方法における各工程について説明する。
尚、高炉3に水素含有ガスbを供給することにより、高炉3から排出される高炉ガスcに含まれる水素濃度の増加は、後述するように、高炉3の内部に水素含有ガスbを供給された後の、高炉3内の平衡反応の結果であって、水素含有ガスbの添加そのものによる増加ではないことに注意する。
A major feature of the method for producing a combustible gas according to the present invention is that the hydrogen-containing gas b is introduced into the blast furnace 3 from the high calorific gas supply unit 2. That is, the hydrogen-containing gas b is mixed with the air a heated by the hot stove 1 and introduced into the blast furnace 3. Thereby, the concentration of hydrogen and carbon dioxide contained in the blast furnace gas c discharged from the blast furnace 3 can be increased as will be described later. Here, an increase in the hydrogen concentration in the blast furnace gas c leads to an increase in the amount of heat of the blast furnace gas c, and an increase in the carbon dioxide concentration separates and removes carbon dioxide from the blast furnace gas c by the nonflammable gas separation and removal unit 4. Leading to improved efficiency. As a result, the concentration of hydrogen and carbon dioxide contained in the blast furnace gas c is improved by separating and removing nonflammable gases g such as carbon dioxide and nitrogen from the blast furnace gas c (hereinafter referred to as “post-separation gas”). ) The amount of heat of d, and hence the amount of heat of the finally obtained combustible gas f can be increased. Hereinafter, each process in the manufacturing method of the combustible gas by this invention is demonstrated.
In addition, by supplying the hydrogen-containing gas b to the blast furnace 3, an increase in the hydrogen concentration contained in the blast furnace gas c discharged from the blast furnace 3 is supplied to the inside of the blast furnace 3 as described later. Note that this is a result of the equilibrium reaction in the blast furnace 3 after that, and is not an increase due to the addition of the hydrogen-containing gas b itself.

高炉3に導入される水素含有ガスbの導入量は、溶銑1トン当たりの水素重量で表記して、1〜18kgとする。ここで、下限を1kgとするのは、水素含有ガスbを導入することにより、高炉ガスcの水素濃度および熱量を高める効果が低いためである。一方、上限を18kg質量%とするのは、水素含有ガスbの添加自体により高炉ガスcの水素濃度および熱量が増加し、本発明において提案するプロセスの適用範囲外になるとともに、水素による還元反応の特徴である吸熱反応のため高炉内の温度が低下してしまうためである。   The amount of hydrogen-containing gas b introduced into the blast furnace 3 is expressed as 1 to 18 kg in terms of hydrogen weight per ton of hot metal. Here, the lower limit is set to 1 kg because introduction of the hydrogen-containing gas b has a low effect of increasing the hydrogen concentration and the heat quantity of the blast furnace gas c. On the other hand, the upper limit is set to 18 kg mass% because the hydrogen concentration and heat quantity of the blast furnace gas c increase due to the addition of the hydrogen-containing gas b itself, which is outside the scope of the process proposed in the present invention, and the reduction reaction by hydrogen. This is because the temperature in the blast furnace is lowered due to the endothermic reaction that is characteristic of the above.

図2は、高炉3への水素含有ガスbの供給量と高炉ガスcの組成との関係を示している。また、図3は、高炉3への水素含有ガスbの供給量と、高炉3から排出される高炉ガスcの単位体積当たりの熱量との関係を示している。図2から、高炉3への水素含有ガスbの供給量が多くなるほど、高炉ガスcに占める一酸化炭素、二酸化炭素および水素の割合が増加する一方、窒素の割合が低下することが分かる。また図3から、水素含有ガスbの供給量の増加とともに、高炉ガスcの熱量も増加することが分かる。   FIG. 2 shows the relationship between the supply amount of the hydrogen-containing gas b to the blast furnace 3 and the composition of the blast furnace gas c. FIG. 3 shows the relationship between the supply amount of the hydrogen-containing gas b to the blast furnace 3 and the heat amount per unit volume of the blast furnace gas c discharged from the blast furnace 3. From FIG. 2, it can be seen that as the supply amount of the hydrogen-containing gas b to the blast furnace 3 increases, the ratio of carbon monoxide, carbon dioxide and hydrogen in the blast furnace gas c increases while the ratio of nitrogen decreases. 3 that the amount of heat of the blast furnace gas c increases as the supply amount of the hydrogen-containing gas b increases.

高炉3から排出された高炉ガスcを、例えば発電所における燃料として利用するためには、上述のようにガスの単位体積当たりの熱量を1050kcal/Nm程度に調整するとともに、水素濃度を6体積%となるように調整することが必要であるが、図2から分かるように、高炉ガスcに含まれる水素濃度は、水素含有ガスbの供給量が8kg−H/溶銑トン以上では6体積%を超えるものの、図3から分かるように、高炉ガスcの熱量は、水素含有ガスbの供給量が22kg−H/溶銑トン以上でないと1050kcal/Nmを超えない。このため、高炉ガスcに何らかの高熱量ガスeを添加して熱量を高めることが必要になる。 In order to use the blast furnace gas c discharged from the blast furnace 3 as a fuel in a power plant, for example, the amount of heat per unit volume of the gas is adjusted to about 1050 kcal / Nm 3 as described above, and the hydrogen concentration is 6 volumes. However, as can be seen from FIG. 2, the hydrogen concentration contained in the blast furnace gas c is 6% by volume when the supply amount of the hydrogen-containing gas b is 8 kg-H / tonn of hot metal or more. However, as can be seen from FIG. 3, the heat amount of the blast furnace gas c does not exceed 1050 kcal / Nm 3 unless the supply amount of the hydrogen-containing gas b is 22 kg-H / tonn of hot metal. For this reason, it is necessary to add some high heat quantity gas e to the blast furnace gas c to increase the heat quantity.

ここで、本発明においては、不燃性ガス分離除去部4により、高炉ガスcに含まれる不燃性ガスgを分離除去する。即ち、高炉ガスcから二酸化炭素および窒素等の不燃性ガスgを分離除去する不燃性ガス分離除去部4に導入することによって、二酸化炭素および窒素を除去することができ、不燃性ガスgを除去した分離後ガスdの水素濃度および熱量が増加するため、分離後ガスdに添加する水素含有ガスbや高熱量ガスeの量を減らすことが可能になる。   Here, in the present invention, the nonflammable gas separation and removal unit 4 separates and removes the nonflammable gas g contained in the blast furnace gas c. That is, by introducing the nonflammable gas g such as carbon dioxide and nitrogen from the blast furnace gas c into the nonflammable gas separation and removal unit 4, carbon dioxide and nitrogen can be removed, and the nonflammable gas g is removed. Since the hydrogen concentration and the heat quantity of the separated gas d are increased, it is possible to reduce the amount of the hydrogen-containing gas b and the high calorie gas e added to the separated gas d.

不燃性ガス分離除去部4による二酸化炭素および窒素等の不燃性ガスgの分離方法としては、一般的に知られている化学吸収法、物理吸収法、ハイドレート法、膜分離法、物理吸着法等や、これらの組み合わせが利用可能である。特に、物理吸着法(PSA法、TSA法、PTSA法等)は、分離に要する動力が比較的小さいため好適である。   As a method for separating nonflammable gas g such as carbon dioxide and nitrogen by the nonflammable gas separation and removal unit 4, generally known chemical absorption method, physical absorption method, hydrate method, membrane separation method, physical adsorption method Etc., and combinations of these are available. In particular, physical adsorption methods (PSA method, TSA method, PTSA method, etc.) are preferable because the power required for separation is relatively small.

高炉炉頂より排出された高炉ガスcは不燃性ガス分離除去部4に導入され、ここで高炉ガスcに含まれる二酸化炭素成分の大部分が吸着剤によって除去される。不燃性ガス分離除去部4の構成や運転条件は特に限定されず、上記した組成のガスから二酸化炭素を圧力スイングによって分離することが可能であれば、いかなる構成および方法でも構わない。
また、二酸化炭素の吸着剤についても特に限定されないが、活性炭あるいはゼオライトに類する材料が好適である。
高炉ガスcから窒素を除去する方法としては特に限定されず、窒素を吸着可能な吸着剤による吸着分離法や膜分離法などが利用可能である。また、高炉ガスcより分離された不燃性ガス成分のうち、二酸化炭素については不燃性ガス液化部6に送られて液化される。
The blast furnace gas c discharged from the top of the blast furnace furnace is introduced into the incombustible gas separation / removal section 4, where most of the carbon dioxide component contained in the blast furnace gas c is removed by the adsorbent. The configuration and operating conditions of the nonflammable gas separation / removal unit 4 are not particularly limited, and any configuration and method may be used as long as carbon dioxide can be separated from the gas having the above composition by a pressure swing.
Also, the carbon dioxide adsorbent is not particularly limited, but a material similar to activated carbon or zeolite is suitable.
The method for removing nitrogen from the blast furnace gas c is not particularly limited, and an adsorption separation method or a membrane separation method using an adsorbent capable of adsorbing nitrogen can be used. Of the incombustible gas components separated from the blast furnace gas c, carbon dioxide is sent to the incombustible gas liquefying unit 6 and liquefied.

例として、高炉ガスcから不燃性ガス分離除去部4により二酸化炭素を分離した後の分離後ガスdの組成および熱量を図4および図5にそれぞれ示す。図4から、高炉ガスcの場合と同様に、高炉3への水素含有ガスbの供給量が多くなるほど、分離後ガスdに占める一酸化炭素、二酸化炭素および水素の割合は増加し、窒素の割合は低下することが分かる。また図5から、不燃性ガス分離除去部4により高炉ガスcから二酸化炭素を分離除去することにより、分離後ガスdに含まれる水素の濃度および熱量が高炉ガスcに比べて大きく増加していることが分かる。   As an example, the composition and the amount of heat of the separated gas d after carbon dioxide is separated from the blast furnace gas c by the nonflammable gas separation and removal unit 4 are shown in FIGS. 4 and 5, respectively. From FIG. 4, as in the case of the blast furnace gas c, as the supply amount of the hydrogen-containing gas b to the blast furnace 3 increases, the proportion of carbon monoxide, carbon dioxide and hydrogen in the post-separation gas d increases. It can be seen that the rate decreases. Further, from FIG. 5, by separating and removing carbon dioxide from the blast furnace gas c by the nonflammable gas separation and removal unit 4, the concentration and heat quantity of hydrogen contained in the separated gas d are greatly increased compared to the blast furnace gas c. I understand that.

こうして不燃性ガスが分離除去された分離後ガスdと、高熱量ガス供給部2により供給される高熱量ガスeとを混合して、混合した後のガスの単位体積当たりの熱量を1050kcal/Nm、水素濃度を6体積%となるように調整することにより燃焼性ガスfが得られる。こうして得られた燃焼性ガスfは、例えば発電所5に送られて燃料として使用される。 The separated gas d from which the incombustible gas has been separated and removed and the high calorific gas e supplied by the high calorific gas supply unit 2 are mixed, and the calorie per unit volume of the mixed gas is 1050 kcal / Nm. 3. Combustible gas f is obtained by adjusting the hydrogen concentration to 6% by volume. The combustible gas f thus obtained is sent to the power plant 5, for example, and used as fuel.

分離後ガスdに添加される高熱量ガスeとしては、水素、液化天然ガス、メタンガスなどを用いることができる。   As the high calorie gas e added to the separated gas d, hydrogen, liquefied natural gas, methane gas, or the like can be used.

図6は、高炉3に供給された水素含有ガスbの供給量と燃焼性ガスfの水素濃度を6%以上とするために追加すべき水素の量との関係を示している。ここで、不燃性ガス分離除去部4によって、高炉ガスcから二酸化炭素が分離除去されている。この図から明らかなように、水素含有ガスbの供給量が9kg―H/溶銑トン以上の場合には、高炉ガスcそのものが水素濃度6%を超えるため、水素濃度に関する調整は不要となる。一方、水素含有ガスbの供給量が9kg−H/溶銑トン以下の場合には、高炉ガスcに水素を添加する必要があるが、不燃性ガス分離除去部4で二酸化炭素を分離除去した分離後ガスdについては、水素濃度を6%とするために必要な水素の添加量を低減できることが分かる。   FIG. 6 shows the relationship between the supply amount of the hydrogen-containing gas b supplied to the blast furnace 3 and the amount of hydrogen to be added to make the hydrogen concentration of the combustible gas f 6% or more. Here, carbon dioxide is separated and removed from the blast furnace gas c by the incombustible gas separation and removal unit 4. As is apparent from this figure, when the supply amount of the hydrogen-containing gas b is 9 kg-H / tonn of molten iron or more, the blast furnace gas c itself exceeds the hydrogen concentration of 6%, so that adjustment regarding the hydrogen concentration is not necessary. On the other hand, when the supply amount of the hydrogen-containing gas b is 9 kg-H / molten ton or less, it is necessary to add hydrogen to the blast furnace gas c, but the separation is performed by separating and removing carbon dioxide by the nonflammable gas separation and removal unit 4. As for the post gas d, it can be seen that the amount of hydrogen added to make the hydrogen concentration 6% can be reduced.

図7は、分離後ガスdの単位体積当たり熱量を1050kcal/Nm以上とするために添加が必要なメタンガスの量を示している。高炉3に供給される水素含有ガスbの供給量が18kg―H/溶銑トン以上では、高炉ガスcそのものが1050kcal/Nmを超えるため熱量に関する調整は不要となる。18kg−H/溶銑トン以下では高炉ガスcではメタンガスの添加が必要であるが、不燃性ガス分離除去部4で二酸化炭素を除去した分離後ガスdについては、メタンガスの添加量を低減できることが分かる。 FIG. 7 shows the amount of methane gas that needs to be added so that the heat per unit volume of the separated gas d is 1050 kcal / Nm 3 or more. When the supply amount of the hydrogen-containing gas b supplied to the blast furnace 3 is 18 kg-H / molten ton or more, since the blast furnace gas c itself exceeds 1050 kcal / Nm 3 , adjustment regarding the amount of heat becomes unnecessary. It is understood that methane gas needs to be added to the blast furnace gas c below 18 kg-H / tonn of hot metal, but the added amount of methane gas can be reduced with respect to the separated gas d from which carbon dioxide has been removed by the incombustible gas separation and removal unit 4. .

このように、水素を含有する水素含有ガスを高炉に導入することにより、炉頂から排出される高炉ガスに含まれる水素および二酸化炭素の含有ガスを高めることができ、高炉ガスに含まれる水素の含有率が高められたことにより高炉ガス自体の燃焼性が高まるとともに、二酸化炭素の含有率が高められたために物理吸着法より高炉ガスから二酸化炭素を効率的に除去できるため、高い燃焼性を有する燃焼性ガスを製造することができる。   Thus, by introducing the hydrogen-containing gas containing hydrogen into the blast furnace, the hydrogen and carbon dioxide-containing gas contained in the blast furnace gas discharged from the top of the furnace can be increased, and the hydrogen contained in the blast furnace gas can be increased. The flammability of the blast furnace gas itself is increased by increasing the content ratio, and since the carbon dioxide content ratio is increased, carbon dioxide can be efficiently removed from the blast furnace gas by the physical adsorption method. Combustible gas can be produced.

(比較例1)
高炉に吹込むガスに水素含有ガスを含まない状態での平均的な高炉ガス組成を、二酸化炭素22%、一酸化炭素22%、窒素53%、水素3%(体積当たり熱量=750kcal/Nm)とし、これに水素およびメタンガスを添加した際に、水素濃度が全体で6%、体積当たり熱量が1050kcal/Nm以上となるような水素およびメタンガスの添加量を計算した。その結果、必要な水素量は45Nm/溶銑トン、メタン量は50Nm/溶銑トンであることが算出された。
(Comparative Example 1)
The average blast furnace gas composition in a state where the gas injected into the blast furnace does not contain a hydrogen-containing gas is as follows: carbon dioxide 22%, carbon monoxide 22%, nitrogen 53%, hydrogen 3% (heat per volume = 750 kcal / Nm 3 The hydrogen and methane gas addition amounts were calculated such that when hydrogen and methane gas were added thereto, the total hydrogen concentration was 6% and the heat per volume was 1050 kcal / Nm 3 or more. As a result, it was calculated that the required amount of hydrogen was 45 Nm 3 / tona and the amount of methane was 50 Nm 3 / tona.

(比較例2)
高炉に吹込むガスに水素含有ガスを含まない状態での平均的な高炉ガス組成を、比較例1と同様とした高炉操業において、高炉に吹き込む水素含有ガスとして水素を用い、その量を9kg−H/溶銑トンとした場合に、高炉ガス組成がどのように変化するかを平衡条件により算出した。その結果、高炉ガス組成は、二酸化炭素22%、一酸化炭素23%、窒素48%、水素7%(体積当たり熱量=870kcal/Nm)となった。比較例1と同様に、これに水素およびメタンガスを添加した際に、水素濃度が全体で6%、体積当たり熱量が1050kcal/Nm以上となるような水素およびメタンガスの添加量を計算した。その結果、必要な水素量は0Nm/溶銑トン、メタン量は30Nm/溶銑トンであることが算出され、水素量の添加は不要であるが、メタンの添加がなお必要であることが分かる。
(Comparative Example 2)
In the blast furnace operation in which the average blast furnace gas composition in the state in which no gas containing hydrogen is contained in the gas blown into the blast furnace is the same as in Comparative Example 1, hydrogen is used as the hydrogen-containing gas blown into the blast furnace, and the amount is 9 kg- When H / molten iron was used, how the blast furnace gas composition changed was calculated according to the equilibrium condition. As a result, the blast furnace gas composition was 22% carbon dioxide, 23% carbon monoxide, 48% nitrogen, and 7% hydrogen (heat per volume = 870 kcal / Nm 3 ). Similar to Comparative Example 1, when hydrogen and methane gas were added thereto, the hydrogen and methane gas addition amounts were calculated such that the total hydrogen concentration was 6% and the heat per volume was 1050 kcal / Nm 3 or more. As a result, the amount of hydrogen required 0 Nm 3 / hot metal ton, the amount of methane is calculated to be 30 Nm 3 / hot metal ton, the added amount of hydrogen is not required, it can be seen that the addition of methane is still required .

(比較例3)
高炉に吹き込む水素量を18kg−H/溶銑トンとした他は、比較例2と同様に高炉ガス組成を計算した結果、高炉ガス組成は、二酸化炭素23%、一酸化炭素25%、窒素41%、水素11%(体積当たり熱量=1030kcal/Nm)となった。比較例2と同様に、これに水素およびメタンガスを添加した際に、水素濃度が全体で6%、体積当たり熱量が1050kcal/Nm以上となるような水素およびメタンガスの添加量を計算した。その結果、必要な水素量は0Nm/溶銑トン、メタン量は2Nm/溶銑トンであることが算出され、水素の添加は不要であるが、メタンの添加がなお必要であることが分かる。
(Comparative Example 3)
The blast furnace gas composition was calculated in the same manner as in Comparative Example 2 except that the amount of hydrogen blown into the blast furnace was 18 kg-H / tonn of molten iron. As a result, the blast furnace gas composition was 23% carbon dioxide, 25% carbon monoxide, and 41% nitrogen. Hydrogen was 11% (amount of heat per volume = 1030 kcal / Nm 3 ). Similar to Comparative Example 2, when hydrogen and methane gas were added thereto, the hydrogen and methane gas addition amounts were calculated such that the total hydrogen concentration was 6% and the heat per volume was 1050 kcal / Nm 3 or more. As a result, it is calculated that the required amount of hydrogen is 0 Nm 3 / molten metal ton, and the amount of methane is 2 Nm 3 / molten metal ton, and it is understood that the addition of methane is still necessary, although the addition of hydrogen is unnecessary.

(比較例4)
比較例1において、高炉ガスから二酸化炭素の一部を分離除去した場合を想定した。ここで、分離装置としてはPSA装置を使用し、高炉ガスより分離除去されるガスの二酸化炭素濃度99%(残部は一酸化炭素)、二酸化炭素の割合を80%(残部は高炉ガスに残存)とした。その結果、二酸化炭素の一部が分離された高炉ガス組成は、二酸化炭素5%、一酸化炭素26%、窒素64%、水素4%(体積当たり熱量=900kcal/Nm)となった。比較例1と同様に、これに水素およびメタンガスを添加した際に、水素濃度が全体で6%、体積当たり熱量が1050kcal/Nm以上となるような水素およびメタンガスの添加量を計算した。その結果、必要な水素量は28Nm/溶銑トン、メタン量は18Nm/溶銑トンであることが算出され、水素およびメタンの添加がなお必要であることが分かる。
(Comparative Example 4)
In Comparative Example 1, it was assumed that a part of carbon dioxide was separated and removed from the blast furnace gas. Here, a PSA device is used as the separation device, and the carbon dioxide concentration of the gas separated and removed from the blast furnace gas is 99% (the balance is carbon monoxide), and the proportion of carbon dioxide is 80% (the balance remains in the blast furnace gas). It was. As a result, the blast furnace gas composition from which a part of carbon dioxide was separated was 5% carbon dioxide, 26% carbon monoxide, 64% nitrogen, and 4% hydrogen (heat per volume = 900 kcal / Nm 3 ). Similar to Comparative Example 1, when hydrogen and methane gas were added thereto, the hydrogen and methane gas addition amounts were calculated such that the total hydrogen concentration was 6% and the heat per volume was 1050 kcal / Nm 3 or more. As a result, the amount of hydrogen required 28 Nm 3 / hot metal ton, the amount of methane is calculated to be 18 Nm 3 / hot metal ton, it can be seen the addition of hydrogen and methane is still needed.

(発明例1)
比較例2において、該比較例2の組成の高炉ガスから、二酸化炭素の一部を分離除去した場合を想定した。ここで分離装置としてはPSA装置を使用し、高炉ガスより分離除去されるガスの二酸化炭素濃度99%(残部は一酸化炭素)、二酸化炭素割合を80%(残部は高炉ガスに残存)とした結果、二酸化炭素の一部が分離された高炉ガス組成は二酸化炭素5%、一酸化炭素28%、窒素58%、水素8%(体積当たり熱量=1050kcal/Nm)となった。即ち、PSAによる分離操作のみで水素濃度6%以上、体積当たり熱量が1050kcal/Nm以上となり、新たな水素およびメタンガスの添加は不要であった。
(Invention Example 1)
In Comparative Example 2, it was assumed that a part of carbon dioxide was separated and removed from the blast furnace gas having the composition of Comparative Example 2. Here, a PSA device was used as a separation device, and the carbon dioxide concentration of the gas separated and removed from the blast furnace gas was 99% (the balance was carbon monoxide), and the carbon dioxide ratio was 80% (the balance remained in the blast furnace gas). As a result, the blast furnace gas composition from which a part of carbon dioxide was separated was 5% carbon dioxide, 28% carbon monoxide, 58% nitrogen, and 8% hydrogen (heat per volume = 1050 kcal / Nm 3 ). That is, the hydrogen concentration was 6% or more and the heat per volume was 1050 kcal / Nm 3 or more only by the separation operation by PSA, and the addition of new hydrogen and methane gas was unnecessary.

(発明例2)
高炉ガス組成を比較例3と同様にした他は、発明例1と同様の二酸化炭素分離操作を行い、分離後の高炉ガス組成を計算した結果、二酸化炭素の一部が分離された高炉ガス組成は二酸化炭素6%、一酸化炭素31%、窒素50%、水素13%(体積当たり熱量=1270kcal/Nm)となった。即ち、PSAによる分離操作のみで水素濃度6%以上、体積当たり熱量が1050kcal/Nm以上となり、新たな水素およびメタンガスの添加は不要であった。
(Invention Example 2)
The blast furnace gas composition in which a part of carbon dioxide was separated as a result of calculating the blast furnace gas composition after performing the same carbon dioxide separation operation as in Invention Example 1 except that the blast furnace gas composition was the same as in Comparative Example 3. Was 6% carbon dioxide, 31% carbon monoxide, 50% nitrogen, and 13% hydrogen (heat per volume = 1270 kcal / Nm 3 ). That is, the hydrogen concentration was 6% or more and the heat per volume was 1050 kcal / Nm 3 or more only by the separation operation by PSA, and the addition of new hydrogen and methane gas was unnecessary.

Figure 2013130375
Figure 2013130375

本発明によれば、製鉄所において大量に排出される高炉ガスに含まれる水素および二酸化炭素の濃度を高め、高炉ガスから不燃性ガスを分離除去することにより高い燃焼性を有する燃焼性ガスを製造することができるため、製鉄所におけるエネルギー源を得る方途として有用である。   According to the present invention, the concentration of hydrogen and carbon dioxide contained in a large amount of blast furnace gas discharged at a steel works is increased, and a noncombustible gas is separated and removed from the blast furnace gas to produce a combustible gas having high combustibility. Therefore, it is useful as a way to obtain an energy source in steelworks.

1 熱風炉
2 高熱量ガス供給部
3 高炉
4 不燃性ガス分離除去部
5 発電所
6 不燃性ガス液化部
10 燃焼性ガス製造装置
a 空気または酸素富化空気
b 水素含有ガス
c 高炉ガス
d 分離後ガス
e 高熱量ガス
f 燃焼性ガス
g 不燃性ガス
DESCRIPTION OF SYMBOLS 1 Hot blast furnace 2 High calorific gas supply part 3 Blast furnace 4 Incombustible gas separation removal part 5 Power station 6 Incombustible gas liquefaction part 10 Combustible gas production apparatus a Air or oxygen enriched air b Hydrogen containing gas c Blast furnace gas d After separation Gas e High calorific gas f Combustible gas g Nonflammable gas

Claims (4)

水素および/または水素を含む化合物からなるガスを高炉に導入し、次いで該高炉から排出された排ガスから不燃性ガスを分離除去することにより燃焼性ガスを得ることを特徴とする燃焼性ガスの製造方法。   Production of a combustible gas characterized by obtaining a combustible gas by introducing a gas comprising hydrogen and / or a compound containing hydrogen into a blast furnace and then separating and removing the non-combustible gas from the exhaust gas discharged from the blast furnace Method. 前記高炉に導入するガスに含まれる水素量が溶銑トン当たり1〜18kgであることを特徴とする、請求項1に記載の燃焼性ガスの製造方法。   The method for producing a combustible gas according to claim 1, wherein the amount of hydrogen contained in the gas introduced into the blast furnace is 1 to 18 kg per ton of molten iron. 前記不燃性ガスの分離除去は、圧力スイング式の物理吸着法により行うことを特徴とする、請求項1または2に記載の燃焼性ガスの製造方法。   The method for producing a combustible gas according to claim 1, wherein the separation and removal of the incombustible gas is performed by a pressure swing type physical adsorption method. 前記水素含有ガスは、水素ガス、液化天然ガス、メタンガス、のいずれかあるいはこれら2種類以上の混合ガスであることを特徴とする、請求項1〜3のいずれか一項に記載の燃焼性ガスの製造方法。   The combustible gas according to any one of claims 1 to 3, wherein the hydrogen-containing gas is any one of hydrogen gas, liquefied natural gas, and methane gas, or a mixed gas of two or more of these. Manufacturing method.
JP2011281810A 2011-12-22 2011-12-22 Method for producing combustible gas Active JP5851828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011281810A JP5851828B2 (en) 2011-12-22 2011-12-22 Method for producing combustible gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011281810A JP5851828B2 (en) 2011-12-22 2011-12-22 Method for producing combustible gas

Publications (2)

Publication Number Publication Date
JP2013130375A true JP2013130375A (en) 2013-07-04
JP5851828B2 JP5851828B2 (en) 2016-02-03

Family

ID=48908062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011281810A Active JP5851828B2 (en) 2011-12-22 2011-12-22 Method for producing combustible gas

Country Status (1)

Country Link
JP (1) JP5851828B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104676629A (en) * 2015-01-16 2015-06-03 北京朗信能源环保科技有限公司 Method and equipment for reburning combustible solid particles
JP2018031500A (en) * 2016-08-23 2018-03-01 東京電力ホールディングス株式会社 Combustion control method
JP2018031499A (en) * 2016-08-23 2018-03-01 東京電力ホールディングス株式会社 Combustion control method
CN108531675A (en) * 2018-06-01 2018-09-14 新兴铸管股份有限公司 A kind of blast furnace top ignition method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220403477A1 (en) 2019-11-29 2022-12-22 Nippon Steel Corporation Blast furnace operation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120896A (en) * 2007-11-14 2009-06-04 Jfe Steel Corp Method for utilizing blast furnace gas
JP2009221549A (en) * 2008-03-17 2009-10-01 Jfe Steel Corp Method for operating blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120896A (en) * 2007-11-14 2009-06-04 Jfe Steel Corp Method for utilizing blast furnace gas
JP2009221549A (en) * 2008-03-17 2009-10-01 Jfe Steel Corp Method for operating blast furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104676629A (en) * 2015-01-16 2015-06-03 北京朗信能源环保科技有限公司 Method and equipment for reburning combustible solid particles
JP2018031500A (en) * 2016-08-23 2018-03-01 東京電力ホールディングス株式会社 Combustion control method
JP2018031499A (en) * 2016-08-23 2018-03-01 東京電力ホールディングス株式会社 Combustion control method
CN108531675A (en) * 2018-06-01 2018-09-14 新兴铸管股份有限公司 A kind of blast furnace top ignition method

Also Published As

Publication number Publication date
JP5851828B2 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP6513680B2 (en) How to operate furnace top gas circulation blast furnace equipment
EP3425070B1 (en) Method for operating an iron-or steelmaking-plant
JP2004309067A (en) Method of using blast furnace gas
JP5851828B2 (en) Method for producing combustible gas
RU2011120330A (en) METHOD AND DEVICE FOR CONTROL OF RESTORING Smelting Process
TWI803522B (en) Method for producing hot synthesis gas, in particular for use in blast furnace operation
JP7028373B1 (en) Ironmaking equipment and method of manufacturing reduced iron
US8771638B2 (en) Method and apparatus for sequestering carbon dioxide from a spent gas
JP5069087B2 (en) How to use blast furnace gas
JP2012518721A (en) Processes and equipment for producing alternative gas
TW202140802A (en) Blast furnace operation method and auxiliary facility for blast furnace
JP7272312B2 (en) Method for producing reduced iron
TWI765510B (en) Blast furnace operation method and blast furnace accessory equipment
EP2956406A2 (en) Method and apparatus for sequestering carbon dioxide from a spent gas
TWI759054B (en) Blast furnace operation method and blast furnace accessory equipment
JP2016176682A (en) Hydrogen manufacturing method
TWI775216B (en) Blast furnace operation method and blast furnace accessory equipment
WO2024135697A1 (en) Method for producing reduced iron
KR20190074807A (en) Apparatus for manufacturing molten iron and method for manufacturing thereof
JPS6347318A (en) Smelting, reducing and refining equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151203

R150 Certificate of patent or registration of utility model

Ref document number: 5851828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350