JP2011202219A - Method for electroplating long-sized conductive substrate, and apparatus for the same, metallized polyimide film, and method for producing the same - Google Patents

Method for electroplating long-sized conductive substrate, and apparatus for the same, metallized polyimide film, and method for producing the same Download PDF

Info

Publication number
JP2011202219A
JP2011202219A JP2010069476A JP2010069476A JP2011202219A JP 2011202219 A JP2011202219 A JP 2011202219A JP 2010069476 A JP2010069476 A JP 2010069476A JP 2010069476 A JP2010069476 A JP 2010069476A JP 2011202219 A JP2011202219 A JP 2011202219A
Authority
JP
Japan
Prior art keywords
conductive substrate
polyimide film
roll
electroplating
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010069476A
Other languages
Japanese (ja)
Other versions
JP5293664B2 (en
Inventor
Shinpei Nishihara
晋平 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010069476A priority Critical patent/JP5293664B2/en
Publication of JP2011202219A publication Critical patent/JP2011202219A/en
Application granted granted Critical
Publication of JP5293664B2 publication Critical patent/JP5293664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a metallic layer such as copper which has excellent flexibility compatible with COF (chip-on-film) mounting as a metallized polyimide film when the metallic layer is formed on a long-sized conductive substrate such as a polyimide film with metallic thin film layer.SOLUTION: Every time immersion of the polyimide film F with metallic thin film layer unwound from an unwinding roll 1 into a plating solution 4a is repeated, water of 10-32°C is supplied to feeding rollers 3a, 3b, 3c, 3d from first water supply nozzles 8a, 8b, 8c, 8d, and the water of 10-32°C is supplied from a second water supply nozzle 10 on the plated surface of the metallized polyimide film S after the electroplating is completed and before the metallized polyimide film S is wound by a winding roll 7.

Description

本発明は、長尺導電性基板の電気めっき方法及び電気めっき装置に関し、この長尺導電性基板の電気めっき方法を用いた金属化ポリイミドフィルムの製造方法と、その方法により得られる金属化ポリイミドフィルムに関する。   The present invention relates to an electroplating method and an electroplating apparatus for a long conductive substrate, a method for producing a metallized polyimide film using the electroplating method for a long conductive substrate, and a metallized polyimide film obtained by the method. About.

金属化ポリイミドフィルムは、ポリイミドフィルムの少なくとも片方の表面上に金属層を形成したものであり、近年では液晶画面に画像を表示するための駆動用半導体を実装する半導体実装用基板等として汎用されている。金属化ポリイミドフィルムの基材となるポリイミドフィルムは、優れた耐熱性を有し、機械的、電気的及び化学的な特性においても、他のプラスティック材料に比べ遜色のないものである。   A metallized polyimide film is a film in which a metal layer is formed on at least one surface of a polyimide film. In recent years, it has been widely used as a semiconductor mounting substrate for mounting a driving semiconductor for displaying an image on a liquid crystal screen. Yes. A polyimide film as a base material for a metallized polyimide film has excellent heat resistance and is inferior to other plastic materials in mechanical, electrical and chemical characteristics.

そのため、上記金属化ポリイミドフィルムは、例えば、プリント配線板(PWB)、フレキシブルプリント配線板(FPC)、テープ自動ボンディング用テープ(TAB)、チップオンフィルム(COF)等の電子部品用の絶縁基板材料として多用されている。これらの中でも、特に液晶画面表示用ドライバーICチップを実装する手法として、金属化ポリイミドフィルムを用いるCOFが注目されている。   Therefore, the metallized polyimide film is an insulating substrate material for electronic parts such as a printed wiring board (PWB), a flexible printed wiring board (FPC), a tape for automatic tape bonding (TAB), and a chip on film (COF). It is often used as. Among these, COF using a metallized polyimide film has attracted attention as a method for mounting a driver IC chip for displaying a liquid crystal screen.

COFは、従来の実装法であったTCP(Tape Carrier Package)に比べてファインピッチ実装が可能であり、ドライバーICの小型化とコストダウンを図ることが容易な実装法である。このCOFの製造方法としては、金属層として銅を用いた金属化ポリイミドフィルムを使用し、いわゆるサブトラクティブ法、即ち、その銅層をフォトリソグラフィー技法によってファインパターニングを施し、更に所望の箇所にスズめっき及びソルダーレジストを被覆して得る方法が一般的である。   The COF can be mounted with a fine pitch as compared with TCP (Tape Carrier Package), which is a conventional mounting method, and is an easy mounting method for reducing the size and cost of the driver IC. As a manufacturing method of this COF, a metallized polyimide film using copper as a metal layer is used, so-called subtractive method, that is, the copper layer is subjected to fine patterning by a photolithography technique, and further, tin plating is applied to a desired portion. In addition, a method obtained by coating a solder resist is common.

上記金属化ポリイミドフィルムには、接着剤を用いて金属箔とポリイミドフィルムを張り合わせた3層金属化ポリイミドフィルムと、接着剤を介することなく直接ポリイミドフィルムの表面に金属皮膜層を形成した2層金属化ポリイミドフィルムとがある。微細配線が描ける基材が要求される中で、接着剤層の影響を受けず、ポリイミド本来の安定性を利用した材料が得られる理由から、接着剤層の無い2層金属化ポリイミドフィルムの要求が高まっている。   The metallized polyimide film includes a three-layer metallized polyimide film in which a metal foil and a polyimide film are bonded using an adhesive, and a two-layer metal in which a metal film layer is formed directly on the surface of the polyimide film without using an adhesive. There is a polyimide film. The demand for a double-layer metallized polyimide film without an adhesive layer is required because a material that uses the inherent stability of polyimide is obtained without being affected by the adhesive layer, while a substrate capable of drawing fine wiring is required. Is growing.

2層金属化ポリイミドフィルムを製造する場合、ポリイミドフィルム表面に金属皮膜層を形成する方法としては、例えば、スパッタリング法等の乾式めっき法により、ニッケルクロム合金等からなるニッケル合金の下地金属薄膜を形成し、その上に良導電性を付与するために銅薄膜を形成して金属薄膜層とする。次に、通常は回路形成用として厚膜化するため、電気めっき法又は電気めっきと無電解めっきを併用する方法によって金属薄膜層上に銅層を形成して、下地金属薄膜と銅薄膜からなる金属薄膜層に銅層が積層された金属皮膜層を形成することが行われている。   When manufacturing a two-layer metallized polyimide film, as a method of forming a metal film layer on the polyimide film surface, for example, a nickel alloy base metal thin film made of a nickel chromium alloy or the like is formed by a dry plating method such as a sputtering method. And in order to give good electroconductivity on it, a copper thin film is formed and it is set as a metal thin film layer. Next, in order to thicken the film for circuit formation, a copper layer is formed on the metal thin film layer by an electroplating method or a method using both electroplating and electroless plating, and consists of a base metal thin film and a copper thin film. Forming a metal film layer in which a copper layer is laminated on a metal thin film layer is performed.

尚、上記スパッタリング法によって形成される下地金属薄膜と銅薄膜からなる金属薄膜層の厚さとしては、100〜500nmが一般的である。また、電気めっき等で成膜される銅層の厚さは、例えばサブトラクティブ法によって回路を形成する場合には、5〜12μmが一般的である。   In addition, as a thickness of the metal thin film layer which consists of a base metal thin film and a copper thin film formed by the said sputtering method, 100-500 nm is common. Moreover, the thickness of the copper layer formed by electroplating or the like is generally 5 to 12 μm when a circuit is formed by, for example, a subtractive method.

ここで、電気めっき法によって金属薄膜層上に銅層を形成する場合、例えば、銅めっき液が供給されるめっき槽をフィルム状基板の搬送方向に複数並べて設置し、各めっき槽内にカソードの役割を担うめっき面と対向するように陽極を配置して、各めっき槽に電力を供給する給電部とフィルム状基板を連続的に搬送させるための機構とを具えた連続めっき装置が用いられている。   Here, when a copper layer is formed on the metal thin film layer by electroplating, for example, a plurality of plating tanks to which a copper plating solution is supplied are arranged side by side in the transport direction of the film-like substrate, and the cathodes are placed in each plating tank. A continuous plating apparatus is used that has an anode disposed so as to face the plating surface that plays a role, and a power feeding unit that supplies power to each plating tank and a mechanism for continuously transporting the film-like substrate. Yes.

例えば特許文献1に記載されているように、陽極及び電解液を有するめっき槽を複数配置し、下地金属薄膜と銅薄膜からなる金属薄膜層付ポリイミドフィルムを、複数のめっき槽に順次連続的に供給しながら、各めっき槽毎に通電量を制御し、各めっき槽における通電量をフィルムが供給される順に従って順次増加させる方法によって、均一で良好な銅層を連続的に形成することができる。   For example, as described in Patent Document 1, a plurality of plating tanks having an anode and an electrolytic solution are arranged, and a polyimide film with a metal thin film layer composed of a base metal thin film and a copper thin film is sequentially and continuously added to the plurality of plating tanks. While supplying, a uniform and good copper layer can be continuously formed by controlling the energization amount for each plating tank and sequentially increasing the energization amount in each plating tank in the order in which the films are supplied. .

特開2009−026990号公報JP 2009-026990 A

ポリイミドフィルム上に接着剤を介さず金属層を直接形成した2層金属化ポリイミドフィルムは、液晶画面表示用ドライバーICチップをCOFで実装する際に、折り曲げて使用されることがある。しかし、上記した従来の方法、例えば上記特許文献1記載の方法で製造した2層金属化ポリイミドフィルムは、電気めっき法で形成された銅などの金属層が柔軟性に劣る場合があるため、COFでの実装の際に断線などの不具合が発生することがあった。   A two-layer metallized polyimide film in which a metal layer is directly formed on a polyimide film without using an adhesive may be bent and used when a liquid crystal display driver IC chip is mounted by COF. However, the two-layer metallized polyimide film manufactured by the conventional method described above, for example, the method described in Patent Document 1 above, may be inferior in flexibility in a metal layer such as copper formed by electroplating. In some cases, problems such as wire breakage occurred during mounting.

本発明は、このような従来の問題に鑑みてなされたものであり、金属薄膜層付きポリイミドフィルム等の長尺導電性基板に電気めっき法により銅層等の金属層を形成する際に、形成された金属層表面の外観に問題がないだけでなく、2層金属化ポリイミドフィルムとしてCOFでの実装にも対応可能な優れた柔軟性を有する銅などの金属層を電気めっきで形成する方法を提供することを目的とする。   The present invention has been made in view of such a conventional problem, and is formed when a metal layer such as a copper layer is formed by electroplating on a long conductive substrate such as a polyimide film with a metal thin film layer. There is no problem in the appearance of the surface of the metal layer formed, and a method of forming a metal layer such as copper having excellent flexibility that can be mounted on a COF as a two-layer metallized polyimide film by electroplating. The purpose is to provide.

上記目的を達成するため、本発明が提供する長尺導電性基板の電気めっき方法は、ロールツーロール方式により巻出ロールから巻き出した長尺導電性基板を、めっき槽内のめっき液への浸漬を繰り返し且つ浸漬される前にめっき槽の外部に設けた給電ロールに接触しながら電気めっきを行い、巻取ロールに巻き取る長尺導電性基板の電気めっき方法において、長尺導電性基板がめっき液への浸漬を繰り返す毎に接触する給電ロールの表面に温度10℃〜32℃の水を供給すると共に、めっき槽での電気めっきが完了して巻取ロールに巻き取られる前の長尺導電性基板の電気めっきが施された面に温度10℃〜32℃の水を供給することを特徴とする。   In order to achieve the above object, the method of electroplating a long conductive substrate provided by the present invention is to apply a long conductive substrate unwound from an unwinding roll by a roll-to-roll method to a plating solution in a plating tank. In the method of electroplating a long conductive substrate that is repeatedly immersed and in contact with a power supply roll provided outside the plating tank before being immersed, and wound on a winding roll, the long conductive substrate is Each time the immersion in the plating solution is repeated, water at a temperature of 10 ° C. to 32 ° C. is supplied to the surface of the power supply roll that comes into contact, and the electroplating in the plating tank is completed before being wound on the take-up roll Water having a temperature of 10 ° C. to 32 ° C. is supplied to the surface of the conductive substrate that has been electroplated.

また、本発明が提供する長尺導電性基板の電気めっき装置は、ロールツーロール方式により巻出ロールから巻き出した長尺導電性基板を、めっき槽内のめっき液への浸漬を繰り返し且つ浸漬される前にめっき槽の外部に設けた給電ロールに接触しながら電気めっきを行い、巻取ロールに巻き取る長尺導電性基板の電気めっき装置において、長尺導電性基板がめっき液への浸漬を繰り返す毎に接触する給電ロールの表面に温度10℃〜32℃の水を供給する第1給水ノズルと、めっき槽での電気めっきが完了して巻取ロールに巻き取られる前の長尺導電性基板の電気めっきが施された面に温度10℃〜32℃の水を供給する第2給水ノズルとを備えることを特徴とする。   In addition, the electroplating apparatus for a long conductive substrate provided by the present invention repeatedly immerses a long conductive substrate unwound from an unwinding roll by a roll-to-roll method in a plating solution in a plating tank. In the electroplating device for long conductive substrates that are electroplated while being in contact with the power supply roll provided outside the plating tank and wound on the take-up roll, the long conductive substrate is immersed in the plating solution. The first water supply nozzle that supplies water at a temperature of 10 ° C. to 32 ° C. to the surface of the power supply roll that contacts each time is repeated, and the long conductive before the electroplating in the plating tank is completed and wound up on the take-up roll And a second water supply nozzle for supplying water at a temperature of 10 ° C. to 32 ° C. on the surface of the conductive substrate that has been electroplated.

更に、本発明は、上記した本発明の長尺導電性基板の電気めっき方法により、前記長尺導電性基板として長尺ポリイミドフィルムの少なくとも片方の面に接着剤を介することなく金属薄膜層を乾式めっき法で形成した金属薄膜層付ポリイミドフィルムを用い、該金属薄膜付ポリイミドフィルムの金属薄膜層の表面に銅電気めっきを行うことを特徴とする金属化ポリイミドフィルムの製造方法を提供するものである。   Furthermore, the present invention provides a method for electroplating a long conductive substrate according to the present invention as described above, wherein a dry thin film layer is formed on the long conductive substrate without using an adhesive on at least one surface of the long polyimide film. Provided is a method for producing a metallized polyimide film characterized by using a polyimide film with a metal thin film layer formed by a plating method and performing copper electroplating on the surface of the metal thin film layer of the polyimide film with a metal thin film. .

本発明によれば、金属薄膜層付きポリイミドフィルム等の長尺導電性基板の表面上に、電気めっき法により、柔軟性に優れた銅層等の金属層を形成することができる。特に本発明により形成した銅層を具える金属化ポリイミドフィルムは、チップオンフィルム(COF)で実装する際に折り曲げても断線することがなくなり、量産化や低コスト化を図るうえで極めて有効である。   ADVANTAGE OF THE INVENTION According to this invention, metal layers, such as a copper layer excellent in the softness | flexibility, can be formed on the surface of elongate conductive substrates, such as a polyimide film with a metal thin film layer, by the electroplating method. In particular, a metallized polyimide film comprising a copper layer formed according to the present invention is not broken even when bent with a chip-on-film (COF), which is extremely effective for mass production and cost reduction. is there.

本発明による長尺導電性基板の電気めっき方法で使用する連続電気めっき装置の一具体例を示す概略の断面図である。It is a schematic sectional drawing which shows one specific example of the continuous electroplating apparatus used with the electroplating method of the elongate conductive substrate by this invention. 図1の給電ロール付近を拡大して示す概略の断面図である。FIG. 2 is a schematic cross-sectional view showing an enlarged vicinity of a power supply roll in FIG. 1.

本発明の長尺導電性基板の電気めっき方法では、ロールツーロール方式により巻出ロールと巻取ロールの間で長尺導電性基板を搬送させながら、めっき液に浸漬を繰り返して連続的に電気めっきを行う際に、長尺導電性基板がめっき液への浸漬を繰り返す毎に接触する給電ロールの表面に温度10℃〜32℃の水を供給すると共に、電気めっきが完了して巻取ロールに巻き取られる前の長尺導電性基板の電気めっきが施された面にも温度10℃〜32℃の水を供給する。   In the method for electroplating a long conductive substrate according to the present invention, the continuous conductive substrate is repeatedly immersed in the plating solution while being transported between the unwinding roll and the winding roll by a roll-to-roll method. When performing plating, each time the long conductive substrate is repeatedly immersed in the plating solution, water is supplied to the surface of the power supply roll which comes into contact with the surface, and the electroplating is completed and the winding roll is supplied. Water having a temperature of 10 ° C. to 32 ° C. is also supplied to the surface of the long conductive substrate that has been electroplated before being wound on the substrate.

代表的な長尺導電性基板としては、金属化ポリイミドフィルムを得るために銅層を形成する前の金属薄膜層付きポリイミドフィルム、即ち、ポリイミドフィルムの表面に接着剤を介することなく、Ni、Cr、Cuなどの金属又はその合金からなる金属薄膜層を乾式めっき法で形成した金属薄膜層付ポリイミドフィルムがある。この他に、銅箔などの金属ストリップ等を用いることも可能である。   As a typical long conductive substrate, a polyimide film with a metal thin film layer before forming a copper layer to obtain a metallized polyimide film, that is, Ni, Cr without using an adhesive on the surface of the polyimide film There is a polyimide film with a metal thin film layer in which a metal thin film layer made of a metal such as Cu or an alloy thereof is formed by a dry plating method. In addition, a metal strip such as a copper foil can be used.

本発明の長尺導電性基板の電気めっき方法及びその装置について、長尺導電性基板として金属薄膜層付ポリイミドフィルムを使用し、その表面に金属薄膜層として銅層を電気めっきする場合を例に詳しく説明する。   Regarding the electroplating method and apparatus for a long conductive substrate of the present invention, a case where a polyimide film with a metal thin film layer is used as a long conductive substrate and a copper layer is electroplated as a metal thin film layer on the surface is taken as an example. explain in detail.

図1は、本発明による長尺導電性基板の電気めっき方法で使用する連続電気めっき装置の一具体例である。金属薄膜層付ポリイミドフィルムFは巻出ロール1から巻き出され、ガイドロール2aと給電ロール3aを経て、めっき槽4内のめっき液4aに浸漬される。メッキ槽4内に入った金属薄膜層付ポリイミドフィルムFは、反転ロール5aを経てガイドロール2bによりめっき槽4外へ出る。このように、金属薄膜層付ポリイミドフィルムFはめっき液への浸漬を複数回(図1では4回)繰り返し、その間に表面上に銅層が形成される。   FIG. 1 is a specific example of a continuous electroplating apparatus used in the electroplating method for a long conductive substrate according to the present invention. The polyimide film F with a metal thin film layer is unwound from the unwinding roll 1 and is immersed in the plating solution 4a in the plating tank 4 through the guide roll 2a and the power supply roll 3a. The polyimide film F with a metal thin film layer that has entered the plating tank 4 goes out of the plating tank 4 by the guide roll 2b through the reverse roll 5a. Thus, the polyimide film F with a metal thin film layer repeats the immersion to a plating solution several times (in FIG. 1 4 times), and a copper layer is formed on the surface in the meantime.

各給電ロールと対応する1対のアノードとで電気めっきの回路(めっきセル)が構成される。具体的には、給電ロール3aと1対のアノード6a、6aとでめっきセルを構成し、同様に、給電ロール3bとアノード6b、6b、給電ロール3cとアノード6c、6c、給電ロール3dとアノード6d、6dとで、それぞれ電気めっきの回路(めっきセル)を構成する。尚、アノードとしては公知の無酸素含リン銅や不溶性アノードを用いることができ、めっき液はアノードに応じためっき液を用いればよい。   An electroplating circuit (plating cell) is constituted by each power supply roll and a corresponding pair of anodes. Specifically, the power supply roll 3a and the pair of anodes 6a and 6a constitute a plating cell, and similarly, the power supply roll 3b and the anodes 6b and 6b, the power supply roll 3c and the anodes 6c and 6c, and the power supply roll 3d and the anode. 6d and 6d constitute an electroplating circuit (plating cell). As the anode, a known oxygen-free phosphorous copper or insoluble anode can be used, and a plating solution corresponding to the anode may be used as the plating solution.

各給電ロール3a、3b、3c、3dは、個別の電源装置(図示せず)に接続され、それぞれ金属薄膜層付ポリイミドフィルムFの金属薄膜層に接触して電気めっきに必要な電力を供給する。各給電ロール3a、3b、3c、3d及び各アノード6a、6a、6b、6b、6c、6c、6d、6dに供給される通電量を、金属薄膜層付ポリイミドフィルムFが搬送される経路に沿って順次増加させることにより、均一で良好な銅層などの電気めっき層を形成することができる。   Each of the power supply rolls 3a, 3b, 3c, and 3d is connected to an individual power supply device (not shown), and contacts the metal thin film layer of the polyimide film F with the metal thin film layer to supply electric power necessary for electroplating. . The amount of current supplied to each of the power supply rolls 3a, 3b, 3c, 3d and each of the anodes 6a, 6a, 6b, 6b, 6c, 6c, 6d, 6d is along the path along which the polyimide film F with a metal thin film layer is conveyed. By sequentially increasing the thickness, a uniform and good electroplating layer such as a copper layer can be formed.

このように金属薄膜層付ポリイミドフィルムFは、数m〜数十m/分の搬送速度で搬送されながら、めっき液4aへの浸漬を繰り返すことによって、その表面上に最終的な膜厚が数μm〜12μmの銅層が形成される。銅層が形成された金属薄膜層付ポリイミドフィルムFは、金属化ポリイミドフィルムSとして巻取ロール7に巻き取れられる。   As described above, the polyimide film F with a metal thin film layer is repeatedly immersed in the plating solution 4a while being transported at a transport speed of several meters to several tens of meters / minute, so that the final film thickness is several on the surface. A copper layer of μm to 12 μm is formed. The metal thin film layer-attached polyimide film F on which the copper layer is formed is wound around the take-up roll 7 as a metallized polyimide film S.

本発明においては、各給電ロール3a、3b、3c、3dに、温度10℃〜32℃の水を供給するための第1給水ノズル8a、8b、8c、8dを備えている。第1給水ノズル8a、8b、8c、8dから温度10℃〜32℃の水を供給することにより、金属薄膜層付ポリイミドフィルムFの冷却を行うことができる。第1給水ノズル8aからの水の供給は、金属薄膜層付ポリイミドフィルムFの冷却作用よりも洗浄作用が主となる。   In this invention, 1st water supply nozzle 8a, 8b, 8c, 8d for supplying water with a temperature of 10 to 32 degreeC to each feed roll 3a, 3b, 3c, 3d is provided. The polyimide film F with a metal thin film layer can be cooled by supplying water having a temperature of 10 ° C. to 32 ° C. from the first water supply nozzles 8a, 8b, 8c, and 8d. The supply of water from the first water supply nozzle 8a mainly has a cleaning action rather than a cooling action of the polyimide film F with a metal thin film layer.

第1給水ノズル8a、8b、8c、8dの下方には、それぞれ受水槽9a、9b、9c、9dを設けることが好ましい。供給される水を受水槽9a、9b、9c、9dで受けることにより、めっき液4への水の混入をなくすことができる。各第1給水ノズルからめっき液を供給すれば受水槽を設ける必要はないが、第1給水ノズルからめっき液を供給すると給電ロールが汚染される懸念があるため好ましくない。   It is preferable to provide water receiving tanks 9a, 9b, 9c and 9d below the first water supply nozzles 8a, 8b, 8c and 8d, respectively. By receiving the supplied water in the water receiving tanks 9a, 9b, 9c, 9d, it is possible to eliminate the mixing of water into the plating solution 4. If the plating solution is supplied from each of the first water supply nozzles, it is not necessary to provide a water receiving tank. However, if the plating solution is supplied from the first water supply nozzle, there is a concern that the power supply roll is contaminated, which is not preferable.

めっき槽4での金属薄膜層付ポリイミドフィルムFの電気めっきが完了し、銅層が形成された金属化ポリイミドフィルムSは、めっき槽4の出口付近に設けた第2給水ノズル10から温度10℃〜32℃の水を電気めっきが施された面に供給することにより、巻取ロール7に巻き取られる前に冷却される。尚、第2給水ノズル10から水を受けた金属化ポリイミドフィルムSは、ニップロール(図示せず)等に挟んで水を除去することが好ましい。また、第2給水ノズル10から供給される水を受ける受水槽9eを設けてもよい。   The electroplating of the polyimide film F with the metal thin film layer in the plating tank 4 is completed, and the metallized polyimide film S on which the copper layer is formed has a temperature of 10 ° C. from the second water supply nozzle 10 provided near the outlet of the plating tank 4. By supplying water at ˜32 ° C. to the surface on which electroplating has been performed, the surface is cooled before being wound on the winding roll 7. The metalized polyimide film S that has received water from the second water supply nozzle 10 is preferably sandwiched between nip rolls (not shown) to remove water. Further, a water receiving tank 9e that receives water supplied from the second water supply nozzle 10 may be provided.

給水ノズルから給電ロールへの水の供給は、別のロール又はブラシを介して行うことが好ましい。例えば、図1の連続めっき装置の給電ロール3b付近を拡大した図2に示すように、給電ロール3bの表面に接触して給電ロールブラシ11bが設け、給電ロールブラシ11bは第1給水ノズル8bから供給された温度10℃〜32℃の水を更に給電ロール3bに供給することができる。尚、ロールやブラシを介さずに、給水ノズルから給電ロールに水を直接供給してもよい。   The supply of water from the water supply nozzle to the power supply roll is preferably performed via another roll or brush. For example, as shown in FIG. 2 in which the vicinity of the power supply roll 3b of the continuous plating apparatus of FIG. 1 is enlarged, a power supply roll brush 11b is provided in contact with the surface of the power supply roll 3b, and the power supply roll brush 11b is provided from the first water supply nozzle 8b. The supplied water having a temperature of 10 ° C. to 32 ° C. can be further supplied to the power supply roll 3b. In addition, you may supply water directly to a feed roll from a water supply nozzle, without passing a roll and a brush.

第1冷却水ノズルから水の供給を受けた金属薄膜層付ポリイミドフィルムは、例えば図2に示すように、給電ロール3bとニップロール12bに挟まれることで水が除去される。また、給電ロールブラシのようなブラシや別のロールを設けることで、給電ロールの洗浄の効果も得られる。   For example, as shown in FIG. 2, the polyimide film with a metal thin film layer that has been supplied with water from the first cooling water nozzle is sandwiched between the power supply roll 3b and the nip roll 12b to remove water. Further, by providing a brush such as a power supply roll brush or another roll, the effect of cleaning the power supply roll can be obtained.

更に、本発明においては、長尺導電性基板がめっき液への浸漬を繰り返す毎に、給電ロールに達する前の長尺導電性基板の搬送経路上で、長尺導電性基板の電気めっきが施される面に温度10℃〜32℃の水を供給することが好ましい。   Further, in the present invention, every time the long conductive substrate is repeatedly immersed in the plating solution, the long conductive substrate is electroplated on the transport path of the long conductive substrate before reaching the power supply roll. It is preferable to supply water having a temperature of 10 ° C. to 32 ° C. to the surface.

例えば、図2に示すように、第1給水ノズル8bとは別に第3給水ノズル13bを設置して、温度10℃〜32℃の水を金属薄膜層付ポリイミドフィルムFの金属薄膜層に直接供給する。第3給水ノズル13bから金属薄膜層付ポリイミドフィルムFの金属薄膜層に水を供給するのは、金属薄膜層付ポリイミドフィルムFが給電ロール3bに接触する前である。   For example, as shown in FIG. 2, the 3rd water supply nozzle 13b is installed separately from the 1st water supply nozzle 8b, and the water of temperature 10 to 32 degreeC is directly supplied to the metal thin film layer of the polyimide film F with a metal thin film layer. To do. Water is supplied from the third water supply nozzle 13b to the metal thin film layer of the polyimide film F with the metal thin film layer before the polyimide film F with the metal thin film layer contacts the power supply roll 3b.

第3給水ノズルからの水の供給によって、金属薄膜層付ポリイミドフィルムの冷却効果をより高めることができる。尚、第3給水ノズルからめっき液を供給すれば、受水槽を設ける必要はない。しかし、第3給水ノズルからめっき液を供給すると、給電ロールの汚染の懸念があるため好ましくない。   By supplying water from the third water supply nozzle, the cooling effect of the polyimide film with a metal thin film layer can be further enhanced. If the plating solution is supplied from the third water supply nozzle, it is not necessary to provide a water receiving tank. However, it is not preferable to supply the plating solution from the third water supply nozzle because there is a concern of contamination of the power supply roll.

上記した第1給水ノズル、第2給水ノズル及び第3給水ノズルは、給電ロールの軸方向、金属薄膜層付ポリイミドフィルム及び金属化ポリイミドフィルムの幅方向に全体的に水を供給できればよく、そのためノズルの形状や配置は適宜選択することができる。例えば、給電ロールの軸方向やフィルムの幅方向に全体的に給水できるように、ノズルの形状を細長くしたり、複数のノズルを直線状に並べて配置したりすることができる。   The first water supply nozzle, the second water supply nozzle, and the third water supply nozzle described above need only be able to supply water generally in the axial direction of the power supply roll, the width direction of the polyimide film with the metal thin film layer, and the metallized polyimide film. The shape and arrangement can be selected as appropriate. For example, the shape of the nozzle can be elongated or a plurality of nozzles can be arranged in a straight line so that water can be supplied in the axial direction of the power supply roll or in the width direction of the film.

第1給水ノズル、第2給水ノズル及び第3給水ノズルから供給される水は、めっき液に混入する恐れがあるので純度に留意する必要がある。そのため、供給される水は、めっき液に好ましくないイオン等が除去されている純水が好ましい。使用する純水は、公知の純水冷却機構を備えた純水製造装置で製造することができる。純水冷却機構は、工水、散水等による冷却や、公知のチラーを用いて熱交換を行い、水の温度を10℃〜32℃に管理できればよい。また、供給する水の量は、水温や電気めっきの外観から適宜選択することができる。ただし、金属薄膜層付ポリイミドフィルムの金属薄膜層が、ノズルなどから噴射される水の圧力で変形することは避けねばならない。   Since the water supplied from the first water supply nozzle, the second water supply nozzle, and the third water supply nozzle may be mixed into the plating solution, attention must be paid to purity. Therefore, the supplied water is preferably pure water from which ions and the like that are not preferable in the plating solution are removed. The pure water to be used can be produced by a pure water production apparatus equipped with a known pure water cooling mechanism. The pure water cooling mechanism only needs to be able to control the temperature of water at 10 ° C. to 32 ° C. by performing cooling using industrial water, watering, etc., or performing heat exchange using a known chiller. The amount of water to be supplied can be appropriately selected from the water temperature and the appearance of electroplating. However, it must be avoided that the metal thin film layer of the polyimide film with the metal thin film layer is deformed by the pressure of water sprayed from a nozzle or the like.

上記第1給水ノズル及び第2給水ノズルから給電ロール及び金属化ポリイミドフィルムに、それぞれ温度10℃〜32℃の水を供給することによって、電気めっきの通電による電気めっき槽外での金属薄膜層付ポリイミドフィルム及び金属化ポリイミドフィルムの温度上昇を抑制することができる。これらの水の供給を受けることで、めっき槽外での金属薄膜層付ポリイミドフィルム及び金属化ポリイミドフィルムは供給された水とほぼ同じ温度となる。   With a metal thin film layer outside the electroplating tank by energization of electroplating by supplying water at a temperature of 10 ° C. to 32 ° C. to the power supply roll and the metalized polyimide film from the first water supply nozzle and the second water supply nozzle, respectively. The temperature rise of a polyimide film and a metallized polyimide film can be suppressed. By receiving these water supplies, the polyimide film with a metal thin film layer and the metallized polyimide film outside the plating tank have substantially the same temperature as the supplied water.

このように金属薄膜層付ポリイミドフィルム及び金属化ポリイミドフィルムの温度を水の供給により低く抑えることによって、本発明により得られる金属化ポリイミドフィルムの銅層は、JPCA BM03−2006−6.2に規定された銅箔の伸び率の測定法(JIS C 1998 付属書A.2.3準用)により測定したとき、伸び率が3.5%以上という優れた柔軟性を有するものとなる。   Thus, the copper layer of the metallized polyimide film obtained by the present invention is regulated by JPCA BM03-2006-6.2 by keeping the temperature of the polyimide film with metal thin film layer and the metallized polyimide film low by supplying water. When measured by the method for measuring the elongation of the copper foil (JIS C 1998 appendix A.2.3), the elongation is excellent at a rate of 3.5% or more.

上記した銅層の伸び率が3.5%以上の金属化ポリイミドフィルムであれば、公知のサブトラクティブ法等で配線パターン加工してCOF基板とする際に液晶画面表示等に折り曲げられて装着させられても、配線パターンの断線や破損をなくすことができる。   If it is a metallized polyimide film with an elongation percentage of the copper layer of 3.5% or more, when it is processed into a wiring pattern by a known subtractive method or the like to form a COF substrate, it is bent and attached to a liquid crystal display or the like. Even if the wiring pattern is broken, disconnection and damage of the wiring pattern can be eliminated.

供給する水の温度が32℃を超えると、伸び率が低下するうえ、得られる金属化ポリイミドフィルムの銅層の表面外観が悪くなり、欠点部が生じやすく、その欠点部を起点として銅層にクラックが入りやすくなる。一方、水の温度が10℃未満に低下した場合、銅層の表面外観に影響は出ないものの、金属薄膜層付ポリイミドフィルムの温度低下に起因するめっき温度の低下などにより、生産性が低下する恐れがあるため好ましくない。   When the temperature of the water to be supplied exceeds 32 ° C., the elongation rate decreases, and the surface appearance of the copper layer of the resulting metallized polyimide film is deteriorated, and a defect portion is likely to be generated. It becomes easy to crack. On the other hand, when the water temperature falls below 10 ° C., the surface appearance of the copper layer is not affected, but the productivity is lowered due to a decrease in the plating temperature caused by the temperature drop of the polyimide film with the metal thin film layer. This is not preferable because of fear.

上記方法により金属化ポリイミドフィルムの銅層の伸び率を測定するには、ポリイミドフィルムを除去する必要がある。ポリイミドフィルムの除去には公知のポリイミドエッチング方法を用いればよく、市販のポリイミドエッチング液を利用して溶解除去することができる。例えば、金属化ポリイミドフィルムを試験片の形状に裁断し、市販のポリイミドエッチング液でポリイミドフィルムを溶解除去すれば、箔状の金属が得られる。   In order to measure the elongation of the copper layer of the metallized polyimide film by the above method, it is necessary to remove the polyimide film. For the removal of the polyimide film, a known polyimide etching method may be used, and the polyimide film can be dissolved and removed using a commercially available polyimide etching solution. For example, if a metallized polyimide film is cut into the shape of a test piece, and the polyimide film is dissolved and removed with a commercially available polyimide etching solution, a foil-like metal is obtained.

尚、本発明の電気めっき方法に用いる金属薄膜層付ポリイミドフィルムは、ポリイミドフィルムの表面に、接着剤を介することなく、乾式めっき法によりNi又はCrなどの金属又はこれら合金からなる下地金属薄膜と、この下地金属薄膜上に積層された銅薄膜とを具えている。これらの下地金属薄膜及び銅薄膜は、高知の蒸着法やスパッタリング法等の乾式めっき法を用いて形成される。   The polyimide film with a metal thin film layer used in the electroplating method of the present invention is a base metal thin film made of a metal such as Ni or Cr or an alloy thereof by a dry plating method without using an adhesive on the surface of the polyimide film. And a copper thin film laminated on the underlying metal thin film. These base metal thin film and copper thin film are formed by using a dry plating method such as a Kochi vapor deposition method or a sputtering method.

上記下地金属薄膜の膜厚は3〜50nmとすることが好ましい。膜厚が3nm未満では、得られた金属化ポリイミドフィルムの金属層をエッチングして配線を形成する際に、エッチング液が金属薄膜を浸食してポリイミドフィルムと金属薄膜の間に染み込み、配線が浮いてしまう場合があり好ましくない。一方、50nmを超えると、エッチングして配線を形成する際に金属層が完全に除去されず、残った残渣が配線間の絶縁不良を発生させることがある。   The thickness of the base metal thin film is preferably 3 to 50 nm. If the film thickness is less than 3 nm, when the metal layer of the obtained metalized polyimide film is etched to form a wiring, the etching solution erodes the metal thin film and penetrates between the polyimide film and the metal thin film, and the wiring floats. May be undesirable. On the other hand, if the thickness exceeds 50 nm, the metal layer may not be completely removed when the wiring is formed by etching, and the remaining residue may cause an insulation failure between the wirings.

下地金属薄膜上に銅薄膜を設ける理由は、下地金属薄膜上に銅層を電気めっき法により直接設けようとすると、通電抵抗が高く、電気めっきの電流密度が不安定になるためである。銅薄膜を設けることにより通電抵抗を下げ、電気めっき時の電流密度の安定化を図ることができる。この銅薄膜の膜厚は10nm〜1μmとし、20nm〜0.8μmの範囲が好ましい。10nmより薄いと電気めっき時の通電抵抗を十分下げることができず、1μmを超えて厚くなると成膜に時間がかかりすぎ、生産性を悪化させ、経済性を損なうからである。   The reason why the copper thin film is provided on the base metal thin film is that when the copper layer is directly provided on the base metal thin film by electroplating, the current resistance is high and the current density of electroplating becomes unstable. By providing a copper thin film, the current resistance can be lowered and the current density during electroplating can be stabilized. The thickness of the copper thin film is 10 nm to 1 μm, and preferably in the range of 20 nm to 0.8 μm. If the thickness is less than 10 nm, the energization resistance at the time of electroplating cannot be lowered sufficiently, and if it exceeds 1 μm, it takes too much time to form a film, which deteriorates productivity and impairs economy.

上記した本発明による長尺導電性基板の電気めっき方法は、長尺導電性基板として、長尺ポリイミドフィルムの少なくとも片方の面に接着剤を介することなく金属薄膜層を乾式めっき法で形成した金属薄膜層付ポリイミドフィルムを用いることにより、金属化ポリイミドフィルムの製造方法として用いることができる。また、上記した連続めっき装置も、金属化ポリイミドフィルムの製造装置として利用可能である。更に、長尺導電性基板として長尺の銅箔を用い、電気銅めっきを行う場合には、銅箔への銅めっきによる銅の厚付が可能である。また、本発明の電気めっき方法は、公知のセミアディティブ法のパターンめっきにも応用可能である。   The electroplating method for a long conductive substrate according to the present invention described above is a metal in which a metal thin film layer is formed by a dry plating method without using an adhesive on at least one surface of a long polyimide film as a long conductive substrate. By using a polyimide film with a thin film layer, it can be used as a method for producing a metallized polyimide film. The continuous plating apparatus described above can also be used as a metallized polyimide film manufacturing apparatus. Further, when a long copper foil is used as the long conductive substrate and electrolytic copper plating is performed, the copper can be thickened by copper plating on the copper foil. The electroplating method of the present invention can also be applied to pattern plating of a known semi-additive method.

因みに、サブトラクティブ法とは、フレキシブル配線板の配線パターンを作製する方法である。金属化ポリイミドフィルムの金属皮膜層表面にレジスト層を設け、そのレジスト層上に所定の配線パターンを有するマスクを設け、その上から紫外線を照射して露光し、現像して金属をエッチングするためのエッチングマスクを得た後、露出している金属をエッチングして除去し、次いで残存するレジスト層を除去し、水洗することで配線パターンが得られる。   Incidentally, the subtractive method is a method for producing a wiring pattern of a flexible wiring board. A resist layer is provided on the metal film layer surface of the metallized polyimide film, a mask having a predetermined wiring pattern is provided on the resist layer, exposure is performed by irradiating ultraviolet rays from the resist layer, and development is performed to etch the metal. After obtaining the etching mask, the exposed metal is removed by etching, and then the remaining resist layer is removed and washed with water to obtain a wiring pattern.

また、セミアディティブ法とは、フレキシブル配線板の配線パターンを形成する別の方法である。金属化ポリイミドフィルムの金属皮膜層表面にレジスト層を設け、そのレジスト層上に所定の配線パターを有するマスクを設け、その上から紫外線を照射して露光し、現像して金属皮膜層の表面に銅を電着させるためのめっき用マスクを得た後、開口部に露出している金属皮膜層を陰極として電気メッキして配線部を形成し、次にレジスト層を除去し、ソフトエッチングにより配線部以外の金属を除去して配線パターンを完成させ、水洗することで配線パターンが得られる。   The semi-additive method is another method for forming a wiring pattern of a flexible wiring board. A resist layer is provided on the surface of the metal film layer of the metallized polyimide film, a mask having a predetermined wiring pattern is provided on the resist layer, exposed to ultraviolet rays from the resist layer, developed, and developed on the surface of the metal film layer. After obtaining a plating mask for electrodepositing copper, the metal film layer exposed in the opening is electroplated as a cathode to form a wiring portion, and then the resist layer is removed and wiring is performed by soft etching. The wiring pattern is obtained by removing the metal other than the portion to complete the wiring pattern and washing with water.

図1及び図2に示すロールツーロール方式の連続電気めっき装置を用いて、金属薄膜層付ポリイミドフィルムFに膜厚8μmとなるように銅電気めっきを行った。尚、金属薄膜層付ポリイミドフィルムFは、めっき液の液面から最深1mの深さに浸漬される。アノードは溶解性の陽極(リン脱酸素銅)を用いた。めっき液の組成は、硫酸濃度180g/l、硫酸銅濃度23g/l、塩素濃度50mg/lであり、更に銅めっき層の平滑性等を確保する目的で市販の有機系添加剤を所定量添加した。めっき液の温度は27℃であった。   Copper electroplating was performed on the polyimide film F with a metal thin film layer so as to have a film thickness of 8 μm using the roll-to-roll continuous electroplating apparatus shown in FIGS. 1 and 2. In addition, the polyimide film F with a metal thin film layer is immersed in the deepest depth of 1 m from the liquid level of a plating solution. A soluble anode (phosphorus deoxygenated copper) was used as the anode. The plating solution has a sulfuric acid concentration of 180 g / l, a copper sulfate concentration of 23 g / l, and a chlorine concentration of 50 mg / l, and a predetermined amount of a commercially available organic additive is added for the purpose of ensuring the smoothness of the copper plating layer. did. The temperature of the plating solution was 27 ° C.

また、電流密度は、給電ロール3aとアノード6a、6aの間が0.01A/cm、給電ロール3bとアノード6b、6bの間が0.02A/cm、給電ロール3cとアノード6c、6cの間が0.03A/cm、給電ロール3dとアノード6d、6dの間が0.04A/cmとなるように設定した。 Also, current density, power feed roller 3a and the anode 6a, during 6a is 0.01 A / cm 2, feed roll 3b and the anode 6b, during 6b is 0.02 A / cm 2, feed roll 3c and the anode 6c, 6c The gap was set to 0.03 A / cm 2 , and the gap between the feeding roll 3 d and the anodes 6 d and 6 d was set to 0.04 A / cm 2 .

金属薄膜層付ポリイミドフィルムFは、幅50cm、厚み38μmのポリイミドフィルム(登録商標「カプトン」、東レデュポン社製)の表面に、スパッタリング法により、膜厚7nmの20%Cr−Ni合金下地金属薄膜と膜厚100nmの銅薄膜とを積層して得た。   A polyimide film F with a metal thin film layer is a 20% Cr-Ni alloy base metal thin film having a thickness of 7 nm on the surface of a polyimide film (registered trademark “Kapton”, manufactured by Toray DuPont) having a width of 50 cm and a thickness of 38 μm by sputtering. And a copper thin film having a thickness of 100 nm were laminated.

銅層の伸び率の測定は、JPCA BM03−2006−6.2に定められた銅箔の伸び率の測定に関する規格に基づき測定した。伸び率測定の試験片は、上記JPCAの規格に従って、金属化ポリイミドフィルムを切断し、市販のポリイミドエッチング液を用いてポリイミドフィルム部分を除去して得られる箔状の銅層を用いた。   The elongation percentage of the copper layer was measured based on the standard regarding the measurement of the elongation percentage of the copper foil defined in JPCA BM03-2006-6.2. As a test piece for measuring elongation, a foil-like copper layer obtained by cutting a metallized polyimide film according to the above-mentioned JPCA standard and removing the polyimide film portion using a commercially available polyimide etching solution was used.

[実施例1]
連続めっき装置の第1給水ノズル、第2給水ノズル及び第3給水ノズルの全てから、温度29℃の純水を供給しながら銅電気めっきを行い、金属化ポリイミドフィルムを得た。
[Example 1]
Copper electroplating was performed while supplying pure water at a temperature of 29 ° C. from all of the first water supply nozzle, the second water supply nozzle, and the third water supply nozzle of the continuous plating apparatus to obtain a metallized polyimide film.

得られた金属化ポリイミドフィルムの外観を目視で観察したところ、銅色で問題なかった。また、得られた金属化ポリイミドフィルムから作製した銅箔の伸び率を測定した結果、測定サンプル数500個で、伸び率の平均値は6.47%であった。   When the appearance of the obtained metallized polyimide film was visually observed, there was no problem with the copper color. Moreover, as a result of measuring the elongation rate of the copper foil produced from the obtained metallized polyimide film, the number of measurement samples was 500 and the average value of the elongation rate was 6.47%.

[実施例2]
供給する純水の温度を17℃にした以外は上記実施例1と同様に銅電解めっきを行い、金属化ポリイミドフィルムを得た。
[Example 2]
Copper electroplating was performed in the same manner as in Example 1 except that the temperature of the pure water supplied was 17 ° C. to obtain a metallized polyimide film.

得られた金属化ポリイミドフィルムの外観を目視で観察したところ、銅色で問題なかった。また、得られた金属化ポリイミドフィルムから作製した銅箔の伸び率を測定した結果、測定サンプル数500個で、伸び率の平均値は8.14%であった。   When the appearance of the obtained metallized polyimide film was visually observed, there was no problem with the copper color. Moreover, as a result of measuring the elongation rate of the copper foil produced from the obtained metallized polyimide film, the number of measurement samples was 500 and the average value of the elongation rate was 8.14%.

[比較例1]
連続めっき装置の第1給水ノズル、第2給水ノズル及び第3給水ノズルの全てから、水の供給を行わなかったこと以外は上記実施例1と同様にして、金属薄膜層付ポリイミドフィルムに銅電機めっきを行った。しかし、銅めっきの表面が変色したので電気めっきを中止した。
[Comparative Example 1]
In the same manner as in Example 1 except that water was not supplied from all of the first water supply nozzle, the second water supply nozzle, and the third water supply nozzle of the continuous plating apparatus, the polyimide film with the metal thin film layer was applied to the copper electric machine. Plating was performed. However, the electroplating was stopped because the surface of the copper plating was discolored.

[比較例2]
供給する純水の温度を33℃にした以外は上記実施例1と同様に銅電解めっきを行い、金属化ポリイミドフィルムを得た。
[Comparative Example 2]
Copper electroplating was performed in the same manner as in Example 1 except that the temperature of the pure water supplied was changed to 33 ° C. to obtain a metallized polyimide film.

得られた金属化ポリイミドフィルムの外観を目視で観察したところ、銅色で問題なかった。また、得られた金属化ポリイミドフィルムから作製した銅箔の伸び率を測定した結果、測定サンプル数500個で、伸び率の平均値は3.04%であった。   When the appearance of the obtained metallized polyimide film was visually observed, there was no problem with the copper color. Moreover, as a result of measuring the elongation rate of the copper foil produced from the obtained metallized polyimide film, the number of measurement samples was 500 and the average value of the elongation rate was 3.04%.

[金属化ポリイミドフィルムの特性評価]
上記した実施例1〜2及び比較例1〜2の結果から分るように、本発明による実施例1及び2では、得られた金属化ポリイミドフィルムの電気めっき面の変色がなく、且つ銅層の平均伸び率は3.5%以上を示し、特性検査の基準をクリアすることができた。
[Characteristic evaluation of metallized polyimide film]
As can be seen from the results of Examples 1 and 2 and Comparative Examples 1 and 2 described above, in Examples 1 and 2 according to the present invention, there was no discoloration of the electroplated surface of the obtained metalized polyimide film, and the copper layer The average elongation of the steel sheet was 3.5% or more, which cleared the standard for property inspection.

一方、本発明によらない比較例1及び2の場合、水の供給による冷却を行わない比較例1では良好な銅の電気めっきができず、また供給する水の温度が高い比較例2では得られた金属化ポリイミドフィルムの平均伸び率が3.5%に達することはなく、特性検査の基準をクリアすることはできなかった。   On the other hand, in the case of Comparative Examples 1 and 2 that are not based on the present invention, Comparative Example 1 in which cooling is not performed by supplying water cannot achieve good copper electroplating, and Comparative Example 2 in which the temperature of supplied water is high is not obtained. The average elongation of the obtained metallized polyimide film did not reach 3.5%, and the standard for property inspection could not be cleared.

F 金属薄膜層付ポリイミドフィルム
S 金属化ポリイミドフィルム
1 巻出ロール
2a、2b、2c、2d、2e ガイドロール
3a、3b、3c、3d 給電ロール
4 めっき槽
4a めっき液
5a、5b、5c、5d 反転ロール
6a、6b、6c、6d アノード
7 巻取ロール
8a、8b、8c、8d 第1給水ノズル
9a、9b、9c、9d、9e 受水槽
10 第2給水ノズル
11b 給電ロールブラシ
12b ニップロール
13b 第3給水ノズル
F Polyimide film with metal thin film layer S Metalized polyimide film 1 Unwinding roll 2a, 2b, 2c, 2d, 2e Guide roll 3a, 3b, 3c, 3d Feeding roll 4 Plating tank 4a Plating solution 5a, 5b, 5c, 5d Inversion Roll 6a, 6b, 6c, 6d Anode 7 Winding roll 8a, 8b, 8c, 8d 1st water supply nozzle 9a, 9b, 9c, 9d, 9e Water receiving tank 10 2nd water supply nozzle 11b Feed roll brush 12b Nip roll 13b 3rd water supply nozzle

Claims (7)

ロールツーロール方式により巻出ロールから巻き出した長尺導電性基板を、めっき槽内のめっき液への浸漬を繰り返し且つ浸漬される前にめっき槽の外部に設けた給電ロールに接触しながら電気めっきを行い、巻取ロールに巻き取る長尺導電性基板の電気めっき方法において、
長尺導電性基板がめっき液への浸漬を繰り返す毎に接触する給電ロールの表面に温度10℃〜32℃の水を供給すると共に、めっき槽での電気めっきが完了して巻取ロールに巻き取られる前の長尺導電性基板の電気めっきが施された面に温度10℃〜32℃の水を供給することを特徴とする長尺導電性基板の電気めっき方法。
The long conductive substrate unwound from the unwinding roll by the roll-to-roll method is repeatedly immersed in the plating solution in the plating tank and is in contact with the power supply roll provided outside the plating tank before being immersed. In the method of electroplating a long conductive substrate that is plated and wound on a winding roll,
Each time the long conductive substrate is repeatedly immersed in the plating solution, water at a temperature of 10 ° C. to 32 ° C. is supplied to the surface of the power supply roll that comes into contact with it. A method of electroplating a long conductive substrate, comprising supplying water having a temperature of 10 ° C to 32 ° C to a surface of the long conductive substrate before being taken.
前記長尺導電性基板がめっき液への浸漬を繰り返す毎に、給電ロールに達する前の長尺導電性基板の搬送経路上で、長尺導電性基板の電気めっきが施される面に温度10℃〜32℃の水を供給することを特徴とする、請求項1に記載の長尺導電性基板の電気めっき方法。   Each time the long conductive substrate is repeatedly immersed in the plating solution, the surface of the long conductive substrate subjected to electroplating on the transport path of the long conductive substrate before reaching the power supply roll has a temperature of 10. The method for electroplating a long conductive substrate according to claim 1, wherein water at a temperature of from 32 ° C. to 32 ° C. is supplied. 前記給電ロールへの水の供給は、給電ロールの表面に接触するロール又はブラシを介して行うことを特徴とする、請求項1又は2に記載の長尺導電性基板の電気めっき方法。   The method for electroplating a long conductive substrate according to claim 1 or 2, wherein water is supplied to the power supply roll through a roll or a brush that contacts the surface of the power supply roll. 前記電気めっきが銅電気めっきであることを特徴とする、請求項1〜3のいずれかに記載の長尺導電性基板の電気めっき方法。   The said electroplating is copper electroplating, The electroplating method of the elongate conductive substrate in any one of Claims 1-3 characterized by the above-mentioned. ロールツーロール方式により巻出ロールから巻き出した長尺導電性基板を、めっき槽内のめっき液への浸漬を繰り返し且つ浸漬される前にめっき槽の外部に設けた給電ロールに接触しながら電気めっきを行い、巻取ロールに巻き取る長尺導電性基板の電気めっき装置において、
長尺導電性基板がめっき液への浸漬を繰り返す毎に接触する給電ロールの表面に温度10℃〜32℃の水を供給する第1給水ノズルと、めっき槽での電気めっきが完了して巻取ロールに巻き取られる前の長尺導電性基板の電気めっきが施された面に温度10℃〜32℃の水を供給する第2給水ノズルとを備えることを特徴とする長尺導電性基板の電気めっき装置。
The long conductive substrate unwound from the unwinding roll by the roll-to-roll method is repeatedly immersed in the plating solution in the plating tank and is in contact with the power supply roll provided outside the plating tank before being immersed. In electroplating equipment for long conductive substrates that are plated and wound on a winding roll,
A first water supply nozzle that supplies water at a temperature of 10 ° C. to 32 ° C. to the surface of the power supply roll that comes into contact with the long conductive substrate every time it is repeatedly immersed in the plating solution, and the electroplating in the plating tank is completed and wound. A long conductive substrate comprising a second water supply nozzle for supplying water at a temperature of 10 ° C to 32 ° C on the surface of the long conductive substrate before being wound around the take-up roll. Electroplating equipment.
請求項1〜4のいずれかに記載の方法により、前記長尺導電性基板として長尺ポリイミドフィルムの少なくとも片方の面に接着剤を介することなく金属薄膜層を乾式めっき法で形成した金属薄膜層付ポリイミドフィルムを用い、該金属薄膜付ポリイミドフィルムの金属薄膜層の表面に銅電気めっきを行うことを特徴とする金属化ポリイミドフィルムの製造方法。   The metal thin film layer which formed the metal thin film layer with the method in any one of Claims 1-4 by the dry-type plating method on the at least one surface of the long polyimide film as an elongate conductive substrate without using an adhesive agent A method for producing a metallized polyimide film, comprising: using a coated polyimide film, and performing copper electroplating on the surface of the metal thin film layer of the polyimide film with a metal thin film. 請求項6に記載の方法により製造された金属化ポリイミドフィルムであって、ポリイミドを溶解除去して得られる箔状の銅層をJPCA BM03−2006−6.2に規定された方法で測定したとき、該銅層の伸び率が3.5%以上であることを特徴とする金属化ポリイミドフィルム。   It is the metallized polyimide film manufactured by the method of Claim 6, Comprising: When the foil-like copper layer obtained by melt | dissolving and removing a polyimide is measured by the method prescribed | regulated to JPCA BM03-2006-6.2 The metallized polyimide film is characterized in that the elongation percentage of the copper layer is 3.5% or more.
JP2010069476A 2010-03-25 2010-03-25 Method and apparatus for electroplating long conductive substrate, metallized polyimide film and method for producing the same Active JP5293664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069476A JP5293664B2 (en) 2010-03-25 2010-03-25 Method and apparatus for electroplating long conductive substrate, metallized polyimide film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069476A JP5293664B2 (en) 2010-03-25 2010-03-25 Method and apparatus for electroplating long conductive substrate, metallized polyimide film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011202219A true JP2011202219A (en) 2011-10-13
JP5293664B2 JP5293664B2 (en) 2013-09-18

Family

ID=44879162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069476A Active JP5293664B2 (en) 2010-03-25 2010-03-25 Method and apparatus for electroplating long conductive substrate, metallized polyimide film and method for producing the same

Country Status (1)

Country Link
JP (1) JP5293664B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160063760A (en) * 2014-11-27 2016-06-07 주식회사 아모센스 Touch Screen Pannel
JP2017025359A (en) * 2015-07-17 2017-02-02 住友金属鉱山株式会社 Electroplating method and electroplating device for long-length conductive substrate, and method for producing metallized polyimide film using the electroplating method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693895A (en) * 1979-12-11 1981-07-29 Siemens Ag Electrolytic apparatus for reinforcing preliminarily coated electroconductive strip like plastic film by plating
JPS6067698A (en) * 1983-09-19 1985-04-18 Fuji Photo Film Co Ltd Web cooling method
JPS63250492A (en) * 1987-04-07 1988-10-18 Sumitomo Metal Ind Ltd Electrodeposition preventing method for vertical plating equipment
JPH04268091A (en) * 1990-12-20 1992-09-24 American Teleph & Telegr Co <Att> Method and device for plating insulating strip
JPH0722473A (en) * 1993-06-30 1995-01-24 Sumitomo Metal Mining Co Ltd Continuous plating method
JP2002004098A (en) * 2000-06-19 2002-01-09 Ngk Spark Plug Co Ltd Method for manufacturing substrate and plating device
JP2004035985A (en) * 2002-07-08 2004-02-05 Kawasaki Heavy Ind Ltd Apparatus for plating surface of metallic foil
JP2004232063A (en) * 2003-01-31 2004-08-19 Microhard Corp Surface plating device for metallic foil
JP2007016316A (en) * 2005-07-08 2007-01-25 Hoellmueller Maschinenbau Gmbh Apparatus and process for electrolytically treating of foils from roller to roller

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693895A (en) * 1979-12-11 1981-07-29 Siemens Ag Electrolytic apparatus for reinforcing preliminarily coated electroconductive strip like plastic film by plating
JPS6067698A (en) * 1983-09-19 1985-04-18 Fuji Photo Film Co Ltd Web cooling method
JPS63250492A (en) * 1987-04-07 1988-10-18 Sumitomo Metal Ind Ltd Electrodeposition preventing method for vertical plating equipment
JPH04268091A (en) * 1990-12-20 1992-09-24 American Teleph & Telegr Co <Att> Method and device for plating insulating strip
JPH0722473A (en) * 1993-06-30 1995-01-24 Sumitomo Metal Mining Co Ltd Continuous plating method
JP2002004098A (en) * 2000-06-19 2002-01-09 Ngk Spark Plug Co Ltd Method for manufacturing substrate and plating device
JP2004035985A (en) * 2002-07-08 2004-02-05 Kawasaki Heavy Ind Ltd Apparatus for plating surface of metallic foil
JP2004232063A (en) * 2003-01-31 2004-08-19 Microhard Corp Surface plating device for metallic foil
JP2007016316A (en) * 2005-07-08 2007-01-25 Hoellmueller Maschinenbau Gmbh Apparatus and process for electrolytically treating of foils from roller to roller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160063760A (en) * 2014-11-27 2016-06-07 주식회사 아모센스 Touch Screen Pannel
KR101658932B1 (en) * 2014-11-27 2016-09-22 주식회사 아모센스 Touch Screen Pannel
JP2017025359A (en) * 2015-07-17 2017-02-02 住友金属鉱山株式会社 Electroplating method and electroplating device for long-length conductive substrate, and method for producing metallized polyimide film using the electroplating method

Also Published As

Publication number Publication date
JP5293664B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP4781371B2 (en) Plating apparatus and plating method
KR101669745B1 (en) Two-layered flexible wiring substrate, flexible wiring board, and methods for producing same
JP6859850B2 (en) Manufacturing method and manufacturing equipment for copper-clad laminated resin film
JP5862917B2 (en) Method for electroplating long conductive substrate, method for producing copper-coated long conductive substrate using this method, and roll-to-roll type electroplating apparatus
JP5652587B2 (en) Method for producing copper-coated polyimide substrate and electroplating apparatus
JP5673582B2 (en) Pretreatment method for electroplating and method for producing copper clad laminated resin film by electroplating method including the pretreatment method
JP4955104B2 (en) Method for forming an electronic circuit
JP6493051B2 (en) Electroplating method and electroplating apparatus for long conductive substrate, and metallized polyimide film manufacturing method using the electroplating method
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
KR20110018809A (en) Metal-coated polyimide film and process for producing the same
JP5440386B2 (en) Method for producing metallized resin film substrate
JP5293664B2 (en) Method and apparatus for electroplating long conductive substrate, metallized polyimide film and method for producing the same
JP6353193B2 (en) Copper foil with carrier, method for producing a copper-clad laminate using the copper foil with carrier, method for producing a printed wiring board using the copper foil with carrier, and method for producing a printed wiring board
JP5858286B2 (en) Method for electrolytic plating long conductive substrate and method for producing copper clad laminate
JP5751530B2 (en) Method for electrolytic plating long conductive substrate and method for producing copper clad laminate
JP6403095B2 (en) Flexible wiring board and flexible wiring board
JP5373993B1 (en) Copper foil with carrier
JP6365937B2 (en) Two-layer copper-clad laminate and method for producing the same
JP6360659B2 (en) Copper foil with carrier, method of producing a printed wiring board using the copper foil with carrier, method of producing a copper clad laminate using the copper foil with carrier, and method of producing a printed wiring board
JP6403097B2 (en) Insoluble anode, plating apparatus, electroplating method, and copper clad laminate manufacturing method
JP6667982B2 (en) Flexible wiring board
JP2016004825A (en) Method of manufacturing flexible wiring board
JP2008075113A (en) Plating apparatus
JP2015199989A (en) Liquid draining device, electric plating apparatus and production method of copper-clad laminated resin film
JP6531708B2 (en) Liquid removal apparatus, electroplating apparatus, and method of manufacturing copper-clad laminated resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5293664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150