JP5858286B2 - Method for electrolytic plating long conductive substrate and method for producing copper clad laminate - Google Patents

Method for electrolytic plating long conductive substrate and method for producing copper clad laminate Download PDF

Info

Publication number
JP5858286B2
JP5858286B2 JP2012003128A JP2012003128A JP5858286B2 JP 5858286 B2 JP5858286 B2 JP 5858286B2 JP 2012003128 A JP2012003128 A JP 2012003128A JP 2012003128 A JP2012003128 A JP 2012003128A JP 5858286 B2 JP5858286 B2 JP 5858286B2
Authority
JP
Japan
Prior art keywords
long
conductive substrate
electrolytic plating
copper
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012003128A
Other languages
Japanese (ja)
Other versions
JP2013143490A (en
Inventor
晋平 西原
晋平 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012003128A priority Critical patent/JP5858286B2/en
Publication of JP2013143490A publication Critical patent/JP2013143490A/en
Application granted granted Critical
Publication of JP5858286B2 publication Critical patent/JP5858286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、長尺導電性基板をロールツーロール方式を用いて搬送し、陽極を備え電解めっき液を満たし電解めっき槽に繰り返し浸漬して長尺導電性基板の表面に電解めっきを施す長尺導電性基板の電解めっき方法に関する。さらに、その長尺導電性基板の電解めっき方法を用いた電子材料に用いられる銅張積層板の製造方法に関する。   The present invention conveys a long conductive substrate using a roll-to-roll system, fills an electrolytic plating solution with an anode, and repeatedly immerses in an electrolytic plating tank to apply electrolytic plating to the surface of the long conductive substrate. The present invention relates to a method for electrolytic plating of a conductive substrate. Furthermore, it is related with the manufacturing method of the copper clad laminated board used for the electronic material using the electrolytic plating method of the elongate conductive substrate.

電解めっきは、半導体の回路形成をはじめ、鋼ストリップや銅箔の表面処理、電解銅箔の製造、ポリイミド等の樹脂フィルムの表面に銅電解めっき膜を形成した銅張積層板の製造など、産業界で広く用いられている。
そして、銅張積層板はフレキシブル配線基板に加工され、携帯電話など小型電子機器は勿論、液晶ディスプレイ等のドライバ回路のCOF(Chip on Film)実装で使用されている。
COF実装で用いられるフレキシブル配線基板は、2005年以前は配線ピッチ(隣接する配線の中心間距離)は40〜50μmが主流であったが、近年は微細配線加工が、配線ピッチが30μm以下となっている。
Electroplating is an industry that includes semiconductor circuit formation, surface treatment of steel strip and copper foil, production of electrolytic copper foil, and production of copper-clad laminates with a copper electrolytic plating film formed on the surface of a resin film such as polyimide. Widely used in the world.
The copper-clad laminate is processed into a flexible wiring board, and is used for COF (Chip on Film) mounting of driver circuits such as liquid crystal displays as well as small electronic devices such as mobile phones.
The flexible wiring board used in COF mounting was mainly 40-50 μm in wiring pitch (distance between the centers of adjacent wirings) before 2005, but in recent years, the wiring pitch has become 30 μm or less in fine wiring processing. ing.

ところで、このフレキシブル配線基板は、樹脂フィルムの一種であるポリイミドフィルムと銅箔の間に接着剤を用いて両者を重ねて張り合わせた3層銅張積層板を使用したものからサブトラクティブ法等によって製造される。   By the way, this flexible wiring board is manufactured by using a subtractive method or the like from a three-layer copper-clad laminate in which an adhesive is used between a polyimide film, which is a kind of resin film, and a copper foil. Is done.

近年電子部品の軽薄短小化に伴い、配線を狭ピッチ化する要求が高まってきているため、使用される銅張積層板に対する要求も、微細配線が描ける基材を要求される中で、接着剤層の無い2層銅張積層板が要求されてきた。その理由として、この接着剤層を省くことによって、接着剤層の特性に影響を受けず、ポリイミド本来の安定性を利用した材料が得られるためである。   In recent years, as electronic components have become lighter, thinner, and smaller, the demand for narrower wiring has increased, so the demand for copper-clad laminates used has been increasing due to the demand for substrates that can draw fine wiring. Two-layer copper clad laminates without layers have been required. The reason is that by omitting the adhesive layer, a material using the inherent stability of the polyimide can be obtained without being affected by the properties of the adhesive layer.

その2層銅張積層板を得る方法として、特許文献1にはポリイミドフィルム表面にスパッタリング法および蒸着法で直接金属層を積層させた後に電解めっき法、無電解めっき法を用いて金属層を厚付けするいわゆるメタライジング法が提案されている。
特許文献1と、その周辺技術を説明すると、2層銅張積層板を製造する際、樹脂フィルムのポリイミドフィルム表面に金属層を形成する方法としては、例えば、まず、スパッタリング法によりニッケル、クロム、ニッケルクロム合金等からなる下地金属層を形成し、その上に良導電性を付与するために銅薄膜層を形成して金属薄膜を得る。さらに、通常は、回路形成のための導電層を厚膜化するため、電解めっき法、又は電解めっきと無電解めっきを併用して銅めっき被膜層を形成するもので、特に2層銅張積層板は、COF実装に採用されている。
As a method for obtaining the two-layer copper-clad laminate, Patent Document 1 discloses that a metal layer is directly laminated on the surface of a polyimide film by sputtering and vapor deposition, and then the thickness of the metal layer is increased by electrolytic plating or electroless plating. A so-called metalizing method has been proposed.
Patent Document 1 and its peripheral technology will be described. As a method of forming a metal layer on the polyimide film surface of a resin film when manufacturing a two-layer copper-clad laminate, first, for example, nickel, chromium, A base metal layer made of a nickel-chromium alloy or the like is formed, and a copper thin film layer is formed on the base metal layer to give good conductivity, thereby obtaining a metal thin film. Furthermore, in order to increase the thickness of the conductive layer for circuit formation, a copper plating film layer is usually formed by using an electroplating method or a combination of electroplating and electroless plating. The plate is used for COF mounting.

一般に、電解めっき法によって金属導電体を形成する場合には、電解めっき液が供給され、電解めっき槽内部にカソードの役割を担う電解めっき面と対向するように陽極を設置した電解めっき槽が少なくとも2槽である複数槽を、被めっき材であるフィルム状基板の搬送方向に並べて設置され、各電解めっき槽に電力を供給する給電部とフィルム状基板を連続的に搬送させるための機構を有した連続めっき装置を用いた技術が特許文献2に開示されている。   In general, when a metal conductor is formed by an electrolytic plating method, an electrolytic plating bath is provided which is supplied with an electrolytic plating solution and has an anode disposed so as to face the electrolytic plating surface serving as a cathode inside the electrolytic plating bath. A plurality of tanks, which are two tanks, are installed side by side in the transport direction of the film-like substrate that is the material to be plated, and have a power feeding unit that supplies power to each electrolytic plating tank and a mechanism for continuously transporting the film-like substrate. A technique using the continuous plating apparatus is disclosed in Patent Document 2.

また、陽極及び電解液を有する電解めっき槽を複数配置し、厚み3μm以下の金属被膜を有する絶縁体フィルムを、これらの電解めっき槽に順次連続的に供給し、各電解めっき槽毎に通電量を制御し、各電解めっき槽における通電量を、絶縁体フィルムが供給される順にしたがって順次増加させ、均一に良好な電解めっき被膜を連続的に形成する連続めっき方法が知られている。   In addition, a plurality of electrolytic plating tanks having an anode and an electrolytic solution are arranged, and an insulator film having a metal film having a thickness of 3 μm or less is successively supplied to these electrolytic plating tanks, and the amount of current applied to each electrolytic plating tank. There is known a continuous plating method in which the amount of energization in each electrolytic plating tank is sequentially increased according to the order in which the insulator films are supplied, and a uniform and favorable electrolytic plating film is continuously formed.

さらに、銅張積層板をフレキシブル配線基板に配線加工する際にはロールツーロール方式で配線加工されるため、長尺の銅張積層基板が必要とされ、そのために長尺の銅張積層基板の製造に用いられる長尺の導電性基板は、通常コイル状にされた長尺基板が使用されているが、先端部と終端部は存在し、これらの部位での電解めっき法における有効な端末処理方法は開示されていない。   Furthermore, when a copper-clad laminate is processed into a flexible wiring board, a long copper-clad laminated board is required because the wiring process is performed in a roll-to-roll manner. The long conductive substrate used for manufacturing is usually a coiled long substrate, but there are tip and terminal portions, and effective terminal processing in the electroplating method at these parts The method is not disclosed.

特開2002−252257号公報JP 2002-252257 A 特開2009−026990号公報JP 2009-026990 A

通常、銅張積層基板の表層である銅の電解めっきにより形成される銅めっき被膜層には平滑な表面性状が要求されているが、メタライジング法を用いた2層銅張積層板の銅電解めっき層である銅めっき被膜層表面には、微小な凸状体の集中が発生してしまうことがあり、この微小凸の発生は、電解めっき方法に起因するものであることを見出した。
そこで、本発明は、微小凸の集中のない、平滑な銅めっき被膜層を形成する長尺導電性基板の電解めっき方法を提供すると共に、この長尺導電性基板の電解めっき方法を用いる銅張積層板の製造方法を提供するものである。
Usually, the copper plating film layer formed by electrolytic plating of copper, which is the surface layer of a copper-clad laminate, requires smooth surface properties, but copper electrolysis of a two-layer copper-clad laminate using a metalizing method On the surface of the copper plating film layer, which is a plating layer, the concentration of minute protrusions may occur, and it has been found that the occurrence of the minute protrusions is caused by the electrolytic plating method.
Accordingly, the present invention provides an electrolytic plating method for a long conductive substrate that forms a smooth copper plating film layer without concentration of minute protrusions, and also uses a copper-clad coating that uses this long conductive substrate electrolytic plating method. The manufacturing method of a laminated board is provided.

本発明者は上記課題を解決するために、微小凸の集中がない金属層を有する銅張積層板基板の製造方法を鋭意研究した結果、めっき工程内、めっき浴槽への浸漬工程後、通電開始タイミングが、得られる銅皮膜の表面欠陥に影響を与えることを確認し、本発明に至ったものである。   In order to solve the above-mentioned problems, the present inventor has intensively studied a method for producing a copper clad laminate board having a metal layer having no concentration of minute protrusions. As a result, energization is started in the plating process, after the immersion process in the plating bath. It was confirmed that the timing affects the surface defects of the obtained copper film, and the present invention has been achieved.

即ち、上記課題を解決するための本発明の第1の発明は、導電性の表面を備えた長尺導電性基板をロールツーロール方式により搬送し、その長尺導電性基板の搬送経路に沿って複数の陽極を、長尺導電性基板と対向する位置に備えた電解めっき槽に満たされた電解めっき液への浸漬を繰り返し、その長尺導電性基板の導電層表面に電解めっきを施す長尺導電性基板の電解めっき方法において、長尺導電性基板は、搬送方向側の先端部に接続部を介して長尺絶縁性基板を備え、その先導する長尺絶縁性基板により電解めっき槽へと搬送され、先頭の長尺絶縁性基板と接続部が電解めっき液に浸漬後、長尺導電性基板の導電層先端が電解めっき液へ浸漬した時から、その導電層先端が対向する陽極の長さの2%から10%までの距離を移動する間に、その対向する陽極への通電を開始することを特徴とするものである。 That is, the first invention of the present invention for solving the above-mentioned problem is that a long conductive substrate having a conductive surface is conveyed by a roll-to-roll method, and along the conveyance path of the long conductive substrate. A plurality of anodes are repeatedly immersed in an electrolytic plating solution filled in an electrolytic plating tank provided at a position facing the long conductive substrate, and the surface of the conductive layer of the long conductive substrate is subjected to electrolytic plating. In the method of electrolytic plating of a long conductive substrate, the long conductive substrate is provided with a long insulating substrate via a connecting portion at the tip end on the transport direction side, and the leading long insulating substrate leads to the electrolytic plating tank. After the leading long insulating substrate and the connecting portion are immersed in the electrolytic plating solution, the conductive layer tip of the long conductive substrate is immersed in the electrolytic plating solution. during the movement distance of 2% of a length up to 10% And it is characterized in that to start the energization of the anode to the opposite.

本発明の第2の発明は、第1の発明における長尺導電性基板の電解めっき液への浸漬、対向する陽極への通電による導電層表面への電解めっき工程が、長尺導電性基板の搬送経路に沿って設けられた長尺導電性基板に対向する複数の陽極毎に行われ、その対向する陽極への通電が、長尺導電性基板の導電層先端が電解めっき液へ浸漬した時から導電層先端が対向する陽極の長さの2%から10%までの距離を移動する間に、対向する陽極への通電を開始することを特徴とする長尺導電性基板の電解めっき方法である。 According to a second aspect of the present invention, the electroplating step on the surface of the conductive layer by immersing the long conductive substrate in the first invention in an electrolytic plating solution and energizing the opposing anode is performed on the long conductive substrate. When a plurality of anodes facing the long conductive substrate provided along the transport path are performed for each of the plurality of anodes, and when the conductive layer tip of the long conductive substrate is immersed in the electrolytic plating solution In the method of electroplating a long conductive substrate, the energization of the opposing anode is started while the tip of the conductive layer moves a distance of 2% to 10% of the length of the opposing anode. is there.

本発明の第3の発明は、第1及び第2の発明における電解めっき液が、銅めっき液であることを特徴とする長尺導電性基板の電解めっき方法である。   According to a third aspect of the present invention, there is provided an electrolytic plating method for a long conductive substrate, wherein the electrolytic plating solution in the first and second inventions is a copper plating solution.

本発明の第4の発明は、第1から第3の発明における長尺導電性基板が、長尺樹脂フィルムの表面に接着剤を介することなくニッケル合金薄膜からなる下地金属層と、銅薄膜層の順に積層された金属薄膜付長尺樹脂フィルムであることを特徴とする長尺導電性基板の電解めっき方法である。   According to a fourth aspect of the present invention, the long conductive substrate according to the first to third aspects comprises a base metal layer made of a nickel alloy thin film on the surface of the long resin film without an adhesive, and a copper thin film layer. It is the long electroconductive plating method of the elongate electroconductive board | substrate characterized by being the elongate resin film with a metal thin film laminated | stacked in order.

本発明の第5の発明は、長尺導電性基板表面に本発明の第4の発明の長尺導電性基板の電解めっき方法により電解めっき被膜層を設けた銅張積層板の製造方法である。   5th invention of this invention is a manufacturing method of the copper clad laminated board which provided the electroplating film layer by the electroplating method of the elongate conductive substrate of 4th invention of this invention on the elongate conductive substrate surface. .

本発明の長尺導電性基板の電解めっき方法によれば、銅電解めっき層の表面に微小凸の集中部分による微細な表面欠陥がない金属層を持つ銅張積層板基板を得ることが可能となり、COFとして微細配線加工に対応が可能なCOF実装に好適なものである。   According to the method of electrolytic plating of a long conductive substrate of the present invention, it becomes possible to obtain a copper-clad laminate substrate having a metal layer free from fine surface defects due to minute convex concentration portions on the surface of the copper electrolytic plating layer. , COF is suitable for COF mounting that can handle fine wiring processing.

本発明の電解めっき方法を実施するためのロールツーロール方式の電解めっき装置の一例を示す模式図である。It is a schematic diagram which shows an example of the electroplating apparatus of the roll-to-roll system for enforcing the electroplating method of this invention. 長尺導電性基板と長尺絶縁性基板との接続部分を示す断面模式図で、(a)は長尺導電性基板の給電ロール接触面側に長尺絶縁性基板が重なっている場合、(b)は長尺導電性基板の基材側面に長尺絶縁性基板が重なっている場合を示す図である。FIG. 5 is a schematic cross-sectional view showing a connection portion between a long conductive substrate and a long insulating substrate, where (a) shows a case where the long insulating substrate overlaps the power supply roll contact surface side of the long conductive substrate; (b) is a figure which shows the case where a long insulating board | substrate has overlapped on the base-material side surface of a long conductive board | substrate. 通電タイミングを示す図で、(a)は長尺導電性基板の導電層先端が電解めっき液へ浸漬した時を示す図、(b)は導電層先端が対向する陽極の陽極長さの10%までの距離を移動した時を示す図である。FIG. 6A is a diagram illustrating the timing of energization, in which FIG. 10A is a diagram illustrating when a conductive layer tip of a long conductive substrate is immersed in an electrolytic plating solution, and FIG. 10B is 10% of the anode length of the anode facing the conductive layer tip. It is a figure which shows the time of moving the distance to. 本発明の製造方法による銅張積層板の断面図である。It is sectional drawing of the copper clad laminated board by the manufacturing method of this invention.

一般に、長尺導電性基板をロールツーロール方式で搬送して電解めっきを行う場合、図1に示すような電解めっき装置が用いられる。
以下、この電解めっき装置1を用いて、長尺導電性基板に、長尺ポリイミドフィルムの表面に接着剤を介することなくスパッタリング法で金属薄膜を形成した金属薄膜付長尺ポリイミドフィルムを用い、メタライジング法による銅張積層板の製造方法を例に本発明の長尺導電性基板の電解めっき方法を説明する。
In general, when carrying out electrolytic plating by conveying a long conductive substrate by a roll-to-roll method, an electrolytic plating apparatus as shown in FIG. 1 is used.
Hereinafter, using this electrolytic plating apparatus 1, a long polyimide film with a metal thin film in which a metal thin film is formed on a surface of a long polyimide film by a sputtering method without using an adhesive is used on a long conductive substrate. The method for electrolytic plating of a long conductive substrate of the present invention will be described by taking as an example a method for producing a copper clad laminate by a rising method.

[電解めっき装置]
図1に示すように、本発明方法を実施するためのロールツーロール方式の電解めっき装置1は、めっき槽11、巻出ロール12、搬送用ガイドロール13、不溶解性陽極(以下、説明の便宜上「陽極」と略称する)14a〜14h、巻取ロール15、給電ロール16a〜16eとから構成されている。なお、Fは金属薄膜付長尺ポリイミドフィルム(長尺導電性基板)、Sは銅被覆長尺ポリイミドフィルム(銅張積層板)である。
[Electrolytic plating equipment]
As shown in FIG. 1, a roll-to-roll electrolytic plating apparatus 1 for carrying out the method of the present invention comprises a plating tank 11, an unwinding roll 12, a transporting guide roll 13, an insoluble anode (hereinafter, described) 14a to 14h), winding roll 15, and power supply rolls 16a to 16e. Note that F is a long polyimide film with a metal thin film (long conductive substrate), and S is a copper-coated long polyimide film (copper-clad laminate).

ここで、陽極14a、14b、14c、14d、14e、14f、14g、14hは、それぞれ電気的に独立した電解めっきセルを構成している。そのため、金属薄膜付長尺ポリイミドフィルムFの金属膜(例えば長尺導電性基板における導電層)の表面が給電ロール16a、16b、16c、16d、16eと接触することで、それぞれ陽極14a、14b、14c、14d、14e、14f、14g、14hとの間に電位差が生じて電解めっきが行われる。
各陽極は、可溶性の陽極を用いても不溶性の陽極を用いても良く、さらに、各陽極は図1からもわかるように、搬送される金属薄膜付長尺ポリイミドフィルム(長尺導電性基板)と対向するように配置されている。
Here, the anodes 14a, 14b, 14c, 14d, 14e, 14f, 14g, and 14h constitute an electrically independent electrolytic plating cell. Therefore, the surface of the metal film of the long polyimide film F with a metal thin film (for example, the conductive layer in the long conductive substrate) is in contact with the power supply rolls 16a, 16b, 16c, 16d, and 16e, so that the anodes 14a, 14b, 14c, 14d, 14e, 14f, 14g, and 14h generate a potential difference, and electrolytic plating is performed.
Each anode may be either a soluble anode or an insoluble anode. Further, as can be seen from FIG. 1, each anode is a long polyimide film with a metal thin film (long conductive substrate) to be conveyed. Are arranged to face each other.

銅張積層板の製造では、銅めっき被膜層の形成に銅電解めっきを行うので、可溶性の陽極ならば溶解し銅イオンの源となる銅板を用いることができる。また、不溶性の陽極を用いるならば、白金や鉛などの金属陽極や、チタン製のフレームに酸化イリジウム、酸化ロジウム、あるいは酸化ルテニウムなどの導電性を有するセラミックスを焼成してコーティングしたセラミックス系の陽極を用い銅イオンの供給源を電解めっき槽の外部に設ければよい。   In the production of a copper-clad laminate, copper electrolytic plating is performed to form a copper plating film layer. Therefore, a copper plate that dissolves and becomes a source of copper ions can be used if it is a soluble anode. Also, if an insoluble anode is used, a metal anode such as platinum or lead, or a ceramic anode obtained by coating a titanium frame with a conductive ceramic such as iridium oxide, rhodium oxide, or ruthenium oxide. A copper ion supply source may be provided outside the electrolytic plating tank.

また、陽極14a、14b、14c、14d、14e、14f、14g、14hは、それぞれに電気的に独立した制御用電源(整流器ともいう。図示せず)の正極に接続されている。この制御用電源の負極は、給電ロール16a、16b、16c、16d、16eと接続されている。
すなわち、陽極14aは、この陽極14aに接続した制御用電源と、給電ロール16aと、金属薄膜付長尺ポリイミドフィルムF(長尺導電性基板)とにより電解めっき回路を構成するものである。陽極14b、14c、14d、14e、14f、14g、14hについても同様に電解めっき回路を構成している。
The anodes 14a, 14b, 14c, 14d, 14e, 14f, 14g, and 14h are connected to positive electrodes of control power sources (also referred to as rectifiers, not shown) that are electrically independent of each other. The negative electrode of this control power source is connected to the power supply rolls 16a, 16b, 16c, 16d, and 16e.
That is, the anode 14a constitutes an electroplating circuit by the control power source connected to the anode 14a, the feed roll 16a, and the long polyimide film F with metal thin film (long conductive substrate). Similarly, the anodes 14b, 14c, 14d, 14e, 14f, 14g, and 14h constitute an electrolytic plating circuit.

さらに、陽極14a、14b、14c、14d、14e、14f、14g、14hは、巻出ロール12側から段階的に電流密度が上昇するように各陽極に接続された制御用電源により電流密度の制御がなされている。この段階的に電流密度が上昇する制御は、銅電解めっき層の膜厚などを考慮して適宜定める。
また、電解めっき装置1には、金属薄膜付長尺ポリイミドフィルムF(長尺導電性基板)の張力を制御する制御ロール等の長尺ポリイミド(樹脂)フィルムの搬送に用いる公知の各種装置や、めっき液の攪拌や供給等の公知の各種装置を追加することもできる。
Furthermore, the anodes 14a, 14b, 14c, 14d, 14e, 14f, 14g, and 14h are controlled in current density by a control power source connected to each anode so that the current density increases stepwise from the unwinding roll 12 side. Has been made. The control for increasing the current density in stages is appropriately determined in consideration of the film thickness of the copper electrolytic plating layer.
Moreover, the electroplating apparatus 1 includes various known apparatuses used for transporting a long polyimide (resin) film such as a control roll for controlling the tension of the long polyimide film F with a metal thin film (long conductive substrate), Various known devices such as stirring and supply of the plating solution can also be added.

図1に示す電解めっき装置1において、めっき槽11には硫酸と硫酸銅を主成分とする酸性めっき液が満たされている。
金属薄膜付長尺ポリイミドフィルムF(長尺導電性基板)は、巻出ロール12より幅方向を略水平にして巻き出されて搬送され、給電ロール16aによりめっき槽11のめっき液中に浸漬するように搬送方向を変えられ、めっき槽11内の搬送用ガイドロール13により反転されてめっき槽11のめっき液面方向へ搬送方向を変えられる。さらに、隣接する給電ロール16b、搬送用ガイドロール13、給電ロール16c、搬送用ガイドロール13、給電ロール16d、搬送用ガイドロール13、給電ロール16eの順に搬送されることによりめっき液への浸漬が繰り返される。
最終的には、銅被覆長尺ポリイミドフィルムS(この状態では電解めっきが完了しているので銅張積層板となる)は巻取ロール15により巻き取られる。
In the electroplating apparatus 1 shown in FIG. 1, the plating tank 11 is filled with an acidic plating solution mainly composed of sulfuric acid and copper sulfate.
The long polyimide film F with a metal thin film (long conductive substrate) is unwound and conveyed from the unwinding roll 12 with the width direction being substantially horizontal, and is immersed in the plating solution of the plating tank 11 by the power supply roll 16a. Thus, the conveyance direction can be changed, and the conveyance direction can be changed to the plating liquid surface direction of the plating tank 11 by being reversed by the conveyance guide roll 13 in the plating tank 11. Further, the adjacent power feed roll 16b, transport guide roll 13, power feed roll 16c, transport guide roll 13, power feed roll 16d, transport guide roll 13, and power feed roll 16e are transported in this order to immerse in the plating solution. Repeated.
Finally, the copper-coated long polyimide film S (in this state, since the electroplating is completed, it becomes a copper-clad laminate) is taken up by the take-up roll 15.

電解めっき装置1は、金属薄膜付長尺ポリイミドフィルムF(長尺導電性基板)を鉛直にめっき液へ浸漬させる形式の装置であるが、金属薄膜付長尺ポリイミドフィルムF(長尺導電性基板)が浸漬される際の方向は鉛直に限定されるのではなく、めっき槽11内のめっき液中へ斜めに浸漬されても良く、めっき槽11へ金属薄膜付長尺ポリイミドフィルムF(長尺導電性基板)を浸漬させる方向は、適宜選択できる。   The electrolytic plating apparatus 1 is an apparatus of a type in which a long polyimide film F with a metal thin film (long conductive substrate) is vertically immersed in a plating solution, but a long polyimide film F with a metal thin film F (long conductive substrate). ) Is not limited to the vertical direction, but may be immersed obliquely in the plating solution in the plating tank 11, and a long polyimide film F with a metal thin film F (long The direction in which the conductive substrate) is immersed can be selected as appropriate.

しかしながら、図1に示す電解めっき装置1を用いて、長尺導電性基板(図1における金属箔膜付長尺ポリイミドフィルムF)を搬送させながら電解めっきする場合、以下に示すような問題点が生じていた。   However, when electrolytic plating is carried out using the electroplating apparatus 1 shown in FIG. 1 while conveying a long conductive substrate (long polyimide film F with a metal foil film in FIG. 1), the following problems occur. It was happening.

[長尺導電性基板の搬送と問題点]
長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)は、電解めっき装置1内を搬送されて、銅薄膜層の表面に所望する膜厚の銅電解めっき層が形成されるが、そのため、長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)は、電解めっき装置1に備えられた全ての陽極で電解めっきを行う必要がある。
[Conveyance of long conductive substrates and problems]
The long conductive substrate (long polyimide film F with metal thin film) is transported in the electroplating apparatus 1 to form a copper electrolytic plating layer having a desired film thickness on the surface of the copper thin film layer. The long conductive substrate (long polyimide film F with a metal thin film) needs to be subjected to electrolytic plating with all the anodes provided in the electrolytic plating apparatus 1.

通常、電解めっき装置1の運転前に予め長尺導電性基板(金属薄膜付ポリイミドフィルムF)を、搬送経路に仕掛けておき運転を開始すると、予め仕掛けられた陽極14a(搬送経路で一番上流にある陽極)より下流に配されている長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)は、所望する膜厚に銅めっきを成膜することができず、製品ロスとなり、その収率および経済性が損なわれる問題が生じる。   Usually, when the electroplating apparatus 1 is operated in advance, a long conductive substrate (polyimide film F with a metal thin film) is set in the transport path and the operation is started. The long conductive substrate (long polyimide film F with a metal thin film) disposed downstream from the anode) is unable to form a copper plating at a desired film thickness, resulting in product loss, The problem arises that the rate and economy are compromised.

この問題以上に問題なのは、銅電解めっき層の変色や給電ロール等と長尺導電性基板(金属薄膜付長尺樹脂フィルムF)との焼き付き不具合である。
通常、用いる長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)の銅薄膜層の膜厚は、50nm〜1000nmであり、その単位面積あたりの抵抗値は10−1Ωである。
電解めっき装置1は、下流(搬出側:巻取ロール15側)に進むにつれて電流が上昇するように各陽極および各給電ロールでの制御が行われる為、長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)を予め電解めっき装置1に仕掛けて運転を開始すると、給電ロール等の位置によっては銅薄膜層には大過剰な電流が流れることなり、銅電解めっき層の変色が発生する可能性があり、最悪の事態としては給電ロール等と長尺導電性基板(金属薄膜付長尺樹脂フィルムF)との焼き付き不具合を発生させることになってしまう。
What is more problematic than this problem is the problem of seizure between the discoloration of the copper electrolytic plating layer, the power supply roll, etc. and the long conductive substrate (long resin film F with metal thin film).
Usually, the film thickness of the copper thin film layer of the long electroconductive board | substrate (long polyimide film F with a metal thin film) to be used is 50 nm-1000 nm, The resistance value per unit area is 10 < -1 > (omega | ohm).
Since the electroplating apparatus 1 is controlled by each anode and each power supply roll so that the current increases as it proceeds downstream (unloading side: take-up roll 15 side), a long conductive substrate (length with metal thin film) If the polyimide film F) is preliminarily mounted on the electroplating apparatus 1 and the operation is started, depending on the position of the power supply roll or the like, a large excess current may flow in the copper thin film layer, which may cause discoloration of the copper electroplating layer In the worst case, a seizure defect between the power supply roll or the like and the long conductive substrate (long resin film F with a metal thin film) will occur.

そこで、これら不具合を防止する為に、長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)を電解めっき装置1に搬入する際の基板先端部に、PETフィルム等の長尺絶縁性基板(所謂、ダミー基板)を接続し、最初の給電ロール16aに接触しない位置に、長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)が置かれるように、長尺導電性基板の先頭に設けられた長尺絶縁性基板をガイドに用いて設定して電解めっきを開始する。
このような配置では、長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)は、長尺絶縁性基板に先導されて電解めっき装置1内を搬送されるので、最初の給電ロール16aから定常状態における電解めっきが可能となり、徐々に銅めっき被膜層の膜厚が増し、大過剰な電流が印可されることは無くなり、これら不具合を発生させることが無くなる。
Therefore, in order to prevent these problems, a long insulating substrate (e.g., a PET film) is provided at the tip of the substrate when the long conductive substrate (long polyimide film F with metal thin film) is carried into the electroplating apparatus 1. A so-called dummy substrate is connected and provided at the top of the long conductive substrate so that the long conductive substrate (long polyimide film F with a metal thin film) is placed at a position where it does not contact the first power supply roll 16a. Electroplating is started by setting the long insulating substrate thus obtained as a guide.
In such an arrangement, since the long conductive substrate (long polyimide film F with a metal thin film) is guided by the long insulating substrate and conveyed in the electroplating apparatus 1, it is steady from the first power supply roll 16a. In this state, the electrolytic plating can be performed, and the film thickness of the copper plating film layer is gradually increased, so that a large excess current is not applied, and these problems do not occur.

その金属薄膜付長尺ポリイミドフィルムFなどの長尺導電性基板と、PETフィルムなどの長尺絶縁性基板との接続部は、図2の断面模式図に示す構成となっている。
図2(a)、(b)は長尺導電性基板と長尺絶縁性基板の重ね合わせ方が異なるもので、(a)は長尺導電性基板の給電ロール接触面側に長尺絶縁性基板が重なっている場合を示し、(b)は長尺導電性基板の基材側面に長尺絶縁性基板が重なっている場合を示すものである。
The connection part of a long conductive substrate such as the long polyimide film F with a metal thin film and a long insulating substrate such as a PET film has a configuration shown in the schematic cross-sectional view of FIG.
FIGS. 2A and 2B are different from each other in how the long conductive substrate and the long insulating substrate are superposed, and FIG. 2A shows the long insulating property on the power supply roll contact surface side of the long conductive substrate. The case where the board | substrate has overlapped is shown, (b) shows the case where the long insulating board | substrate has overlapped with the base material side surface of the long electroconductive board | substrate.

接続部20は、長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)の端部21と長尺絶縁性基板の端部22が重なり段差部23a、23bを形成し、両基板の端部21、22により構成される段差部23a、23bは、(給電ロール接触面側を覆う被覆部)粘着性テープ24A、(給電ロール接触面の反対面側を覆う被覆部)粘着性テープ24Bで覆われている。
接続部20では長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)と長尺絶縁性基板(PETフィルム)が、両面粘着テープ25で貼り合わせられていても良い(図2(a)参照)、また図2(b)のように接続部の機械的強度が維持できるならば、両面粘着テープは不要である。
The connection part 20 has an end part 21 of a long conductive substrate (long polyimide film F with a metal thin film F) and an end part 22 of a long insulating substrate to form step parts 23a and 23b. The step portions 23a and 23b constituted by 21 and 22 are covered with an adhesive tape 24A (covering portion covering the feeding roll contact surface side) and an adhesive tape 24B (covering portion covering the opposite surface side of the feeding roll contact surface). It has been broken.
In the connection part 20, the long electroconductive board | substrate (long polyimide film F with a metal thin film) and the long insulating board | substrate (PET film) may be bonded together with the double-sided adhesive tape 25 (refer Fig.2 (a)). If the mechanical strength of the connecting portion can be maintained as shown in FIG. 2B, the double-sided adhesive tape is not necessary.

給電ロールと接触する長尺導電性基板の導電層(金属薄膜付長尺ポリイミドフィルムFの銅薄膜層)面に粘着する粘着テープ24Aには、粘着層と金属箔(例えば銅箔)を積層した粘着テープを使用して、長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)と長尺絶縁性基板とが形成する接続部20の段差部23a、23bを被覆することが望ましい。
特に、導電層(銅薄膜層)は、給電ロールに接触し電流が通電されているため、接続部20に導電性粘着テープを用いると通電をより安定させ異常放電を抑制する効果が期待できる。
An adhesive layer and a metal foil (for example, a copper foil) were laminated on the adhesive tape 24A that adheres to the conductive layer (copper thin film layer of the long polyimide film F with a metal thin film) surface of the long conductive substrate in contact with the power supply roll. It is desirable to cover the step portions 23a and 23b of the connecting portion 20 formed by the long conductive substrate (long polyimide film F with metal thin film) and the long insulating substrate using an adhesive tape.
In particular, since the conductive layer (copper thin film layer) is in contact with the power supply roll and is energized, the use of a conductive adhesive tape for the connecting portion 20 can be expected to have an effect of stabilizing the energization and suppressing abnormal discharge.

接続部20の両面とも長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)、長尺絶縁性基板、粘着テープ等により複数の段差が形成されているが、給電ロールに接する面である導電層の面(銅薄膜層の面)との段差は、100μmを超えないことが望ましい。
その段差が100μmを越えると、巻取られた銅張積層板に転写することがあり、銅張積層板が変形することも懸念される。一方、裏面の樹脂基板(ポリイミド)側は電流が流れることは無いので段差による異常放電の心配は無い。
さらに、導電層(銅薄膜層)側の粘着テープの層厚(粘着層と基材(金属箔)の合計の厚み)は40μm以下が望ましい。
A plurality of steps are formed on both surfaces of the connecting portion 20 by a long conductive substrate (long polyimide film F with a metal thin film), a long insulating substrate, an adhesive tape, etc., but the conductive surface is a surface in contact with the power supply roll. It is desirable that the step difference from the surface of the layer (the surface of the copper thin film layer) does not exceed 100 μm.
If the level difference exceeds 100 μm, it may be transferred to the wound copper-clad laminate, and the copper-clad laminate may be deformed. On the other hand, since no current flows on the resin substrate (polyimide) side on the back side, there is no fear of abnormal discharge due to a step.
Furthermore, the layer thickness (total thickness of the adhesive layer and the base material (metal foil)) of the adhesive tape on the conductive layer (copper thin film layer) side is desirably 40 μm or less.

また、長尺導電性基板の導電層(銅薄膜層)側の面、即ち給電ロールに接触する面に段差部23a、23bから搬送方向の逆方向に向けて被覆層26を設けても良い。
被覆層26としては、段差部(図2(a)では23b、(b)では23aの被覆に使用した粘着テープを連続して用いても良く、別途被覆しても良い。
このように接続部では、長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)の導電層(銅薄膜層)は、長尺絶縁性基板が形成する段差部23b、又は長尺導電性基板が形成する段差部23aから逆搬送方向(図2の黒矢印で示す方向)に被覆層で覆われていることになり、段差部23a、23bを被覆する粘着テープ24Aにより生じる段差をなだらかにして、導電層(銅薄膜層)の銅の溶解を緩和することを可能とする。なお、上記効果を得る被覆層の長さは、電解めっき時の電解めっき層の損失量も考慮して適宜決めると良い。
さらに、導電性粘着テープの粘着層は、粘着剤にカーボンなどの導電性の粒子を練りこんだ形成された導電性粘着層である。
Further, the coating layer 26 may be provided on the surface on the conductive layer (copper thin film layer) side of the long conductive substrate, that is, the surface in contact with the power supply roll from the stepped portions 23a and 23b in the direction opposite to the transport direction.
As the coating layer 26, the pressure-sensitive adhesive tape used for coating the stepped portion (23b in FIG. 2A and 23a in FIG. 2B) may be used continuously, or may be coated separately.
Thus, in the connection portion, the conductive layer (copper thin film layer) of the long conductive substrate (long polyimide film F with metal thin film) is the stepped portion 23b formed by the long insulating substrate, or the long conductive substrate. Is covered with a coating layer in the reverse conveying direction (direction indicated by the black arrow in FIG. 2) from the stepped portion 23a formed by the stepped portion. It is possible to relax the dissolution of copper in the conductive layer (copper thin film layer). In addition, the length of the coating layer for obtaining the above effect may be appropriately determined in consideration of the loss amount of the electrolytic plating layer at the time of electrolytic plating.
Further, the adhesive layer of the conductive adhesive tape is a conductive adhesive layer formed by kneading conductive particles such as carbon in an adhesive.

このような接続部は、図2に示す長尺導電性基板の搬送側先端に設けられるだけでなく、長尺導電性基板同士を連結して、より長大な長尺導電性基板を扱う場合にも、その長尺導電性基板同士の接続部に利用することで、良好な電解めっき層をもたらすことができる。   Such a connection portion is not only provided at the front end of the long conductive substrate shown in FIG. 2 but also when connecting long conductive substrates to handle a longer long conductive substrate. Moreover, a favorable electroplating layer can be brought about by utilizing for the connection part of the elongate conductive substrates.

[長尺絶縁性基板]
長尺絶縁性基板には、PETフィルムを例に挙げたが、材料はPETフィルムには限定されず、ロールツーロール方式で搬送できる柔軟性と、電解めっき液へ浸漬しても切断することが無い機械的強度を有すればよく、PET等のポリエステルフィルム、ポリイミドフィルム、ポリアミドフィルム、ポリテトラフルオロエチレンフィルム、ポリフェニレンサルファイドフィルム等の樹脂フィルム等から適宜選択される。これらのうちPETフィルムが商業的に安価で入手も容易である。
また、長尺絶縁性基板の厚みは、長尺導電性基板の厚みとロールツーロール方式で搬送できる柔軟性を備えればよく、長尺導電性基板の厚みの0.3倍〜5倍の範囲で適宜選択可能である。
[Long insulation substrate]
The long insulating substrate is exemplified by a PET film, but the material is not limited to a PET film, and can be cut even when immersed in an electroplating solution with flexibility that can be conveyed by a roll-to-roll method. It is sufficient to have a low mechanical strength, and it is appropriately selected from a polyester film such as PET, a polyimide film, a polyamide film, a polytetrafluoroethylene film, a resin film such as a polyphenylene sulfide film, and the like. Of these, PET films are commercially inexpensive and easily available.
Moreover, the thickness of a long insulating board | substrate should just be equipped with the thickness of a long conductive board | substrate, and the softness | flexibility which can be conveyed by a roll-to-roll system, and is 0.3-5 times the thickness of a long conductive board | substrate. The range can be selected as appropriate.

[給電開始時期]
しかし、このような長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)の搬送を行っても、銅電解めっき層に微小凸の集中部分が発生する箇所がある。
その微小凸の集中部分の箇所を考察すると、長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)が浸漬されてからの対向する陽極への通電開始タイミングが遅れると、電解めっき浴槽内で無通電期間が生じ、その結果、導電層(銅薄膜層)等が溶解して通過するロール表面が汚染され、以降の電解銅めっき層に汚染物質が転写されることで、微小凸の集中部分が生じると考えられた。
一方、浸漬される前に通電が始まると銅皮膜が溶解されることは無いものの、過剰に電流が加わることで基板焼けが生じ、また給電ローラーにてスパークが生じる。
[Power supply start time]
However, even if such a long conductive substrate (long polyimide film F with a metal thin film) is transported, there are portions where minute convex concentration portions are generated in the copper electroplating layer.
Considering the location of the concentrated portion of the micro-convex, if the timing of starting energization to the opposing anode after the long conductive substrate (long polyimide film F with metal thin film) is immersed is delayed in the electrolytic plating bath A non-energized period occurs. As a result, the conductive roll (copper thin film layer) dissolves and the roll surface passing through is contaminated, and contaminants are transferred to the subsequent electrolytic copper plating layer. Was thought to occur.
On the other hand, if energization is started before immersion, the copper film will not be dissolved, but excessive current will cause the substrate to burn, and spark will occur at the feed roller.

そこで、図3は、通電タイミングを説明する模式図で、(a)は長尺導電性基板の導電層先端が電解めっき液へ浸漬した時を示す図、(b)は導電層先端が対向する陽極の陽極長さの10%までの距離を移動した時を示す図で、めっき装置1の最初の陽極14aの場合を示している。なお、他の陽極における通電タイミングの関係は同様に説明される。16aは給電ロールである。
浸漬、通電の過程を、図3を用いて検討すると、PETフィルム等の長尺絶縁性基板32を先頭に搬送される長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)31が電解めっき槽11に浸漬される過程は、両者の接続部30が、電解めっき液37に浸漬された後に導電層(銅薄膜層)先端の被覆部(図2の26)が途切れた露出表面(図示せず)が浸漬される(図3(a))。
Therefore, FIG. 3 is a schematic diagram for explaining the energization timing, (a) is a diagram showing a case where the conductive layer tip of the long conductive substrate is immersed in the electrolytic plating solution, and (b) is a diagram where the conductive layer tip is opposed. It is a figure which shows the time of moving the distance to 10% of the anode length of an anode, and the case of the first anode 14a of the plating apparatus 1 is shown. In addition, the relationship of the energization timing in another anode is demonstrated similarly. Reference numeral 16a denotes a power supply roll.
When the process of immersion and energization is examined with reference to FIG. 3, a long conductive substrate (long polyimide film F with metal thin film) 31 transported with a long insulating substrate 32 such as a PET film at the top is electroplated. In the process of being immersed in the tank 11, an exposed surface (not shown) in which the covering portion (26 in FIG. 2) at the tip of the conductive layer (copper thin film layer) is interrupted after the connection portion 30 of both is immersed in the electrolytic plating solution 37. 3) is immersed (FIG. 3 (a)).

対向する陽極14aとの通電タイミングは、導電層(銅薄膜層)先端の被覆部(図2の26)が途切れた露出表面が電解めっき液に浸漬(図3(a)の状態)されてから陽極長さの10%まで距離を移動(図3(b)の状態)する間に通電されることが望ましい。
例えば、陽極の長さが2mならば、導電層(銅薄膜層)先端の被覆部(図2の26)が途切れた露出表面が、始めて浸漬されてから、対向する陽極に対して20cm搬送されるまでの間に通電が開始されることである。
より望ましい陽極への通電開始タイミングの最大値は、対向する陽極が2mを越えたとしても、導電層(銅薄膜層)先端の被覆部(図2の26)が途切れた露出表面が、電解めっき液に浸漬されてから、対向する陽極に対して20cm搬送される間である。
The energization timing with the opposing anode 14a is after the exposed surface where the coating portion (26 in FIG. 2) at the tip of the conductive layer (copper thin film layer) is interrupted is immersed in the electrolytic plating solution (state of FIG. 3 (a)). It is desirable to energize while moving the distance up to 10% of the anode length (state shown in FIG. 3B).
For example, if the length of the anode is 2 m, the exposed surface where the coating portion (26 in FIG. 2) at the tip of the conductive layer (copper thin film layer) is interrupted is transported by 20 cm to the opposing anode after being immersed for the first time. That is, energization is started in the meantime.
The more desirable maximum value of the start timing of energization to the anode is that the exposed surface where the covering portion (26 in FIG. 2) at the tip of the conductive layer (copper thin film layer) is interrupted is electroplated even if the opposing anode exceeds 2 m. After being immersed in the liquid, it is being conveyed 20 cm to the opposing anode.

電解めっき装置1内の電解めっき液の浸漬を繰り返した長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)は、対向する陽極との間で通電開始前は、その陽極とは無通電であるため、電解めっき液に対し電位が正側となることがあり、導電層(銅薄膜層)、すでに銅電解めっきがされていればその表面が溶解する。その結果、長尺導電性基板が通過する給電ロールは、銅薄膜層溶解物に汚染され、それが転写されることで微小凸の集中部分が発生するものである。   A long conductive substrate (long polyimide film F with a metal thin film) that has been repeatedly immersed in the electrolytic plating solution in the electroplating apparatus 1 is not energized with the anode before energization with the opposing anode. Therefore, the potential may be on the positive side with respect to the electrolytic plating solution, and the surface of the conductive layer (copper thin film layer) is dissolved if copper electrolytic plating has already been performed. As a result, the power supply roll through which the long conductive substrate passes is contaminated with the melted copper thin film layer, and when it is transferred, a minute convex concentrated portion is generated.

従って、電解めっき装置1のようなロールツーロール方式による電解めっき方法では、長尺導電性基板(金属薄膜付長尺ポリイミドフィルムF)が浸漬される毎に、対向する各陽極の通電タイミングを、導電層(銅薄膜層)先端の被覆部(図2の26)が途切れた露出表面が、浸漬されてから対向する陽極の陽極長さの10%までの距離を移動する間とすることが望ましい。   Therefore, in the electroplating method by the roll-to-roll method such as the electroplating apparatus 1, each time the long conductive substrate (long polyimide film F with a metal thin film) is immersed, the energization timing of each facing anode is It is desirable that the exposed surface where the coating portion (26 in FIG. 2) at the tip of the conductive layer (copper thin film layer) is interrupted moves a distance of up to 10% of the anode length of the opposing anode. .

各陽極の通電開始タイミングを、導電層(銅薄膜層)先端の被覆部(図2の26)が途切れた露出表面が、電解めっき液に浸漬されてから、対向する陽極に対して陽極長さの10%まで距離を移動する間とすることで、各陽極で発生する可能性がある微小凸の集中部分の発生を防止することが可能である。なお、長尺導電性基板の終端が対向する陽極を通過すれば、通電を終了させればよい。   The energization start timing of each anode is determined by the length of the anode with respect to the opposing anode after the exposed surface where the coating portion (26 in FIG. 2) at the tip of the conductive layer (copper thin film layer) is interrupted is immersed in the electrolytic plating solution By moving the distance up to 10% of the distance, it is possible to prevent the occurrence of a minute convex concentration portion that may occur at each anode. If the end of the long conductive substrate passes through the opposing anode, the energization may be terminated.

これまで、銅張積層板の製造方法を例に本発明の長尺導電性基板の電解めっき方法を説明してきたが、本発明で電解めっき法に供せられる長尺導電性基板は、金属薄膜付長尺ポリイミドフィルムや銅張積層板に限定されることは無く、長尺の金属箔や金属ストリップなどでも同様である。金属箔のように、表裏面は勿論基板全体が導電性を有する基板の電解めっきでは、給電ロールに接する面に本発明の長尺導電性基板の電解めっき方法に従い、導電性粘着テープで接続部を形成すればよい。   So far, the method of electrolytic plating of the long conductive substrate of the present invention has been described by taking the method of manufacturing a copper clad laminate as an example. However, the long conductive substrate used in the electrolytic plating method of the present invention is a metal thin film. The present invention is not limited to the attached long polyimide film or the copper clad laminate, and the same applies to a long metal foil or a metal strip. In the case of electrolytic plating of a substrate in which the entire substrate, as well as the front and back surfaces, as well as metal foil, is electroplated according to the method of electroplating a long conductive substrate of the present invention on the surface in contact with the power supply roll, the connecting portion is connected with a conductive adhesive tape May be formed.

[銅張積層板]
本発明による銅張積層板は図4にその断面図を示すように、ポリイミドフィルム2の表面にニッケル−クロム系合金等の下地金属層3と銅薄膜層4と銅めっき被膜層5が積層されて構成されており、下地金属層3と銅薄膜層4の積層体を金属薄膜層6と称している。なお、銅めっき被膜層5は、無電解めっき法と併用して形成してもよい。
[Copper laminate]
The copper-clad laminate according to the present invention is formed by laminating a base metal layer 3 such as a nickel-chromium alloy, a copper thin film layer 4 and a copper plating film layer 5 on the surface of a polyimide film 2 as shown in FIG. A laminated body of the base metal layer 3 and the copper thin film layer 4 is referred to as a metal thin film layer 6. The copper plating film layer 5 may be formed in combination with the electroless plating method.

本発明による銅張積層板の製造方法としては、まずスパッタリング法によってポリイミドフィルム2の表面にニッケル、ニッケル系合金またはクロム等の下地金属層3を形成する。この下地金属層3の厚みは、特に限定されるものではないが、5〜50nmが一般的である。下地金属層に用いることができるニッケル系合金は、ニッケル−クロム合金、ニッケル−クロム−モリブデン合金、ニッケル−バナジウム−モリブデン合金等の公知のニッケル合金を用いることができる。但し、下地金属層に用いる金属は、フレキシブル配線基板の絶縁性等やサブトラクティブ法でのエッチング性に留意する必要がある。続いて、下地金属層3の表面に良好な導電性を付与するために引き続き、乾式めっき法のスパッタリング法によって銅薄膜層4を形成する。この工程によって形成される銅薄膜層4の厚みは50〜1000nmであり、生産性から50nm〜500nmが一般的である。   As a method for producing a copper clad laminate according to the present invention, first, a base metal layer 3 such as nickel, a nickel-based alloy or chromium is formed on the surface of the polyimide film 2 by a sputtering method. The thickness of the base metal layer 3 is not particularly limited, but is generally 5 to 50 nm. Known nickel alloys such as nickel-chromium alloy, nickel-chromium-molybdenum alloy, nickel-vanadium-molybdenum alloy can be used as the nickel-based alloy that can be used for the base metal layer. However, the metal used for the base metal layer needs to pay attention to the insulating property of the flexible wiring board and the etching property by the subtractive method. Subsequently, in order to give good conductivity to the surface of the base metal layer 3, the copper thin film layer 4 is subsequently formed by a sputtering method of a dry plating method. The thickness of the copper thin film layer 4 formed by this step is 50 to 1000 nm, and is generally 50 nm to 500 nm in terms of productivity.

さらに、下地金属層3と銅薄膜層4の積層体からなる金属薄膜層6の表面、すなわち銅薄膜層4表面に銅めっき被膜層5からなる銅層を設ける。この銅めっき被膜層5からなる銅層は、湿式めっき法の一種である電解めっき法、又は、湿式めっき法の一種の無電解めっき法と電解めっき法の併用により、所望の膜厚とする。この金属薄膜層の表面に形成される銅めっき被膜層5の膜厚は、例えばサブトラクティブ法によって回路パターンを形成する場合は5〜18μmが一般的である。
なお、無電解めっき法と電解めっき法を併用して銅めっき被膜層5を形成する場合には、金属薄膜層6の表面に銅を無電解めっきで成膜し、次に無電解めっきによる成膜の表面に電解めっきを行う。
Further, a copper layer made of a copper plating film layer 5 is provided on the surface of the metal thin film layer 6 made of a laminate of the base metal layer 3 and the copper thin film layer 4, that is, the surface of the copper thin film layer 4. The copper layer formed of the copper plating film layer 5 has a desired film thickness by an electrolytic plating method that is a kind of wet plating method or a combination of an electroless plating method and an electrolytic plating method that are a kind of wet plating method. The film thickness of the copper plating film layer 5 formed on the surface of the metal thin film layer is generally 5 to 18 μm, for example, when a circuit pattern is formed by a subtractive method.
When the copper plating film layer 5 is formed by using both the electroless plating method and the electrolytic plating method, copper is formed on the surface of the metal thin film layer 6 by electroless plating, and then formed by electroless plating. Electrolytic plating is performed on the surface of the membrane.

長尺ポリイミドフィルムに、幅50cmの東レ・デュポン株式会社製の「Kapton(登録商標) 150EN(厚み38μm)」を用い、このポリイミドフィルムに、真空度を0.01〜0.1Paに保持したチャンバー内で150℃、1分間の熱処理を施した。
引き続き、このポリイミドフィルム上にスパッタリング法によってクロムを20重量%含有する下地金属層を厚み20nm形成し、さらに銅薄膜層を厚み100nm形成して金属薄膜付長尺ポリイミドフィルムF(長尺導電性基板)を得た。
スパッタリングにはロールツーロール方式のスパッタリング装置を用いた。
A chamber in which a vacuum is maintained at 0.01 to 0.1 Pa on this polyimide film using “Kapton (registered trademark) 150EN (thickness: 38 μm)” manufactured by Toray DuPont Co., Ltd. having a width of 50 cm for a long polyimide film. Heat treatment was performed at 150 ° C. for 1 minute.
Subsequently, a base metal layer containing 20% by weight of chromium is formed on the polyimide film by sputtering to a thickness of 20 nm, and a copper thin film layer is formed to a thickness of 100 nm to form a long polyimide film F with a metal thin film (long conductive substrate). )
A roll-to-roll type sputtering apparatus was used for sputtering.

スパッタリング後、得られた金属薄膜付長尺ポリイミドフィルムF(長尺導電性基板)に、図1に示す電解めっき装置1を用いて電解めっき法によって銅電解めっき層として銅層を8μmの厚みで形成した。
使用した電解めっき液の基本的な組成は、pH1以下の硫酸銅溶液であり、これに銅めっき被膜の平滑性等を確保する目的で有機系の添加剤を所定量添加した。
搬送される基板と対向して設けられた陽極には溶解性の銅陽極を用い、陽極の金属薄膜付長尺ポリイミドフィルムF(長尺導電性基板)搬送方向に対する長さは2mとした。また、各陽極の電流密度は表1の通りであった。
After sputtering, on the obtained long polyimide film F with metal thin film (long conductive substrate), a copper layer having a thickness of 8 μm is formed as a copper electrolytic plating layer by an electrolytic plating method using the electrolytic plating apparatus 1 shown in FIG. Formed.
The basic composition of the electrolytic plating solution used was a copper sulfate solution having a pH of 1 or less, and a predetermined amount of an organic additive was added thereto for the purpose of ensuring the smoothness of the copper plating film.
A soluble copper anode was used for the anode provided facing the substrate to be transported, and the length of the anode with respect to the transport direction of the long polyimide film F with a metal thin film (long conductive substrate) was 2 m. The current density of each anode was as shown in Table 1.

Figure 0005858286
Figure 0005858286

電解めっき法で8μmの銅電解めっき層を厚付けする際、めっき工程において、各陽極との通電開始タイミングを4cm(陽極の長さの2%)とした。
作製した銅張積層板の微小凸を顕微鏡で測定した結果、高度差0.2〜1.0μm、水平距離1〜30μm微小凸の集中は発生しておらず、特性検査をクリアする良好な結果を得た。なお、サンプル数は500個である。
When the 8 μm thick copper electrolytic plating layer was thickened by the electrolytic plating method, the timing of starting energization with each anode was set to 4 cm (2% of the length of the anode) in the plating step.
As a result of measuring the micro-convex of the produced copper-clad laminate with a microscope, there is no concentration of micro-convex in altitude difference 0.2 to 1.0 μm, horizontal distance 1 to 30 μm, and good results to clear the characteristic inspection Got. The number of samples is 500.

各陽極との通電開始タイミングが20cm(陽極の長さの10%)とした以外は、実施例1と同様にして銅張積層板を得た。
作製した銅張積層板の小凸を測定した結果、高度差0.2〜1.0μm、水平距離1〜30μm微小凸の集中は発生しておらず、特性検査をクリアする良好な結果を得た。なお、サンプル数は500個である。
A copper-clad laminate was obtained in the same manner as in Example 1 except that the energization start timing with each anode was 20 cm (10% of the length of the anode).
As a result of measuring the small convexity of the produced copper clad laminate, there is no concentration of minute convexity between 0.2 to 1.0 μm in height difference and 1 to 30 μm in horizontal distance, and good results that clear the characteristic inspection are obtained. It was. The number of samples is 500.

(比較例1)
各陽極との通電開始タイミングが30cm(陽極の長さの15%)とした以外は、実施例1と同様にして銅張積層板を得た。銅張積層板の凸を測定した結果、高度差0.2〜1.0μm、水平距離1〜30μm微小凸の集中が発生し、特性検査をクリアすることはできなかった。
(Comparative Example 1)
A copper-clad laminate was obtained in the same manner as in Example 1 except that the energization start timing with each anode was 30 cm (15% of the length of the anode). As a result of measuring the convexity of the copper-clad laminate, the height difference was 0.2 to 1.0 μm, and the horizontal distance was 1 to 30 μm. Concentration of microconvex occurred, and the characteristic inspection could not be cleared.

(比較例2)
各陽極との通電開始タイミングが−4cm(浸漬される前から通電)とした以外は、実施例1と同様にして銅張積層板を得た。
銅張積層板の微小凸を測定した結果、高度差0.2〜1.0μm、水平距離1〜30μm微小凸の集中が発生し、特性検査をクリアすることはできなかった。また、スパーク発生によりローラー周期の打痕が発生した為、製品とすることができなかった。
(Comparative Example 2)
A copper-clad laminate was obtained in the same manner as in Example 1 except that the energization start timing with each anode was −4 cm (energization before being immersed).
As a result of measuring the minute protrusions of the copper clad laminate, the height difference was 0.2 to 1.0 μm, and the horizontal distance was 1 to 30 μm. Concentration of the minute protrusions occurred, and the characteristic inspection could not be cleared. Moreover, since the dent of a roller period generate | occur | produced by spark generation, it could not be set as a product.

本発明の銅張積層板はフレキシブルプリント配線板に利用されている。   The copper-clad laminate of the present invention is used for flexible printed wiring boards.

1 電解めっき装置
2 ポリイミドフィルム
3 下地金属層
4 銅薄膜層
5 銅めっき被膜層
6 金属薄膜層
11 めっき槽
12 巻出ロール
13 搬送用ガイドロール
14a〜14h (不溶解性)陽極
15 巻取ロール
16a〜16e 給電ロール
20 接続部
21 長尺導電性基板(金属薄膜付長尺ポリイミドフィルム)端部
22 長尺絶縁性基板(PETフィルム)端部
23a (長尺導電性基板が形成する)段差部
23b (長尺絶縁性基板が形成する)段差部
24A (給電ロール接触面側を覆う被覆部)粘着性テープ
24B (給電ロール接触面の反対面側を覆う被覆部)粘着性テープ
25 両面粘着テープ
26 長尺導電性基板の給電ロール接触面側を覆う被覆部
30 接続部
31 長尺導電性基板
32 長尺絶縁性基板
37 電解めっき液
F 金属薄膜付長尺ポリイミドフィルム(長尺導電性基板)
S 銅被覆長尺ポリイミドフィルム(銅張積層基板)
DESCRIPTION OF SYMBOLS 1 Electrolytic plating apparatus 2 Polyimide film 3 Underlying metal layer 4 Copper thin film layer 5 Copper plating film layer 6 Metal thin film layer 11 Plating tank 12 Unwinding roll 13 Conveyance rolls 14a-14h (insoluble) Anode 15 Winding roll 16a -16e Feeding roll 20 Connection portion 21 Long conductive substrate (long polyimide film with metal thin film) end portion 22 Long insulating substrate (PET film) end portion 23a (formed by the long conductive substrate) Step portion 23b Step portion 24A (covered by the long insulating substrate) (covering portion covering the feeding roll contact surface side) adhesive tape 24B (covering portion covering the opposite side of the feeding roll contact surface) adhesive tape 25 double-sided adhesive tape 26 Covering portion 30 covering the feeding roll contact surface side of the long conductive substrate Connection portion 31 Long conductive substrate 32 Long insulating substrate 37 Electrolytic plating solution F Metal thin film length Length polyimide film (long conductive substrate)
S Copper-coated long polyimide film (copper-clad laminate)

Claims (5)

導電性の表面を備えた長尺導電性基板をロールツーロール方式により搬送し、前記長尺導電性基板の搬送経路に沿って複数の陽極を前記長尺導電性基板と対向する位置に備えた電解めっき槽に満たされた電解めっき液への浸漬を繰り返して、前記長尺導電性基板の導電層表面に電解めっきを施す長尺導電性基板の電解めっき方法において、
前記長尺導電性基板は、搬送方向側の先端部に接続部を介して長尺絶縁性基板を備え、先導する前記長尺絶縁性基板により前記電解めっき槽へと搬送され、
前記長尺絶縁性基板と前記接続部が前記電解めっき液に浸漬後、前記長尺導電性基板の導電層先端が電解めっき液へ浸漬した時から、前記導電層先端が対向する陽極の長さの2%から10%までの距離を移動する間に、前記対向する陽極への通電を開始することを特徴とする長尺導電性基板の電解めっき方法。
A long conductive substrate having a conductive surface is transported by a roll-to-roll method, and a plurality of anodes are provided at positions facing the long conductive substrate along a transport path of the long conductive substrate. In the method of electroplating a long conductive substrate, by repeatedly immersing in an electrolytic plating solution filled in an electroplating tank, and performing electroplating on the surface of the conductive layer of the long conductive substrate,
The long conductive substrate is provided with a long insulating substrate via a connecting portion at a tip portion on the transport direction side, and is transported to the electrolytic plating tank by the long insulating substrate leading,
After the long insulating substrate and the connecting portion are immersed in the electrolytic plating solution, the length of the anode facing the conductive layer tip from when the conductive layer tip of the long conductive substrate is immersed in the electrolytic plating solution The electroplating method for a long conductive substrate is characterized in that energization of the opposing anode is started while moving a distance of 2% to 10%.
前記長尺導電性基板における前記電解めっき液への浸漬、対向する陽極への通電による導電層表面への電解めっき工程が、長尺導電性基板の搬送経路に沿って設けられた長尺導電性基板に対向する複数の陽極毎に行われ、
前記対向する陽極への通電が、前記長尺導電性基板の導電層先端が電解めっき液へ浸漬した時から前記導電層先端が対向する陽極の長さの2%から10%までの距離を移動する間に、前記対向する陽極への通電を開始することを特徴とする請求項1に記載の長尺導電性基板の電解めっき方法。
The long conductive substrate is provided with an electroplating process on the surface of the conductive layer by immersion in the electrolytic plating solution in the long conductive substrate and energization of the opposing anode along the transport path of the long conductive substrate. Performed for each of a plurality of anodes facing the substrate,
The energization of the facing anode moves a distance from 2% to 10% of the length of the facing anode when the leading edge of the conductive layer of the long conductive substrate is immersed in the electrolytic plating solution. 2. The method for electroplating a long conductive substrate according to claim 1, wherein energization of the opposing anode is started during the process.
前記電解めっき液が、銅めっき液であることを特徴とする請求項1または2に記載の長尺導電性基板の電解めっき方法。   The method of electrolytic plating of a long conductive substrate according to claim 1 or 2, wherein the electrolytic plating solution is a copper plating solution. 前記長尺導電性基板が、長尺樹脂フィルムの表面に接着剤を介することなくニッケル合金薄膜からなる下地金属層と、銅薄膜層の順に積層された金属薄膜付長尺樹脂フィルムであることを特徴とする請求項1から3にいずれか1項に記載の長尺導電性基板の電解めっき方法。   The long conductive substrate is a long resin film with a metal thin film laminated in order of a base metal layer made of a nickel alloy thin film and a copper thin film layer on the surface of the long resin film without using an adhesive. The electrolytic plating method for a long conductive substrate according to any one of claims 1 to 3. 長尺導電性基板表面に電解めっき方法により電解めっき被膜層を設けた銅張積層板の製造方法であって、
前記電解めっき方法が、請求項4記載の長尺導電性基板の電解めっき方法であることを特徴とする銅張積層板の製造方法。
A method for producing a copper-clad laminate in which an electrolytic plating film layer is provided on the surface of a long conductive substrate by an electrolytic plating method,
The said electrolytic plating method is the electrolytic plating method of the elongate conductive substrate of Claim 4, The manufacturing method of the copper clad laminated board characterized by the above-mentioned.
JP2012003128A 2012-01-11 2012-01-11 Method for electrolytic plating long conductive substrate and method for producing copper clad laminate Active JP5858286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012003128A JP5858286B2 (en) 2012-01-11 2012-01-11 Method for electrolytic plating long conductive substrate and method for producing copper clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003128A JP5858286B2 (en) 2012-01-11 2012-01-11 Method for electrolytic plating long conductive substrate and method for producing copper clad laminate

Publications (2)

Publication Number Publication Date
JP2013143490A JP2013143490A (en) 2013-07-22
JP5858286B2 true JP5858286B2 (en) 2016-02-10

Family

ID=49039890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003128A Active JP5858286B2 (en) 2012-01-11 2012-01-11 Method for electrolytic plating long conductive substrate and method for producing copper clad laminate

Country Status (1)

Country Link
JP (1) JP5858286B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751530B2 (en) * 2011-12-22 2015-07-22 住友金属鉱山株式会社 Method for electrolytic plating long conductive substrate and method for producing copper clad laminate
JP7415813B2 (en) 2020-06-17 2024-01-17 住友金属鉱山株式会社 Copper-clad laminate and method for manufacturing copper-clad laminate
CN114641136A (en) * 2020-12-16 2022-06-17 深南电路股份有限公司 Method for manufacturing copper layer boss of circuit board and circuit board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252257A (en) * 2000-12-18 2002-09-06 Mitsui Mining & Smelting Co Ltd Semiconductor carrier film and its manufacturing method
JP5194602B2 (en) * 2007-07-20 2013-05-08 住友金属鉱山株式会社 Method for producing metal-coated polyimide substrate
JP5353261B2 (en) * 2009-01-20 2013-11-27 住友金属鉱山株式会社 Method for manufacturing metalized long resin film substrate and plating apparatus
JP5751530B2 (en) * 2011-12-22 2015-07-22 住友金属鉱山株式会社 Method for electrolytic plating long conductive substrate and method for producing copper clad laminate

Also Published As

Publication number Publication date
JP2013143490A (en) 2013-07-22

Similar Documents

Publication Publication Date Title
JP4477098B2 (en) Metal-coated polyimide composite, method for producing the composite, and apparatus for producing the composite
JP5862917B2 (en) Method for electroplating long conductive substrate, method for producing copper-coated long conductive substrate using this method, and roll-to-roll type electroplating apparatus
JP6083433B2 (en) Two-layer flexible wiring board, flexible wiring board, and manufacturing method thereof
WO2001016402A1 (en) Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminate using the electrolytic copper foil with carrier foil
JP5652587B2 (en) Method for producing copper-coated polyimide substrate and electroplating apparatus
JP6859850B2 (en) Manufacturing method and manufacturing equipment for copper-clad laminated resin film
JP2014082320A (en) Double-layer flexible substrate, and printed wiring board having double-layer flexible substrate used as base material
JP5673582B2 (en) Pretreatment method for electroplating and method for producing copper clad laminated resin film by electroplating method including the pretreatment method
JP5858286B2 (en) Method for electrolytic plating long conductive substrate and method for producing copper clad laminate
JP5751530B2 (en) Method for electrolytic plating long conductive substrate and method for producing copper clad laminate
JP5440386B2 (en) Method for producing metallized resin film substrate
JP2007246962A (en) Method for producing two layer circuit board by plating process and plating device therefor
JP6403095B2 (en) Flexible wiring board and flexible wiring board
US20140311776A1 (en) Plating apparatus, plating method, method of manufacturing printed circuit board and printed circuit board
JP5353261B2 (en) Method for manufacturing metalized long resin film substrate and plating apparatus
JP5293664B2 (en) Method and apparatus for electroplating long conductive substrate, metallized polyimide film and method for producing the same
JPH0722473A (en) Continuous plating method
JP6403097B2 (en) Insoluble anode, plating apparatus, electroplating method, and copper clad laminate manufacturing method
JP6365937B2 (en) Two-layer copper-clad laminate and method for producing the same
KR101681663B1 (en) Conductive Pattern Laminate and Producing Method Thereof
JP2014122414A (en) Copper foil with carrier
JP6252987B2 (en) Two-layer copper-clad laminate and method for producing the same
JP5835673B2 (en) Electroplating method and metallized long resin film manufacturing method
JP2008075113A (en) Plating apparatus
JP2015199989A (en) Liquid draining device, electric plating apparatus and production method of copper-clad laminated resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151202

R150 Certificate of patent or registration of utility model

Ref document number: 5858286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150