JP2011202005A - Method for producing thermoplastic resin reserved foaming particle, and device for producing thermoplastic resin reserved foaming particle - Google Patents

Method for producing thermoplastic resin reserved foaming particle, and device for producing thermoplastic resin reserved foaming particle Download PDF

Info

Publication number
JP2011202005A
JP2011202005A JP2010070134A JP2010070134A JP2011202005A JP 2011202005 A JP2011202005 A JP 2011202005A JP 2010070134 A JP2010070134 A JP 2010070134A JP 2010070134 A JP2010070134 A JP 2010070134A JP 2011202005 A JP2011202005 A JP 2011202005A
Authority
JP
Japan
Prior art keywords
particles
foaming
thermoplastic resin
air
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010070134A
Other languages
Japanese (ja)
Other versions
JP5470127B2 (en
Inventor
Kunio Nagashima
国雄 長島
Tsutomu Sadakata
勉 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2010070134A priority Critical patent/JP5470127B2/en
Publication of JP2011202005A publication Critical patent/JP2011202005A/en
Application granted granted Critical
Publication of JP5470127B2 publication Critical patent/JP5470127B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for producing thermoplastic resin reserved foaming particles, as compared with conventional methods, capable of performing the cooling and drying of the reserved foaming particles in a short time, improving production efficiency and capable of reducing the consumption of electric power.SOLUTION: This method for producing the thermoplastic resin reserved foaming particles by putting-in foaming thermoplastic resin particles in a foaming vessel, heating/foaming the foaming thermoplastic resin by introducing a heating medium into the foaming vessel to form the thermoplastic resin reserved foaming particles having a desired bulk foaming magnitude, then feeding air into the foaming vessel to cool/dry the thermoplastic resin reserved foaming particles and taking out the thermoplastic reserved foaming particles is characterized by feeding the air of 3.0 to 12.0 kPa air pressure by 17.0 to 40.0 m/L/min (provided that the L is a bulk volume 1 mof the thermoplastic resin reserved foaming particles) range into the foaming vessel to perform the cooling/drying.

Description

本発明は、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂などの熱可塑性樹脂粒子に発泡剤を含有させた発泡性熱可塑性樹脂粒子を予備発泡装置によって加熱し、目的とする嵩密度(嵩発泡倍数)となるように予備発泡させて熱可塑性樹脂予備発泡粒子を製造するための製造方法及び製造装置に関し、特に、熱可塑性樹脂予備発泡粒子を効率よく製造でき、消費電力を削減できる製造方法及び製造装置に関する。   In the present invention, foamable thermoplastic resin particles obtained by adding a foaming agent to thermoplastic resin particles such as polystyrene resin, polyethylene resin, and polypropylene resin are heated by a pre-foaming device, and the desired bulk density (bulk foaming) is obtained. In particular, the present invention relates to a production method and a production apparatus for producing thermoplastic resin pre-foamed particles by being pre-foamed to be a multiple), and in particular, a production method capable of efficiently producing pre-foamed thermoplastic resin particles and reducing power consumption and It relates to a manufacturing apparatus.

従来より、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂などの熱可塑性樹脂の発泡成形体を製造するための方法として、熱可塑性樹脂粒子に発泡剤を含有させた発泡性熱可塑性樹脂粒子を予備発泡装置によって加熱し、目的とする嵩密度(嵩発泡倍数)となるように予備発泡させて予備発泡粒子を製造し、得られた予備発泡粒子を目的とする成形品形状のキャビティを有する成形型の該キャビティ内に充填し、前記成形型内の予備発泡粒子を加熱し発泡させた後冷却し、成形型から発泡成形体を取り出す、いわゆる型内発泡成形法が知られている。   Conventionally, as a method for producing a foamed molded article of a thermoplastic resin such as a polystyrene resin, a polyethylene resin, or a polypropylene resin, a foamable thermoplastic resin particle containing a foaming agent in a thermoplastic resin particle is preliminarily used. A pre-foamed particle is produced by heating with a foaming device and pre-foaming so as to achieve the desired bulk density (bulk foaming multiple), and the resulting pre-foamed particle has a cavity in the shape of the desired molded product A so-called in-mold foam molding method is known, in which the pre-expanded particles in the mold are heated and foamed and then cooled to take out the foamed molded product from the mold.

前記予備発泡においては、目的とする嵩密度(嵩発泡倍数)を有する予備発泡粒子を製造するために、予備発泡装置の発泡槽に発泡性熱可塑性樹脂粒子を入れて蒸気加熱する際、発泡槽の高さ方向に沿って、低レベルの第1レベルと最終レベルである第2レベルを位置決めしておき、発泡槽に発泡性熱可塑性樹脂粒子を供給した後、蒸気を通して該粒子を加熱し、発泡粒子層の高さが第1レベルに達した時点で蒸気の供給量を減じるなどによって発泡速度を緩めて、第2レベルまで発泡させることが行われている(例えば、特許文献1〜3参照。)。
また、予備発泡して得られた予備発泡粒子は、粒子表面に多量の水分を含んでおり、このような状態だと発泡槽内での予備発泡粒子同士の合着が起こりえる。これを解消する目的で、常温の圧縮空気を発泡槽内に供給して発泡完了後の予備発泡粒子を冷却・乾燥する空冷工程が行われている。
In the pre-foaming, in order to produce pre-foamed particles having the desired bulk density (bulk foaming factor), when the foamable thermoplastic resin particles are placed in the foaming tank of the pre-foaming apparatus and heated by steam, the foaming tank The first level and the second level, which is the final level, are positioned along the height direction, and after supplying the foamable thermoplastic resin particles to the foaming tank, the particles are heated through steam, When the height of the foamed particle layer reaches the first level, the foaming speed is reduced by reducing the supply amount of steam or the like, and foaming to the second level is performed (for example, see Patent Documents 1 to 3). .)
Further, the pre-expanded particles obtained by pre-expansion contain a large amount of moisture on the particle surface, and in such a state, the pre-expanded particles can be bonded to each other in the expansion tank. In order to solve this problem, an air cooling process is performed in which compressed air at normal temperature is supplied into the foaming tank to cool and dry the pre-foamed particles after completion of foaming.

特許文献1には、撹拌装置を有する発泡槽に収容された発泡性熱可塑性樹脂粒子を加熱水蒸気等の加熱媒体によって加熱膨張させて予備発泡粒子を得る方法において、加熱媒体として加熱水蒸気に、加熱水蒸気以上の温度を有する加熱空気を混合して用いることを特徴とする発泡性熱可塑性樹脂粒子の予備発泡方法が開示されている。また、この特許文献1には、発泡粒層レベルが第1レベル(低レベル)に達した後、第2レベル(最終レベル)に達する迄の間は蒸気供給量を減少させて発泡速度を緩めて予備発泡を行うこと、さらに発泡の均一化と粒子同士の合着を防止する目的で圧縮空気を少量混用してもよい旨が記載されている。   In Patent Document 1, in a method of expanding and expanding foamable thermoplastic resin particles contained in a foaming tank having a stirrer with a heating medium such as heated steam to obtain pre-foamed particles, heating steam is used as a heating medium. A pre-foaming method for foamable thermoplastic resin particles, characterized in that heated air having a temperature equal to or higher than water vapor is mixed and used. Further, in this Patent Document 1, after the foamed particle layer level reaches the first level (low level), the steam supply rate is decreased to slow the foaming rate until it reaches the second level (final level). In addition, it is described that a small amount of compressed air may be mixed for the purpose of pre-foaming and further prevention of uniform foaming and coalescence of particles.

特許文献2には、予備発泡機より排出ホッパーに排出した予備発泡粒子を、該排出ホッパー部に仕切壁を設けて形成するか又は別に設けた乾燥ホッパー部に送粒し、該排出ホッパー部に立設した、水分及び空気を通過させるが予備発泡粒子を通過させない乾燥塔内に吹き上げさせ、落下した予備発泡粒子を、該乾燥ホッパー部の底部払出口に設けたエジェクターに熱風を送気することにより吸引させて前記乾燥塔に送粒循環して乾燥塔内に吹き上げさせることにより、予備発泡粒子の水分を乾燥除去するとともに加温することを特徴とする予備発泡機用乾燥送粒方法が開示されている。また、この特許文献2には、予備発泡完了後、予備発泡機内に冷風、温風又は熱風を吹き込んで乾燥させる方法が記載されている。   In Patent Document 2, pre-expanded particles discharged from a pre-foaming machine to a discharge hopper are formed by providing a partition wall in the discharge hopper part or sent separately to a dry hopper part. Blowing up the standing expanded foam in a drying tower that allows moisture and air to pass but not pre-expanded particles, and sends the fallen pre-expanded particles to the ejector provided at the bottom outlet of the drying hopper. A dry granulation method for a prefoaming machine is disclosed in which the moisture of the prefoamed particles is dried and removed and heated by circulated through the drying tower and blown up into the drying tower. Has been. Further, Patent Document 2 describes a method of drying by blowing cold air, hot air or hot air into a pre-foaming machine after completion of pre-foaming.

特許文献3には、発泡性熱可塑性樹脂粒子を加熱し、15倍以下の低倍に予備発泡せしめる方法であって、発泡槽に低レベル、高レベルの2箇所を決め低レベルを高レベルの70〜90%の位置として発泡槽に原料粒子を投入し、槽内を密閉にして減圧後、蒸気を吹き込み、槽内圧力を大気圧以上に保持して加熱し、低レベル位置まで発泡させた後、吹き込み蒸気量を少なくするか、または蒸気量そのままでエア供給量を多くして吹き込み熱媒の温度を下げ、発泡速度を遅くして高レベルまで発泡させ、のち、冷却乾燥を行い、発泡済み粒子を排出することを特徴とする発泡性熱可塑性樹脂粒子の低倍予備発泡の方法が開示されている。   Patent Document 3 discloses a method in which foamable thermoplastic resin particles are heated and pre-foamed to a low magnification of 15 times or less, and two locations, a low level and a high level, are determined in the foaming tank, and the low level is set to a high level. Raw material particles were put into a foaming tank at a position of 70 to 90%, the inside of the tank was sealed and decompressed, then steam was blown into the tank, and the pressure inside the tank was maintained at atmospheric pressure or higher to heat and foam to a low level position. After that, reduce the amount of blown steam, or increase the air supply amount while keeping the steam amount as it is, lower the temperature of the blown heat medium, slow down the foaming speed to foam to a high level, and then cool and dry to foam Disclosed is a method for low-expansion pre-expansion of expandable thermoplastic resin particles, which is characterized by discharging spent particles.

特開昭63−267513号公報JP-A 63-267513 特開平5−287114号公報JP-A-5-287114 特開平3−13307号公報Japanese Patent Laid-Open No. 3-13307

前記予備発泡方法を実施するための予備発泡装置として、現在使用されている装置は、発泡槽と、該発泡槽内に蒸気を供給するための蒸気供給管路と、該発泡槽内に圧縮空気を供給するためのコンプレッサーを含む圧縮空気供給手段とを備え、発泡槽内で蒸気加熱して得られた予備発泡粒子を冷却乾燥する場合には、発泡槽内に圧縮空気を供給して冷却乾燥する構成になっていた。   As a pre-foaming apparatus for carrying out the pre-foaming method, currently used apparatuses are a foaming tank, a steam supply pipe for supplying steam into the foaming tank, and compressed air in the foaming tank. Compressed air supply means including a compressor for supplying air, and when pre-expanded particles obtained by steam heating in a foaming tank are cooled and dried, compressed air is supplied into the foaming tank and cooled and dried. It was the composition to do.

しかしながら、従来の予備発泡装置において、予備発泡して得られた予備発泡粒子を圧縮空気によって冷却乾燥する場合、予備発泡粒子を十分に冷却乾燥するためには長時間を要することから、予備発泡粒子の製造サイクルが長くなって生産効率が悪化するという問題があった。
また、冷却乾燥するために長時間コンプレッサーを駆動させなければならず、そのための消費電力が増加して製造コストが高くなるという問題もある。
However, in the conventional pre-foaming apparatus, when pre-foamed particles obtained by pre-foaming are cooled and dried with compressed air, it takes a long time to sufficiently cool and dry the pre-foamed particles. There was a problem that the production cycle of the product became longer and the production efficiency deteriorated.
In addition, it is necessary to drive the compressor for a long time for cooling and drying, and there is a problem that the power consumption for the increase increases and the manufacturing cost increases.

本発明は、前記事情に鑑みてなされ、従来の予備発泡装置を用いた場合と比べ、予備発泡粒子の冷却乾燥を短時間で行うことができ、生産効率を高め、消費電力の削減が可能な熱可塑性樹脂予備発泡粒子の製造方法及び製造装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and can cool and dry the pre-foamed particles in a short time compared to the case of using a conventional pre-foaming apparatus, and can increase production efficiency and reduce power consumption. It aims at providing the manufacturing method and manufacturing apparatus of a thermoplastic resin pre-expanded particle.

前記目的を達成するため、本発明は、発泡槽内に発泡性熱可塑性樹脂粒子を入れ、発泡槽内に加熱媒体を導入して発泡性熱可塑性樹脂粒子を加熱発泡させ、所望の嵩発泡倍数の熱可塑性樹脂予備発泡粒子を生成させ、次いで前記発泡槽内に空気を供給して熱可塑性樹脂予備発泡粒子を冷却乾燥し、次いで熱可塑性樹脂予備発泡粒子を取り出す製造方法において、熱可塑性樹脂予備発泡粒子を冷却乾燥する際に、風圧3.0〜12.0kPaの空気を風量17.0〜40.0m/L/分(ただし、Lは熱可塑性樹脂予備発泡粒子の嵩体積1mを表す)の範囲で前記発泡槽内に供給して冷却乾燥を行うことを特徴とする熱可塑性樹脂予備発泡粒子の製造方法を提供する。 In order to achieve the above-mentioned object, the present invention puts foamable thermoplastic resin particles in a foaming tank, introduces a heating medium into the foaming tank, heat-foams the foamable thermoplastic resin particles, and obtains a desired bulk foaming factor. In the production method of producing the thermoplastic resin pre-expanded particles, and then supplying air into the foaming tank to cool and dry the thermoplastic resin pre-expanded particles, and then removing the thermoplastic resin pre-expanded particles, When the foamed particles are cooled and dried, air with a wind pressure of 3.0 to 12.0 kPa is supplied with an air volume of 17.0 to 40.0 m 3 / L / min (where L is a volume of 1 m 3 of the pre-foamed thermoplastic resin particles). The method for producing thermoplastic resin pre-expanded particles is provided by supplying into the foaming tank within the range of

本発明の熱可塑性樹脂予備発泡粒子の製造方法において、前記冷却乾燥は、発泡性熱可塑性樹脂投入時の発泡槽内温度が、予備発泡実施毎に80℃未満になるように行うことが好ましい。   In the method for producing the thermoplastic resin pre-expanded particles of the present invention, the cooling drying is preferably performed so that the temperature in the foaming tank when the foamable thermoplastic resin is charged is less than 80 ° C. every time pre-foaming is performed.

また本発明は、発泡性熱可塑性樹脂粒子を加熱して熱可塑性樹脂予備発泡粒子を生成させる発泡槽と、該発泡槽内に加熱媒体を供給する蒸気供給管路と、発泡槽内に、風圧3.0〜12.0kPaの空気を供給する送風機を含む冷却用空気供給手段とを備えたことを特徴とする熱可塑性樹脂予備発泡粒子の製造装置を提供する。   The present invention also includes a foaming tank that heats the foamable thermoplastic resin particles to produce thermoplastic resin pre-foamed particles, a steam supply pipe that supplies a heating medium into the foaming tank, and a wind pressure in the foaming tank. An apparatus for producing pre-expanded thermoplastic resin particles comprising a cooling air supply means including a blower for supplying air of 3.0 to 12.0 kPa is provided.

本発明の熱可塑性樹脂予備発泡粒子の製造装置において、前記送風機は、前記発泡槽内に風量17.0〜40.0m/L/分(ただし、Lは熱可塑性樹脂予備発泡粒子の嵩体積1mを表す)の空気を供給可能であることが好ましい。 In the apparatus for producing the thermoplastic resin pre-expanded particles of the present invention, the blower has an air volume of 17.0 to 40.0 m 3 / L / min (where L is a bulk volume of the thermoplastic resin pre-expanded particles). It is preferable that 1 m 3 of air can be supplied.

本発明の熱可塑性樹脂予備発泡粒子の製造方法は、発泡槽内で発泡性熱可塑性樹脂粒子を加熱発泡させ、所望の嵩発泡倍数の熱可塑性樹脂予備発泡粒子を生成させ、次いで発泡槽内に空気を供給して熱可塑性樹脂予備発泡粒子を冷却乾燥させる際に、風圧3.0〜12.0kPaの空気を風量17.0〜40.0m/L/分(ただし、Lは熱可塑性樹脂予備発泡粒子の嵩体積1mを表す)の範囲で前記発泡槽内に供給して冷却乾燥を行うことによって、圧縮空気を発泡槽内に供給していた従来技術と比べ、より短時間で予備発泡粒子を十分に冷却乾燥することができ、予備発泡粒子の製造サイクルが短くなり、生産効率を向上させることができる。
また、冷却乾燥するために低圧空気を大量送風可能な送風機を使用できることで、圧縮空気を発泡槽内に供給していた従来技術と比べ、消費電力を大幅に削減でき、製造コストの低減を図ることができる。
In the method for producing the thermoplastic resin pre-expanded particles of the present invention, the foamable thermoplastic resin particles are heated and foamed in a foaming tank to produce thermoplastic resin pre-expanded particles having a desired bulk expansion ratio, and then in the foaming tank. When air is supplied to cool and dry the thermoplastic resin pre-expanded particles, air with a wind pressure of 3.0 to 12.0 kPa is supplied with an air volume of 17.0 to 40.0 m 3 / L / min (where L is a thermoplastic resin) Preliminary foamed particles are supplied into the foaming tank in the range of 1 m 3 in volume) and cooled and dried, so that the spare air can be spared in a shorter time than the conventional technique in which compressed air is supplied into the foaming tank. The expanded particles can be sufficiently cooled and dried, the production cycle of the pre-expanded particles can be shortened, and the production efficiency can be improved.
In addition, the ability to use a blower that can blow a large amount of low-pressure air to cool and dry can greatly reduce power consumption and reduce manufacturing costs compared to the conventional technology that supplies compressed air to the foaming tank. be able to.

本発明の熱可塑性樹脂予備発泡粒子の製造装置は、発泡性熱可塑性樹脂粒子を加熱して熱可塑性樹脂予備発泡粒子を生成させる発泡槽と、該発泡槽内に加熱媒体を供給する蒸気供給管路と、発泡槽内に、風圧3.0〜12.0kPaの空気を供給する送風機を含む冷却用空気供給手段とを備えたものなので、圧縮空気を発泡槽内に供給する従来装置と比べ、より短時間で予備発泡粒子を十分に冷却乾燥することができ、予備発泡粒子の製造サイクルが短くなり、生産効率を向上させることができる。
また、冷却乾燥するために低圧空気を大量送風可能な送風機を使用できることで、圧縮空気を発泡槽内に供給する従来装置と比べ、消費電力を大幅に削減でき、製造コストの低減を図ることができる。
An apparatus for producing pre-expanded thermoplastic resin particles according to the present invention includes a foaming tank that heats expandable thermoplastic resin particles to produce pre-expanded thermoplastic resin particles, and a steam supply pipe that supplies a heating medium into the foaming tank. Compared with the conventional apparatus for supplying compressed air into the foaming tank, because it is provided with a cooling air supply means including a passage and a blower for supplying air with a wind pressure of 3.0 to 12.0 kPa in the foaming tank, The pre-expanded particles can be sufficiently cooled and dried in a shorter time, the production cycle of the pre-expanded particles can be shortened, and the production efficiency can be improved.
In addition, the ability to use a blower that can blow a large amount of low-pressure air for cooling and drying can greatly reduce power consumption and reduce manufacturing costs compared to conventional devices that supply compressed air into the foaming tank. it can.

本発明の熱可塑性樹脂予備発泡粒子の製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the manufacturing apparatus of the thermoplastic resin pre-expanded particle of this invention.

以下、図面を参照して本発明の実施形態を説明する。
図1は、本発明の熱可塑性樹脂予備発泡粒子(以下、予備発泡粒子と記す。)の製造装置の一例を示す概略構成図である。
この製造装置は、発泡性熱可塑性樹脂粒子を加熱して予備発泡粒子1を生成させる発泡槽2と、該発泡槽2内に加熱媒体である蒸気3を供給する蒸気供給管路4と、発泡槽2内に、風圧3.0〜12.0kPaの空気を供給する送風機5を含む冷却用空気供給手段6とを備えた構成になっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of a production apparatus for thermoplastic resin pre-expanded particles (hereinafter referred to as pre-expanded particles) of the present invention.
This manufacturing apparatus includes a foaming tank 2 that heats foamable thermoplastic resin particles to produce pre-foamed particles 1, a steam supply pipe 4 that supplies steam 3 as a heating medium into the foaming tank 2, and foaming The tank 2 is provided with a cooling air supply means 6 including a blower 5 for supplying air having a wind pressure of 3.0 to 12.0 kPa.

前記発泡槽2は、槽内に挿入された回転軸7と、該回転軸7の長手方向に沿って多段に設けられた撹拌棒8と、該撹拌棒8と接触しないよう槽内壁に一端を固定して多段に設けられた邪魔棒9と、予備発泡粒子を槽外に取り出すハッチ10と、発泡槽2の底部に設けられた金網11と、該槽内で生成した予備発泡粒子の層高さが目的とする予備発泡粒子の嵩発泡倍数に対応する最終レベルよりも低位置である第1レベルに到達したことを検知する第1レベル計12と、予備発泡粒子の層高さが最終レベルである第2レベルに到達したことを検知する第2レベル計13とが設けられている。   The foaming tank 2 has a rotating shaft 7 inserted into the tank, a stirrer 8 provided in multiple stages along the longitudinal direction of the rotating shaft 7, and one end on the inner wall of the tank so as not to contact the stirrer 8. A baffle rod 9 fixed in multiple stages, a hatch 10 for taking out pre-expanded particles to the outside of the tank, a wire mesh 11 provided at the bottom of the foam tank 2, and the height of the pre-expanded particles generated in the tank A first level meter 12 for detecting that the first level is lower than the final level corresponding to the bulk expansion ratio of the target pre-expanded particles, and the layer height of the pre-expanded particles is the final level. And a second level meter 13 for detecting that the second level is reached.

前記蒸気供給管路4は、蒸気3を流す蒸気管路14に、上流側から下流側に向けて蒸気調圧弁15、ヘッダー16とを順に介在させ、更にヘッダー16の下流側で2つに分岐し、これらの第1蒸気管路14aと第2蒸気管路14bとは、それぞれに設けられた弁17,18の下流側で合流し、その後の管路19が発泡槽2の底部側に接続されている。この蒸気供給管路4は、前記第1蒸気管路14a、第2蒸気管路14bのそれぞれの弁17、18の開閉を操作することで、発泡槽2の底部側からの蒸気供給量を調整できるようになっている。
なお、図1に示す蒸気供給管路4の構成は、単なる例示であり、本発明はこれに限定されず、各弁の配置や弁の種類、分岐の有る無しなどについては適宜変更可能である。
The steam supply line 4 has a steam pressure control valve 15 and a header 16 interposed in order from the upstream side to the downstream side in the steam line 14 through which the steam 3 flows, and further branches into two on the downstream side of the header 16. The first steam line 14a and the second steam line 14b merge at the downstream side of the valves 17 and 18 provided in the respective lines, and the subsequent line 19 is connected to the bottom side of the foaming tank 2. Has been. This steam supply line 4 adjusts the amount of steam supplied from the bottom side of the foaming tank 2 by opening and closing the valves 17 and 18 of the first steam line 14a and the second steam line 14b. It can be done.
The configuration of the steam supply pipe 4 shown in FIG. 1 is merely an example, and the present invention is not limited to this, and the arrangement of each valve, the type of valve, the presence or absence of branching, and the like can be changed as appropriate. .

前記冷却用空気供給手段6は、弁20を介して一端が前記管路19に接続された空気管路21と、該空気管路21の他端側に、該空気管路21内に空気を供給可能に接続された送風機5とを備えている。この冷却用空気供給手段6は、発泡槽2内を冷却するに際し、送風機5を駆動させて空気管路21に空気を流せる状態とし、弁21を開く(この際に蒸気供給管路4からの蒸気供給は停止しておく)ことで、管路19を通して冷却用空気を発泡槽2底部側から槽内に送風できるようになっている。
なお、図1に示す冷却用空気供給手段6の構成は、単なる例示であり、本発明はこれに限定されず、弁の配置や弁の種類、発泡槽2への接続管路の構成などについては適宜変更可能である。
The cooling air supply means 6 supplies air into the air pipe 21 on one end of the air pipe 21 connected to the pipe 19 via a valve 20 and the other end of the air pipe 21. And a blower 5 connected so as to be supplied. When cooling the inside of the foaming tank 2, the cooling air supply means 6 drives the blower 5 so as to allow air to flow through the air pipe 21, and opens the valve 21 (at this time, from the steam supply pipe 4. By stopping the steam supply), the cooling air can be blown into the tank from the bottom side of the foaming tank 2 through the pipe line 19.
The configuration of the cooling air supply means 6 shown in FIG. 1 is merely an example, and the present invention is not limited to this. The arrangement of the valve, the type of the valve, the configuration of the connection pipe line to the foaming tank 2, and the like. Can be appropriately changed.

次に、本発明の予備発泡粒子の製造方法の実施形態を説明する。
本発明の予備発泡粒子の製造方法は、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂などの熱可塑性樹脂の発泡成形体を製造するための各種の予備発泡粒子の製造に適用可能であり、特に、現在最も大量に製造され且つ広範に使用されているポリスチレン系樹脂発泡成形体の製造に用いるポリスチレン系樹脂予備発泡粒子の製造方法に好適である。
Next, an embodiment of the method for producing pre-expanded particles of the present invention will be described.
The production method of the pre-expanded particles of the present invention is applicable to the production of various pre-expanded particles for producing a foamed molded article of a thermoplastic resin such as polystyrene resin, polyethylene resin, polypropylene resin, etc. Therefore, it is suitable for the production method of pre-expanded polystyrene resin particles used for the production of polystyrene resin foam moldings that are currently produced in large quantities and widely used.

前記ポリスチレン系樹脂予備発泡粒子を製造するために用いる発泡性熱可塑性樹脂粒子としては、従来より周知の各種の製造方法、例えば、下記(1)〜(3)の製造方法によって製造された発泡性ポリスチレン系樹脂粒子を使用できる。
(1)水系懸濁液中にスチレン系単量体を主成分とする重合性単量体を分散させ重合を行い、重合途中又は、重合終了後に発泡剤を含有させて発泡性ポリスチレン系樹脂粒子を得る、いわゆる懸濁重合法、
(2)水系懸濁液中にポリスチレン系樹脂種粒子を分散させた後に、スチレン系単量体を主成分とする重合性単量体を該種粒子に吸収させて重合し、重合途中又は、重合終了後に発泡剤を含有させて発泡性ポリスチレン系樹脂粒子を得る、いわゆるシード重合法、
(3)押出機にポリスチレン系樹脂を投入して加熱溶融し、混練しながら吐出側に移動させる途中で発泡剤を混合し、押出機吐出側に取り付けた多数の小孔を有するダイの該小孔から発泡剤混合樹脂を押し出し、その直後に水中で切断し、急冷することで発泡性ポリスチレン系樹脂粒子を得る、いわゆる溶融押出法(水中カット法などとも称される)。
As the expandable thermoplastic resin particles used for manufacturing the polystyrene resin pre-expanded particles, the foaming properties manufactured by various known manufacturing methods such as the following (1) to (3) manufacturing methods are known. Polystyrene resin particles can be used.
(1) Polymerization is carried out by dispersing a polymerizable monomer containing a styrene monomer as a main component in an aqueous suspension, and a foaming agent is added during the polymerization or after completion of the polymerization to expand the polystyrene resin particles. So-called suspension polymerization method,
(2) After dispersing the polystyrene resin seed particles in the aqueous suspension, the seed particles are allowed to absorb the polymerizable monomer and polymerize, and during the polymerization, A so-called seed polymerization method in which a foaming polystyrene resin particle is obtained by adding a foaming agent after completion of the polymerization,
(3) A polystyrene resin is charged into an extruder, melted by heating, mixed with a foaming agent in the middle of moving to the discharge side while kneading, and the small die having a large number of small holes attached to the discharge side of the extruder A so-called melt extrusion method (also referred to as an underwater cutting method or the like) is obtained by extruding a foaming agent mixed resin from a hole, immediately after cutting it in water, and rapidly cooling to obtain expandable polystyrene resin particles.

前記(1)懸濁重合法及び(2)シード重合法で用いるスチレン系単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系単量体を主成分とし、スチレン系単量体を通常、50質量%以上、好ましくは80質量%以上含む。これらのスチレン系単量体の中でも、スチレンが特に好ましい。
更にスチレン系単量体に併用可能な重合性単量体としては、スチレン系単量体と共重合可能なものであれば特に限定されず、ジビニルベンゼン、アルキレングリコールジメタクリレート、アクリロニトリル、メチルメタクリレート等が挙げられる。
Examples of the styrene monomer used in the above (1) suspension polymerization method and (2) seed polymerization method include styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromo. The main component is a styrene monomer such as styrene, and the styrene monomer is usually contained in an amount of 50% by mass or more, preferably 80% by mass or more. Of these styrene monomers, styrene is particularly preferable.
Further, the polymerizable monomer that can be used in combination with the styrene monomer is not particularly limited as long as it is copolymerizable with the styrene monomer, and divinylbenzene, alkylene glycol dimethacrylate, acrylonitrile, methyl methacrylate, and the like. Is mentioned.

また(2)シード重合法で発泡性ポリスチレン系樹脂粒子を製造する場合、前記懸濁重合法により得られるポリスチレン系樹脂粒子を種粒子として使用したり、ポリスチレン系樹脂を押出機によりあらかじめ所望の粒子径に調整した後、種粒子として使用しても良い。(2)シード重合法において押出機を用いて種粒子を作製する場合、或いは(3)溶融押出法において使用するポリスチレン系樹脂は、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、リサイクル原料でないポリスチレン系樹脂(バージンポリスチレン)を使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたリサイクル原料を使用することができる。このリサイクル原料としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したリサイクル原料などが挙げられる。   (2) When producing expandable polystyrene resin particles by the seed polymerization method, the polystyrene resin particles obtained by the suspension polymerization method are used as seed particles, or the polystyrene resin is obtained in advance by an extruder. After adjusting to the diameter, it may be used as seed particles. (2) When seed particles are produced using an extruder in the seed polymerization method, or (3) polystyrene resins used in the melt extrusion method are commercially available ordinary polystyrene resins, suspension polymerization methods, etc. In addition to using polystyrene resins that are not recycled materials (virgin polystyrene), such as newly produced polystyrene resins by the method, use recycled materials obtained by reprocessing used polystyrene resin foam moldings. Can do. Examples of this recycled material include recycled polystyrene resin foam molded products such as fish boxes, household appliance cushioning materials, food packaging trays, etc., and recycled by the limonene dissolution method or heating volume reduction method. It is done.

この発泡性ポリスチレン系樹脂粒子の粒子径は、特に限定されないが、成形時の成形型キャビティ内への予備発泡粒子の充填性等から、通常、0.3〜2.0mm程度であり、0.3〜1.4mmが好ましい。   The particle diameter of the expandable polystyrene resin particles is not particularly limited, but is usually about 0.3 to 2.0 mm from the viewpoint of filling of the pre-expanded particles into the mold cavity at the time of molding. 3-1.4 mm is preferable.

発泡性ポリスチレン系樹脂粒子中のポリスチレン系樹脂の分子量は、GPC法による質量平均分子量(Mw)が17万〜70万であるのが好ましい。スチレン系樹脂粒子の分子量が17万を下回ると発泡成形体の強度が低下し、また70万を上回ると充分な発泡性が得られ難くなるので好ましくない。   As for the molecular weight of the polystyrene resin in the expandable polystyrene resin particles, the mass average molecular weight (Mw) by GPC method is preferably 170,000 to 700,000. If the molecular weight of the styrenic resin particles is less than 170,000, the strength of the foamed molded product is lowered, and if it exceeds 700,000, it is difficult to obtain sufficient foamability, which is not preferable.

前記(1)懸濁重合法および(2)シード重合法で使用する重合開始剤としては、通常、スチレンの懸濁重合において用いられるものであれば特に限定されず、例えばラジカル発生型重合開始剤を用いることができる。具体的には、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3,3,5−トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート等の有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。これらの重合開始剤は単独で、または2種以上を組合わせて用いることができる。   The polymerization initiator used in the above (1) suspension polymerization method and (2) seed polymerization method is not particularly limited as long as it is usually used in suspension polymerization of styrene. For example, a radical generating polymerization initiator is used. Can be used. Specifically, benzoyl peroxide, lauryl peroxide, t-butyl peroxide, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2,2-t-butylperoxide Organic peroxides such as oxybutane, t-butylperoxy-3,3,5-trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, azobisisobutyronitrile, azobisdimethylvaleronitrile, etc. Of the azo compound. These polymerization initiators can be used alone or in combination of two or more.

前記の重合において、ポリスチレン系樹脂粒子中に残留するスチレン系単量体を低減するために、高温分解型の重合開始剤を使用し、最終の重合温度を115℃以上に設定するのが好ましい。高温分解型の重合開始剤としては、例えばt−ブチルパーオキシベンゾエート、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタンなどの半減期10時間を得るための温度が100〜115℃のものが挙げられる。なお、高温分解型の重合開始剤を過剰に加えると分解副生成物であるアルコール類が発生するので好ましくない。
また、前記の重合において、ポリスチレン系樹脂粒子の分子量を調整し、単量体の残留量を減少させるという点で、10時間の半減期を得るための分解温度が80〜120℃の範囲にある重合開始剤を2種以上組合わせて用いるのが好ましい。
In the polymerization described above, in order to reduce the styrene monomer remaining in the polystyrene resin particles, it is preferable to use a high temperature decomposition type polymerization initiator and set the final polymerization temperature to 115 ° C. or higher. Examples of the high-temperature decomposition type polymerization initiator include t-butyl peroxybenzoate, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2,2-t-butyl peroxy. Examples include butane having a temperature of 100 to 115 ° C. for obtaining a half-life of 10 hours. An excessive addition of a high temperature decomposition type polymerization initiator is not preferable because alcohols as decomposition byproducts are generated.
In the polymerization, the decomposition temperature for obtaining a half-life of 10 hours is in the range of 80 to 120 ° C. in terms of adjusting the molecular weight of the polystyrene resin particles and reducing the residual amount of monomer. It is preferable to use a combination of two or more polymerization initiators.

前記(1)懸濁重合または(2)シード重合を行う際に、スチレン系単量体の小滴または種粒子を水性媒体中に分散させるために、懸濁剤を用いてもよい。懸濁剤としては、例えばポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や、第三リン酸カルシウム、ピロリン酸マグネシウム等の難水溶性無機化合物等が挙げられる。なお、難水溶性無機化合物を用いる場合にはアニオン界面活性剤を併用するのが好ましい。
前記アニオン界面活性剤としては、例えば脂肪酸石鹸、N−アシルアミノ酸またはその塩、アルキルエーテルカルボン酸塩等のカルボン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α−オレフィンスルホン酸塩等のスルホン酸塩;高級アルコール硫酸エステル塩、第二級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸エステル塩;アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等のリン酸エステル塩などが挙げられる。前記のようにして得られるポリスチレン系樹脂粒子に、懸濁重合含浸法あるいは後含浸法によって発泡剤および可塑剤を含浸させることにより、発泡性ポリスチレン系樹脂粒子を製造することができる。
In carrying out the (1) suspension polymerization or (2) seed polymerization, a suspending agent may be used to disperse styrene monomer droplets or seed particles in an aqueous medium. Examples of the suspending agent include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinyl pyrrolidone, and poorly water-soluble inorganic compounds such as tricalcium phosphate and magnesium pyrophosphate. In addition, when using a slightly water-soluble inorganic compound, it is preferable to use an anionic surfactant together.
Examples of the anionic surfactant include fatty acid soaps, N-acyl amino acids or salts thereof, carboxylates such as alkyl ether carboxylates, alkylbenzenesulfonates, alkylnaphthalenesulfonates, dialkylsulfosuccinates, alkylsulfates. Sulfates such as acetates and α-olefin sulfonates; sulfates such as higher alcohol sulfates, secondary higher alcohol sulfates, alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates; alkyls And phosphoric acid ester salts such as ether phosphoric acid ester salts and alkyl phosphoric acid ester salts. Expandable polystyrene resin particles can be produced by impregnating the polystyrene resin particles obtained as described above with a foaming agent and a plasticizer by a suspension polymerization impregnation method or a post-impregnation method.

本発明で用いられる発泡剤としては、一般の熱可塑性樹脂発泡体の製造に用いられている炭素数5以下の脂肪族炭化水素、例えばn−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン等が挙げられる。   Examples of the foaming agent used in the present invention include aliphatic hydrocarbons having 5 or less carbon atoms, such as n-butane, isobutane, n-pentane, isopentane, and neopentane, which are used in the production of general thermoplastic resin foams. Can be mentioned.

前記発泡剤の含有割合は、熱可塑性樹脂粒子に対して5〜9質量%の範囲が好ましく、5〜8質量%がより好ましい。前記含有割合が5質量%を下回ると、低密度化が困難であるばかりでなく、成形時の二次発泡力を高める効果が得られないために発泡成形体の外観が劣るようになる。また、含有割合が9質量%を上回ると、発泡成形時の収縮、予備発泡粒子中の残存ガスの調整時間の遅延、かつ成形サイクルが長くなり、生産性の点から好ましくない。   The content of the foaming agent is preferably in the range of 5 to 9% by mass, more preferably 5 to 8% by mass with respect to the thermoplastic resin particles. When the content ratio is less than 5% by mass, not only is it difficult to reduce the density, but the effect of increasing the secondary foaming power during molding cannot be obtained, so that the appearance of the foamed molded product is deteriorated. On the other hand, if the content ratio exceeds 9% by mass, the shrinkage during foam molding, the delay in adjusting the residual gas in the pre-expanded particles, and the molding cycle become longer, which is not preferable from the viewpoint of productivity.

前記発泡性熱可塑性樹脂粒子は、物性を損なわない範囲内において、従来から発泡性ポリスチレン系樹脂粒子の製造に使用されている、可塑剤、発泡セル造核剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等を必要に応じて適宜使用してもよい。また、ジンクステアレート等の粉末状金属石鹸類を前記発泡性スチレン樹脂粒子の表面に塗布しておけば、発泡性ポリスチレン系樹脂粒子の予備発泡工程においてポリスチレン系樹脂予備発泡粒子同士の結合を減少させることができて好ましい。   The foamable thermoplastic resin particles are used in the production of foamable polystyrene resin particles, as long as they do not impair the physical properties. Plasticizers, foamed cell nucleating agents, fillers, flame retardants, flame retardants. Auxiliaries, lubricants, colorants and the like may be used as necessary. In addition, if powder metal soaps such as zinc stearate are applied to the surface of the expandable styrene resin particles, the bonding between the polystyrene resin pre-expanded particles is reduced in the pre-expanding step of the expandable polystyrene resin particles. This is preferable.

本実施形態の製造方法によって予備発泡粒子を製造するには、前述した図1に示す構成の製造装置を用い、発泡槽2内に発泡性熱可塑性樹脂粒子を入れ、発泡槽2内に加熱媒体である蒸気3を導入して発泡性熱可塑性樹脂粒子を加熱発泡させ、所望の嵩発泡倍数の予備発泡粒子1を生成させる。   In order to produce the pre-foamed particles by the production method of the present embodiment, the foaming thermoplastic resin particles are put into the foaming tank 2 using the production apparatus having the configuration shown in FIG. The steam 3 is introduced and the foamable thermoplastic resin particles are heated and foamed to produce pre-expanded particles 1 having a desired bulk expansion ratio.

供給された蒸気3によって加熱された発泡性熱可塑性樹脂粒子は、発泡を始め、発泡槽2内で撹拌棒8による撹拌によって粒同士が合着することなく各粒子が独立した予備発泡粒子1となる。予備発泡の進行(嵩発泡倍数の増加)に伴い、予備発泡粒子1の層高さが増してくる。   The expandable thermoplastic resin particles heated by the supplied steam 3 start to foam, and the pre-expanded particles 1 in which the particles are independent from each other without being bonded to each other by stirring with the stirring rod 8 in the foaming tank 2. Become. As the pre-foaming progresses (increase in the bulk foaming factor), the layer height of the pre-foamed particles 1 increases.

この予備発泡において、発泡槽2内で生成した予備発泡粒子1の層高さが、目的とする予備発泡粒子1の嵩発泡倍数に対応する最終レベルよりも低位置である第1レベルに到達したことを検知する第1レベル計12と、最終レベルである第2レベルに達したことを検知する第2レベル計13とを設置し、予備発泡粒子の層高さが第1レベル25に達した後、蒸気供給管路4の第1蒸気管路14a又は第2蒸気管路14bのいずれか一方を止め、発泡槽2底部への蒸気供給量を減少させ、第2レベルまでの加熱発泡を行う。
前記第1レベル計12は、前記第2レベル計13の検知高さの70〜90%の検知高さとなるように設置することが好ましい。
In this pre-foaming, the layer height of the pre-foamed particles 1 generated in the foaming tank 2 has reached the first level which is lower than the final level corresponding to the bulk foaming factor of the target pre-foamed particles 1. The first level meter 12 for detecting this and the second level meter 13 for detecting that the second level, which is the final level, has been installed, and the layer height of the pre-expanded particles has reached the first level 25. Thereafter, either the first steam line 14a or the second steam line 14b of the steam supply line 4 is stopped, the amount of steam supplied to the bottom of the foaming tank 2 is reduced, and heating and foaming to the second level are performed. .
The first level meter 12 is preferably installed so as to have a detection height of 70 to 90% of the detection height of the second level meter 13.

次いで発泡槽2内に空気を供給して予備発泡粒子1を冷却乾燥する。本発明の製造方法では、予備発泡粒子1を冷却乾燥する際に、風圧3.0〜12.0kPaの空気を風量17.0〜40.0m/L/分(ただし、Lは熱可塑性樹脂予備発泡粒子の嵩体積1mを表す)の範囲で発泡槽2内に供給して冷却乾燥を行うことを特徴とする。 Next, air is supplied into the foaming tank 2 to cool and dry the pre-expanded particles 1. In the production method of the present invention, when the pre-foamed particles 1 are cooled and dried, air with a wind pressure of 3.0 to 12.0 kPa is supplied with an air volume of 17.0 to 40.0 m 3 / L / min (where L is a thermoplastic resin). It is characterized in that it is supplied into the foaming tank 2 within a range of (bulk volume of 1 m 3 of the pre-foamed particles) and cooled and dried.

前記送風機5としては、風圧3.0〜12.0kPaの低圧空気を大量に送風可能なブロアーなどが好ましい。
前記風圧が3.0kPa未満であると、発泡槽2内の予備発泡粒子1に十分な空気が行き渡らず、予備発泡粒子1の冷却乾燥が不十分になってしまう。前記風圧が12.0kPaを超える冷却空気を送るには、通常仕様の送風機5だけでは不十分であり、他の空気圧縮手段を付設しなければばならず、送風機5が高コストとなり、また送風のための電力消費量が増加するため、予備発泡粒子1の冷却乾燥に要する電力消費量を削減するという効果が得られなくなる。
The blower 5 is preferably a blower that can blow a large amount of low-pressure air having a wind pressure of 3.0 to 12.0 kPa.
If the wind pressure is less than 3.0 kPa, sufficient air does not reach the pre-expanded particles 1 in the foaming tank 2 and cooling and drying of the pre-expanded particles 1 becomes insufficient. In order to send the cooling air whose wind pressure exceeds 12.0 kPa, the normal specification blower 5 alone is not sufficient, and other air compression means must be provided, the blower 5 becomes expensive, and the blower Therefore, the effect of reducing the power consumption required for cooling and drying the pre-expanded particles 1 cannot be obtained.

また、前記風量が17.0m/L/分未満であると、発泡槽2内の予備発泡粒子1に十分な空気が行き渡らず、予備発泡粒子1の冷却乾燥が不十分になってしまう。前記風量が40.0m/L/分を超える冷却空気を送るには、大型の送風機5が必要となって、送風のための電力消費量が増加するため、予備発泡粒子1の冷却乾燥に要する電力消費量を削減するという効果が得られなくなる。 Moreover, when the said air volume is less than 17.0 m < 3 > / L / min, sufficient air will not spread over the pre-expanded particle 1 in the foaming tank 2, and cooling drying of the pre-expanded particle 1 will become inadequate. In order to send the cooling air whose air volume exceeds 40.0 m 3 / L / min, a large blower 5 is required, and power consumption for blowing increases, so that the pre-foamed particles 1 are cooled and dried. The effect of reducing the required power consumption cannot be obtained.

前記発泡槽内に供給する空気の温度は、特に限定されないが、あまり低温であると乾燥に時間がかかることから、5℃以上であることが好ましい。また、空気の温度が高く、湿度が低ければ、予備発酵粒子1の乾燥効率が向上し、より短時間で乾燥させることが可能であるが、空気を常温以上に昇温するためには別途ヒーター等で供給空気を加熱する必要があり、エネルギーコストが上昇する点から、加温した空気を使用することは望ましくない。なお、他の装置の廃熱利用などで安価な加熱空気を入手可能な場合には、その加熱空気を利用することもできる。   Although the temperature of the air supplied in the said foaming tank is not specifically limited, Since it takes time to dry when it is too low temperature, it is preferable that it is 5 degreeC or more. Moreover, if the temperature of the air is high and the humidity is low, the drying efficiency of the pre-fermented particles 1 can be improved and the drying can be performed in a shorter time. It is not desirable to use heated air from the viewpoint that the supply air needs to be heated, etc., and the energy cost increases. In addition, when inexpensive heating air can be obtained by using waste heat of other devices, the heating air can also be used.

この冷却乾燥は、発泡性熱可塑性樹脂投入時の発泡槽内温度が、予備発泡実施毎に80℃未満になるように行うことが望ましい。
発泡性熱可塑性樹脂投入時の発泡槽内温度が80℃以上である場合、予備発泡粒子の冷却乾燥が不十分となり、予備発泡粒子の水分量が高くなり、予備発泡粒子同士の合着が起こり易くなり、発泡槽内でブロッキングを生じて予備発泡粒子のスムーズな送粒が困難になるおそれがある。
This cooling and drying is desirably performed so that the temperature in the foaming tank when the foamable thermoplastic resin is charged is less than 80 ° C. every time the preliminary foaming is performed.
When the temperature in the foaming tank when the foamable thermoplastic resin is charged is 80 ° C. or higher, the prefoamed particles are not sufficiently cooled and dried, the moisture content of the prefoamed particles is increased, and the prefoamed particles are coalesced with each other. It becomes easy to cause blocking in the foaming tank, and it may be difficult to smoothly feed the pre-foamed particles.

また、この冷却乾燥は、予備発泡粒子の水分量が8〜4%の範囲、好ましくは7〜5%の範囲となるように行うことが望ましい。
予備発泡粒子の水分量が8%を超えると、予備発泡粒子同士の合着が起こり易くなり、発泡槽内でブロッキングを生じて予備発泡粒子のスムーズな送粒が困難になるおそれがある。
一方、予備発泡粒子の水分量を4%未満とした場合、静電気が発生し易くなり、予備発泡粒子が管路内や槽壁に付着して取り扱い難くなる問題がある。
Further, this cooling and drying is desirably performed so that the moisture content of the pre-expanded particles is in the range of 8 to 4%, preferably in the range of 7 to 5%.
If the water content of the pre-expanded particles exceeds 8%, the pre-expanded particles are likely to coalesce with each other, blocking may occur in the foaming tank, and smooth granulation of the pre-expanded particles may be difficult.
On the other hand, when the water content of the pre-expanded particles is less than 4%, static electricity is likely to be generated, and there is a problem that the pre-expanded particles adhere to the inside of the pipe or the tank wall and are difficult to handle.

予備発泡粒子は、製造するべき熱可塑性樹脂発泡成形体の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度は限定されないが、ポリスチレン系樹脂予備発泡粒子の製造において通常は0.0125〜0.2g/cmの範囲(嵩発泡倍数として5〜80倍)とし、0.02〜0.10g/cmの範囲(嵩発泡倍数として10〜50倍)が好ましく、0.02〜0.05g/cmの範囲(嵩発泡倍数として20〜50倍)がより好ましい。 The pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the thermoplastic resin foam molding to be produced. In the present invention, the bulk density is not limited, but in the production of polystyrene resin pre-foamed particles, it is usually in the range of 0.0125 to 0.2 g / cm 3 (5 to 80 times as the bulk foaming factor), and 0.02 A range of ˜0.10 g / cm 3 (10 to 50 times as a bulk foaming factor) is preferable, and a range of 0.02 to 0.05 g / cm 3 (20 to 50 times as a bulk foaming factor) is more preferable.

前述した予備発泡処理を行って得られた予備発泡粒子は、発泡槽2のハッチ10から取り出し、発泡粒解粒機によって解粒後、エゼクター等で大型の予備発泡粒子貯留槽に移送して貯留され、必要に応じて所定の日数放置して熟成させ、必要に応じて予備発泡粒子貯留槽から発泡成形装置に予備発泡粒子を移送し、型内発泡成形法による発泡成形体の製造に用いられる。   The pre-foamed particles obtained by performing the pre-foaming treatment described above are taken out from the hatch 10 of the foaming tank 2, pulverized by a foam granulating machine, transferred to a large pre-foamed particle storage tank by an ejector or the like, and stored. If necessary, it is allowed to stand for a predetermined number of days for aging, and if necessary, the pre-foamed particles are transferred from the pre-foamed particle storage tank to the foam molding apparatus and used for the production of a foam molded article by the in-mold foam molding method. .

本実施形態による予備発泡粒子の製造方法は、発泡槽2内で発泡性熱可塑性樹脂粒子を加熱発泡させ、所望の嵩発泡倍数の予備発泡粒子1を生成させ、次いで発泡槽2内に空気を供給して予備発泡粒子1を冷却乾燥させる際に、風圧3.0〜12.0kPaの空気を風量17.0〜40.0m/L/分(ただし、Lは熱可塑性樹脂予備発泡粒子の嵩体積1mを表す)の範囲で前記発泡槽2内に供給して冷却乾燥を行うことによって、圧縮空気を発泡槽内に供給していた従来技術と比べ、より短時間で予備発泡粒子1を十分に冷却乾燥することができ、予備発泡粒子1の製造サイクルが短くなり、生産効率を向上させることができる。
また、冷却乾燥するために低圧空気を大量送風可能な送風機5を使用できることで、圧縮空気を発泡槽内に供給していた従来技術と比べ、消費電力を大幅に削減でき、製造コストの低減を図ることができる。
In the method for producing pre-expanded particles according to the present embodiment, the foamable thermoplastic resin particles are heated and foamed in the foaming tank 2 to generate the pre-expanded particles 1 having a desired bulk expansion factor, and then air is supplied into the foaming tank 2. When the pre-expanded particles 1 are supplied and cooled and dried, air with a wind pressure of 3.0 to 12.0 kPa is supplied with an air volume of 17.0 to 40.0 m 3 / L / min (where L is the pre-expanded particles of the thermoplastic resin) Pre-expanded particles 1 in a shorter time than the conventional technique in which compressed air is supplied into the foaming tank by supplying the foamed tank 2 to the foaming tank 2 within a range of (bulk volume 1 m 3 ) and cooling and drying. Can be sufficiently cooled and dried, the production cycle of the pre-expanded particles 1 can be shortened, and the production efficiency can be improved.
In addition, the ability to use a blower 5 that can blow a large amount of low-pressure air to cool and dry can significantly reduce power consumption and reduce manufacturing costs compared to the conventional technology that supplies compressed air to the foaming tank. Can be planned.

前記予備発泡粒子は、ポリスチレン系樹脂などの熱可塑性樹脂発泡成形体の製造分野において周知の装置及び手法を用い、該予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、熱可塑性樹脂発泡成形体(以下、発泡成形体と記す)を製造する。
本発明の発泡成形体の密度は特に限定されないが、ポリスチレン系樹脂発泡成形体の製造において通常は0.0125〜0.2g/cmの範囲(発泡倍数として5〜80倍)とし、0.02〜0.10g/cmの範囲(発泡倍数として10〜50倍)が好ましく、0.02〜0.05g/cmの範囲(発泡倍数として20〜50倍)がより好ましい。
The pre-expanded particles are filled in a cavity of a mold using a well-known apparatus and technique in the manufacturing field of thermoplastic resin foam-molded articles such as polystyrene resins, and heated by steam heating or the like. In-mold foam molding is performed to produce a thermoplastic resin foam molded body (hereinafter referred to as a foam molded body).
The density of the foamed molded product of the present invention is not particularly limited, but in the production of a polystyrene-based resin foam molded product, it is usually in the range of 0.0125 to 0.2 g / cm 3 (5 to 80 times as the expansion factor). The range of 02 to 0.10 g / cm 3 (10 to 50 times as the expansion factor) is preferable, and the range of 0.02 to 0.05 g / cm 3 (20 to 50 times as the expansion factor) is more preferable.

なお、本発明において、予備発泡粒子の嵩密度・嵩発泡倍数、及び発泡成形体の密度・発泡倍数は、次の通り測定された値を指す。   In the present invention, the bulk density / bulk foaming factor of the pre-expanded particles and the density / foaming factor of the foamed molded product indicate values measured as follows.

<予備発泡粒子の嵩密度・嵩発泡倍数>
約5gの予備発泡粒子の質量(a)を小数以下2位で秤量する。次に、最小目盛り単位が5cmである500cmメスシリンダーに秤量した予備発泡粒子を入れ、これにメスシリンダーの口径よりやや小さい円形の樹脂板であって、その中心に幅約1.5cm、長さ約30cmの棒状の樹脂板が直立して固定された押圧具をあてて、予備発泡粒子の体積(b)を読み取り、次式により予備発泡粒子の嵩密度と嵩発泡倍数を求めた。
嵩密度(g/cm)=(a)/(b)
嵩発泡倍数=1/嵩密度(g/cm
<Bulk density / bulk expansion ratio of pre-expanded particles>
The mass (a) of about 5 g of pre-expanded particles is weighed in the second decimal place. Next, weighed pre-expanded particles in a 500 cm 3 graduated cylinder with a minimum scale unit of 5 cm 3 , and a circular resin plate slightly smaller than the caliber of the graduated cylinder, about 1.5 cm wide in the center, A pressure tool in which a rod-shaped resin plate having a length of about 30 cm was fixed upright was applied, the volume (b) of the pre-expanded particles was read, and the bulk density and the bulk expansion factor of the pre-expanded particles were determined by the following equations.
Bulk density (g / cm 3 ) = (a) / (b)
Bulk foaming factor = 1 / bulk density (g / cm 3 )

<発泡成形体の密度・発泡倍数>
50cm以上(半硬質および軟質材料の場合は100cm以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm)=試験片質量(g)/試験片体積(cm
試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
また、発泡成形体の発泡倍数は次式により算出される数値である。
発泡倍数(倍)=1/密度(g/cm
<Density and expansion ratio of foam molding>
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test piece condition adjustment and measurement test pieces were cut out from samples that had passed 72 hours or more after molding, and were subjected to atmospheric conditions of 23 ° C. ± 2 ° C. × 50% ± 5% or 27 ° C. ± 2 ° C. × 65% ± 5%. It has been left for more than an hour.
Further, the expansion factor of the foamed molded product is a numerical value calculated by the following equation.
Foaming multiple (times) = 1 / density (g / cm 3 )

以下、本発明を実施例および比較例にて詳細に説明するが、本発明はこれら実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited by these Examples.

(予備発泡粒子の製造装置)
製造装置としては、笠原工業社製の予備発泡機「PSX/850」(商品名)をベースとし、図1に示すように、蒸気及び冷却空気を供給する管路19(太さ1.5B)の途中に分岐部を形成し、送風機5として富士電機システムズ社製のリングブロアー(200V×1.3kWh)、接続用の空気管路21(太さ1B)、該空気管路21の途中に設けたボールバルブ(弁20)とで形成した冷却用空気供給手段6を接続した。
この装置の発泡槽内には、予備発泡粒子の体積が770Lに到達したことを検知する第1レベル計12と、予備発泡粒子の体積が870Lに到達したことを検知する第2レベル計13とが設けられ、蒸気加熱時に第1レベル計到達前までは第1蒸気管路14aと第2蒸気管路14bの両方から蒸気供給を行い、第1レベル計到達時点で第1蒸気管路14aが閉じ、第2レベル計到達時点で第2蒸気管路14bも閉じるように制御される。
(Pre-expanded particle production equipment)
As a manufacturing apparatus, a pre-foaming machine “PSX / 850” (trade name) manufactured by Kasahara Kogyo Co., Ltd. is used as a base, and as shown in FIG. 1, a pipeline 19 (thickness 1.5B) for supplying steam and cooling air is used. A branch part is formed in the middle of the ring, and as the blower 5, a ring blower (200 V × 1.3 kWh) manufactured by Fuji Electric Systems Co., Ltd., a connecting air pipe 21 (thickness 1 B), and provided in the middle of the air pipe 21 The cooling air supply means 6 formed by a ball valve (valve 20) was connected.
In the foaming tank of this apparatus, a first level meter 12 for detecting that the volume of the pre-foamed particles has reached 770 L, and a second level meter 13 for detecting that the volume of the pre-foamed particles has reached 870 L; Until the first level gauge is reached during steam heating, steam is supplied from both the first steam line 14a and the second steam line 14b, and when the first level gauge reaches the first steam line 14a The second steam line 14b is controlled to be closed when the second level meter is reached.

(予備発泡工程)
原料の発泡性ポリスチレン系樹脂粒子として、積水化成品工業社製の発泡性ポリスチレンビーズ「エスレンビーズ HDMA」(商品名)を用い、これを嵩発泡倍数60倍に予備発泡させて予備発泡粒子を製造した。工程の概要は次の通り。
(1)ハッチ閉
(2)原料投入;発泡槽内に原料の発泡ビーズを14.8kg投入する。
(3)蒸気供給;第1蒸気管路14aと第2蒸気管路14bとを開く。第1レベル計到達時点で第1蒸気管路14aを閉じる。
(4)蒸気供給停止;第2レベル計到達時点で第2蒸気管路14bを閉じる。
(5)冷却乾燥;リングブロアーを駆動させ、冷却空気を発泡槽内に供給する。
(6)予備発泡粒子の取り出し;予備発泡粒子を発泡槽から解粒機に移し、解粒後に熟成サイロに移送する。
(7)エアー排出
以下の各試験において、前記予備発泡機の運転モードは「高温」とした。テスト時室温は約35℃であった。
(Pre-foaming process)
As expandable polystyrene resin particles as raw materials, expandable polystyrene beads “Eslen Beads HDMA” (trade name) manufactured by Sekisui Plastics Co., Ltd. were used, and pre-expanded particles were produced by pre-expanding them to a bulk expansion ratio of 60 times. . The outline of the process is as follows.
(1) Hatch closed (2) Feeding raw materials; 14.8 kg of raw foam beads are put into the foaming tank.
(3) Steam supply; the first steam line 14a and the second steam line 14b are opened. When the first level meter is reached, the first steam line 14a is closed.
(4) Steam supply stop; when the second level meter is reached, the second steam line 14b is closed.
(5) Cooling and drying; the ring blower is driven and cooling air is supplied into the foaming tank.
(6) Removal of pre-expanded particles: The pre-expanded particles are transferred from the foaming tank to a pulverizer and transferred to an aging silo after pulverization.
(7) Air discharge In each of the following tests, the operation mode of the preliminary foaming machine was “high temperature”. The room temperature during the test was about 35 ° C.

<試験1:冷却空気の風量>
前記予備発泡粒子の製造装置を用い、冷却乾燥時にリングブロアーの風量を適宜調整して冷却乾燥を行い(空冷時間は45秒で一定)、得られた予備発泡粒子(以下、発泡粒と記す場合がある)の水分量、解粒機での発泡粒流れ及び発泡粒の静電気を調べた。これらの測定方法及び判断基準は以下の通りとした。
<Test 1: Cooling air volume>
When the pre-expanded particle manufacturing apparatus is used, the air volume of the ring blower is appropriately adjusted during cooling and drying (cooling time is constant at 45 seconds), and the resulting pre-expanded particles (hereinafter referred to as expanded particles) Water content, foam flow in the granulator, and static electricity of the foam. These measurement methods and criteria were as follows.

(発泡粒水分量)
取り出した発泡粒の質量を求め、次に105℃で1時間乾燥させた後の発泡粒の質量(完全乾燥後の質量)を測定し、次式により水分量(%)を算出する。
水分量(%)=(取り出した発泡粒の質量−完全乾燥後の質量)÷(完全乾燥後の質量)×100
(Foamed grain moisture content)
The mass of the taken-out foam particles is determined, the mass of the foam particles after drying at 105 ° C. for 1 hour (the mass after complete drying) is measured, and the moisture content (%) is calculated by the following formula.
Water content (%) = (mass of taken-out foam particles−mass after complete drying) ÷ (mass after complete drying) × 100

(解粒機での発泡粒流れ)
取り出した発泡粒を解粒機に移し、解粒する時に、発泡粒が目開き10mmの金網を通過する際の発泡粒の挙動を目視観測した。発泡粒の水分量が多いと、金網から発泡粒が落ちにくくなり、また発泡粒の水分量が少なすぎると、静電気が発生して発泡粒が金網に付着し易くなる。
(Flow of foam particles in a granulator)
The taken-out foamed particles were transferred to a pulverizer, and when pulverized, the behavior of the foamed particles when the foamed particles passed through a wire mesh having an opening of 10 mm was visually observed. If the water content of the foamed particles is large, the foamed particles are difficult to drop from the wire mesh, and if the water content of the foamed particles is too small, static electricity is generated and the foamed particles easily adhere to the wire mesh.

(発泡粒の静電気)
シンド静電気社製の静電気測定器スタチロンM(商品名)を用いて発泡粒の静電気量(kV)を測定した。
なお、発泡静電気量は20kV以上だと危険とされている。この静電気量は発泡直後の発泡粒についての測定値であり、発泡粒は解粒後、空気輸送され熟成サイロに供給される。この時、静電気量は更に助長され、危険雰囲気にはいる可能性が大きい。よって、発泡力後の発泡粒の静電気量は、10kV以下にするのが好ましい。
(Static foam foam)
The static electricity amount (kV) of the foamed particles was measured using a static electricity measuring device STATILON M (trade name) manufactured by Sind electrostatic.
In addition, it is considered dangerous if the amount of static electricity foamed is 20 kV or more. This amount of static electricity is a measured value for the foamed particles immediately after foaming, and the foamed particles are pneumatically transported after being pulverized and supplied to an aged silo. At this time, the amount of static electricity is further promoted, and there is a high possibility of entering a hazardous atmosphere. Therefore, the static electricity amount of the foamed particles after the foaming force is preferably 10 kV or less.

[実施例1]
冷却乾燥時にリングブロアーの風量を27.5m/L/分とし、発泡粒水分量、解粒機での発泡粒流れ及び発泡粒の静電気を調べた。その結果を表1に記す。
[Example 1]
At the time of cooling and drying, the air volume of the ring blower was set to 27.5 m 3 / L / min, and the moisture content of the foamed particles, the flow of the foamed particles in the granulator and the static electricity of the foamed particles were examined. The results are shown in Table 1.

[実施例2]
冷却乾燥時にリングブロアーの風量を19.0m/L/分とし、発泡粒水分量、解粒機での発泡粒流れ及び発泡粒の静電気を調べた。その結果を表1に記す。
[Example 2]
At the time of cooling and drying, the air volume of the ring blower was set to 19.0 m 3 / L / min, and the moisture content of the foam particles, the flow of the foam particles in the granulator, and the static electricity of the foam particles were examined. The results are shown in Table 1.

[実施例3]
冷却乾燥時にリングブロアーの風量を38.0m/L/分とし、発泡粒水分量、解粒機での発泡粒流れ及び発泡粒の静電気を調べた。その結果を表1に記す。
[Example 3]
At the time of cooling and drying, the air volume of the ring blower was set to 38.0 m 3 / L / min, and the moisture content of the foam particles, the flow of the foam particles in the granulator and the static electricity of the foam particles were examined. The results are shown in Table 1.

[比較例1]
冷却乾燥時にリングブロアーの風量を、本発明における風量の下限値(17.0m/L/分)以下の15.0m/L/分とし、発泡粒水分量、解粒機での発泡粒流れ及び発泡粒の静電気を調べた。その結果を表1に記す。
[Comparative Example 1]
The air volume of the ring blower at the time of cooling and drying is set to 15.0 m 3 / L / min which is equal to or lower than the lower limit (17.0 m 3 / L / min) of the air volume in the present invention. The flow and the static electricity of the foam particles were examined. The results are shown in Table 1.

[比較例2]
冷却乾燥時にリングブロアーの風量を、本発明における風量の上限値(40.0m/L/分)以上の42.0m/L/分とし、発泡粒水分量、解粒機での発泡粒流れ及び発泡粒の静電気を調べた。その結果を表1に記す。
[Comparative Example 2]
At the time of cooling and drying, the air volume of the ring blower is set to 42.0 m 3 / L / min which is equal to or higher than the upper limit value (40.0 m 3 / L / min) of the air volume in the present invention. The flow and the static electricity of the foam particles were examined. The results are shown in Table 1.

Figure 2011202005
Figure 2011202005

表1の結果から、冷却乾燥時にリングブロアーの風量を17.0〜40.0m/L/分の範囲内とした実施例1〜3は、取り出した発泡粒の水分量が4.0〜6.0%となり、解粒機での発泡粒流れがスムーズであった。また、実施例1〜3の発泡粒は、静電気量が10kV未満となり、良好であった。
一方、比較例1は、リングブロアーの風量を本発明における風量の下限値(17.0m/L/分)以下としたことで、発泡粒の乾燥が不十分となり、取り出した発泡粒の水分量が高くなり、解粒機で発泡粒が流れ難くなり、好ましくなかった。
比較例2は、リングブロアーの風量を本発明における風量の上限値(40.0m/L/分)以上としたことで、発泡粒の水分量が少なくなり、静電気が発生し、解粒機で金網に付着し易くなった。更に熟成サイロに空気輸送する途中で静電気は助長される傾向にあり、サイロで貯量された時は危険範囲の20kVを超える可能性があり、好ましくなかった。
また、風量が多くなると発泡槽内では発泡粒の舞い上がりが強く、発泡槽内天板部に発泡粒が付着し、このような発泡粒は掃除エアー吹き付けでは除去しきれず、次バッチに混合してしまうおそれがある。何度も蒸気に曝された発泡粒は、硬い固形物となり、それが混入すると発泡成形体の品質不良の原因となってしまう。
この試験1の結果より、冷却空気の風量は、17.0〜40.0m/L/分の範囲が好ましいことが分かる。
From the results of Table 1, in Examples 1 to 3 in which the air volume of the ring blower was within the range of 17.0 to 40.0 m 3 / L / min during cooling and drying, the moisture content of the taken-out foam particles was 4.0 to 4.0. The foamed particle flow in the pulverizer was smooth. In addition, the foamed particles of Examples 1 to 3 were good because the static electricity amount was less than 10 kV.
On the other hand, in Comparative Example 1, the air volume of the ring blower was set to be equal to or lower than the lower limit value (17.0 m 3 / L / min) of the air volume in the present invention. The amount was high, and it was difficult to flow the foamed particles with a granulator, which was not preferable.
In Comparative Example 2, the air volume of the ring blower was set to be equal to or higher than the upper limit (40.0 m 3 / L / min) of the air volume in the present invention. It became easy to adhere to the wire mesh. Furthermore, static electricity tends to be promoted during pneumatic transportation to the aging silo, and when stored in the silo, it may exceed the dangerous range of 20 kV, which is not preferable.
In addition, if the air volume increases, the foam particles rise strongly in the foaming tank, and the foam particles adhere to the top plate in the foaming tank. There is a risk that. Foamed grains that have been exposed to steam many times become a hard solid, and if mixed, it causes poor quality of the foamed molded product.
From the results of Test 1, it is understood that the air volume of the cooling air is preferably in the range of 17.0 to 40.0 m 3 / L / min.

<試験2:冷却空気の風圧>
冷却空気の風圧を適宜変更して冷却乾燥を行った(空冷時間は45秒で一定)こと以外は、試験1と同様にして発泡粒を製造し、得られた発泡粒の水分量、解粒機での発泡粒流れ、発泡粒の静電気及び発泡槽内部状況を調べた。発泡粒水分量、解粒機での発泡粒流れ、及び発泡粒の静電気の測定については、試験1と同様に行った。
<Test 2: Cooling air pressure>
The foamed granules were produced in the same manner as in Test 1 except that cooling drying was performed by appropriately changing the air pressure of the cooling air (the air cooling time was constant at 45 seconds). The foam flow in the machine, the static electricity of the foam and the inside of the foaming tank were investigated. The measurement of the moisture content of the foamed particles, the flow of the foamed particles with a pulverizer, and the static electricity of the foamed particles was performed in the same manner as in Test 1.

(発泡槽内部状況)
冷却乾燥時に発泡槽の覗き窓から槽内の発泡粒の動き、特に舞い上がりの有無を目視観測した。
(Internal situation of foaming tank)
During the cooling and drying, the movement of the foam particles in the tank, particularly the presence or absence of soaring, was visually observed from the observation window of the foam tank.

[実施例1]
冷却乾燥時に風圧を6.9kPaとし、発泡粒水分量、解粒機での発泡粒流れ、発泡粒の静電気及び発泡槽内部状況を調べた。その結果を表2に記す。
[Example 1]
The wind pressure was set to 6.9 kPa at the time of cooling and drying, and the moisture content of the foam particles, the flow of the foam particles in the pulverizer, the static electricity of the foam particles, and the internal state of the foam tank were examined. The results are shown in Table 2.

[実施例4]
冷却乾燥時に風圧を4.0kPaとし、発泡粒水分量、解粒機での発泡粒流れ、発泡粒の静電気及び発泡槽内部状況を調べた。その結果を表2に記す。
[Example 4]
At the time of cooling and drying, the wind pressure was set to 4.0 kPa, and the water content of the foam particles, the flow of the foam particles in the pulverizer, the static electricity of the foam particles, and the internal state of the foam tank were examined. The results are shown in Table 2.

[実施例5]
冷却乾燥時に風圧を11.0kPaとし、発泡粒水分量、解粒機での発泡粒流れ、発泡粒の静電気及び発泡槽内部状況を調べた。その結果を表2に記す。
[Example 5]
The wind pressure was set to 11.0 kPa at the time of cooling and drying, and the water content of the foamed particles, the flow of the foamed particles in the pulverizer, the static electricity of the foamed particles, and the internal state of the foaming tank were examined. The results are shown in Table 2.

[比較例3]
冷却乾燥時に風圧を2.0kPaとし、発泡粒水分量、解粒機での発泡粒流れ、発泡粒の静電気及び発泡槽内部状況を調べた。その結果を表2に記す。
[Comparative Example 3]
At the time of cooling and drying, the wind pressure was set to 2.0 kPa, and the water content of the foamed particles, the flow of the foamed particles in the pulverizer, the static electricity of the foamed particles, and the state inside the foaming tank were examined. The results are shown in Table 2.

[比較例4]
冷却乾燥時に風圧を13.0kPaとし、発泡粒水分量、解粒機での発泡粒流れ、発泡粒の静電気及び発泡槽内部状況を調べた。その結果を表2に記す。
[Comparative Example 4]
At the time of cooling and drying, the wind pressure was set to 13.0 kPa, and the water content of the foam particles, the flow of the foam particles in the pulverizer, the static electricity of the foam particles, and the internal state of the foam tank were examined. The results are shown in Table 2.

Figure 2011202005
Figure 2011202005

表2の結果から、風圧を3.0〜12.0kPaの範囲内とした実施例1,4,5は、取り出した発泡粒の水分量が4.0〜6.0%となり、解粒機での発泡粒流れがスムーズであった。また、実施例1〜3の発泡粒は、静電気量が10kV未満となり、良好であった。また、冷却乾燥時に発泡槽内の発泡粒は安定しており、舞い上がりは見られなかった。
一方、風圧を2.0kPaとした比較例3は、発泡粒の乾燥が不十分となり、取り出した発泡粒の水分量が高くなり、解粒機で発泡粒が流れ難くなり、好ましくなかった。
また、風圧を13.0kPaとした比較例4は、発泡粒の水分量が少なくなり、静電気が発生し、解粒機で金網に付着し易くなった。更に、冷却乾燥時に槽内の発泡粒が天板部まで舞い上がり、一部が天板部に付着した。
この表2の結果から、冷却乾燥における風圧は3.0〜12.0kPaの範囲内とするのが好ましいことが分かる。
From the results of Table 2, in Examples 1, 4 and 5 in which the wind pressure was in the range of 3.0 to 12.0 kPa, the moisture content of the taken-out foamed particles was 4.0 to 6.0%, and the granulator The foam flow was smooth. In addition, the foamed particles of Examples 1 to 3 were good because the static electricity amount was less than 10 kV. Further, the foamed grains in the foaming tank were stable during cooling and drying, and no soaring was observed.
On the other hand, Comparative Example 3 in which the wind pressure was 2.0 kPa was not preferable because drying of the foamed particles was insufficient, the moisture content of the taken-out foamed particles was high, and the foamed particles were difficult to flow with a granulator.
Further, in Comparative Example 4 in which the wind pressure was 13.0 kPa, the moisture content of the foamed particles was reduced, static electricity was generated, and it was easy to adhere to the wire mesh with a granulator. Furthermore, the foamed grains in the tank rose to the top plate during cooling and drying, and a part of the particles adhered to the top plate.
From the results in Table 2, it can be seen that the wind pressure in the cooling and drying is preferably in the range of 3.0 to 12.0 kPa.

<試験3:現行の予備発泡機との比較>
現行の前記予備発泡機では、55kWhのスクリューコンプレッサーから風圧5000kPaの圧力の圧縮エアーを太さ1Bの配管で発泡槽に供給している。
この現行の前記予備発泡機の圧縮エアーによる冷却乾燥(以下、空冷と記す)と、前述した実施例1でのブロアーエアーによる空冷とを比較した。
圧縮エアーによる空冷と、ブロアーエアーによる空冷とは、空冷時の圧力は同じであるが、圧縮エアーは1Bの配管を3/8Bに絞り蒸気室を軽油し、発泡室内に吹き込まれる。この時の風量は発泡槽当たり1.86m/分である。一方、ブロアーエアーによる空冷では風圧が6.9kPaと低いが、風量は発泡槽当たり24m/分と約13倍多くなる。
前記圧縮エアーによる空冷と、ブロアーエアーによる空冷とをそれぞれ実施し、空冷時間と発泡粒水分量との関係を調べた。結果を表3に記す。
なお、前記試験1,2の結果から、空冷終了時点での好ましい発泡粒水分量を5%とし、発泡粒水分量5%となった時点で空冷を止めた。
<Test 3: Comparison with current pre-foaming machine>
In the present preliminary foaming machine, compressed air having a wind pressure of 5000 kPa is supplied from a 55 kWh screw compressor to the foaming tank through a pipe having a thickness of 1B.
The current cooling drying with compressed air (hereinafter referred to as air cooling) of the preliminary foaming machine was compared with the air cooling with blower air in Example 1 described above.
The air cooling with compressed air and the air cooling with blower air have the same pressure at the time of air cooling, but the compressed air is reduced to 3 / 8B by 1B piping to light oil in the steam chamber and blown into the foaming chamber. The air volume at this time is 1.86 m 3 / min per foaming tank. On the other hand, in the air cooling with blower air, the wind pressure is as low as 6.9 kPa, but the air volume is about 13 times as high as 24 m 3 / min per foaming tank.
The air cooling with the compressed air and the air cooling with the blower air were performed, respectively, and the relationship between the air cooling time and the foamed grain moisture content was examined. The results are shown in Table 3.
From the results of Tests 1 and 2, the preferable foamed grain moisture content at the end of air cooling was set to 5%, and the air cooling was stopped when the foamed grain moisture content reached 5%.

Figure 2011202005
Figure 2011202005

表3の結果から、好ましい発泡粒水分量5%に到達するまでの空冷時間は、実施例1のブロアーエアーの方が20秒も短くて済み、その短縮分が予備発泡工程の1サイクル時間の短縮となり、その結果、本発明によれば発泡粒の生産効率を高めることができる。
また、圧縮エアーの場合には、55kWhのスクリューコンプレッサーを使用しているのに対し、ブロアーエアーの場合には1.3kWhのリングブロアーで済み、本発明によれば予備発泡工程における消費電力を削減することができる。
前記スクリューコンプレッサーから供給される圧縮エアーは、風圧・風速は高いが、エアー配管を1Bから3/8Bに絞っているため、圧縮エアーが蒸気室に吹き込まれた瞬間、急激に風速、風量が落ちてしまい、同じ空冷時間であると発泡粒の水分量が高くなってしまう。
From the results in Table 3, the air cooling time to reach a preferred foamed grain water content of 5% is shorter for the blower air of Example 1 by 20 seconds, and the shortened time is one cycle time of the pre-foaming step. As a result, according to the present invention, the production efficiency of foamed particles can be increased.
In addition, in the case of compressed air, a 55 kWh screw compressor is used, whereas in the case of blower air, a 1.3 kWh ring blower is sufficient. According to the present invention, power consumption in the preliminary foaming process is reduced. can do.
The compressed air supplied from the screw compressor has a high wind pressure and speed, but the air piping is narrowed from 1B to 3 / 8B. Therefore, the moment the compressed air is blown into the steam chamber, the wind speed and air volume drop sharply. If the air cooling time is the same, the water content of the foamed particles becomes high.

本発明は、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂などの熱可塑性樹脂粒子に発泡剤を含有させた発泡性熱可塑性樹脂粒子を予備発泡装置によって加熱し、目的とする嵩密度(嵩発泡倍数)となるように予備発泡させて熱可塑性樹脂予備発泡粒子を製造するための製造方法及び製造装置に関し、特に、熱可塑性樹脂予備発泡粒子を効率よく製造でき、消費電力を削減できる製造方法及び製造装置に関する。   In the present invention, foamable thermoplastic resin particles obtained by adding a foaming agent to thermoplastic resin particles such as polystyrene resin, polyethylene resin, and polypropylene resin are heated by a pre-foaming device, and the desired bulk density (bulk foaming) is obtained. In particular, the present invention relates to a production method and a production apparatus for producing thermoplastic resin pre-foamed particles by being pre-foamed to be a multiple), and in particular, a production method capable of efficiently producing pre-foamed thermoplastic resin particles and reducing power consumption and It relates to a manufacturing apparatus.

1…予備発泡粒子、2…発泡槽、3…蒸気、4…蒸気供給管路、5…送風機、6…冷却用空気供給手段、7…回転軸、8…撹拌棒、9…邪魔棒、10…ハッチ、11…金網、12…第1レベル計、13…第2レベル計、14…蒸気管路、14a…第1蒸気管路、14b…第2蒸気管路、15…蒸気調圧弁、16…ヘッダー、17…弁、18…弁、19…管路、20…弁、21…空気管路。   DESCRIPTION OF SYMBOLS 1 ... Pre-expanded particle, 2 ... Foaming tank, 3 ... Steam, 4 ... Steam supply line, 5 ... Blower, 6 ... Air supply means for cooling, 7 ... Rotating shaft, 8 ... Stirring rod, 9 ... Baffle rod, 10 ... hatch, 11 ... wire mesh, 12 ... first level meter, 13 ... second level meter, 14 ... steam line, 14a ... first steam line, 14b ... second steam line, 15 ... steam pressure regulating valve, 16 ... header, 17 ... valve, 18 ... valve, 19 ... conduit, 20 ... valve, 21 ... air conduit.

Claims (4)

発泡槽内に発泡性熱可塑性樹脂粒子を入れ、発泡槽内に加熱媒体を導入して発泡性熱可塑性樹脂粒子を加熱発泡させ、所望の嵩発泡倍数の熱可塑性樹脂予備発泡粒子を生成させ、次いで前記発泡槽内に空気を供給して熱可塑性樹脂予備発泡粒子を冷却乾燥し、次いで熱可塑性樹脂予備発泡粒子を取り出す製造方法において、
熱可塑性樹脂予備発泡粒子を冷却乾燥する際に、風圧3.0〜12.0kPaの空気を風量17.0〜40.0m/L/分(ただし、Lは熱可塑性樹脂予備発泡粒子の嵩体積1mを表す)の範囲で前記発泡槽内に供給して冷却乾燥を行うことを特徴とする熱可塑性樹脂予備発泡粒子の製造方法。
Put foamable thermoplastic resin particles in the foaming tank, introduce a heating medium into the foaming tank and heat foam the foamable thermoplastic resin particles to produce thermoplastic resin pre-foamed particles with a desired bulk foaming factor, Next, in the production method of supplying air into the foaming tank, cooling and drying the thermoplastic resin pre-expanded particles, and then taking out the thermoplastic resin pre-expanded particles,
When the thermoplastic resin pre-expanded particles are cooled and dried, air with a wind pressure of 3.0 to 12.0 kPa is supplied with an air volume of 17.0 to 40.0 m 3 / L / min (where L is the volume of the thermoplastic resin pre-expanded particles A method for producing thermoplastic resin pre-expanded particles, wherein the foamed tank is supplied in the range of 1 m 3 and cooled and dried.
前記冷却乾燥は、発泡性熱可塑性樹脂投入時の発泡槽内温度が、予備発泡実施毎に80℃未満になるように行う請求項1に記載の熱可塑性樹脂予備発泡粒子の製造方法。   The method of producing thermoplastic resin pre-expanded particles according to claim 1, wherein the cooling and drying is performed such that the temperature in the foaming tank when the foamable thermoplastic resin is charged is less than 80 ° C every time pre-foaming is performed. 発泡性熱可塑性樹脂粒子を加熱して熱可塑性樹脂予備発泡粒子を生成させる発泡槽と、該発泡槽内に加熱媒体を供給する蒸気供給管路と、発泡槽内に、風圧3.0〜12.0kPaの空気を供給する送風機を含む冷却用空気供給手段とを備えたことを特徴とする熱可塑性樹脂予備発泡粒子の製造装置。   A foaming tank that heats the foamable thermoplastic resin particles to produce thermoplastic resin pre-foamed particles, a steam supply line that supplies a heating medium into the foaming tank, and a wind pressure of 3.0 to 12 in the foaming tank An apparatus for producing pre-expanded thermoplastic resin particles, comprising: a cooling air supply means including a blower for supplying 0.0 kPa of air. 前記送風機は、前記発泡槽内に風量17.0〜40.0m/L/分(ただし、Lは熱可塑性樹脂予備発泡粒子の嵩体積1mを表す)の空気を供給可能である請求項3に記載の熱可塑性樹脂予備発泡粒子の製造装置。 The blower is capable of supplying air having an air volume of 17.0 to 40.0 m 3 / L / min (where L represents a bulk volume of 1 m 3 of pre-foamed thermoplastic resin particles) into the foaming tank. 3. The apparatus for producing pre-expanded thermoplastic resin particles according to 3.
JP2010070134A 2010-03-25 2010-03-25 Thermoplastic resin pre-expanded particle manufacturing method, thermoplastic resin pre-expanded particle manufacturing apparatus Expired - Fee Related JP5470127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070134A JP5470127B2 (en) 2010-03-25 2010-03-25 Thermoplastic resin pre-expanded particle manufacturing method, thermoplastic resin pre-expanded particle manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070134A JP5470127B2 (en) 2010-03-25 2010-03-25 Thermoplastic resin pre-expanded particle manufacturing method, thermoplastic resin pre-expanded particle manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2011202005A true JP2011202005A (en) 2011-10-13
JP5470127B2 JP5470127B2 (en) 2014-04-16

Family

ID=44878996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070134A Expired - Fee Related JP5470127B2 (en) 2010-03-25 2010-03-25 Thermoplastic resin pre-expanded particle manufacturing method, thermoplastic resin pre-expanded particle manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5470127B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168809A1 (en) * 2021-02-03 2022-08-11 株式会社カネカ Foamed particle manufacturing device and manufacturing method
WO2023243584A1 (en) * 2022-06-15 2023-12-21 積水化成品工業株式会社 Composite resin particles, foamable particles, foamed particles, molded foam, and production method for composite resin particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131635A (en) * 1989-10-16 1991-06-05 Kanegafuchi Chem Ind Co Ltd Preexpansion of foamable thermoplastic resin particles
JP2003001627A (en) * 2001-06-26 2003-01-08 Mitsubishi Kagaku Form Plastic Kk Method for manufacture of additive-containing prefoamed resin particle
JP2004306567A (en) * 2003-04-10 2004-11-04 Kanegafuchi Chem Ind Co Ltd Pre-foaming method for obtaining pre-foamed thermoplastic resin particle
JP2007503324A (en) * 2003-08-15 2007-02-22 ノバ・ケミカルズ(インターナシヨナル)・エス・アー Expandable polymer particles and method for processing the foamed article
JP2007218588A (en) * 2006-02-14 2007-08-30 Kaneka Corp Method of measuring bulk density of prefoamed particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131635A (en) * 1989-10-16 1991-06-05 Kanegafuchi Chem Ind Co Ltd Preexpansion of foamable thermoplastic resin particles
JP2003001627A (en) * 2001-06-26 2003-01-08 Mitsubishi Kagaku Form Plastic Kk Method for manufacture of additive-containing prefoamed resin particle
JP2004306567A (en) * 2003-04-10 2004-11-04 Kanegafuchi Chem Ind Co Ltd Pre-foaming method for obtaining pre-foamed thermoplastic resin particle
JP2007503324A (en) * 2003-08-15 2007-02-22 ノバ・ケミカルズ(インターナシヨナル)・エス・アー Expandable polymer particles and method for processing the foamed article
JP2007218588A (en) * 2006-02-14 2007-08-30 Kaneka Corp Method of measuring bulk density of prefoamed particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168809A1 (en) * 2021-02-03 2022-08-11 株式会社カネカ Foamed particle manufacturing device and manufacturing method
WO2023243584A1 (en) * 2022-06-15 2023-12-21 積水化成品工業株式会社 Composite resin particles, foamable particles, foamed particles, molded foam, and production method for composite resin particles

Also Published As

Publication number Publication date
JP5470127B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5528429B2 (en) Method for reducing volatile organic compounds in composite resin particles
WO2011118706A1 (en) Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
JP2010202752A (en) Foamable composite resin particle for long-term preservation, pre-foamed particle and foamed molded product
JP5470127B2 (en) Thermoplastic resin pre-expanded particle manufacturing method, thermoplastic resin pre-expanded particle manufacturing apparatus
WO2013111368A1 (en) Expandable polystyrene-type resin particles and method for producing same, and molded foam
JP2006298956A (en) Pre-expanded particle of modified polyethylene-based resin and method for producing the same
JP2013123851A (en) Method for reducing odor in composite resin particle, composite resin particle, foamable particle, prefoamed particle, foam molded product and automobile interior material
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP5528428B2 (en) Method for reducing odor in composite resin particles
JP7250768B2 (en) Expandable thermoplastic resin particles, thermoplastic resin pre-expanded particles and thermoplastic resin foam
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP6081266B2 (en) Foam molding
JP5641846B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5425654B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2009102632A (en) Styrene modified polyethylene based resin prefoamed particle, and foam formed of the prefoamed particle
JP6043562B2 (en) Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article
JP5470120B2 (en) Method for producing thermoplastic resin pre-expanded particles
JP2015067757A (en) Foamable polystyrene-based resin, production method thereof, polystyrene-based resin preliminarily-foamed particle and foam molding
JP5809508B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5518510B2 (en) Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding
JP2012072231A (en) Expandable polystyrene-based resin particle and method for producing the same, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion-molded article
JP2004307729A (en) Expandable polystyrene-based resin particle and polystyrene-based resin foam
JP2023124554A (en) Foamable styrenic resin particle, pre-foamed styrenic resin particle, and styrenic resin foam molding
JP2013071998A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact
JP2022172040A (en) Foam molded body, and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5470127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees