JP2004306567A - Pre-foaming method for obtaining pre-foamed thermoplastic resin particle - Google Patents

Pre-foaming method for obtaining pre-foamed thermoplastic resin particle Download PDF

Info

Publication number
JP2004306567A
JP2004306567A JP2003106846A JP2003106846A JP2004306567A JP 2004306567 A JP2004306567 A JP 2004306567A JP 2003106846 A JP2003106846 A JP 2003106846A JP 2003106846 A JP2003106846 A JP 2003106846A JP 2004306567 A JP2004306567 A JP 2004306567A
Authority
JP
Japan
Prior art keywords
particles
tank
foaming
prefoaming
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003106846A
Other languages
Japanese (ja)
Other versions
JP4090932B2 (en
Inventor
Yuji Fujiwara
裕士 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2003106846A priority Critical patent/JP4090932B2/en
Publication of JP2004306567A publication Critical patent/JP2004306567A/en
Application granted granted Critical
Publication of JP4090932B2 publication Critical patent/JP4090932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a pre-foaming method for obtaining a pre-foamed particle having a good particle feeding property, a dry pre-foamed particle when fed for forming, or a pre-foamed particle showing little blocking without a big change in equipment such as a pre-foaming vessel and the like and a large extension of pre-foaming time. <P>SOLUTION: The pre-foamed particle having good the feeding property is obtained by a process of introducing dry air to the pre-foaming vessel for a predetermined period at a predetermined steam heating time. Further the temperature of the inner side of the pre-foaming vessel is kept at not lower than 80°C when the foamed thermoplastic resin particle is fed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は発泡性熱可塑性粒子の予備発泡方法に関するものであって、予備発泡時間の大幅な延長無しに、送粒性の良い予備発泡粒子、あるいは成形に供する際に乾燥した予備発泡粒子、またあるいはブロッキングの少ない予備発泡粒子の予備発泡方法に関するものである。
【0002】
【従来の技術】
スチレン系樹脂に代表される熱可塑性樹脂の発泡性熱可塑性樹脂粒子を用いた成形では、発泡性熱可塑性樹脂粒子(以下、原料粒子と呼ぶことがある)を成形前に一度所定倍率の発泡粒子とし、そのうえで成形に供することが一般的である。この原料粒子を成形前に一度所定倍率の発泡粒子となす方法を予備発泡方法と呼び、得られた発泡粒子を予備発泡粒子と呼ぶ。
【0003】
この予備発泡方法には大別してバッチ法と連続法がある。このうち、予備発泡槽内に発泡性熱可塑性粒子を投入し、該予備発泡槽を大気圧下に開放した状態にして攪拌しながら開放流通させ実質的な加圧のない蒸気または0.005〜0.03MPa(ゲージ圧)の加圧蒸気を流通させて加熱発泡させ、発泡が進行して、発泡粒子が所定の発泡倍率に達すると蒸気加熱を停止し、空気を吹き込んで冷却・乾燥した後、予備発泡粒子となる当該粒子を予備発泡槽より取り出すバッチ法が最も一般的な方法として実用に供されている。
【0004】
以下本発明ではこの予備発泡方法を通常の予備発泡方法と呼ぶ。また、以下特に説明しないかぎり本発明の圧力はゲージ圧で表現する。
【0005】
前記バッチ式予備発泡方法においては加熱に蒸気を用いるため、予備発泡槽から予備発泡粒子を払い出す際に、その凝集水が予備発泡粒子に多量に付着していると、過剰な湿りを帯びたままとなり、予備発泡槽から払い出した後、予備発泡粒子を例えば貯槽へ配管を用いた空気輸送等で送る際に送り難くなることがある(以下この輸送を送粒と呼ぶ)。
【0006】
また通常予備発泡粒子は前記貯槽にて6時間〜48時間程度室温環境に曝露放置した後使用することが多い(以下養生と呼ぶ)が、湿りが特に過剰な場合、この時間を経ても付着水分が揮発せず成形に供する際にも残留し、成形品の発泡粒子同士の融着不十分などの問題を起こすことがあった。
【0007】
さらにまた湿りが多い予備発泡粒子は、予備発泡槽内で予備発泡粒子同士が融着し塊となるブロッキング現象を生じ易い傾向があった。ブロッキングが生じると送粒性が悪くなるだけでなく、成形の際に金型へ予備発泡粒子を導入する充填機と呼ばれる装置が目詰まりすることがあり、改善が求められていた。
【0008】
これに対して種々の試みが成されている。例えば、本件出願人は特許文献1において予備発泡を終了した粒子を一旦乾燥ホッパに払い出し、そこで乾燥させ送粒する方法を提案している。
【0009】
この特許文献1によれば乾燥時間が短くなり送粒性は向上するが、既設の予備発泡機でこれを行おうとする場合、装置を比較的大規模に改造する必要があり、さらなる改善が求められていた。
【0010】
【特許文献1】
特開平5−287114号公報(第2頁、請求項)
【0011】
【発明が解決しようとする課題】
本発明は上記問題に対処すべく、予備発泡槽等の設備上の大きな変更を行うこと無く、また、大幅な予備発泡時間の延長もなく、送粒性の良い予備発泡粒子、あるいは成形に供する際に乾燥した予備発泡粒子、またあるいはブロッキングの少ない予備発泡粒子の予備発泡方法を提供するものである。
【0012】
【課題を解決するための手段】
本発明者は上記課題を解決すべく鋭意研究の結果、発泡性熱可塑性樹脂粒子投入時点の予備発泡槽内温度を予備発泡実施毎に80℃以上にすること、並びに、予備発泡槽に所定の蒸気加熱時間毎に所定時間乾燥空気を導入する工程を設けることで前記課題が解決することを見いだし本発明に至った。
【0013】
即ち、本発明は、1)発泡性熱可塑性樹脂粒子を予備発泡槽に投入し、蒸気加熱により発泡させて予備発泡粒子を得る方法であって、該予備発泡槽に蒸気を吹き込む蒸気加熱工程において、所定間隔毎に一旦蒸気加熱を止め、その間に該予備発泡槽に所定時間乾燥空気を導入する工程を設けたことを特徴とする発泡性熱可塑性樹脂粒子の予備発泡方法に関する。
【0014】
さらに本発明は、2)蒸気加熱工程中に乾燥空気を導入する工程を設けない予備発泡方法よりも、加熱に用いる蒸気の圧力を0.003〜0.020MPa高く設定したことを特徴とする前記1)項記載の発泡性熱可塑性樹脂粒子の予備発泡方法に関する。
【0015】
さらに本発明は、3)発泡性熱可塑性樹脂粒子を予備発泡槽に投入し、蒸気加熱により発泡させて予備発泡粒子を得る方法であって、発泡性熱可塑性樹脂粒子投入時の予備発泡槽内温度を、予備発泡実施毎に80℃以上にすることを特徴とする発泡性熱可塑性樹脂粒子の予備発泡方法に関する。
【0016】
さらに本発明は、4)発泡性熱可塑性樹脂粒子投入時点の予備発泡槽内温度を、予備発泡実施毎に80℃以上にすることを特徴とする前記1)項または2)項記載の発泡性熱可塑性樹脂粒子の予備発泡方法に関する。
【0017】
【発明の実施の形態】
本発明に使用される発泡性熱可塑性粒子の熱可塑性樹脂としては、型内発泡成形に用いられる熱可塑性樹脂であれば使用でき、例えばポリスチレン系樹脂、ポリメチルメタクリレート樹脂が好ましい。
【0018】
ポリスチレン系樹脂としては一般的なポリスチレン樹脂だけでなく、例えば、スチレン、又はメチルスチレンを50%以上含有してなるポリスチレン系樹脂、ハイインパクトポリスチレン系樹脂、スチレンとブタジエン、メチルメタクリレート、無水マレイン酸等との共重合樹脂等が挙げられ、これらは、単独、又は2種以上の組み合わせとして用いられる。
【0019】
本発明に用いることができる発泡性熱可塑性粒子の熱可塑性樹脂としては、特に経済性、外観性の面からポリスチレン系樹脂が好適であり、該ポリスチレン系樹脂としては、ポリスチレン樹脂が入手の容易性、価格的経済性などより最も好適に用いることができる。
【0020】
本発明に用いる発泡性熱可塑性粒子には発泡剤が含有される。発泡剤としては、プロパン、ノルマルブタン、イソブタン、ペンタン、ヘキサンあるいはそれらの1種以上の混合物などの通常発泡剤として用いることのできる脂肪族炭化水素を、熱可塑性樹脂100重量部に対し1〜10重量部、好ましくは3〜8重量部、さらに好ましくは4〜7重量部用いることができる。このうち前記樹脂に対する発泡剤の保持性等の点から、ノルマルブタン、イソブタンあるいはその混合物が特に好ましい。
【0021】
また、本発明の発泡性熱可塑性樹脂粒子には、ステアリン酸トリグリセライド、パルミチン酸トリグリセライド、ラウリン酸トリグリセライド、ステアリン酸ジグリセライド、ステアリン酸モノグリセライド等の脂肪酸グリセライド、ヤシ油、パーム油、パーム核油等の植物性油脂、シクロヘキサン、トルエン、キシレン等の有機炭化水素類や流動パラフィン等の熱可塑性樹脂に対して可塑効果を示す物質を可塑剤として含有させることができ、これらは単独または併用することができる。尚、こうした可塑剤は予備発泡性の向上ならびに成形融着の向上等のため使用される。
【0022】
さらに本発明の発泡性熱可塑性粒子には、難燃剤、造核剤等、一般に発泡性熱可塑性粒子に用いることのできるその他の添加剤を、本発明の目的を阻害しない範囲で適宜添加することができる。
【0023】
本発明に用いる予備発泡槽は、通常の予備発泡方法に用いる予備発泡槽を用いることができる。また、本発明に用いる予備発泡槽に付帯する設備、例えば蒸気弁、空気弁、計量器等等も、使用あるいは測定しようとするする範囲が当該設備の使用範囲に適合すればそのまま用いることができる。
【0024】
ただし、通常例えば後述の蒸気パージのみの加熱しか行わず、実質的に大気圧以上にならないため耐圧設計が比較的低い予備発泡槽の場合、あるいは減圧に対する耐力がない場合などは構造補強することが好ましいことは当然である。また、自動運転により予備発泡する場合には、一般にシーケンサあるいはプログラマブルコントローラと呼ばれる制御機器等のプログラムについて、通常の予備発泡方法と異なる部分に関し、これを変更し、本発明の手順に沿った工程が選択・実施できるよう変更あるいは新設しなければならないことも当然である。さらにまた所定の温度、圧力を実現するために必要に応じて前記シーケンサ類に制御信号あるいは測定データを送ることのできる温度計、圧力計を設置する必要があることも、本発明の目的を実現すめためには当然である。
【0025】
本発明における予備発泡方法の基本的な流れは通常のバッチ式予備発泡方法を用いることができる。
【0026】
通常のバッチ式予備発泡方法について再度述べると、予備発泡槽内に発泡性熱可塑性粒子を投入し、攪拌翼を回転させて内部を攪拌しながら、該予備発泡槽の排気弁等の大気と接続した弁を開き予備発泡槽内を実質的に大気圧下に開放した状態にし蒸気弁を開き予備発泡槽内に蒸気を流通させて加熱発泡させる蒸気パージ加熱、あるいは0.005〜0.03MPa(ゲージ圧)の加圧蒸気を流通させる加圧蒸気加熱にて加熱発泡させ、発泡が進行して、発泡粒子が所定の発泡倍率に達すると蒸気を停止し、空気を吹き込んで冷却・乾燥した後、予備発泡粒子となる当該粒子を予備発泡槽より取り出す予備発泡方法である。
【0027】
予備発泡槽内に発泡性熱可塑性粒子を投入するに際しては、投入を確実にするため、予備発泡槽内を投入前に減圧し、その状態から原料投入弁を開いて投入することもできる。
【0028】
また、加熱に当たっては蒸気パージ加熱にて発泡性熱可塑性粒子を少し膨らませた後、引き続き加圧蒸気加熱にて所定の発泡倍率まで発泡させるといった組み合わせによる予備発泡を採用することもできる。
【0029】
加圧蒸気加熱においては、排気弁と蒸気弁それぞれの開度を調整し、予備発泡槽内が加圧された様な状態に保ったままとし、発泡粒子が所定の発泡倍率に達するまで加熱を続ける事もできるし、排気弁を閉じた状態で蒸気弁を開いて予備発泡槽内に蒸気を導入し予備発泡槽内が所定の圧力に達したら蒸気弁を閉じて排気弁を開き予備発泡槽内の圧力を下げ、該圧力が所定の圧力まで下がったら再度排気弁を閉じて蒸気弁を開き予備発泡槽内に蒸気を導入する工程を発泡粒子が所定の発泡倍率に達するまで繰り返すこともできる。また両者を組み合わせて実施することもできる。
【0030】
本発明の予備発泡方法は、前記通常のバッチ式予備発泡方法に主として以下の2つの工程のいずれか若しくはその両方を組み入れることで達成される。
【0031】
第一の点は、予備発泡槽内に発泡性熱可塑性樹脂粒子を投入する際の予備発泡槽内の温度を制御することである。
【0032】
通常のバッチ式予備発泡工程では、生産開始時点に予備発泡槽を事前に予備加熱する以外、各生産バッチ毎の予備発泡槽内に発泡性熱可塑性樹脂粒子を投入する際の予備発泡槽内の温度は管理されておらず、前バッチで生産した予備発泡粒子を予備発泡槽から払い出した後、次バッチは成り行きの温度で生産にとりかかっている。
【0033】
これに対し、本発明の方法では予備発泡槽内に発泡性熱可塑性樹脂粒子を投入する際この温度を予備発泡毎に80℃以上、好ましくは83℃以上にするのが良い。上限温度は、操作上、必要以上に過剰に昇温してしまうことは生じ難いので重要ではないが、あえて温度を特定するとすれば、110℃以下、好ましくは90℃以下にするように制御する。
【0034】
前記温度80℃未満では本発明の効果は得難くなる傾向がある。110℃を越えると、発泡性熱可塑性樹脂粒子を投入前に予備発泡槽の温度を上げるための時間が長く必要なため生産性に問題が生じやすくなる。
【0035】
予備発泡槽を発泡性熱可塑性樹脂粒子を投入する際に所定の温度まで上げる方法としては、例えば発泡性熱可塑性樹脂粒子を投入する前に加熱蒸気を予備発泡槽内に導入して予備発泡槽内を所望の温度より10℃程度高く上げた後、予備発泡槽内へ乾燥空気を吹き込むことのできる空気弁とドレン弁を開け、予備発泡槽内に貯まった凝集水を予備発泡槽外へ排出しつつ温度を所望温度まで下げる方法が容易である。
【0036】
本方法によれば予備発泡槽内に存在する凝集水を発泡性熱可塑性樹脂粒子の投入前に排出できるため予備発泡槽内を概ね乾燥状態にできる上、比較的均一にかつ容易に予備発泡槽内の温度を調整することができる。発泡性熱可塑性樹脂粒子投入前に予備発泡槽内に存在する凝集水は、得られる予備発泡粒子の湿りの原因となり易いため、前記の如く予備発泡毎に予備発泡槽の温度を制御することにより、凝集水を排出することはさらに好ましい。
【0037】
第二の点は、予備発泡槽内の発泡粒子を蒸気にて加熱するに際し、所定時間毎に予備発泡槽に所定時間乾燥空気を導入する工程を設けることである。
【0038】
即ち、所定時間加熱する毎に蒸気弁を閉じ排気弁及びドレン弁を開いた状態とした上で空気弁を開き、予備発泡槽内の発泡粒子を空気、好ましくは乾燥空気に晒す工程を、発泡粒子が所定倍率に達するまでの間、所定加熱時間毎に所定時間繰り返し実施することである。
【0039】
前記所定の加熱時間は、使用する発泡性熱可塑性樹脂粒子あるいはその含有揮発分、導入する蒸気の圧力等種々の要因によって定まるため一概に決めることができないが、概ね5〜30秒が好ましい。例えばポリスチレン樹脂粒子で所定発泡倍率を60倍前後とし、使用する蒸気の圧力を平均0.011MPa前後とするのであれば15秒程度、使用する蒸気の圧力を平均0.017MPa前後とするのであれば10秒前後とすることが好ましい。
【0040】
前記加熱時間を長くすると発泡粒子に湿りを帯びやすくなる傾向があり本発明の効果が弱くなる傾向がある。また短くすると発泡がなかなか進まず生産性が落ちる傾向がある。
【0041】
所定の加熱時間毎に導入する空気の流通時間についても同様に一概に決めることはできないが、概ね0.5〜5秒が好ましい。例えばポリスチレン樹脂粒子で所定発泡倍率を60倍前後とし、使用する蒸気の圧力を0.011〜0.017MPa前後とするのであれば3秒程度とすることが好ましい。
【0042】
前記空気の流通時間を長くすると発泡粒子が冷えるためか生産性が落ちる傾向がある。また短くすると湿り気が十分に取れず本発明の効果が弱くなる傾向がある。
【0043】
前記空気の流通には空気弁を開けて予備発泡槽内に空気を導入するが、予備発泡槽によっては蒸気、空気、ドレン等の弁類が発泡粒子のある室とはメッシュ金網で仕切られた予備発泡槽下部のチャンバと呼ばれる室に設けられている場合がある。この場合、空気弁を開けるとチャンバ内に残留しているドレン水が空気と一緒に発泡粒子のある室に逆流したり、チャンバ内が空気によって弱加圧状態となるため発泡粒子のある室からチャンバへドレンが自然には落ちにくくなる傾向がある。この場合本発明の効果が弱まる傾向がある。このような場合、チャンバ内の空気弁は開けずドレン弁のみ開き、空気の導入は発泡粒子のある室に設けられた別の空気弁、例えば予備発泡槽内の掃除用空気弁、等を用いることが好ましい。
【0044】
尚、前記空気の流通を実施すると予備発泡槽内の発泡粒子が舞い上がり、予備発泡槽に設けられた発泡終了を検知するレベルセンサと呼ばれるセンサが検知状態となってしまうことがある。これを避けるため空気の流通時間が終了した後、次の加熱に入る前に0.5〜2秒の待機時間を設けることが好ましい。即ち、舞い上がった発泡粒子が下へ落ち、レベルセンサの誤検知状態が解消されてから次工程に移ることが安定生産からみて好ましい。
【0045】
また前記空気の流通に使用する空気は工業用圧空機器に用いられる通常の圧縮空気で良いが、発明の効果をより確実にするためには、乾燥空気の方が好ましい。例えば冷凍乾燥機を通過させ空気自体の湿りを取り除いた乾燥空気等が良好に使用しうる。
【0046】
尚、該所定加熱時間及び空気を導入する所定時間、安定に要する時間は必ずしも厳密な一定時間である必要はなく、発泡粒子の発泡段階により繰り返し毎に多少変えても良い。
【0047】
本方法を実施するに際して、使用する蒸気の圧力は通常のバッチ式予備発泡で使用する蒸気の圧力と同じでも良いが、その場合予備発泡に要する時間は長くなる傾向がある。理由は不明であるが、恐らくは空気の流通が入るため予備発泡粒子が冷え、再加熱の時間が必要になるためと推察する。
【0048】
本発明において予備発泡時間が長くても良い場合は通常のバッチ式予備発泡方法と同じ圧力と同じでも良いが、長くしたくない場合は蒸気の圧力を通常のバッチ式予備発泡で使用する蒸気圧力に対し0.003〜0.020MPa、好ましくは0.005〜0.015MPa高く設定することが好ましい。
【0049】
理由は明らかではないが、本発明の方法のうち、特に蒸気加熱工程において所定時間毎に予備発泡槽に所定時間乾燥空気を導入する工程を設けると、ブロッキングが生じ難くなる。
【0050】
従って前記蒸気圧力はさらに高くすることもできるが、発泡する速度がはやくなりすぎ発泡倍率が部分的にばらつく傾向が見られるため、過度に高くしない方が好ましい。
【0051】
尚、本発明の方法を用いる場合、通常の予備発泡方法による場合に比較して、レベルセンサが同一高さに設けられ、レベルセンサの検知安定時間も同じである場合、投入する発泡性熱可塑性樹脂粒子量を投入重量で1割前後少なくする必要があることがある。詳細な原因は不明であるが、これは本発明の予備発泡方法を用いる場合予備発泡槽内でも発泡粒子が乾燥状態となり易いため、予備発泡槽内の攪拌翼の動作などにより発泡粒子が浮き上がり、レベルセンサを通常の予備発泡方法による場合よりも早く検知させるためと考えている。
【0052】
この場合、レベルセンサの位置を高くするなどして検知を遅らせる、あるいはレベルセンサの検知時間を長く採るなどの容易な対策を行うことで、投入量の減少なしに本発明を実施することができる。
【0053】
本発明においてはこれら2つの工程の両方を組み合わせて実施することが、それぞれ単独で実施するよりもさらに送粒性が向上し好ましい。
【0054】
本発明による予備発泡粒子は、通常の予備発泡方法に比較すると、湿りが少なく、送粒時に滞留し送り難くなるような課題は発生に難くなる。またブロッキングの発生も少なくなる。また成形に供する際に金型への予備発泡粒子の充填も良好となる。
【0055】
【実施例】
以下実施例を挙げて本発明を更に詳細に説明するが、本発明はかかる実施例のみに限定されないことは言うまでもない。
【0056】
本実施例および比較例では、大開工業株式会社製BHP−110型予備発泡機を用いて予備発泡を実施した。該予備発泡機のシーケンサのプログラムは各例の動作方法に基づきプログラムを都度変更し、一連の工程を自動運転で実施した。
【0057】
また、発泡性熱可塑性樹脂粒子である原料粒子としてポリスチレン系樹脂を樹脂成分とした鐘淵化学工業株式会社製のカネパールMKM(後述する予備発泡粒子揮発分測定方法にて測定した揮発分を約5.7%含有する)を用いた。
【0058】
実施例および比較例では、原料投入後後述する各例の工程に従って予備発泡粒子を得たうえで、下記各評価項目について評価した。
1)発泡倍率
原料粒子の比重を1.04g/cmとし、下記式に基づいて発泡倍率を計算した。
(発泡倍率)=(得られた予備発泡粒子の嵩比重)/1.04
【0059】
2)ブロッキング発生量
発泡槽から予備発泡粒子を取り出した後、全量を目開き10mmの金網正の籠に投入してふるいがけを行った後、金網上に残った予備発泡粒子同士が融着したブロッキング塊を集めて重量を測定し、投入した発泡性熱可塑性樹脂粒子の重量で除して百分率で計算した。
【0060】
3)送粒性評価
送粒性に関しては安息角をもって評価し、安息角が小さなものほど送粒性は良好であるとして評価した。
即ち、予備発泡直後の予備発泡粒子を採取し、上面が解放され短辺面が脱着可能とした長さ450mm幅350mm高250mm(うちのり寸法)で厚み30mmの発泡スチロール製の箱に対に投入する。投入に際しては箱を揺すりながら投入し、隙間ができないように投入した後、箱上部の解放面ですり切りを実施する。その後時間をおかずに脱着可能な短辺面を速やかに取り外し、崩れ落ちた箱内部の予発粒子の傾斜角を測定し安息角とした。
【0061】
4)予備発泡サイクル
予備発泡槽への原料投入弁の開時間を0点とし、予備発泡工程を全て終了し、予備発泡槽の排出扉が閉まるまでの時間を予備発泡サイクルとした。
【0062】
(実施例1)
BHP−110型予備発泡機の予備発泡槽の排気弁と蒸気弁を開き、予備発泡槽に取り付けられた温度計が95℃となるまで蒸気加熱を実施した。該温度計が95℃になった段階で蒸気弁を閉じ、缶内掃除弁及びドレン弁を開いて予備発泡槽内を冷却するとともに凝集水を予備発泡槽内から排出する。この冷却・排出を前記温度計の指示温度が85℃に下がるまで実施した。
【0063】
前記温度計が85℃に達した段階で、原料投入弁を開いて原料粒子を予備発泡槽内に投入し、原料粒子投入後、予備発泡機の予備発泡槽の排気弁と蒸気弁を開き15秒間蒸気パージした。
【0064】
その後、下限圧力0.015MPa〜上限圧力0.020MPaにて加圧蒸気加熱を実施した。この加圧蒸気加熱では、予備発泡槽内が上限圧力に達するまでは排気弁を閉じたまま蒸気弁を開いて予備発泡槽内に蒸気を導入し、上限圧力に達したら今度は蒸気弁を閉じ排気弁を開いて下限圧力まで予備発泡槽内の圧力を低下させる加熱操作を、後述のレベルセンサ検知まで繰り返し実施した。
【0065】
また、本加圧蒸気加熱を実施するに当たっては、前記操作の10秒経過毎(加熱単位時間と呼ぶ)に、蒸気弁を閉じ排気弁とドレン弁さらに缶内掃除弁を開いて予備発泡槽内に3.5秒間空気を導入(単位冷却時間と呼ぶ)した後、1.5秒間のレベルセンサ安定時間(単位安定時間と呼ぶ)を採る工程を、都度挿入実施した。
【0066】
加圧蒸気加熱において、予備発泡槽に設けられたレベルセンサが2秒以上連続検知した段階で加圧蒸気加熱を終了し、予備発泡槽内の発泡粒子の冷却を蒸気弁を閉じ、排気弁、ドレン弁及び缶内掃除弁を開いて30秒間実施した。
【0067】
冷却完了後、排出扉を開き、予備発泡粒子を外部ホッパに払い出し、予備発泡粒子を得た。
【0068】
得られた予備発泡粒子の評価項目を表1に示す。
【0069】
得られた予備発泡粒子は比較例1に示す通常の予備発泡方法で得られた予備発泡粒子に比較して予発サイクルは同等であるにも係わらず、ブロッキングは発生せず、安息角も約1/4以下と極めて小さくなり、送粒性も良好となった。
【0070】
(実施例2)
原料粒子を予備発泡槽内に投入する前の予備発泡槽の温度調整を無くした他は実施例1と同様の方法で予備発泡を実施し、予備発泡粒子を得た。尚、本実施例は同じ方法で5回間をおかず実施し、5回目に測定を実施した。この際の成り行きで決定された原料粒子を予備発泡槽内に投入する際の予備発泡槽の温度は75℃であった。
得られた予備発泡粒子の評価項目を表1に示す。
【0071】
得られた予備発泡粒子は実施例1程には安息角が小さくならなかったが、比較例1に示す通常の予備発泡方法で得られた予備発泡粒子に比較して予発サイクルは同等であるにも係わらず、ブロッキングは発生せず、安息角も約1/3以下と極めて小さくなり、送粒性も良好となった。
【0072】
(実施例3)
原料粒子を予備発泡槽内に投入する前の予備発泡槽の温度を実施例1と同様に85℃としたこと以外は、後述する比較例1と同様の方法で予備発泡を実施し、予備発泡粒子を得た。
得られた予備発泡粒子の評価項目を表1に示す。
【0073】
得られた予備発泡粒子は実施例1,2程には安息角が小さくならなかったが、比較例1に示す通常の予備発泡方法で得られた予備発泡粒子に比較して予発サイクルは同等であるにも係わらず、ブロッキングは発生せず、安息角も約2割程度小さくなり、送粒性が改善された。
【0074】
(比較例1)
BHP−110型予備発泡機の原料投入弁を開いて原料粒子を予備発泡槽内に投入し、原料粒子投入後、予備発泡機の予備発泡槽の排気弁と蒸気弁を開き30秒間蒸気パージした。
【0075】
その後、下限圧力0.008MPa〜上限圧力0.013MPaにて加圧蒸気加熱を実施した。この加圧蒸気加熱では、予備発泡槽内が上限圧力に達するまでは排気弁を閉じたまま蒸気弁を開いて予備発泡槽内に蒸気を導入し、上限圧力に達したら今度は蒸気弁を閉じ排気弁を開いて下限圧力まで予備発泡槽内の圧力を低下させる加熱操作を、後述のレベルセンサ検知まで繰り返し実施した。
【0076】
加圧蒸気加熱において、予備発泡槽に設けられたレベルセンサが2秒以上連続検知した段階で加圧蒸気加熱を終了し、予備発泡槽内の発泡粒子の冷却を蒸気弁を閉じ、排気弁、ドレン弁及び冷却弁を開いて30秒間実施した。
【0077】
冷却完了後、排出扉を開き、予備発泡粒子を外部ホッパに払い出し、予備発泡粒子を得た。
【0078】
尚、本実施例は同じ方法で5回間をおかず実施し、5回目に測定を実施した。この際の成り行きで決定された原料粒子を予備発泡槽内に投入する際の予備発泡槽の温度は75℃であった。
得られた予備発泡粒子の評価項目を表1に示す。
【0079】
本比較例は通常の予備発泡方法であるが、得られた予備発泡粒子は実施例1と比較するとブロッキングが発生した。また安息角は実施例1と比較すると3倍となり、実施例1と比較して送粒性が劣った。
【0080】
(比較例2)
下限圧力0.015MPa〜上限圧力0.020MPaにて加圧蒸気加熱を実施した以外は実施例1と同様の方法にて予備発泡を実施し、予備発泡粒子を得た。
得られた予備発泡粒子の評価項目を表1に示す。
【0081】
本比較例も通常の予備発泡方法であるが、得られた予備発泡粒子は実施例1と比較するとブロッキングが発生した。また安息角は実施例1と比較すると3倍となり、実施例1と比較して送粒性が劣った。さらに比較例1と比較してもブロッキングが増大しており、予備発泡のサイクルタイムは比較例1よりも短縮されるが、生産性は低下した。
【0082】
【表1】

Figure 2004306567
【0083】
【発明の効果】
本発明による予備発泡粒子は、通常の予備発泡方法に比較すると、湿りが少なく、送粒時に滞留し送り難くなるような課題は発生に難くなる。またブロッキングの発生も少なくなる。また成形に供する際に金型への予備発泡粒子の充填も良好となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for pre-expanding expandable thermoplastic particles, and without significantly extending the pre-expansion time, pre-expanded particles having good particle-feeding properties, or pre-expanded particles dried when subjected to molding, or Alternatively, the present invention relates to a method for pre-expanding pre-expanded particles with less blocking.
[0002]
[Prior art]
In molding using expandable thermoplastic resin particles of a thermoplastic resin represented by a styrene-based resin, expandable thermoplastic resin particles (hereinafter sometimes referred to as “raw material particles”) are once expanded at a predetermined magnification before molding. Then, it is general to provide for molding. A method of forming the raw material particles once into foamed particles of a predetermined magnification before molding is referred to as a prefoaming method, and the obtained foamed particles are referred to as prefoamed particles.
[0003]
This prefoaming method is roughly classified into a batch method and a continuous method. Of these, the expandable thermoplastic particles are charged into the pre-expansion tank, and the pre-expansion tank is opened under atmospheric pressure, and the mixture is opened and circulated while stirring, or steam without substantial pressurization or 0.005 to 0.005. After the pressurized steam of 0.03 MPa (gauge pressure) is circulated and heated and foamed, the foaming proceeds, and when the foamed particles reach a predetermined foaming ratio, the steam heating is stopped and air is blown to cool and dry. A batch method in which the particles to be pre-expanded particles are taken out from a pre-expansion tank is practically used as the most general method.
[0004]
Hereinafter, in the present invention, this prefoaming method is referred to as a normal prefoaming method. The pressure of the present invention is represented by a gauge pressure unless otherwise described below.
[0005]
In the batch type prefoaming method, since steam is used for heating, when the prefoamed particles are discharged from the prefoaming tank, if the coagulated water is attached to the prefoamed particles in a large amount, excessive wetness is obtained. After being discharged from the prefoaming tank, it may be difficult to send the prefoamed particles to the storage tank by, for example, pneumatic transportation using a pipe (hereinafter, this transportation is referred to as granulation).
[0006]
Usually, the pre-expanded particles are often used after being left in the storage tank for about 6 to 48 hours after being exposed to a room temperature environment (hereinafter referred to as “curing”). May not be volatilized and remain even when subjected to molding, causing a problem such as insufficient fusion between the foamed particles of the molded article.
[0007]
Furthermore, the pre-expanded particles having a high wettability tend to easily cause a blocking phenomenon in which the pre-expanded particles fuse together in the pre-expansion tank to form a lump. When blocking occurs, not only does the particle feedability deteriorate, but also a device called a filling machine that introduces pre-expanded particles into a mold during molding sometimes becomes clogged, and improvement has been demanded.
[0008]
Various attempts have been made for this. For example, the applicant of the present application has proposed a method in Patent Document 1 in which particles that have been subjected to pre-expansion are once discharged to a drying hopper, and then dried and sent.
[0009]
According to this Patent Document 1, the drying time is shortened and the granulation property is improved. However, if this is to be performed with an existing prefoaming machine, it is necessary to remodel the apparatus on a relatively large scale, and further improvement is required. Had been.
[0010]
[Patent Document 1]
JP-A-5-287114 (page 2, claims)
[0011]
[Problems to be solved by the invention]
In order to address the above-mentioned problems, the present invention provides pre-expanded particles having good particle feedability or molding without making major changes in equipment such as a pre-expansion tank and without significantly extending pre-expansion time. An object of the present invention is to provide a method for pre-expanding pre-expanded particles that have been dried at the time or pre-expanded particles having less blocking.
[0012]
[Means for Solving the Problems]
The inventor of the present invention has conducted intensive studies to solve the above-mentioned problems. As a result, the temperature in the pre-foaming tank at the time of charging the expandable thermoplastic resin particles is set to 80 ° C. or more every time the pre-foaming is performed. The inventors have found that the above-mentioned problem can be solved by providing a step of introducing dry air for a predetermined time for each steam heating time, and have reached the present invention.
[0013]
That is, the present invention provides a method of 1) charging foamable thermoplastic resin particles into a pre-foaming tank and foaming the same by steam heating to obtain pre-foamed particles. In the steam heating step of blowing steam into the pre-foaming tank, The present invention also relates to a method for prefoaming expandable thermoplastic resin particles, which comprises a step of temporarily stopping steam heating at predetermined intervals and introducing dry air into the prefoaming tank for a predetermined time during that time.
[0014]
Further, the present invention is characterized in that the pressure of the steam used for heating is set to be higher by 0.003 to 0.020 MPa than in the pre-foaming method without providing a step of introducing dry air during the steam heating step. The present invention relates to a method for pre-expanding expandable thermoplastic resin particles described in 1).
[0015]
Further, the present invention provides a method of 3) charging foamable thermoplastic resin particles into a pre-foaming tank and foaming by steam heating to obtain pre-foamed particles. The present invention relates to a method for pre-expanding expandable thermoplastic resin particles, wherein the temperature is set to 80 ° C. or more every time the pre-expansion is performed.
[0016]
Further, the present invention provides the foaming property according to the above item 1) or 2), wherein the temperature in the pre-foaming tank at the time of charging the foamable thermoplastic resin particles is set to 80 ° C. or more every time the pre-foaming is performed. The present invention relates to a method for pre-expanding thermoplastic resin particles.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
As the thermoplastic resin of the expandable thermoplastic particles used in the present invention, any thermoplastic resin used for in-mold foam molding can be used, and for example, a polystyrene resin or a polymethyl methacrylate resin is preferable.
[0018]
Examples of the polystyrene resin include not only general polystyrene resins but also polystyrene resins containing 50% or more of styrene or methylstyrene, high-impact polystyrene resins, styrene and butadiene, methyl methacrylate, maleic anhydride, and the like. And the like, and these may be used alone or as a combination of two or more.
[0019]
As the thermoplastic resin of the expandable thermoplastic particles that can be used in the present invention, a polystyrene resin is particularly preferable in terms of economy and appearance, and as the polystyrene resin, polystyrene resin is easily available. , And can be most preferably used in terms of price economy.
[0020]
The expandable thermoplastic particles used in the present invention contain a blowing agent. As the foaming agent, an aliphatic hydrocarbon which can be used as a normal foaming agent such as propane, normal butane, isobutane, pentane, hexane or a mixture of one or more thereof is used in an amount of 1 to 10 parts by weight per 100 parts by weight of the thermoplastic resin. Parts by weight, preferably 3 to 8 parts by weight, more preferably 4 to 7 parts by weight. Among these, normal butane, isobutane or a mixture thereof is particularly preferable from the viewpoint of the retention of the foaming agent with respect to the resin.
[0021]
In addition, the expandable thermoplastic resin particles of the present invention include fatty acid glycerides such as stearic acid triglyceride, palmitic acid triglyceride, lauric acid triglyceride, stearic acid diglyceride, and stearic acid monoglyceride; As a plasticizer, a substance exhibiting a plasticizing effect on a thermoplastic oil such as a volatile oil or fat, an organic hydrocarbon such as cyclohexane, toluene, or xylene, or a thermoplastic resin such as liquid paraffin can be contained, and these can be used alone or in combination. Incidentally, such a plasticizer is used for the purpose of improving the pre-foaming property and the molding fusion.
[0022]
Further, to the expandable thermoplastic particles of the present invention, other additives that can be generally used for expandable thermoplastic particles, such as a flame retardant and a nucleating agent, may be appropriately added as long as the object of the present invention is not impaired. Can be.
[0023]
As the pre-foaming tank used in the present invention, a pre-foaming tank used in an ordinary pre-foaming method can be used. In addition, equipment attached to the prefoaming tank used in the present invention, for example, a steam valve, an air valve, a measuring device, and the like can be used as long as the range to be used or measured conforms to the usage range of the equipment. .
[0024]
However, usually, for example, only the heating of the steam purge described below is performed, and the structure is reinforced in the case of a pre-foaming tank having a relatively low pressure resistance design because the pressure does not substantially exceed the atmospheric pressure, or in the case where there is no resistance to the reduced pressure. Of course, it is preferable. In the case of prefoaming by automatic operation, a program such as a control device generally called a sequencer or a programmable controller is changed to a portion different from a normal prefoaming method, and the process according to the procedure of the present invention is changed. Naturally, it must be changed or newly established so that it can be selected and implemented. Furthermore, the object of the present invention is also realized in that it is necessary to install a thermometer and a pressure gauge capable of sending a control signal or measurement data to the sequencers as needed to realize a predetermined temperature and pressure. It is only natural to complete.
[0025]
As a basic flow of the prefoaming method in the present invention, a usual batch type prefoaming method can be used.
[0026]
The ordinary batch type prefoaming method will be described again. The expandable thermoplastic particles are charged into the prefoaming tank, and the inside of the prefoaming tank is connected to the atmosphere such as an exhaust valve while stirring the inside by rotating the stirring blade. The steamed valve is opened to open the prefoaming tank substantially at atmospheric pressure, and the steam valve is opened to allow steam to flow through the prefoaming tank to heat and foam, or 0.005 to 0.03 MPa ( (Gauge pressure) The foam is heated and foamed by pressurized steam heating to distribute the pressurized steam. When the foaming progresses and the foamed particles reach a predetermined foaming ratio, the steam is stopped, and air is blown to cool and dry. This is a pre-expansion method in which the particles to be pre-expanded particles are taken out from a pre-expansion tank.
[0027]
When charging the expandable thermoplastic particles into the prefoaming tank, the pressure in the prefoaming tank may be reduced before the charging, and the raw material charging valve may be opened and charged in that state.
[0028]
Further, for the heating, it is also possible to adopt a pre-expansion by a combination in which the expandable thermoplastic particles are slightly expanded by steam purge heating, and then expanded to a predetermined expansion ratio by pressurized steam heating.
[0029]
In pressurized steam heating, the opening degree of each of the exhaust valve and the steam valve is adjusted so that the inside of the pre-foaming tank is kept in a pressurized state, and heating is performed until the foamed particles reach a predetermined expansion ratio. The steam valve can be opened with the exhaust valve closed, steam can be introduced into the prefoaming tank, and when the pressure in the prefoaming tank reaches a predetermined pressure, the steam valve is closed and the exhaust valve is opened to open the prefoaming tank. The process of lowering the internal pressure and, when the pressure drops to a predetermined pressure, closing the exhaust valve again, opening the steam valve, and introducing steam into the preliminary foaming tank can be repeated until the foamed particles reach a predetermined expansion ratio. . Further, both can be implemented in combination.
[0030]
The prefoaming method of the present invention is achieved by incorporating one or both of the following two steps into the above-mentioned ordinary batch type prefoaming method.
[0031]
The first point is to control the temperature in the pre-expansion bath when the expandable thermoplastic resin particles are charged into the pre-expansion bath.
[0032]
In a normal batch type pre-expansion step, except for pre-heating the pre-expansion tank at the start of production, other than in the pre-expansion tank when charging the expandable thermoplastic resin particles into the pre-expansion tank for each production batch. The temperature is not controlled, and after the pre-expanded particles produced in the previous batch are discharged from the pre-expansion tank, the next batch starts production at the expected temperature.
[0033]
On the other hand, in the method of the present invention, when the expandable thermoplastic resin particles are charged into the prefoaming tank, the temperature is preferably set to 80 ° C. or higher, preferably 83 ° C. or higher for each prefoaming. The upper limit temperature is not important because it is unlikely that the temperature will rise excessively in operation, which is excessive. However, if the temperature is to be specified, the upper limit temperature is controlled to 110 ° C. or lower, preferably 90 ° C. or lower. .
[0034]
If the temperature is lower than 80 ° C., the effect of the present invention tends to be difficult to obtain. When the temperature exceeds 110 ° C., it takes a long time to raise the temperature of the pre-expansion tank before charging the expandable thermoplastic resin particles, so that a problem is likely to occur in productivity.
[0035]
As a method of raising the temperature of the pre-expansion tank to a predetermined temperature when charging the expandable thermoplastic resin particles, for example, a heating steam is introduced into the pre-expansion tank before charging the expandable thermoplastic resin particles. After raising the temperature about 10 ° C higher than the desired temperature, open the air valve and drain valve that can blow dry air into the prefoaming tank, and discharge the coagulated water stored in the prefoaming tank out of the prefoaming tank It is easy to reduce the temperature to the desired temperature while performing the heating.
[0036]
According to this method, the coagulated water present in the pre-foaming tank can be discharged before the foamable thermoplastic resin particles are charged, so that the inside of the pre-foaming tank can be substantially dried, and the pre-foaming tank can be relatively uniformly and easily formed. The temperature inside can be adjusted. The coagulated water present in the pre-expanded foaming tank before the foamable thermoplastic resin particles are charged is likely to cause the wetness of the obtained pre-expanded particles. It is more preferable to discharge the coagulated water.
[0037]
The second point is to provide a step of introducing dry air into the preliminary foaming tank for a predetermined time at predetermined time intervals when heating the foamed particles in the preliminary foaming tank with steam.
[0038]
That is, every time heating is performed for a predetermined time, the steam valve is closed, the exhaust valve and the drain valve are opened, the air valve is opened, and the foaming particles in the preliminary foaming tank are exposed to air, preferably dry air. Until the particles reach a predetermined magnification, the process is repeatedly performed for a predetermined time every predetermined heating time.
[0039]
The predetermined heating time cannot be unconditionally determined because it is determined by various factors such as the expandable thermoplastic resin particles to be used, the volatile content thereof, and the pressure of the steam to be introduced, but is preferably approximately 5 to 30 seconds. For example, if the predetermined expansion ratio is about 60 times with polystyrene resin particles, and the pressure of the used steam is about 0.011 MPa on average, about 15 seconds, if the pressure of the used steam is about 0.017 MPa on average, Preferably, it is about 10 seconds.
[0040]
If the heating time is lengthened, the foamed particles tend to be moistened, and the effect of the present invention tends to be weakened. When the length is shortened, foaming does not progress easily, and the productivity tends to decrease.
[0041]
Similarly, the flow time of the air introduced for each predetermined heating time cannot be determined unconditionally, but is preferably about 0.5 to 5 seconds. For example, if the predetermined expansion ratio is about 60 times with polystyrene resin particles and the pressure of the used steam is about 0.011 to 0.017 MPa, it is preferably about 3 seconds.
[0042]
If the air circulation time is lengthened, the productivity tends to decrease probably because the foamed particles cool. If the length is too short, sufficient moisture cannot be obtained, and the effect of the present invention tends to be weakened.
[0043]
Open the air valve to introduce the air into the pre-foaming tank for the air flow, but depending on the pre-foaming tank, valves such as steam, air, and drain were separated from the chamber with the foamed particles by a mesh wire mesh. It may be provided in a chamber called a chamber below the preliminary foaming tank. In this case, when the air valve is opened, the drain water remaining in the chamber flows back to the chamber containing the foamed particles together with the air, or the chamber is weakly pressurized by the air, so that the water from the chamber containing the foamed particles is released. There is a tendency for the drain to fall naturally into the chamber. In this case, the effect of the present invention tends to be weakened. In such a case, only the drain valve is opened without opening the air valve in the chamber, and air is introduced using another air valve provided in the chamber where the foamed particles are present, for example, a cleaning air valve in the pre-foaming tank. Is preferred.
[0044]
When the air is circulated, the foamed particles in the prefoaming tank may rise, and a sensor called a level sensor provided in the prefoaming tank and detecting the end of foaming may be in a detection state. In order to avoid this, it is preferable to provide a waiting time of 0.5 to 2 seconds after the end of the air circulation time and before starting the next heating. That is, from the viewpoint of stable production, it is preferable to move to the next process after the soared foamed particles fall and the erroneous detection state of the level sensor is eliminated.
[0045]
The air used for the distribution of the air may be ordinary compressed air used for industrial compressed air equipment, but dry air is more preferable in order to ensure the effect of the invention. For example, dry air that has passed through a freeze dryer to remove the wetness of the air itself can be used favorably.
[0046]
Note that the predetermined heating time, the predetermined time for introducing air, and the time required for stabilization do not necessarily have to be strictly constant, and may be slightly changed for each repetition depending on the expansion stage of the expanded particles.
[0047]
In carrying out the present method, the pressure of the steam used may be the same as the pressure of the steam used in the ordinary batch type prefoaming, but in that case, the time required for the prefoaming tends to be long. Although the reason is unknown, it is presumed that the pre-expanded particles are likely to cool down due to the flow of air and to require reheating time.
[0048]
In the present invention, if the pre-expansion time can be long, the same pressure as in the ordinary batch type pre-expansion method may be used. It is preferably set higher by 0.003 to 0.020 MPa, preferably 0.005 to 0.015 MPa.
[0049]
Although the reason is not clear, in the method of the present invention, in particular, when the step of introducing dry air into the prefoaming tank for a predetermined time at a predetermined time in the steam heating step is provided, blocking hardly occurs.
[0050]
Accordingly, the steam pressure can be further increased, but since the foaming speed becomes too fast and the foaming ratio tends to partially vary, it is preferable not to excessively increase the steam pressure.
[0051]
When the method of the present invention is used, when the level sensor is provided at the same height and the detection stabilization time of the level sensor is the same as compared with the case of the normal pre-foaming method, the foamable thermoplastic resin to be charged is used. In some cases, it is necessary to reduce the amount of resin particles by about 10% by the input weight. Although the detailed cause is unknown, this is because when the prefoaming method of the present invention is used, the foamed particles are likely to be in a dry state even in the prefoaming tank, so that the foamed particles are lifted up by the operation of the stirring blade in the prefoaming tank, It is considered that the level sensor is detected earlier than in the case of the normal prefoaming method.
[0052]
In this case, the present invention can be implemented without reducing the input amount by performing an easy countermeasure such as delaying the detection by elevating the position of the level sensor or taking a long detection time of the level sensor. .
[0053]
In the present invention, it is preferable to carry out both of these two steps in combination, as compared with the case where each of them is carried out alone, because the particle feedability is further improved.
[0054]
The pre-expanded particles according to the present invention have less wetness compared to the ordinary pre-expanded method, and the problem that the pre-expanded particles stay at the time of granulation and become difficult to send becomes difficult to occur. Also, the occurrence of blocking is reduced. In addition, the filling of the pre-expanded particles into the mold during the molding is improved.
[0055]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to only these Examples.
[0056]
In this example and comparative examples, preliminary foaming was performed using a BHP-110 type preliminary foaming machine manufactured by Daikai Kogyo Co., Ltd. The sequencer program of the prefoaming machine was changed every time based on the operation method of each example, and a series of steps were performed by automatic operation.
[0057]
Kanepal MKM (manufactured by Kaneka Chemical Industry Co., Ltd.) using polystyrene resin as a resin component as raw material particles which are expandable thermoplastic resin particles (the volatile matter measured by a pre-expanded particle volatile measurement method described later is about 5 vol. 0.7%).
[0058]
In Examples and Comparative Examples, after the raw materials were charged, pre-expanded particles were obtained in accordance with the steps of each example described later, and then the following evaluation items were evaluated.
1) Expansion ratio
Specific gravity of raw material particles is 1.04 g / cm 3 The expansion ratio was calculated based on the following equation.
(Expansion ratio) = (Bulk specific gravity of obtained pre-expanded particles) /1.04
[0059]
2) Amount of blocking occurrence
After taking out the pre-expanded particles from the foaming tank, the whole amount was put into a wire mesh positive basket having an opening of 10 mm, and sieving was performed. Then, the blocking mass in which the pre-expanded particles remaining on the wire mesh were fused was collected. The weight was measured, divided by the weight of the expandable thermoplastic resin particles charged, and calculated as a percentage.
[0060]
3) Evaluation of particle feedability
The particle-feeding property was evaluated using the angle of repose, and the smaller the angle of repose, the better the particle-feeding property.
That is, the pre-expanded particles immediately after the pre-expansion are collected and put into a pair of a styrene foam box having a length of 450 mm, a width of 350 mm, a height of 250 mm (inner dimensions) and a thickness of 30 mm, the upper surface of which is released and the short side surface is detachable. . At the time of loading, the box is thrown in while shaking. After throwing in so that there is no gap, the cutting is performed on the open surface at the top of the box. Thereafter, the detachable short side surface was promptly removed without taking a short time, and the inclination angle of the propelled particles inside the collapsed box was measured to obtain the angle of repose.
[0061]
4) Pre-expansion cycle
The opening time of the raw material charging valve into the pre-foaming tank was set to 0, the pre-foaming step was completed, and the time until the discharge door of the pre-foaming tank was closed was defined as the pre-foaming cycle.
[0062]
(Example 1)
The exhaust valve and the steam valve of the prefoaming tank of the BHP-110 type prefoaming machine were opened, and steam heating was performed until the temperature of the thermometer attached to the prefoaming tank reached 95 ° C. When the temperature of the thermometer reaches 95 ° C., the steam valve is closed, the cleaning valve in the can and the drain valve are opened to cool the inside of the prefoaming tank, and the coagulated water is discharged from the prefoaming tank. The cooling and discharging were performed until the temperature indicated by the thermometer dropped to 85 ° C.
[0063]
When the temperature of the thermometer reaches 85 ° C., the raw material charging valve is opened to feed the raw material particles into the pre-foaming tank. Vacuum purged for seconds.
[0064]
Thereafter, pressurized steam heating was performed at a lower limit pressure of 0.015 MPa to an upper limit pressure of 0.020 MPa. In this pressurized steam heating, the steam valve is opened and the steam is introduced into the prefoaming tank while the exhaust valve is closed until the inside of the prefoaming tank reaches the upper limit pressure. The heating operation of opening the exhaust valve and reducing the pressure in the preliminary foaming tank to the lower limit pressure was repeatedly performed until the level sensor detection described later.
[0065]
When performing the pressurized steam heating, the steam valve is closed, the exhaust valve, the drain valve, and the cleaning valve in the can are opened every 10 seconds after the operation (referred to as a heating unit time) to open the prefoaming tank. After introducing air for 3.5 seconds (referred to as a unit cooling time), a step of taking a level sensor stabilizing time (referred to as a unit stabilizing time) of 1.5 seconds was inserted every time.
[0066]
In the pressurized steam heating, the pressurized steam heating is terminated when the level sensor provided in the preliminary foaming tank continuously detects for 2 seconds or more, the steam valve is closed to cool the foamed particles in the preliminary foaming tank, the exhaust valve, The operation was performed for 30 seconds by opening the drain valve and the cleaning valve in the can.
[0067]
After cooling was completed, the discharge door was opened and the pre-expanded particles were discharged to an external hopper to obtain pre-expanded particles.
[0068]
Table 1 shows the evaluation items of the obtained pre-expanded particles.
[0069]
Although the obtained pre-expanded particles had the same initial cycle as the pre-expanded particles obtained by the ordinary pre-expanded method shown in Comparative Example 1, no blocking occurred, and the angle of repose was about It was extremely small, ie, 1/4 or less, and the particle feedability was also good.
[0070]
(Example 2)
Prefoaming was performed in the same manner as in Example 1 except that the temperature adjustment of the prefoaming tank before the raw material particles were put into the prefoaming tank was eliminated, to obtain prefoamed particles. In this example, the measurement was carried out five times by the same method, and the fifth measurement was carried out. At this time, the temperature of the pre-expansion bath at the time of charging the raw material particles into the pre-expansion bath was 75 ° C.
Table 1 shows the evaluation items of the obtained pre-expanded particles.
[0071]
Although the obtained pre-expanded particles did not have a small angle of repose as in Example 1, the pre-expansion cycle was equivalent to that of the pre-expanded particles obtained by the normal pre-expansion method shown in Comparative Example 1. Nevertheless, blocking did not occur, the angle of repose was extremely reduced to about 1/3 or less, and the particle feedability was also improved.
[0072]
(Example 3)
Pre-expansion was performed in the same manner as in Comparative Example 1 described below, except that the temperature of the pre-expansion tank before charging the raw material particles into the pre-expansion tank was set to 85 ° C. in the same manner as in Example 1. Particles were obtained.
Table 1 shows the evaluation items of the obtained pre-expanded particles.
[0073]
Although the obtained pre-expanded particles did not have a small angle of repose as in Examples 1 and 2, the pre-expansion cycle was equivalent to that of the pre-expanded particles obtained by the normal pre-expansion method shown in Comparative Example 1. Despite this, blocking did not occur, the angle of repose was reduced by about 20%, and the particle feedability was improved.
[0074]
(Comparative Example 1)
The raw material input valve of the BHP-110 type prefoaming machine is opened to feed the raw material particles into the prefoaming tank. After the raw material particles are charged, the exhaust valve and the steam valve of the prefoaming tank of the prefoaming machine are opened, and the steam is purged for 30 seconds. .
[0075]
Thereafter, pressurized steam heating was performed at a lower limit pressure of 0.008 MPa to an upper limit pressure of 0.013 MPa. In this pressurized steam heating, the steam valve is opened and the steam is introduced into the prefoaming tank while the exhaust valve is closed until the inside of the prefoaming tank reaches the upper limit pressure. The heating operation of opening the exhaust valve and reducing the pressure in the preliminary foaming tank to the lower limit pressure was repeatedly performed until the level sensor detection described later.
[0076]
In the pressurized steam heating, the pressurized steam heating is terminated when the level sensor provided in the preliminary foaming tank continuously detects for 2 seconds or more, the steam valve is closed to cool the foamed particles in the preliminary foaming tank, the exhaust valve, The operation was performed for 30 seconds with the drain valve and the cooling valve opened.
[0077]
After cooling was completed, the discharge door was opened and the pre-expanded particles were discharged to an external hopper to obtain pre-expanded particles.
[0078]
In this example, the measurement was carried out five times by the same method, and the fifth measurement was carried out. At this time, the temperature of the pre-expansion bath at the time of charging the raw material particles into the pre-expansion bath was 75 ° C.
Table 1 shows the evaluation items of the obtained pre-expanded particles.
[0079]
In this comparative example, a normal prefoaming method was used. However, the obtained prefoamed particles produced blocking as compared with Example 1. In addition, the angle of repose was three times that of Example 1, and the particle feedability was inferior to that of Example 1.
[0080]
(Comparative Example 2)
Prefoaming was carried out in the same manner as in Example 1 except that pressurized steam heating was carried out at a lower limit pressure of 0.015 MPa to an upper limit pressure of 0.020 MPa to obtain prefoamed particles.
Table 1 shows the evaluation items of the obtained pre-expanded particles.
[0081]
This comparative example is also a normal prefoaming method, but the obtained prefoamed particles have a blocking as compared with the example 1. In addition, the angle of repose was three times that of Example 1, and the particle feedability was inferior to that of Example 1. Further, as compared with Comparative Example 1, the blocking was increased, and the cycle time of the preliminary foaming was shorter than that of Comparative Example 1, but the productivity was lowered.
[0082]
[Table 1]
Figure 2004306567
[0083]
【The invention's effect】
The pre-expanded particles according to the present invention have less wetness compared to the ordinary pre-expanded method, and the problem that the pre-expanded particles stay at the time of granulation and become difficult to send becomes difficult to occur. Also, the occurrence of blocking is reduced. In addition, the filling of the pre-expanded particles into the mold during the molding is improved.

Claims (4)

発泡性熱可塑性樹脂粒子を予備発泡槽に投入し、蒸気加熱により発泡させて予備発泡粒子を得る方法であって、該予備発泡槽に蒸気を吹き込む蒸気加熱工程において、所定間隔毎に一旦蒸気加熱を止め、その間に該予備発泡槽に所定時間乾燥空気を導入する工程を設けたことを特徴とする発泡性熱可塑性樹脂粒子の予備発泡方法。A method in which expandable thermoplastic resin particles are charged into a pre-foaming tank and foamed by steam heating to obtain pre-expanded particles. And a step of introducing dry air into the pre-foaming tank for a predetermined time during the pre-foaming. 蒸気加熱工程中に乾燥空気を導入する工程を設けない予備発泡方法よりも、加熱に用いる蒸気の圧力を0.003〜0.020MPa高く設定したことを特徴とする請求項1記載の発泡性熱可塑性樹脂粒子の予備発泡方法。The foaming heat according to claim 1, wherein the pressure of the steam used for heating is set to be higher by 0.003 to 0.020 MPa than in the prefoaming method in which a step of introducing dry air is not provided in the steam heating step. Preliminary foaming method for plastic resin particles. 発泡性熱可塑性樹脂粒子を予備発泡槽に投入し、蒸気加熱により発泡させて予備発泡粒子を得る方法であって、発泡性熱可塑性樹脂粒子投入時の予備発泡槽内温度を、予備発泡実施毎に80℃以上にすることを特徴とする発泡性熱可塑性樹脂粒子の予備発泡方法。A method in which expandable thermoplastic resin particles are charged into a pre-expansion tank and foamed by steam heating to obtain pre-expanded particles. A method for prefoaming expandable thermoplastic resin particles, wherein the temperature is 80 ° C. or higher. 発泡性熱可塑性樹脂粒子投入時点の予備発泡槽内温度を、予備発泡実施毎に80℃以上にすることを特徴とする請求項1または2記載の発泡性熱可塑性樹脂粒子の予備発泡方法。3. The method for prefoaming expandable thermoplastic resin particles according to claim 1, wherein the temperature in the prefoaming tank at the time of charging the expandable thermoplastic resin particles is set to 80 ° C. or more every time the prefoaming is performed.
JP2003106846A 2003-04-10 2003-04-10 Pre-foaming method for thermoplastic resin pre-particles Expired - Fee Related JP4090932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106846A JP4090932B2 (en) 2003-04-10 2003-04-10 Pre-foaming method for thermoplastic resin pre-particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106846A JP4090932B2 (en) 2003-04-10 2003-04-10 Pre-foaming method for thermoplastic resin pre-particles

Publications (2)

Publication Number Publication Date
JP2004306567A true JP2004306567A (en) 2004-11-04
JP4090932B2 JP4090932B2 (en) 2008-05-28

Family

ID=33468907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106846A Expired - Fee Related JP4090932B2 (en) 2003-04-10 2003-04-10 Pre-foaming method for thermoplastic resin pre-particles

Country Status (1)

Country Link
JP (1) JP4090932B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196131A (en) * 2008-02-20 2009-09-03 Kaneka Corp Pre-foaming method of foamable thermoplastic resin particle
JP2011202005A (en) * 2010-03-25 2011-10-13 Sekisui Plastics Co Ltd Method for producing thermoplastic resin reserved foaming particle, and device for producing thermoplastic resin reserved foaming particle
KR101181377B1 (en) 2012-02-16 2012-09-19 주식회사 다우그룹 Polystyrene form particle manufacturing process and manufactured by them polystyrene form particle, and using a flexible polystyrene foam particle product description

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196131A (en) * 2008-02-20 2009-09-03 Kaneka Corp Pre-foaming method of foamable thermoplastic resin particle
JP2011202005A (en) * 2010-03-25 2011-10-13 Sekisui Plastics Co Ltd Method for producing thermoplastic resin reserved foaming particle, and device for producing thermoplastic resin reserved foaming particle
KR101181377B1 (en) 2012-02-16 2012-09-19 주식회사 다우그룹 Polystyrene form particle manufacturing process and manufactured by them polystyrene form particle, and using a flexible polystyrene foam particle product description

Also Published As

Publication number Publication date
JP4090932B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
US4272469A (en) Method and apparatus for forming expanded foam articles
US7358280B2 (en) Process for processing expandable polymer particles and foam article thereof
TWI457379B (en) Expandable polystyrene type resin particle and production method thereof, and molded form
JPWO2005028173A1 (en) Method for producing thermoplastic resin foamable particles
EP3221111A1 (en) Method of molding foam articles
JP2010179627A (en) Production method for foaming thermoplastic resin particle, foamed thermoplastic resin particle, and foamed thermoplastic resin molding
JPH0313057B2 (en)
JP7328356B2 (en) Method for producing expanded polyamide resin particles
JP4090932B2 (en) Pre-foaming method for thermoplastic resin pre-particles
WO2015056461A1 (en) Bulk-density measuring device for pre-expanded particles and method for manufacturing pre-expanded particles
CA2419180C (en) Method for the production of biodegradable foamed products
JP5470127B2 (en) Thermoplastic resin pre-expanded particle manufacturing method, thermoplastic resin pre-expanded particle manufacturing apparatus
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP4085835B2 (en) Pre-foaming method for expandable thermoplastic resin particles
Standau et al. Influence of processing conditions on the appearance of bead foams made of the engineering thermoplastic polybutylene terephthalate (E-PBT)
JP5641846B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2023089882A (en) Method for deodorizing foam bead
Pacyniak et al. Influence of time and pressure of forming a pattern on mechanical properties
JP2014065868A (en) Thermoplastic resin particles and method for manufacturing the same, expandable thermoplastic resin particles and method for manufacturing the same, prefoamed particles, and foam molding
JP2009196131A (en) Pre-foaming method of foamable thermoplastic resin particle
JPH08198997A (en) Foaming beads of vinyl resin
JP5470120B2 (en) Method for producing thermoplastic resin pre-expanded particles
JPH059328A (en) Production of expandable preexpanded styrene-based resin particle
Liu et al. Rotational Molding of Low-Density LLDPE Foams
RU2400363C1 (en) Method for manufacturing of heat-structural panels of cellular polystyrene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent or registration of utility model

Ref document number: 4090932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees