JP2011191755A - Exposure method, method for manufacturing substrate, and exposure apparatus - Google Patents

Exposure method, method for manufacturing substrate, and exposure apparatus Download PDF

Info

Publication number
JP2011191755A
JP2011191755A JP2011032258A JP2011032258A JP2011191755A JP 2011191755 A JP2011191755 A JP 2011191755A JP 2011032258 A JP2011032258 A JP 2011032258A JP 2011032258 A JP2011032258 A JP 2011032258A JP 2011191755 A JP2011191755 A JP 2011191755A
Authority
JP
Japan
Prior art keywords
substrate
suction
pressure
mask
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011032258A
Other languages
Japanese (ja)
Inventor
Yasutaka Kiryu
恭孝 桐生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011032258A priority Critical patent/JP2011191755A/en
Publication of JP2011191755A publication Critical patent/JP2011191755A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exposure method, a method for manufacturing a substrate, and an exposure apparatus for improving exposure accuracy while preventing deflection of a substrate. <P>SOLUTION: A substrate stage 20 includes an annular suction region 80b and rectangular suction regions 80c, 80d, 80e each having a smaller area than the annular suction region 80b on a suction surface 22. In sucking a substrate W to the suction surface 22 of the substrate stage 20, suction force for sucking air in the rectangular suction regions 80c, 80d, 80e is made smaller than the suction force for sucking air in the annular suction region 80b so that the pressure in the annular and rectangular suction regions 80b, ..., 80e is substantially fixed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、露光方法及び基板の製造方法並びに露光装置に関する。   The present invention relates to an exposure method, a substrate manufacturing method, and an exposure apparatus.

従来、液晶ディスプレイ装置やプラズマディスプレイ装置等のフラットパネルディスプレイ装置のカラーフィルタ基板やTFT(Thin Film Transistor)基板を製造する露光装置が種々考案されている。露光装置は、マスクをマスク保持部で保持すると共に基板を基板保持部で保持して両者を近接して対向配置する。そして、マスク側からパターン露光用の光を照射することにより、マスクに描かれたマスクパターンを基板上に露光転写している。また、基板保持部で保持された基板が基板保持部の移動の際にずれないように、基板は基板保持部に真空吸着されている。   Conventionally, various exposure apparatuses for manufacturing color filter substrates and TFT (Thin Film Transistor) substrates for flat panel display devices such as liquid crystal display devices and plasma display devices have been devised. In the exposure apparatus, the mask is held by the mask holding unit and the substrate is held by the substrate holding unit, and the two are placed in close proximity to each other. The mask pattern drawn on the mask is exposed and transferred onto the substrate by irradiating light for pattern exposure from the mask side. In addition, the substrate is vacuum-sucked to the substrate holder so that the substrate held by the substrate holder does not shift when the substrate holder moves.

特許文献1に記載の露光装置では、基板保持部は、基板を吸着して保持する吸着面に、複数の突起(エンボス)を有するとともに、基板の設置方向やサイズに応じた複数の吸着領域を画成するように、隣り合う吸着領域を仕切る仕切り壁を有する。そして、図7に示すように、隣り合う吸着領域A,Bに圧力の違いが生じると、基板Wに撓みが発生し、露光ムラとなるため、特許文献1では、仕切り壁と突起との間隔を所定の幅に設定することで、基板の撓み量をほぼ等しくし、基板の平面度を向上させて露光ムラを抑制している。   In the exposure apparatus described in Patent Document 1, the substrate holding unit has a plurality of protrusions (embosses) on the suction surface that sucks and holds the substrate, and a plurality of suction regions according to the installation direction and size of the substrate. In order to define, it has a partition wall which partitions adjacent adsorption | suction area | regions. Then, as shown in FIG. 7, if a difference in pressure occurs between the adjacent suction regions A and B, the substrate W is bent and exposure unevenness occurs. In Patent Document 1, the interval between the partition wall and the protrusion is determined. Is set to a predetermined width, the amount of bending of the substrate is made substantially equal, the flatness of the substrate is improved, and uneven exposure is suppressed.

特開2009−212345号公報JP 2009-212345 A

ところで、特許文献1に記載の露光装置では、仕切り壁と突起との間隔を所定の幅に設定することで撓みを抑制しようとしているが、各吸着領域での吸引力について具体的な記載はなく、隣り合う吸着領域において圧力差が発生している場合には、依然として撓みが発生し、露光ムラが発生する可能性があった。   By the way, in the exposure apparatus described in Patent Document 1, an attempt is made to suppress bending by setting the interval between the partition wall and the projection to a predetermined width, but there is no specific description about the suction force in each suction region. When there is a pressure difference between adjacent suction areas, there is still a possibility that bending will occur and exposure unevenness will occur.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、基板の撓みを抑制して、露光精度を向上する露光方法及び基板の製造方法並びに露光装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object thereof is to provide an exposure method, a substrate manufacturing method, and an exposure apparatus that improve the exposure accuracy by suppressing the bending of the substrate.

本発明の上記目的は、下記の構成により達成される。
(1) 露光すべきパターンを有するマスクを保持するマスク保持部と、被露光材としての基板を吸着して保持する吸着面を有する基板保持部と、前記基板保持部に保持された基板に、露光用光を前記マスクを介して照射する照明光学系と、を備え、前記基板保持部の吸着面には、前記基板の裏面に当接可能な仕切り壁によって仕切られた第1の吸着領域と、前記第1の吸着領域よりも面積の小さい第2の吸着領域と、が少なくとも形成される露光装置によって、前記基板上に前記マスクのパターンを露光転写する露光方法であって、
前記基板保持部の吸着面に前記基板を吸着する際、前記第1及び第2の吸着領域内の圧力が略一定となるように、前記第2の吸着領域内のエアを吸引する吸引力を、前記第1の吸着領域内のエアを吸引する吸引力よりも小さくすることを特徴とする露光方法。
(2) (1)に記載の露光方法を用いることを特徴とする基板の製造方法。
(3) 露光すべきパターンを有するマスクを保持するマスク保持部と、
被露光材としての基板を吸着して保持する吸着面を有する基板保持部と、
前記基板保持部に保持された基板に、露光用光を前記マスクを介して照射する照明光学系と、
前記各吸着領域内を選択的且つ独立に正、負圧及び大気圧状態にするための正負圧制御装置と、
を備え、前記基板上に前記マスクのパターンを露光転写する露光装置であって、
前記基板保持部の吸着面には、前記基板の裏面に当接可能な仕切り壁によって仕切られた第1の吸着領域と、前記第1の吸着領域よりも面積の小さい第2の吸着領域と、が少なくとも形成され、
前記正負圧制御装置は、
前記各吸着領域に接続される正負圧配管路と、圧縮空気源に接続された正圧配管路、又は負圧発生源に接続された負圧配管路と、の接続、遮断を行う方向制御手段と、
前記正負圧配管路内を通過するエアの圧力を調整する圧力制御手段と、
前記正負圧配管路内を通過するエアの流量を調整する流量制御手段と、
を備え、
前記正負圧制御装置は、前記基板保持部の吸着面に前記基板を吸着する際、前記第1及び第2の吸着領域内の圧力が略一定となるように、前記第2の吸着領域内のエアを吸引する吸引力を、前記第1の吸着領域内のエアを吸引する吸引力よりも小さくするように制御することを特徴とする露光装置。
(4) 前記各吸着領域内の圧力を圧力センサで検出し、該検出された圧力に基づいて前記方向制御手段、前記圧力制御手段、前記流量制御手段の少なくとも一つを制御することを特徴とする(3)に記載の露光装置。
(5) 前記方向制御手段は電磁切替弁であり、前記圧力制御手段はストップバルブであり、前記流量制御手段はエアーレギュレータであることを特徴とする(3)に記載の露光装置。
The above object of the present invention can be achieved by the following constitution.
(1) A mask holding unit that holds a mask having a pattern to be exposed, a substrate holding unit that has a suction surface that sucks and holds a substrate as an exposed material, and a substrate held by the substrate holding unit, An illumination optical system that irradiates exposure light through the mask, and a suction surface of the substrate holding portion includes a first suction region partitioned by a partition wall that can contact the back surface of the substrate. An exposure method in which the pattern of the mask is exposed and transferred onto the substrate by an exposure apparatus in which at least a second suction region having a smaller area than the first suction region is formed,
When adsorbing the substrate on the adsorption surface of the substrate holding unit, a suction force for sucking air in the second adsorption region is set so that the pressure in the first and second adsorption regions is substantially constant. An exposure method characterized by making the suction force smaller than the suction force for sucking air in the first suction region.
(2) A method for producing a substrate, wherein the exposure method according to (1) is used.
(3) a mask holding unit for holding a mask having a pattern to be exposed;
A substrate holding part having an adsorption surface for adsorbing and holding a substrate as an exposed material;
An illumination optical system for irradiating the substrate held by the substrate holding unit with exposure light through the mask;
A positive / negative pressure control device for selectively and independently setting the inside of each adsorption region to a positive, negative pressure and atmospheric pressure state;
An exposure apparatus that exposes and transfers the pattern of the mask onto the substrate,
On the suction surface of the substrate holding part, a first suction region partitioned by a partition wall capable of contacting the back surface of the substrate, a second suction region having a smaller area than the first suction region, Is at least formed,
The positive / negative pressure control device includes:
Direction control means for connecting and shutting off the positive and negative pressure pipes connected to the respective adsorption regions and the positive pressure pipe connected to the compressed air source or the negative pressure pipe connected to the negative pressure generating source When,
Pressure control means for adjusting the pressure of air passing through the inside of the positive and negative pressure pipes;
Flow rate control means for adjusting the flow rate of air passing through the inside of the positive and negative pressure pipes;
With
The positive / negative pressure control device is configured to adjust the pressure in the second adsorption region so that the pressure in the first and second adsorption regions is substantially constant when the substrate is adsorbed on the adsorption surface of the substrate holding unit. An exposure apparatus that controls a suction force for sucking air to be smaller than a suction force for sucking air in the first suction region.
(4) The pressure in each adsorption region is detected by a pressure sensor, and at least one of the direction control means, the pressure control means, and the flow rate control means is controlled based on the detected pressure. The exposure apparatus according to (3).
(5) The exposure apparatus according to (3), wherein the direction control means is an electromagnetic switching valve, the pressure control means is a stop valve, and the flow rate control means is an air regulator.

本発明の露光方法及び露光装置によれば、第1の吸着領域と、第1の吸着領域よりも面積の小さい第2の吸着領域とを吸着面に備えた基板保持部において、基板保持部の吸着面に基板を吸着する際、第1及び第2の吸着領域内の圧力が略一定となるように、前記第2の吸着領域内のエアを吸引する吸引力を、前記第1の吸着領域内のエアを吸引する吸引力よりも小さくするので、基板の撓みが抑制され、露光精度を向上することができる。   According to the exposure method and the exposure apparatus of the present invention, in the substrate holding unit having the first suction region and the second suction region having a smaller area than the first suction region on the suction surface, When adsorbing the substrate to the adsorption surface, the suction force for sucking the air in the second adsorption region is set so that the pressure in the first and second adsorption regions becomes substantially constant. Since it is made smaller than the suction force for sucking the air inside, the bending of the substrate is suppressed, and the exposure accuracy can be improved.

本発明の露光方法が適用される近接露光装置を説明するための一部分解斜視図である。It is a partially exploded perspective view for explaining a proximity exposure apparatus to which the exposure method of the present invention is applied. 図1に示す近接露光装置の正面図である。It is a front view of the proximity exposure apparatus shown in FIG. 図1に示すマスク保持部の拡大斜視図である。It is an expansion perspective view of the mask holding | maintenance part shown in FIG. 図1に示す基板保持部の上面図である。It is a top view of the board | substrate holding | maintenance part shown in FIG. 基板保持部の吸着領域を選択的に、正圧、負圧及び大気圧状態に制御する正負圧制御装置を示すブロック図である。It is a block diagram which shows the positive / negative pressure control apparatus which selectively controls the adsorption | suction area | region of a board | substrate holding part to a positive pressure, a negative pressure, and atmospheric pressure state. 正負圧制御装置の変形例を説明するための部分的なブロック図である。It is a partial block diagram for demonstrating the modification of a positive / negative pressure control apparatus. 吸引領域の圧力の違いによって生じる基板の撓みを説明するための模式図である。It is a schematic diagram for demonstrating the bending of the board | substrate produced by the difference in the pressure of a suction area | region.

以下、本発明に係る露光方法及び基板の製造方法並びに露光装置について、図面に基づいて詳細に説明する。   Hereinafter, an exposure method, a substrate manufacturing method, and an exposure apparatus according to the present invention will be described in detail with reference to the drawings.

図1に示すように、近接露光装置1は、マスクMを保持するマスクステージ(マスク保持部)10と、ガラス基板(被露光材)Wを保持する基板ステージ(基板保持部)20と、パターン露光用の照射手段としての照明光学系30と、基板ステージ20をX軸,Y軸,Z軸方向に移動し、且つ基板ステージ20のチルト調整を行う基板ステージ移動機構40と、マスクステージ10及び基板ステージ移動機構40を支持する装置ベース50と、を備える。   As shown in FIG. 1, a proximity exposure apparatus 1 includes a mask stage (mask holding unit) 10 that holds a mask M, a substrate stage (substrate holding unit) 20 that holds a glass substrate (exposed material) W, and a pattern. An illumination optical system 30 serving as an irradiation means for exposure, a substrate stage moving mechanism 40 for moving the substrate stage 20 in the X-axis, Y-axis, and Z-axis directions and adjusting the tilt of the substrate stage 20, the mask stage 10, And an apparatus base 50 that supports the substrate stage moving mechanism 40.

なお、ガラス基板W(以下、単に「基板W」と称する。)は、マスクMに対向配置されており、このマスクMに描かれたマスクパターンを露光転写すべく表面(マスクMの対向面側)に感光剤が塗布されている。また、マスクMは、溶融石英からなり、長方形状に形成されている。   Note that a glass substrate W (hereinafter simply referred to as “substrate W”) is disposed to face the mask M, and a surface (on the opposite surface side of the mask M) for exposing and transferring a mask pattern drawn on the mask M. ) Is coated with a photosensitive agent. The mask M is made of fused quartz and has a rectangular shape.

説明の便宜上、照明光学系30から説明すると、照明光学系30は、紫外線照射用の光源である例えば高圧水銀ランプ31と、この高圧水銀ランプ31から照射された光を集光する凹面鏡32と、この凹面鏡32の焦点近傍に切替え自在に配置された二種類のオプチカルインテグレータ33と、光路の向きを変えるための平面ミラー35,36及び球面ミラー37と、この平面ミラー36とオプチカルインテグレータ33との間に配置されて照射光路を開閉制御する露光制御用シャッター34と、を備える。   For convenience of explanation, the illumination optical system 30 will be described. The illumination optical system 30 is, for example, a high-pressure mercury lamp 31 that is a light source for ultraviolet irradiation, and a concave mirror 32 that collects light emitted from the high-pressure mercury lamp 31. Between the two types of optical integrators 33, which are switchably arranged near the focal point of the concave mirror 32, the plane mirrors 35 and 36 and the spherical mirror 37 for changing the direction of the optical path, and between the plane mirror 36 and the optical integrator 33. And an exposure control shutter 34 that controls the opening and closing of the irradiation light path.

そして、照明光学系30では、露光時に露光制御用シャッター34が開制御されると、高圧水銀ランプ31から照射された光が光路Lを経て、マスクステージ10に保持されるマスクM、さらには基板ステージ20に保持される基板Wの表面に対して垂直にパターン露光用の平行光として照射される。これにより、マスクMのマスクパターンが基板W上に露光転写される。   In the illumination optical system 30, when the exposure control shutter 34 is controlled to be opened at the time of exposure, the light irradiated from the high-pressure mercury lamp 31 passes through the optical path L, the mask M held on the mask stage 10, and further the substrate. Irradiated as parallel light for pattern exposure perpendicular to the surface of the substrate W held on the stage 20. Thereby, the mask pattern of the mask M is exposed and transferred onto the substrate W.

マスクステージ10は、図1〜図3に示すように、中央部に矩形形状の開口部11aが形成されるマスクステージベース11と、マスクステージベース11の開口部11aにX軸,Y軸,θ方向に移動可能に装着されるマスク保持枠12と、マスク保持枠12に取り付けられ、マスクMを吸着保持するチャック部14と、マスク保持枠12とチャック部とをX軸,Y軸,θ方向に移動させ、このマスク保持枠12に保持されるマスクMの位置を調整するマスク位置調整機構16と、を備える。   As shown in FIGS. 1 to 3, the mask stage 10 includes a mask stage base 11 in which a rectangular opening 11 a is formed at the center, and an X axis, a Y axis, and θ on the opening 11 a of the mask stage base 11. A mask holding frame 12 that is movably mounted in a direction, a chuck portion 14 that is attached to the mask holding frame 12 and holds the mask M by suction, and the mask holding frame 12 and the chuck portion are arranged in the X, Y, and θ directions. And a mask position adjustment mechanism 16 that adjusts the position of the mask M held by the mask holding frame 12.

マスクステージベース11は、装置ベース50上に立設される支柱51、及び支柱51の上端部に設けられるZ軸移動装置52によりZ軸方向に移動可能に支持され、基板ステージ20の上方に配置される。Z軸移動装置52は、例えば、モータ及びボールねじ等からなる電動アクチュエータ、或いは空圧シリンダ等を備え、単純な上下動作を行うことにより、マスクステージ10を所定の位置まで昇降させる。なお、Z軸移動装置52は、マスクMの交換や、ワークチャック21の清掃等の際に使用される。   The mask stage base 11 is supported by a column 51 standing on the apparatus base 50 and a Z-axis moving device 52 provided at the upper end of the column 51 so as to be movable in the Z-axis direction, and is disposed above the substrate stage 20. Is done. The Z-axis moving device 52 includes, for example, an electric actuator including a motor and a ball screw, a pneumatic cylinder, or the like, and moves the mask stage 10 up and down to a predetermined position by performing a simple vertical movement. The Z-axis moving device 52 is used for exchanging the mask M, cleaning the work chuck 21, and the like.

マスク位置調整機構16は、マスク保持枠12のX軸方向に沿う一辺に取り付けられる1台のY軸方向駆動装置16yと、マスク保持枠12のY軸方向に沿う一辺に取り付けられる2台のX軸方向駆動装置16xと、を備える。   The mask position adjusting mechanism 16 includes one Y-axis direction driving device 16y attached to one side along the X-axis direction of the mask holding frame 12 and two Xs attached to one side along the Y-axis direction of the mask holding frame 12. An axial drive device 16x.

そして、マスク位置調整機構16では、1台のY軸方向駆動装置16yを駆動させることによりマスク保持枠12をY軸方向に移動させ、2台のX軸方向駆動装置16xを同等に駆動させることによりマスク保持枠12をX軸方向に移動させる。また、2台のX軸方向駆動装置16xのどちらか一方を駆動することによりマスク保持枠12をθ方向に移動(Z軸回りの回転)させる。   The mask position adjusting mechanism 16 moves the mask holding frame 12 in the Y-axis direction by driving one Y-axis direction driving device 16y, and drives the two X-axis direction driving devices 16x equally. Thus, the mask holding frame 12 is moved in the X-axis direction. Further, the mask holding frame 12 is moved in the θ direction (rotated about the Z axis) by driving one of the two X-axis direction driving devices 16x.

さらに、マスクステージベース11の上面には、図3に示すように、マスクMと基板Wとの対向面間のギャップを測定するギャップセンサ17と、チャック部14に保持されるマスクMの取り付け位置を確認するためのマスク用アライメントカメラ18と、が設けられる。これらギャップセンサ17及びマスク用アライメントカメラ18は、移動機構19を介してX軸,Y軸方向に移動可能に保持され、マスク保持枠12内に配置される。   Further, on the upper surface of the mask stage base 11, as shown in FIG. 3, a gap sensor 17 for measuring a gap between the opposing surfaces of the mask M and the substrate W, and a mounting position of the mask M held by the chuck portion 14. And a mask alignment camera 18 for confirming the above. The gap sensor 17 and the mask alignment camera 18 are held so as to be movable in the X-axis and Y-axis directions via the moving mechanism 19 and are arranged in the mask holding frame 12.

なお、マスクステージベース11の上面には、図3に示すように、マスクステージベース11の開口部11aのX軸方向の両端部に、マスクMの両端部を必要に応じて遮蔽するマスキングアパーチャ38が設けられる。このマスキングアパーチャ38は、モータ、ボールねじ、及びリニアガイド等からなるマスキングアパーチャ駆動機構39によりX軸方向に移動可能とされて、マスクMの両端部の遮蔽面積を調整する。なお、マスキングアパーチャ38は、開口部11aのX軸方向の両端部だけでなく、開口部11aのY軸方向の両端部に同様に設けてもよい。   On the upper surface of the mask stage base 11, as shown in FIG. 3, a masking aperture 38 that shields both ends of the mask M as necessary at both ends in the X-axis direction of the opening 11 a of the mask stage base 11. Is provided. The masking aperture 38 is movable in the X-axis direction by a masking aperture drive mechanism 39 including a motor, a ball screw, a linear guide, and the like, and adjusts the shielding area at both ends of the mask M. Note that the masking aperture 38 may be provided not only at both ends in the X-axis direction of the opening 11a but also at both ends in the Y-axis direction of the opening 11a.

基板ステージ20は、図1及び図2に示すように、基板ステージ移動機構40上に設置されており、基板Wを基板ステージ20に保持するための吸着面22を上面に有するワークチャック21を備える。なお、ワークチャック21は、真空吸着により基板Wを保持している。   As shown in FIGS. 1 and 2, the substrate stage 20 is provided on a substrate stage moving mechanism 40 and includes a work chuck 21 having an adsorption surface 22 for holding the substrate W on the substrate stage 20 on the upper surface. . The work chuck 21 holds the substrate W by vacuum suction.

基板ステージ移動機構40は、図1及び図2に示すように、基板ステージ20をY軸方向に移動させるY軸送り機構41と、基板ステージ20をX軸方向に移動させるX軸送り機構42と、基板ステージ20のチルト調整を行うと共に、基板ステージ20をZ軸方向に微動させるZ−チルト調整機構43と、を備える。   As shown in FIGS. 1 and 2, the substrate stage moving mechanism 40 includes a Y-axis feed mechanism 41 that moves the substrate stage 20 in the Y-axis direction, and an X-axis feed mechanism 42 that moves the substrate stage 20 in the X-axis direction. And a Z-tilt adjustment mechanism 43 that performs the tilt adjustment of the substrate stage 20 and finely moves the substrate stage 20 in the Z-axis direction.

Y軸送り機構41は、装置ベース50の上面にY軸方向に沿って設置される一対のリニアガイド44と、リニアガイド44によりY軸方向に移動可能に支持されるY軸テーブル45と、Y軸テーブル45をY軸方向に移動させるY軸送り駆動装置46と、を備える。そして、Y軸送り駆動装置46のモータ46cを駆動させ、ボールねじ軸46bを回転させることにより、ボールねじナット46aとともにY軸テーブル45をリニアガイド44の案内レール44aに沿って移動させて、基板ステージ20をY軸方向に移動させる。   The Y-axis feed mechanism 41 includes a pair of linear guides 44 installed on the upper surface of the apparatus base 50 along the Y-axis direction, a Y-axis table 45 supported by the linear guide 44 so as to be movable in the Y-axis direction, And a Y-axis feed driving device 46 for moving the axis table 45 in the Y-axis direction. Then, by driving the motor 46c of the Y-axis feed driving device 46 and rotating the ball screw shaft 46b, the Y-axis table 45 is moved along the guide rail 44a of the linear guide 44 together with the ball screw nut 46a. The stage 20 is moved in the Y axis direction.

また、X軸送り機構42は、Y軸テーブル45の上面にX軸方向に沿って設置される一対のリニアガイド47と、リニアガイド47によりX軸方向に移動可能に支持されるX軸テーブル48と、X軸テーブル48をX軸方向に移動させるX軸送り駆動装置49と、を備える。そして、X軸送り駆動装置49のモータ49cを駆動させ、ボールねじ軸49bを回転させることにより、不図示のボールねじナットとともにX軸テーブル48をリニアガイド47の案内レール47aに沿って移動させて、基板ステージ20をX軸方向に移動させる。   The X-axis feed mechanism 42 includes a pair of linear guides 47 installed on the upper surface of the Y-axis table 45 along the X-axis direction, and an X-axis table 48 supported by the linear guide 47 so as to be movable in the X-axis direction. And an X-axis feed drive device 49 that moves the X-axis table 48 in the X-axis direction. Then, by driving the motor 49c of the X-axis feed driving device 49 and rotating the ball screw shaft 49b, the X-axis table 48 is moved along the guide rail 47a of the linear guide 47 together with a ball screw nut (not shown). Then, the substrate stage 20 is moved in the X-axis direction.

Z−チルト調整機構43は、X軸テーブル48上に設置されるモータ43aと、モータ43aによって回転駆動されるボールねじ軸43bと、くさび状に形成され、ボールねじ軸43bに螺合されるくさび状ナット43cと、基板ステージ20の下面にくさび状に突設され、くさび状ナット43cの傾斜面に係合するくさび部43dと、を備える。そして、本実施形態では、Z−チルト調整機構43は、X軸テーブル48のX軸方向の一端側(図1の手前側)に2台、他端側に1台(図1の奥手側、図2参照。)の計3台設置され、それぞれが独立して駆動制御されている。なお、Z−チルト調整機構43の設置数は任意である。   The Z-tilt adjustment mechanism 43 includes a motor 43a installed on the X-axis table 48, a ball screw shaft 43b rotated by the motor 43a, and a wedge formed in a wedge shape and screwed into the ball screw shaft 43b. And a wedge portion 43d that protrudes in a wedge shape on the lower surface of the substrate stage 20 and engages with the inclined surface of the wedge nut 43c. In the present embodiment, two Z-tilt adjustment mechanisms 43 are provided on one end side (front side in FIG. 1) in the X-axis direction of the X-axis table 48, and one set on the other end side (the rear side in FIG. A total of 3 units are installed (see FIG. 2), and each is driven and controlled independently. The number of Z-tilt adjustment mechanisms 43 installed is arbitrary.

そして、Z−チルト調整機構43では、モータ43aによりボールねじ軸43bを回転駆動させることによって、くさび状ナット43cがX軸方向に水平移動し、この水平移動運動がくさび状ナット43c及びくさび部43dの斜面作用により高精度の上下微動運動に変換されて、くさび部43dがZ方向に微動する。従って、3台のZ−チルト調整機構43を同じ量だけ駆動させることにより、基板ステージ20をZ軸方向に微動することができ、また、3台のZ−チルト調整機構43を独立して駆動させることにより、基板ステージ20のチルト調整を行うことができる。これにより、基板ステージ20のZ軸,チルト方向の位置を微調整して、マスクMと基板Wとを所定の間隔を存して平行に対向させることができる。   In the Z-tilt adjustment mechanism 43, when the ball screw shaft 43b is rotationally driven by the motor 43a, the wedge-shaped nut 43c is horizontally moved in the X-axis direction, and this horizontal movement is caused by the wedge-shaped nut 43c and the wedge portion 43d. The wedge portion 43d is finely moved in the Z direction by being converted into a highly precise vertical fine motion by the action of the slope. Accordingly, by driving the three Z-tilt adjustment mechanisms 43 by the same amount, the substrate stage 20 can be finely moved in the Z-axis direction, and the three Z-tilt adjustment mechanisms 43 are independently driven. By doing so, the tilt adjustment of the substrate stage 20 can be performed. As a result, the position of the substrate stage 20 in the Z-axis and tilt directions can be finely adjusted so that the mask M and the substrate W face each other in parallel with a predetermined interval.

さらに、近接露光装置1には、図1及び図2に示すように、基板ステージ20の位置を検出する位置測定装置であるレーザー測長装置60が設けられる。このレーザー測長装置60は、基板ステージ移動機構40の駆動に際して発生する基板ステージ20の移動距離を測定するものである。   Further, as shown in FIGS. 1 and 2, the proximity exposure apparatus 1 is provided with a laser length measuring device 60 that is a position measuring device that detects the position of the substrate stage 20. The laser length measuring device 60 measures the moving distance of the substrate stage 20 that occurs when the substrate stage moving mechanism 40 is driven.

レーザー測長装置60は、ステー(不図示)に固定されて基板ステージ20のX軸方向側面に沿うように配設されるX軸用ミラー64と、ステー71に固定されて基板ステージ20のY軸方向側面に沿うように配設されるY軸用ミラー65と、装置ベース50のX軸方向端部に配設され、レーザー光(計測光)をX軸用ミラー64に照射し、X軸用ミラー64により反射されたレーザー光を受光して、基板ステージ20の位置を計測するX軸測長器(測長器)61及びヨーイング測定器(測長器)62と、装置ベース50のY軸方向端部に配設され、レーザー光をY軸用ミラー65に照射し、Y軸用ミラー65により反射されたレーザー光を受光して、基板ステージ20の位置を計測する1台のY軸測長器(測長器)63と、を備える。   The laser length measuring device 60 is fixed to a stay (not shown) and disposed along the X-axis direction side surface of the substrate stage 20, and is fixed to the stay 71 and fixed to the Y of the substrate stage 20. A Y-axis mirror 65 disposed along the side surface in the axial direction, and an X-axis direction end of the apparatus base 50, irradiates the X-axis mirror 64 with laser light (measurement light). X-axis length measuring device (length measuring device) 61 and yawing measuring device (length measuring device) 62 that receive the laser light reflected by the mirror 64 and measure the position of the substrate stage 20, and Y of the apparatus base 50 One Y-axis disposed at the end in the axial direction for irradiating the Y-axis mirror 65 with laser light and receiving the laser light reflected by the Y-axis mirror 65 to measure the position of the substrate stage 20 A length measuring device (length measuring device) 63.

そして、レーザー測長装置60では、X軸測長器61、ヨーイング測定器62、及びY軸測長器63からX軸用ミラー64及びY軸用ミラー65に照射されたレーザー光が、X軸用ミラー64及びX軸用ミラー65で反射されることにより、基板ステージ20のX軸,Y軸方向の位置が高精度に計測される。また、X軸方向の位置データはX軸測長器61により、θ方向の位置はヨーイング測定器62により測定される。なお、基板ステージ20の位置は、レーザー測長装置60により測定されたX軸方向位置、Y軸方向位置、及びθ方向の位置を加味して、適宜補正を加えることにより算出される。   In the laser length measuring device 60, the X-axis length measuring device 61, the yawing measuring device 62, and the Y-axis length measuring device 63 irradiate the X-axis mirror 64 and the Y-axis mirror 65 with the laser light applied to the X-axis measuring device. By being reflected by the mirror for mirror 64 and the mirror for X axis 65, the positions of the substrate stage 20 in the X axis and Y axis directions are measured with high accuracy. Further, the position data in the X-axis direction is measured by the X-axis length measuring device 61, and the position in the θ direction is measured by the yawing measuring device 62. The position of the substrate stage 20 is calculated by appropriately correcting the position in the X-axis direction, the Y-axis direction, and the θ-direction measured by the laser length measuring device 60.

図4は、近接露光装置1のワークチャック21の吸着面を模式的に示す上面図である。ワークチャック21の吸着面22には、独立した5つの吸着領域、即ち、中央の吸着領域80aと、中央の吸着領域80aを囲う環状の吸着領域(第1の吸着領域)80bと、環状の吸着領域80bの外側にそれぞれ位置する長方形状の吸着領域(第2の吸着領域)80c,80d,80eと、が形成されている。中央の吸着領域80aとその外側の環状の吸着領域80bは、四角形状の第1の仕切り壁81aによって仕切られている。さらに、環状の吸着領域80bとその外側の3箇所に形成された長尺の吸着領域80c,80d,80eは、四角形状の第2の仕切り壁82aによって仕切られている。なお、中央の吸着領域80aは、環状の吸着領域80bよりも面積が小さく設定され、また、長方形状の各吸着領域80c,80d,80eは、環状の吸着領域80bよりも面積が小さく設定されている。   FIG. 4 is a top view schematically showing the suction surface of the work chuck 21 of the proximity exposure apparatus 1. The suction surface 22 of the work chuck 21 has five independent suction regions, namely, a central suction region 80a, an annular suction region (first suction region) 80b surrounding the central suction region 80a, and an annular suction region. Rectangular suction regions (second suction regions) 80c, 80d, and 80e, which are located outside the region 80b, are formed. The central suction region 80a and the outer annular suction region 80b are partitioned by a quadrangular first partition wall 81a. Further, the annular suction region 80b and the long suction regions 80c, 80d, and 80e formed at three locations outside thereof are partitioned by a quadrangular second partition wall 82a. The central suction region 80a has a smaller area than the annular suction region 80b, and each rectangular suction region 80c, 80d, 80e has a smaller area than the annular suction region 80b. Yes.

従って、中央の吸着領域80aは、第1の仕切り壁81aによって画成され、環状の吸着領域80bは、第1及び第2の仕切り壁81a,82aとの間に画成される。さらに、長方形状の各吸着領域80c,80d,80eは、第2の仕切り壁82aと、吸着面22の外周縁となる周縁壁83aによって画成される。なお、周縁部83aの形状は、長方形状の基板Wのサイズに対応しており、基板Wの向きに応じて長方形状の各吸着領域80c,80d,80eでの吸着が行われる。   Accordingly, the central suction region 80a is defined by the first partition wall 81a, and the annular suction region 80b is defined between the first and second partition walls 81a and 82a. Further, each of the rectangular suction regions 80 c, 80 d, and 80 e is defined by the second partition wall 82 a and the peripheral wall 83 a that is the outer peripheral edge of the suction surface 22. Note that the shape of the peripheral portion 83a corresponds to the size of the rectangular substrate W, and suction is performed in the rectangular suction regions 80c, 80d, and 80e according to the orientation of the substrate W.

また、各吸着領域80a,・・・,80e内には、各仕切り壁81a,82aの高さと等しい高さを有する複数の突起85が形成されており、各仕切り壁81a,82aと突起85は、基板Wの裏面に当接可能である。また、各仕切り壁81a,82aと突起85を除く部分は各吸着領域80a,・・・,80eの低部86となっている。   In addition, a plurality of projections 85 having a height equal to the height of each partition wall 81a, 82a are formed in each suction region 80a, ..., 80e, and each partition wall 81a, 82a and projection 85 has It is possible to contact the back surface of the substrate W. Moreover, the part except each partition wall 81a, 82a and protrusion 85 is the low part 86 of each adsorption | suction area | region 80a, ..., 80e.

また、吸着面22には、ワークローダー(図示せず)によって基板Wをワークチャック21に搬送する際に吸着面22から進出する複数のピン(図示せず)が進退可能な複数のピン孔(図示せず)が形成されている。さらに、各吸着領域80a,・・・,80e内の各低部86の表面には、複数の正負圧孔87a,・・・,87eが開口されている。   The suction surface 22 has a plurality of pin holes (not shown) through which a plurality of pins (not shown) advanced from the suction surface 22 when the substrate W is transported to the work chuck 21 by a work loader (not shown). (Not shown) is formed. Further, a plurality of positive and negative pressure holes 87a,..., 87e are opened on the surface of each low portion 86 in each suction region 80a,.

次に吸着領域80a,・・・,80eを、複数の正負圧孔87a,・・・,87eを介して、選択的且つ独立に正、負圧及び大気圧状態にするための正負圧制御装置186について、図5のブロック図を用い説明する。   Next, the positive / negative pressure control device for selectively and independently setting the suction regions 80a,..., 80e to the positive, negative pressure, and atmospheric pressure states via the plurality of positive / negative pressure holes 87a,. 186 will be described with reference to the block diagram of FIG.

図5中、吸着領域80aの低部86上の空間を負圧にする負圧配管路865aは、負圧発生源である真空ポンプ861、手動で主負圧配管路865の開閉をするストップバルブ862Vを連結する主負圧配管路865から分岐し、負圧配管路865aの圧力又は流量を調整するエアーレギュレータ863aVを連結する配管回路で構成され、3位置、3ポートの電磁切換弁867aの入力ポートP1に配管接続されている。   In FIG. 5, a negative pressure pipe line 865 a that makes the space above the lower part 86 of the adsorption region 80 a negative pressure is a vacuum pump 861 that is a negative pressure generation source, and a stop valve that manually opens and closes the main negative pressure pipe line 865. It consists of a piping circuit that branches from a main negative pressure piping line 865 that connects 862V and that connects an air regulator 863aV that adjusts the pressure or flow rate of the negative pressure piping line 865a, and is input to a three-position, three-port electromagnetic switching valve 867a. A pipe is connected to the port P1.

一方、吸着領域80aの低部86を正圧にする正圧配管路866aは、圧縮空気源(図示せず)から主正圧配管路866を手動で開閉するストップバルブ862Pを連結する主正圧配管路866から分岐して、正圧配管路866aの圧力を調整するエアーレギュレータ863aP、そして導かれた圧縮空気を清浄にろ過するフィルタ864aを連結する配管回路で構成され、この正圧配管路866aは3位置、3ポート電磁切換弁867aのもう一方の入力ポートP2に配管接続されている。   On the other hand, the positive pressure pipe line 866a that makes the low part 86 of the adsorption region 80a positive pressure is a main positive pressure that connects a stop valve 862P that manually opens and closes the main positive pressure pipe line 866 from a compressed air source (not shown). The positive pressure pipe line 866a is composed of a pipe circuit that branches from the pipe line 866 and connects an air regulator 863aP that adjusts the pressure of the positive pressure pipe line 866a and a filter 864a that cleanly filters the introduced compressed air. Is pipe-connected to the other input port P2 of the 3-position, 3-port electromagnetic switching valve 867a.

ここで、電磁切換弁867aの出力ポートP3は中央の吸着領域80aの低部86上を正圧、負圧にするための正負圧配管路814aに配管接続されている。電磁切換弁867aの中央位置は、スプリングS1、S2により(スプリングセンタ)中立位置となっており、この時は励起により負圧位置869にする電磁ソレノイド869Vも、同じく励起により正圧位置870にする電磁ソレノイド870Pも非励起状態となっており、この位置では負圧の入力ポートP1と正圧の入力ポートP2のどちらも出力ポートP3とはブロック状態となっている。この状態では吸着領域80aを大気圧状態(正、負圧状態のどちらでもない)にすることが出来る。そして正負圧配管路814a内を負圧状態にするには、上述の電磁切換弁867aの電磁ソレノイド869Vの励起によって負圧位置869に切換えて行われ(この時電磁ソレノイド870Pは非励起状態)、同様に正圧状態にするには、電磁ソレノイド870Pの励起によって正圧位置870に切換えられて(この時電磁ソレノイド869Vは非励起状態)行われる。このような、電磁ソレノイド869V、870Pの励起、非励起及び中立状態は、これらが接続されている制御装置896によって制御されるようになっている。   Here, the output port P3 of the electromagnetic switching valve 867a is connected to a positive / negative pressure pipe line 814a for making positive pressure and negative pressure on the lower portion 86 of the central suction region 80a. The central position of the electromagnetic switching valve 867a is a (spring center) neutral position by the springs S1 and S2. At this time, the electromagnetic solenoid 869V that is set to the negative pressure position 869 by excitation is also set to the positive pressure position 870 by excitation. The electromagnetic solenoid 870P is also in a non-excited state. At this position, both the negative pressure input port P1 and the positive pressure input port P2 are in a blocked state with respect to the output port P3. In this state, the adsorption region 80a can be brought into an atmospheric pressure state (neither positive nor negative pressure state). In order to make the inside of the positive / negative pressure pipe line 814a into a negative pressure state, it is switched to the negative pressure position 869 by excitation of the electromagnetic solenoid 869V of the electromagnetic switching valve 867a (the electromagnetic solenoid 870P is in an unexcited state at this time), Similarly, the positive pressure state is switched to the positive pressure position 870 by excitation of the electromagnetic solenoid 870P (at this time, the electromagnetic solenoid 869V is in the non-excited state). Such excitation, non-excitation, and neutral states of the electromagnetic solenoids 869V and 870P are controlled by the control device 896 to which they are connected.

以上の様にして、中央の吸着領域80aにおける正負圧状態の制御をすることができる。図4に示す他の吸着領域80b,・・・,80eについても吸着領域80aと同様に構成される。即ち、他の吸着領域80b,・・・,80eの低部86上の空間を負圧にする各負圧配管路865b,・・・,865eは、主負圧配管路865から分岐した、各エアーレギュレータ863bV,・・・,863eVを連結する配管回路でそれぞれ構成され、3位置、3ポートの各電磁切換弁867b,・・・,867eの入力ポートP1に配管接続されている。また、他の吸着領域80b,・・・,80eの低部86上の空間を正圧にする各正圧配管路866b,・・・,866eは、主正圧配管路866から分岐した、各エアーレギュレータ863bP,・・・,863eP、各フィルタ864b,・・・,864eを連結する配管回路でそれぞれ構成され、3位置、3ポート電磁切換弁867b,・・・,867eのもう一方の入力ポートP2に配管接続されている。   As described above, the positive / negative pressure state in the central suction region 80a can be controlled. The other suction regions 80b,..., 80e shown in FIG. 4 are configured in the same manner as the suction region 80a. That is, each negative pressure pipe line 865b,..., 865e that makes the space on the lower portion 86 of the other adsorption regions 80b,..., 80e negative pressure branches from the main negative pressure pipe line 865. Each of the air regulators 863bV,..., 863eV is connected to the input port P1 of each of the three-position, three-port electromagnetic switching valves 867b,. Moreover, each positive pressure piping 866b, ..., 866e which makes the space on the low part 86 of other adsorption | suction area | regions 80b, ..., 80e positive pressure branched from the main positive pressure piping 866, each The air regulator 863bP,..., 863eP and the piping circuit connecting the filters 864b,..., 864e, respectively, and the other input port of the three-position, three-port electromagnetic switching valve 867b,. Pipe connected to P2.

これにより、上記と同様、各々の正負圧配管路814b〜814eに接続して設けた、電磁切換弁867b〜867eを制御装置896の指令に基づいて、各々選択的且つ独立の正負圧又は大気圧状態となるよう制御ができる。また、各負圧配管路865b,・・・,865e、及び各正圧配管路866b,・・・,866eには、各エアーレギュレータ863bV,・・・,863eV,863bP,・・・,863ePがそれぞれ接続されているので、制御装置896が各エアーレギュレータ863bV,・・・,863eV,863bP,・・・,863ePを制御することで、各吸着領域80a,・・・,80eの吸引力を独立して調整することができる。
なお、複数ある吸着領域を独立の正負圧及び大気圧状態とするため、その正負圧配管の配管本数や配管方法を制限するものではない。
Thus, as described above, the electromagnetic switching valves 867b to 867e connected to the respective positive and negative pressure pipes 814b to 814e are selectively and independently positive or negative pressure or atmospheric pressure based on a command from the control device 896. It can be controlled to be in a state. Moreover, each negative pressure piping 865b, ..., 865e and each positive pressure piping 866b, ..., 866e have each air regulator 863bV, ..., 863eV, 863bP, ..., 863eP. Since they are connected to each other, the control device 896 controls the air regulators 863bV,..., 863eV, 863bP,..., 863eP, so that the suction force of each suction region 80a,. Can be adjusted.
In addition, in order to make a plurality of adsorption | suction area | regions into independent positive / negative pressure and atmospheric pressure states, it does not restrict | limit the number of piping and the piping method of the positive / negative pressure piping.

このような正負圧制御装置186により、基板Wを吸着する時には、これら正負圧孔87a,・・・,87eから真空吸引することによって、各吸着領域80a,・・・,80eの各低部86と、各仕切り壁81a,82a及び周壁部83aと、基板Wの裏面とで囲われる空間を負圧とする。通常、基板Wを吸着する際に使用される圧力は、0Pa以下、−100Pa以上であり、好ましくは、−10Pa以下、−80Pa以上であり、より好ましくは、−20Pa以下、−50Pa以上である。特に、圧力を−10Pa以下とすることで、基板ステージ20の移動によって基板Wがワークチャック21から確実にずれることがなくなり、また、−80Pa以上とすることで、基板Wが変形するのを確実に防止でき、これらにより、露光ムラを抑制できる。また、基板Wをアンローディングする時には、基板Wを離しやすくするため、空間内を大気開放或いは正負圧孔87a,・・・,87gから正圧を導入する。   When the substrate W is sucked by such a positive / negative pressure control device 186, vacuum suction is performed from the positive / negative pressure holes 87a,. A space surrounded by the partition walls 81a and 82a and the peripheral wall portion 83a and the back surface of the substrate W is set to a negative pressure. Usually, the pressure used when adsorbing the substrate W is 0 Pa or less and −100 Pa or more, preferably −10 Pa or less and −80 Pa or more, and more preferably −20 Pa or less and −50 Pa or more. . In particular, when the pressure is set to −10 Pa or less, the substrate W is not reliably displaced from the work chuck 21 by the movement of the substrate stage 20, and when the pressure is set to −80 Pa or more, the substrate W is surely deformed. Therefore, uneven exposure can be suppressed. Further, when unloading the substrate W, in order to easily separate the substrate W, the space is opened to the atmosphere or positive pressure is introduced from the positive and negative pressure holes 87a,.

ここで、本実施形態では、基板Wを吸着する際、基板Wの撓みを抑制すべく、各吸着領域80a,・・・,80e内の圧力が略一定となるように、各エアーレギュレータ863aV,・・・,863eVを調整して、各吸着領域80a,・・・,80eの吸引力を面積に応じて設定している。即ち、基板Wの向きやサイズに応じて吸引が行われる長方形状の吸着領域80c,80d,80eは、環状の吸着領域80bに比べて吸着面積が小さいので、吸着領域80c,80d,80e内の圧力が大きくなってしまう。このため、長方形状の吸着領域80c,80d,80e内のエアを吸引する吸引力を、環状の吸着領域80b内のエアを吸引する吸引力よりも小さくする。同様に、環状の吸着領域80bより面積が小さい中央の吸着領域80aも、環状の吸着領域80bより圧力が大きくなってしまうので、中央の吸着領域80a内のエアを吸引する吸引力を、環状の吸着領域80b内のエアを吸引する吸引力よりも小さくする。   Here, in this embodiment, when adsorbing the substrate W, each air regulator 863aV, so that the pressure in each adsorption region 80a, ..., 80e becomes substantially constant in order to suppress the bending of the substrate W. .., 863 eV is adjusted, and the suction force of each suction region 80 a,..., 80 e is set according to the area. That is, the rectangular suction regions 80c, 80d, and 80e that are sucked according to the orientation and size of the substrate W have a smaller suction area than the annular suction region 80b, and therefore, the suction regions 80c, 80d, and 80e in the suction regions 80c, 80d, and 80e. Pressure increases. For this reason, the suction force for sucking air in the rectangular suction regions 80c, 80d, and 80e is made smaller than the suction force for sucking air in the annular suction region 80b. Similarly, the central suction region 80a, which has a smaller area than the annular suction region 80b, also has a higher pressure than the annular suction region 80b. Therefore, the suction force for sucking the air in the central suction region 80a is changed to the annular suction region 80b. The suction force is smaller than the suction force for sucking the air in the suction region 80b.

また、基板Wの撓みを小さくするため、基板Wを吸着する際には、内側の中央の吸着領域80aから外側へ徐々に行われる。即ち、中央の吸着領域80aに対して基板Wの中心から離れた側に位置する環状の吸着領域80bは、中央の吸着領域80aの吸着を開始した後に吸着が行われ、また、環状の吸着領域80bに対して基板Wの中心から離れた側に位置する長方形状の吸着領域80c,80d,80eは、環状の吸着領域80bの吸着を開始した後に吸着が行なわれる。   Further, in order to reduce the bending of the substrate W, when the substrate W is sucked, it is gradually performed from the inner central suction region 80a to the outside. That is, the annular adsorption region 80b located on the side away from the center of the substrate W with respect to the central adsorption region 80a is adsorbed after the adsorption of the central adsorption region 80a is started. The rectangular suction regions 80c, 80d, and 80e located on the side away from the center of the substrate W with respect to 80b are sucked after the suction of the annular suction region 80b is started.

さらに、基板Wを露光する時には、正負圧孔87a,・・・,87gによって真空吸引した状態で行われてもよいが、各吸着領域の真空吸引を部分的に又は全体的に解除した状態で行われてもよい。   Further, when the substrate W is exposed, it may be performed in a state of being vacuum-sucked by the positive and negative pressure holes 87a,..., 87g. It may be done.

従って、本実施形態の露光方法によれば、環状の吸着領域80bと、環状の吸着領域80bよりも面積の小さい長方形状の吸着領域80c,80d,80eとを吸着面22に備えた基板ステージ20において、基板ステージ20の吸着面22に基板Wを吸着する際、環状及び長方形状の吸着領域80b,・・・,80e内の圧力が略一定となるように、長方形状の吸着領域80c,80d,80e内のエアを吸引する吸引力を環状の吸着領域80b内のエアを吸引する吸引力よりも小さくするので、基板Wの撓みが抑制され、露光精度を向上することができる。   Therefore, according to the exposure method of the present embodiment, the substrate stage 20 having the suction surface 22 provided with the annular suction region 80b and the rectangular suction regions 80c, 80d, and 80e having a smaller area than the annular suction region 80b. , 80 d of the rectangular suction regions 80 c, 80 d so that the pressure in the annular and rectangular suction regions 80 b,..., 80 e is substantially constant when the substrate W is sucked to the suction surface 22 of the substrate stage 20. , 80e is made smaller than the suction force for sucking the air in the annular suction region 80b, so that the bending of the substrate W can be suppressed and the exposure accuracy can be improved.

また、環状の吸着領域80bよりも面積の小さい中央の吸着領域80aにおいても、基板ステージ20の吸着面22に基板Wを吸着する際、中央及び環状の吸着領域80a,80b内の圧力も略一定となるように、中央の吸着領域80a内のエアを吸引する吸引力を環状の吸着領域80b内のエアを吸引する吸引力よりも小さくするので、基板Wの撓みが抑制され、露光精度を向上することができる。   Further, even in the central suction region 80a having a smaller area than the annular suction region 80b, when the substrate W is sucked onto the suction surface 22 of the substrate stage 20, the pressures in the central and annular suction regions 80a and 80b are substantially constant. Since the suction force for sucking the air in the central suction region 80a is made smaller than the suction force for sucking the air in the annular suction region 80b, the deflection of the substrate W is suppressed and the exposure accuracy is improved. can do.

また、本実施形態の近接露光装置1によれば、正負圧制御装置186は、各吸着領域80a,・・・,80eに接続される正負圧配管路814a,・・・,814eと、圧縮空気源に接続された正圧配管路866a,・・・,866e、又は真空ポンプ861に接続された負圧配管路865a,・・・,865eと、の接続、遮断を行う電磁切替弁867a,・・・,867eと、正負圧配管路814a,・・・,814e内を通過するエアの圧力を調整するエアーレギュレータ863aV,・・・,863eV,863aP,・・・,863ePと、正負圧配管路814a,・・・,814e内を通過するエアの流量を調整するストップバルブ862V,862Pと、を備える。そして、環状の吸着領域80bと、環状の吸着領域80bよりも面積の小さい長方形状の吸着領域80c,80d,80eとを吸着面22に備えた基板ステージ20において、正負圧制御装置186は、基板ステージ20の吸着面22に基板Wを吸着する際、環状及び長方形状の吸着領域80b,・・・,80e内の圧力が略一定となるように、長方形状の吸着領域80c,80d,80e内のエアを吸引する吸引力を環状の吸着領域80b内のエアを吸引する吸引力よりも小さくするように制御するので、基板Wの撓みが抑制され、露光精度を向上することができる。   Further, according to the proximity exposure apparatus 1 of the present embodiment, the positive / negative pressure control device 186 includes the positive / negative pressure pipe lines 814a,..., 814e connected to the suction regions 80a,. Electromagnetic switching valve 867a for connecting and disconnecting with positive pressure piping 866a,..., 866e connected to the source or negative pressure piping 865a,. .., 867e, air regulators 863aV,..., 863eV, 863aP,..., 863eP for adjusting the pressure of air passing through the positive and negative pressure pipes 814a,. 814a,..., 814e, and stop valves 862V and 862P for adjusting the flow rate of air passing through the interior. In the substrate stage 20 provided with the suction surface 22 with the annular suction region 80b and the rectangular suction regions 80c, 80d, and 80e having a smaller area than the annular suction region 80b, the positive / negative pressure control device 186 includes the substrate When adsorbing the substrate W to the adsorption surface 22 of the stage 20, the inside of the rectangular adsorption regions 80c, 80d, 80e so that the pressure in the annular and rectangular adsorption regions 80b, ..., 80e is substantially constant. Since the suction force for sucking the air is controlled to be smaller than the suction force for sucking the air in the annular suction region 80b, the bending of the substrate W is suppressed, and the exposure accuracy can be improved.

図6は、上記実施形態の正負圧制御装置186の変形例を説明するための部分的なブロック図である。即ち、この変形例では、各負圧配管路865a,・・・,865eにエアーレギュレータ863aV,・・・,863eVを設ける代わりに、一方向弁871a,・・・,871eと、圧力制御弁又はスピードコントローラ872a,・・・,872e(図6では、一方向弁871c、圧力制御弁又はスピードコントローラ872cのみ図示)と、を電磁切替弁867a,・・・,867eの出力ポートP3側に接続している。これにより、周辺からエアを排出、吸入して、負圧を調整することができ、エアーレギュレータ863aV,・・・,863eVを設ける場合に比べて、装置を小型化できる。   FIG. 6 is a partial block diagram for explaining a modification of the positive / negative pressure control apparatus 186 of the above embodiment. That is, in this modification, instead of providing the air regulators 863aV,..., 863eV in each negative pressure pipe 865a,..., 865e, one-way valves 871a,. Speed controllers 872a,..., 872e (only one-way valve 871c, pressure control valve or speed controller 872c are shown in FIG. 6) are connected to the output port P3 side of electromagnetic switching valves 867a,. ing. Thus, air can be discharged and sucked from the periphery to adjust the negative pressure, and the apparatus can be downsized compared to the case where the air regulators 863aV,.

なお、本発明は前述した各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。   In addition, this invention is not limited to each embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

上記実施形態の正負圧制御装置186では、圧力制御手段として各エアーレギュレータ863aV,・・・,863eV,863aP,・・・,863ePが用いられているが、これに限らず、リリーフ弁、減圧弁、シーケンス弁、アンロード弁、カウンターバランス弁、バランシング弁等の圧力制御弁を適用することができる。また、方向制御手段としては電磁切替弁867a,・・・,867eが用いられているが、これに限らず、チェック弁、パイロットチェック弁、サーボ弁等の方向制御弁を適用することができる。さらに、流量制御手段としては、ストップバルブ862V,862Pが用いられているが、これに限らず、流量制御弁や絞り弁を適用することができる。   In the positive / negative pressure control device 186 of the above embodiment, the air regulators 863aV,..., 863eV, 863aP,..., 863eP are used as the pressure control means. A pressure control valve such as a sequence valve, an unload valve, a counter balance valve, or a balancing valve can be applied. In addition, although the electromagnetic switching valves 867a,..., 867e are used as the direction control means, the present invention is not limited to this, and direction control valves such as a check valve, a pilot check valve, and a servo valve can be applied. Further, stop valves 862V and 862P are used as the flow rate control means, but not limited to this, a flow rate control valve or a throttle valve can be applied.

例えば、基板ステージ20のワークチャック21の各吸着領域80a,・・・,80eにおいて、各吸着領域80a,・・・,80e内の圧力を圧力センサで検出し、各仕切り壁81a,82aや周縁部83aと基板Wから漏れるエアを圧力センサを用いて感知するようにしてもよい。これにより、その圧力値を制御部896にフィードバックし、制御部896が圧力制御手段、方向制御手段、流量制御手段を制御するようにしてもよい。   For example, in each suction area 80a, ..., 80e of the work chuck 21 of the substrate stage 20, the pressure in each suction area 80a, ..., 80e is detected by a pressure sensor, and each partition wall 81a, 82a or peripheral edge is detected. The air leaking from the part 83a and the substrate W may be detected using a pressure sensor. Thereby, the pressure value may be fed back to the control unit 896, and the control unit 896 may control the pressure control unit, the direction control unit, and the flow rate control unit.

1 近接露光装置
10 マスクステージ
12 マスク保持枠(マスク保持部)
14 チャック部
20 基板ステージ
21 ワークチャック
22 吸着面
80a 中央の吸着領域
80b 環状の吸着領域
80c,80d,80e 長方形状の吸着領域
81a 第1の仕切り壁
82a 第2の仕切り壁
186 正負圧制御装置
814a,・・・,814e 正負圧配管路
862V,862P ストップバルブ(流量制御手段)
863aV,・・・,863eV,863aP,・・・,863eP エアーレギュレータ(圧力制御手段)
865a,・・・,865e 負圧配管路
866a,・・・,866e 正圧配管路
867a,・・・,867e 電磁切替弁(方向制御手段)
M マスク
W ガラス基板(被露光材)
DESCRIPTION OF SYMBOLS 1 Proximity exposure apparatus 10 Mask stage 12 Mask holding frame (mask holding part)
14 chuck part 20 substrate stage 21 work chuck 22 suction surface 80a central suction area 80b annular suction areas 80c, 80d, 80e rectangular suction area 81a first partition wall 82a second partition wall 186 positive / negative pressure control device 814a , 814e Positive / negative pressure piping 862V, 862P Stop valve (flow control means)
863aV, ..., 863eV, 863aP, ..., 863eP Air regulator (pressure control means)
865a, ..., 865e Negative pressure piping 866a, ..., 866e Positive pressure piping 867a, ..., 867e Electromagnetic switching valve (direction control means)
M Mask W Glass substrate (material to be exposed)

Claims (5)

露光すべきパターンを有するマスクを保持するマスク保持部と、被露光材としての基板を吸着して保持する吸着面を有する基板保持部と、前記基板保持部に保持された基板に、露光用光を前記マスクを介して照射する照明光学系と、を備え、前記基板保持部の吸着面には、前記基板の裏面に当接可能な仕切り壁によって仕切られた第1の吸着領域と、前記第1の吸着領域よりも面積の小さい第2の吸着領域と、が少なくとも形成される露光装置によって、前記基板上に前記マスクのパターンを露光転写する露光方法であって、
前記基板保持部の吸着面に前記基板を吸着する際、前記第1及び第2の吸着領域内の圧力が略一定となるように、前記第2の吸着領域内のエアを吸引する吸引力を、前記第1の吸着領域内のエアを吸引する吸引力よりも小さくすることを特徴とする露光方法。
A mask holding unit for holding a mask having a pattern to be exposed, a substrate holding unit having a suction surface for sucking and holding a substrate as an exposed material, and a substrate for holding exposure light on the substrate holding unit. And an illumination optical system that irradiates the substrate holding portion with a first adsorption region partitioned by a partition wall that can come into contact with the back surface of the substrate; An exposure method in which the pattern of the mask is exposed and transferred onto the substrate by an exposure apparatus in which at least a second suction region having a smaller area than the one suction region is formed,
When adsorbing the substrate on the adsorption surface of the substrate holding unit, a suction force for sucking air in the second adsorption region is set so that the pressure in the first and second adsorption regions is substantially constant. An exposure method characterized by making the suction force smaller than the suction force for sucking air in the first suction region.
請求項1に記載の露光方法を用いることを特徴とする基板の製造方法。   A method for manufacturing a substrate, comprising using the exposure method according to claim 1. 露光すべきパターンを有するマスクを保持するマスク保持部と、
被露光材としての基板を吸着して保持する吸着面を有する基板保持部と、
前記基板保持部に保持された基板に、露光用光を前記マスクを介して照射する照明光学系と、
前記各吸着領域内を選択的且つ独立に正、負圧及び大気圧状態にするための正負圧制御装置と、
を備え、前記基板上に前記マスクのパターンを露光転写する露光装置であって、
前記基板保持部の吸着面には、前記基板の裏面に当接可能な仕切り壁によって仕切られた第1の吸着領域と、前記第1の吸着領域よりも面積の小さい第2の吸着領域と、が少なくとも形成され、
前記正負圧制御装置は、
前記各吸着領域に接続される正負圧配管路と、圧縮空気源に接続された正圧配管路、又は負圧発生源に接続された負圧配管路と、の接続、遮断を行う方向制御手段と、
前記正負圧配管路内を通過するエアの圧力を調整する圧力制御手段と、
前記正負圧配管路内を通過するエアの流量を調整する流量制御手段と、
を備え、
前記正負圧制御装置は、前記基板保持部の吸着面に前記基板を吸着する際、前記第1及び第2の吸着領域内の圧力が略一定となるように、前記第2の吸着領域内のエアを吸引する吸引力を、前記第1の吸着領域内のエアを吸引する吸引力よりも小さくするように制御することを特徴とする露光装置。
A mask holding unit for holding a mask having a pattern to be exposed;
A substrate holding part having an adsorption surface for adsorbing and holding a substrate as an exposed material;
An illumination optical system for irradiating the substrate held by the substrate holding unit with exposure light through the mask;
A positive / negative pressure control device for selectively and independently setting the inside of each adsorption region to a positive, negative pressure and atmospheric pressure state;
An exposure apparatus that exposes and transfers the pattern of the mask onto the substrate,
On the suction surface of the substrate holding part, a first suction region partitioned by a partition wall capable of contacting the back surface of the substrate, a second suction region having a smaller area than the first suction region, Is at least formed,
The positive / negative pressure control device includes:
Direction control means for connecting and shutting off the positive and negative pressure pipes connected to the respective adsorption regions and the positive pressure pipe connected to the compressed air source or the negative pressure pipe connected to the negative pressure generating source When,
Pressure control means for adjusting the pressure of air passing through the inside of the positive and negative pressure pipes;
Flow rate control means for adjusting the flow rate of air passing through the inside of the positive and negative pressure pipes;
With
The positive / negative pressure control device is configured to adjust the pressure in the second adsorption region so that the pressure in the first and second adsorption regions is substantially constant when the substrate is adsorbed on the adsorption surface of the substrate holding unit. An exposure apparatus that controls a suction force for sucking air to be smaller than a suction force for sucking air in the first suction region.
前記各吸着領域内の圧力を圧力センサで検出し、該検出された圧力に基づいて前記方向制御手段、前記圧力制御手段、前記流量制御手段の少なくとも一つを制御することを特徴とする請求項3に記載の露光装置。   The pressure in each of the adsorption regions is detected by a pressure sensor, and at least one of the direction control means, the pressure control means, and the flow rate control means is controlled based on the detected pressure. 4. The exposure apparatus according to 3. 前記方向制御手段は電磁切替弁であり、前記圧力制御手段はストップバルブであり、前記流量制御手段はエアーレギュレータであることを特徴とする請求項3に記載の露光装置。   4. The exposure apparatus according to claim 3, wherein the direction control means is an electromagnetic switching valve, the pressure control means is a stop valve, and the flow rate control means is an air regulator.
JP2011032258A 2010-02-18 2011-02-17 Exposure method, method for manufacturing substrate, and exposure apparatus Pending JP2011191755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032258A JP2011191755A (en) 2010-02-18 2011-02-17 Exposure method, method for manufacturing substrate, and exposure apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010033384 2010-02-18
JP2010033384 2010-02-18
JP2011032258A JP2011191755A (en) 2010-02-18 2011-02-17 Exposure method, method for manufacturing substrate, and exposure apparatus

Publications (1)

Publication Number Publication Date
JP2011191755A true JP2011191755A (en) 2011-09-29

Family

ID=44796675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032258A Pending JP2011191755A (en) 2010-02-18 2011-02-17 Exposure method, method for manufacturing substrate, and exposure apparatus

Country Status (1)

Country Link
JP (1) JP2011191755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021008010A (en) * 2019-07-02 2021-01-28 凸版印刷株式会社 Substrate cutting apparatus
JP7495819B2 (en) 2020-06-05 2024-06-05 キヤノン株式会社 Holding device, lithographic apparatus and method for manufacturing an article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04186818A (en) * 1990-11-21 1992-07-03 Canon Inc Substrate holding device for x-ray aligner
JPH06232023A (en) * 1993-02-03 1994-08-19 Nikon Corp Substrate holder
JP2006235018A (en) * 2005-02-23 2006-09-07 Hitachi High-Technologies Corp Exposure device, exposure method, and manufacturing method of panel substrate for display
JP2007148462A (en) * 2007-03-19 2007-06-14 Nsk Ltd Workpiece chuck and its controlling method
JP2008311575A (en) * 2007-06-18 2008-12-25 Nsk Ltd Substrate transfer mechanism for exposure device, and control method thereof
JP2009212345A (en) * 2008-03-05 2009-09-17 Nsk Ltd Work chuck, aligner, and process for producing flat panel
JP2009258197A (en) * 2008-04-14 2009-11-05 Hitachi High-Technologies Corp Proximity exposure device, substrate sucking method of proximity exposure device, and method for manufacturing display panel substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04186818A (en) * 1990-11-21 1992-07-03 Canon Inc Substrate holding device for x-ray aligner
JPH06232023A (en) * 1993-02-03 1994-08-19 Nikon Corp Substrate holder
JP2006235018A (en) * 2005-02-23 2006-09-07 Hitachi High-Technologies Corp Exposure device, exposure method, and manufacturing method of panel substrate for display
JP2007148462A (en) * 2007-03-19 2007-06-14 Nsk Ltd Workpiece chuck and its controlling method
JP2008311575A (en) * 2007-06-18 2008-12-25 Nsk Ltd Substrate transfer mechanism for exposure device, and control method thereof
JP2009212345A (en) * 2008-03-05 2009-09-17 Nsk Ltd Work chuck, aligner, and process for producing flat panel
JP2009258197A (en) * 2008-04-14 2009-11-05 Hitachi High-Technologies Corp Proximity exposure device, substrate sucking method of proximity exposure device, and method for manufacturing display panel substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021008010A (en) * 2019-07-02 2021-01-28 凸版印刷株式会社 Substrate cutting apparatus
JP7383220B2 (en) 2019-07-02 2023-11-20 Toppanホールディングス株式会社 Board cutting device
JP7495819B2 (en) 2020-06-05 2024-06-05 キヤノン株式会社 Holding device, lithographic apparatus and method for manufacturing an article

Similar Documents

Publication Publication Date Title
KR102169388B1 (en) Suction apparatus, carry-in method, conveyance system, light exposure device, and device production method
JP2008072139A (en) Lithographic apparatus, and device manufacturing method
JPWO2011158760A1 (en) Exposure equipment
JP2009182339A (en) Lithographic apparatus, reticle exchange unit, and device manufacturing method
JP4942625B2 (en) Proximity exposure apparatus and proximity exposure method
JP5335840B2 (en) Exposure equipment
TW201723668A (en) A lithography apparatus, a method of manufacturing a device and a control program
JP2011164595A (en) Proximity exposing device and proximity exposure method
JP2011191755A (en) Exposure method, method for manufacturing substrate, and exposure apparatus
TWI377448B (en) Lithographic apparatus and device manufacturing method
JP5517171B2 (en) Exposure unit and substrate exposure method
JP2004177468A (en) Exposure apparatus
TWI810279B (en) Method, measuring system and lithography apparatus
TWI713576B (en) Mask holding device, exposure apparatus, manufacturing method of flat panel display, device manufacturing method, holding method of mask, and exposure method
JP2008026475A (en) Exposure apparatus
JP2007214336A (en) Retaining device, manufacturing method therefor retaining method, stage device, and exposure device
JP2007322806A (en) Substrate holding mechanism of exposure device
TWI813768B (en) Process tools for processing production substrates, methods for inspecting said process tools, and inspection substrate
JP2009212345A (en) Work chuck, aligner, and process for producing flat panel
JP2009212344A (en) Work chuck, aligner, and process for producing flat panel
JP5214818B2 (en) Work chuck, work holding method and exposure apparatus
JP2007248636A (en) Mirror fixing structure of position measuring device
JP2009198641A (en) Work chuck, work holding method and exposure apparatus
US20090274537A1 (en) Suspension apparatus and exposure apparatus
TWI391792B (en) Extreme ultra-violet lithographic apparatus and device manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110815

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150210