図1は本発明の一実施形態に係わる撮像装置の構成を示す図であり、複数の撮影レンズを交換可能なカメラとその撮影レンズとからなるカメラシステムの構成を示すブロック図である。図1において、本実施形態のカメラシステムはカメラ100とカメラ100に交換可能に装着される撮影レンズ300とを備えて構成されている。まずはじめに、カメラ100側について説明する。
本実施形態におけるカメラ100は、複数種類の撮影レンズ300が存在するカメラシステムに対応しており、同一種類のレンズでも製造番号が異なるものが装着可能である。さらには焦点距離や開放Fナンバーが異なる、もしくはズーム機能を備えるなどの撮影レンズ300も装着可能で、同種、異種の撮影レンズに関わらず交換可能な構成となっている。
このカメラ100において、撮影レンズ300を通過した光束は、カメラマウント106を通過し、メインミラー130により上方へ反射され光学ファインダ104に入射する。光学ファインダ104は、撮影者が被写体を光学像として観察しながら撮影することが出来る。そして、光学ファインダ104内には、表示部54の一部の機能、例えば、合焦表示、手振れ警告表示、フラッシュ充電表示、シャッタースピード表示、絞り値表示、露出補正表示等が設置されている。
メインミラー130は半透過性のハーフミラーで構成され、メインミラー130に入射する光束のうち一部の光束はこのハーフミラー部を通過して、サブミラー131により下方へ反射され焦点検出装置105へ入射する。焦点検出装置105は周知の2次結像光学系からなる位相差方式AF(オートフォーカス)を採用しており、焦点検出装置105で得られた光学像を電気信号に変換しAF部42へ送る。
AF部42では、この電気信号から焦点検出演算を行い、得られた演算結果に基づいてシステム制御回路50が、後述する撮影レンズ300側のフォーカス制御部342に対して、焦点調節処理などの制御を行う。
一方、撮影レンズ300の焦点調節処理が終了し静止画撮影、電子ファインダ表示、動画撮影を行う場合には、不図示のクイックリターン機構によりメインミラー130とサブミラー131が撮影光束外に退避する。そして、撮影レンズ300を通過した光束は露光量を制御するためのシャッター12を介して、光学像を電気信号に変換する撮像素子14に入射する。撮像素子14は、撮影レンズ300の予定結像面近傍に配置されている。そして、これらの撮影動作終了後には、メインミラー130とサブミラー131は図示されるような位置に戻る。
撮像素子14により変換された電気信号はA/D変換器16へ送られ、アナログ信号出力がデジタル信号(画像データ)に変換される。18は撮像素子14、A/D変換器16、D/A変換器26にクロック信号や制御信号を供給するタイミング発生回路であり、メモリ制御回路22およびシステム制御回路50により制御される。
画像処理回路20は、A/D変換器16からの画像データあるいはメモリ制御回路22からの画像データに対して所定の画素補間処理や色変換処理を行う。また、画像処理回路20は、画像データを用いて所定の演算処理を行う。
撮像素子14は、焦点検出手段の一部を有し、不図示のクイックリターン機構によりメインミラー130とサブミラー131が撮影光束外に退避した状態においても位相差方式AFを行うことが可能である。得られた画像データのうち焦点検出に対応する画像データは、画像処理部20で焦点検出用画像データに変換される。その後、システム制御部50を介してAF部42へ送られ、焦点調節手段により撮影レンズ300の焦点合わせを行う。
なお、画像処理回路20により撮像素子14の画像データを演算した演算結果に基づき、システム制御回路50が、撮影レンズ300のフォーカス制御部342に対して焦点合わせを行わせる、いわゆるコントラスト方式AFも可能な構成となっている。
そして、電子ファインダ表示や動画撮影においては、不図示のクイックリターン機構によりメインミラー130とサブミラー131が撮影光束外に退避するが、撮像素子14による位相差方式AFとコントラスト方式AFの両者が可能となっている。特に、位相差方式AFが可能となっているため高速な焦点合わせが可能となっている。
このように、本実施形態のカメラ100は、メインミラー130とサブミラー131が撮影光束内にある通常の静止画撮影の準備状態では、焦点検出装置105による位相差方式AFを用う。また、メインミラー130とサブミラー131が撮影光束外へ退避する電子ファインダ表示中や動画撮影時においては、撮像素子14による位相差方式AFとコントランスト方式AFを用いる構成としている。したがって、静止画撮影、電子ファインダ表示、動画撮影のどの状態においても焦点検出が可能となっている。
メモリ制御回路22は、A/D変換器16、タイミング発生回路18、画像処理回路20、画像表示メモリ24、D/A変換器26、メモリ30、圧縮伸長回路32を制御する。そして、A/D変換器16のデータが画像処理回路20、メモリ制御回路22を介して、あるいはA/D変換器16のデータが直接メモリ制御回路22を介して、画像表示メモリ24あるいはメモリ30に書き込まれる。
画像表示部28は液晶モニタ等から構成され、画像表示メモリ24に書き込まれた表示用の画像データを、D/A変換器26を介して表示する。画像表示部28を用いて撮像した画像データを逐次表示することで、電子ファインダ機能を実現することが可能となっている。また、画像表示部28は、システム制御回路50の指示により任意に表示をON/OFFすることが可能であり、表示をOFFにした場合にはカメラ100の電力消費を大幅に低減することが出来る。
以上のように、電子ファインダ表示中や動画撮影時には、不図示のクイックリターン機構により主ミラー130とサブミラー131は撮影光束外へ退避する。したがって、このときには焦点検出装置105による焦点検出は使用できない。そこで、本実施形態のカメラ100は、撮像素子14が有する焦点検出手段により位相差方式AFを行う構成としている。そのため、光学ファインダと電子ファインダの両者において撮影レンズ300の焦点検出が可能となっている。なお、電子ファインダ表示中や動画撮影時においては、コントラスト方式の焦点検出が可能であることは言うまでもない。
メモリ30は撮影した静止画像や動画像を記憶するためのものであり、所定枚数の静止画像や所定時間の動画像を記憶するのに十分な記憶容量を備えている。これにより、複数枚の静止画像を連続して撮影する連射撮影やパノラマ撮影の場合にも、高速かつ大量の画像書き込みをメモリ30に対して行うことが可能となる。また、メモリ30はシステム制御回路50の作業領域としても使用することが可能である。
圧縮伸長回路32は、適応離散コサイン変換(ADCT)等により画像データを圧縮伸長する機能を有し、メモリ30に記憶された画像を読み込んで圧縮処理あるいは伸長処理を行い、処理を終えた画像データをメモリ30に書き込む。
シャッター制御部36は、測光部46からの測光情報に基づいて、撮影レンズ300側の絞り312を制御する絞り制御部344と連携しながら、シャッター12を制御する。
インターフェース部38とコネクタ122は、カメラ100と撮影レンズ300とを電気的に接続する。そしてこれらは、カメラ100と撮影レンズ300との間で制御信号、状態信号、データ信号等を伝え合うと共に、各種電圧の電流を供給する機能も備えている。また、電気通信のみならず、光通信、音声通信等を伝達する構成としてもよい。
測光部46は、AE処理を行う。撮影レンズ300を通過した光束を、カメラマウント106、主ミラー130、そして不図示の測光用レンズを介して、測光部46に入射させることにより、画像の露出状態を測定することが出来る。また、測光部46は、フラッシュ48と連携することによりEF処理機能も有するものである。なお、画像処理回路20により撮像素子14の画像データを演算した演算結果に基づき、システム制御回路50が、シャッター制御部36と撮影レンズ300の絞り制御部344に対してAE制御を行うことも可能である。
フラッシュ48は、AF補助光の投光機能、フラッシュ調光機能も有する。システム制御回路50はカメラ100の全体を制御し、メモリ52はシステム制御回路50の動作用の定数、変数、プログラム等を記憶する。
表示部54はシステム制御回路50でのプログラムの実行に応じて、文字、画像、音声等を用いて動作状態やメッセージ等を表示する液晶表示装置である。表示部54は、カメラ100の操作部近辺の視認し易い位置に単数あるいは複数個所設置され、例えばLCDやLED等の組み合わせにより構成されている。
表示部54の表示内容のうち、LCD等に表示するものとしては、記録枚数や残撮影可能枚数等の撮影枚数に関する情報や、シャッタースピード、絞り値、露出補正、フラッシュ等の撮影条件に関する情報等がある。その他、電池残量や日付・時刻等も表示される。また、表示部54は、前述したようにその一部の機能が光学ファインダ104内に設置されている。不揮発性メモリ56は、電気的に消去・記録可能なメモリであり、例えばEEPROM等が用いられる。
60、62、64、66、68および70は、システム制御回路50の各種の動作指示を入力するための操作部であり、スイッチやダイアル、タッチパネル、視線検知によるポインティング、音声認識装置等の単数あるいは複数の組み合わせで構成される。
モードダイアルスイッチ60は、電源オフ、オート撮影モード、マニュアル撮影モード、パノラマ撮影モード、マクロ撮影モード、再生モード、マルチ画面再生・消去モード、PC接続モード等の各機能モードを切り替え設定することが出来る。
シャッタースイッチSW1である62は、不図示のシャッターボタンが半押しされるとONとなり、AF処理、AE処理、AWB処理、EF処理等の動作開始を指示する。シャッタースイッチSW2である64は、不図示のシャッターボタンが全押しされるとONとなり、撮影に関する一連の処理の動作開始を指示する。撮影に関する処理とは、露光処理、現像処理および記録処理等のことである。露光処理では、撮像素子14から読み出した信号をA/D変換器16、メモリ制御回路22を介してメモリ30に書き込む。現像処理では、画像処理回路20やメモリ制御回路22での演算を用いた現像を行う。記録処理では、メモリ30から画像データを読み出し、圧縮・伸長回路32で圧縮を行い、記録媒体200あるいは210に書き込む。
画像表示ON/OFFスイッチ66は、画像表示部28のON/OFFを設定することが出来る。この機能により、光学ファインダ104を用いて撮影を行う際に、液晶モニタ等から成る画像表示部への電流供給を遮断することにより、省電力を図ることが可能となる。
クイックレビューON/OFFスイッチ68は、撮影直後に撮影した画像データを自動再生するクイックレビュー機能を設定する。操作部70は、各種ボタンやタッチパネル等からなる。各種ボタンには、メニューボタン、フラッシュ設定ボタン、単写/連写/セルフタイマー切り替えボタン、選択移動ボタン、撮影画質選択ボタン、露出補正ボタン、日付/時間設定ボタン等がある。
電源制御部80は、電池検出回路、DC/DCコンバータ、通電するブロックを切り替えるスイッチ回路等により構成されている。電池の装着の有無、電池の種類、電池残量の検出を行い、検出結果およびシステム制御回路50の指示に基づいてDC/DCコンバータを制御し、必要な電圧を必要な期間、記録媒体を含む各部へ供給する。
コネクタ82および84は、アルカリ電池やリチウム電池等の一次電池やNiCd電池やNiMH電池、Liイオン電池等の二次電池、ACアダプタ等からなる電源部86をカメラ100と接続する。
インターフェース90および94は、メモリカードやハードディスク等の記録媒体との接続機能を有し、コネクタ92および96は、メモリカードやハードディスク等の記録媒体と物理的接続を行う。そして、記録媒体着脱検知部98は、コネクタ92または96に記録媒体が装着されているかどうかを検知する。
なお、本実施形態では記録媒体を取り付けるインターフェースおよびコネクタを2系統持つものとして説明している。もちろん、記録媒体を取り付けるインターフェースおよびコネクタは、単数あるいは複数、いずれの系統数を備える構成としても構わない。また、異なる規格のインターフェースおよびコネクタを組み合わせて備える構成としても構わない。また、インターフェースおよびコネクタとしては、PCMCIAカードやCF(コンパクトフラッシュ(登録商標))カード、SDカード等の規格に準拠したものを用いて構成して構わない。
さらに、インターフェースおよびコネクタにLANカードやモデムカード等の各種通信カードを接続することで、コンピュータやプリンタ等の他の周辺機器との間で画像データや画像データに付属した管理情報を転送し合うことが出来る。
通信部110は、RS232C、USB、IEEE1394、P1284、SCSI、モデム、LAN、無線通信等の各種通信機能を有する。コネクタ112は、通信部110によりカメラ100を他の機器と接続し、無線通信の場合はアンテナである。
記録媒体200および210は、メモリカードやハードディスク等である。記録媒体200および210は、半導体メモリや磁気ディスク等から構成される記録部202,212、カメラ100とのインターフェース204,214、カメラ100と接続を行うコネクタ206,216を備えている。
次に撮影レンズ300側について説明する。撮影レンズ300は、カメラ100に着脱可能に構成される。レンズマウント306は、撮影レンズ300をカメラ100と機械的に結合し、カメラマウント106を介してカメラ100に交換可能に取り付けられる。カメラマウント106およびレンズマウント306内には、撮影レンズ300をカメラ100と電気的に接続するコネクタ122およびコネクタ322の機能が含まれている。レンズ311には被写体の焦点合わせを行うフォーカスレンズが含まれ、絞り312は撮影光束の光量を制御する絞りである。
コネクタ322およびインターフェース338は、撮影レンズ300をカメラ100のコネクタ122と電気的に接続する。そして、コネクタ322は、カメラ100と撮影レンズ300との間で制御信号、状態信号、データ信号等を伝え合うと共に、各種電圧の電流を供給される機能も備えている。なお、コネクタ322は電気通信のみならず、光通信、音声通信等を伝達する構成としてもよい。
ズーム制御部340はレンズ311のズーミングを制御し、フォーカス制御部342はレンズ311のフォーカスレンズの動作を制御する。なお、撮影レンズ300がズーム機能のない単焦点レンズタイプであればズーム制御部340はなくてもよい。
絞り制御部344は、測光部46からの測光情報に基づいて、シャッター12を制御するシャッター制御部36と連携しながら、絞り312を制御する。レンズシステム制御部346は撮影レンズ300全体を制御する。そして、レンズシステム制御部346は、撮影レンズ動作用の定数、変数、プログラム等を記憶するメモリの機能を備えている。
不揮発性メモリ348は、撮影レンズ固有の番号等の識別情報、管理情報、開放絞り値や最小絞り値、焦点距離等の機能情報、現在や過去の各設定値などを記憶する。そして本実施形態においては、撮影レンズ300の状態に応じた焦点検出補正値も記憶されている。
この焦点検出補正値は、レンズ311のフォーカス位置やズーム位置に対応して複数用意されている。そして、カメラ100が、焦点検出手段を用いて焦点検出を行う際には、レンズ311のフォーカス位置とズーム位置に対応した最適な焦点検出補正値が選択される構成となっている。
なお、撮影レンズ300の撮影光束と焦点検出手段による焦点検出光束は瞳領域が異なるため、撮影光束の最良像面位置と焦点検出光束の最良像面位置は互いにずれる。上記焦点検出補正値は、これを補正するためのものである。したがって、焦点距離や開放Fナンバー、フォーカス、ズームなどが異なる、すなわち光学構成が異なる別の種類の撮影レンズにおいては、異なる焦点検出補正値を有することとなる。また、同種の撮影レンズでも製造番号が異なる場合、製造誤差を考慮して焦点検出補正値が異なる場合もある。
以上が、本実施形態におけるカメラ100と撮影レンズ300からなるカメラシステムの構成である。
次に、撮像素子14からなる本実施形態の焦点検出手段について説明する。本実施形態の焦点検出手段は焦点検出装置105と同様に位相差方式AFを採用しており、その構成について説明する。
図2は、図1のカメラシステムブロック図における撮像素子14のうち被写体像が形成される受光画素を撮影レンズ300側からみた平面図である。400は撮像素子14上に横方向m画素、縦方向n画素で形成される画素全体からなる撮影範囲で、401はそのうちの1つの画素部を示す。そして各画素部にはオンチップでベイヤー配列の原色カラーフィルタが形成され、2行×2列の4画素周期で並んでいる。なお、図2においては煩雑さをなくすため画素部としては左上側の10画素×10画素のみを表示し、その他の画素部は省略している。
図3、図4は、図2における画素部のうち撮像用画素と焦点検出用画素の構造を説明する図で、図1におけるレンズ311と撮像素子14を光学ファインダ104側からみた光学断面図である。なお、説明に不要な部材については省略してある。本実施形態では、2行×2列の4画素のうち、対角2画素にG(緑色)の分光感度を有する画素を配置し、他の2画素にR(赤色)とB(青色)の分光感度を有する画素を各1個配置した、ベイヤー配列が採用されている。そして、このベイヤー配列の間に、後述する構造の焦点検出用画素が配置される。
図3に撮像用画素の配置と構造を示す。図3(a)は2行×2列の撮像用画素の平面図である。周知のように、ベイヤー配列では対角方向にG画素が、他の2画素にRとBの画素が配置される。そして2行×2列の構造が繰り返し配置される。撮像用画素は撮影レンズ300の全瞳領域を通過した光束を受光する。
図3(a)におけるA−A断面図を図3(b)に示す。MLは各画素の最前面に配置されたオンチップマイクロレンズ、CFRはR(赤色)のカラーフィルタ、CFGはG(緑色)のカラーフィルタである。PD(Photo Diode)はCMOSイメージセンサの光電変換素子を模式的に示したものである。CL(Contact Layer)は、CMOSイメージセンサ内の各種信号を伝達する信号線を形成するための配線層である。そして、図3は撮像素子14のうち中心付近の画素、すなわち撮影レンズ300の軸上付近の画素構造を示す図である。
ここで、撮像用画素のオンチップマイクロレンズMLと光電変換素子PDは、撮影レンズ300を通過した光束を可能な限り有効に取り込むように構成されている。換言すると、撮影レンズ300の射出瞳(Exit Pupil)と光電変換素子PDは、マイクロレンズMLにより共役関係にあり、かつ光電変換素子の有効面積は大面積に設計される。図3における光束410はその様子を示し、射出瞳411の全領域が光電変換素子PDに取り込まれている。なお、前述したように本実施形態では撮影レンズ300の射出瞳位置を絞り312としているので、射出瞳411は絞り312の開口部に相当する。図3(b)ではR画素の入射光束について説明したが、G画素及びB(青色)画素も同一の構造となっている。また、マイクロレンズMLまわりの部材は説明を理解しやすくするために拡大して表示してあるが、実際はミクロンオーダーの形状である。
図4は、撮影レンズ300の水平方向(横方向)に瞳分割を行なうための焦点検出用画素の配置と構造を示す。ここで水平方向とは、図2で示す撮像素子14の長手方向を示す。図4(a)は、焦点検出用画素を含む2行×2列の画素の平面図である。記録又は観賞のための画像信号を得る場合、G画素で輝度情報の主成分を取得する。そして人間の画像認識特性は輝度情報に敏感であるため、G画素が欠損すると画質劣化が認知されやすい。一方でR画素又はB画素は、色情報(色差情報)を取得する画素であるが、人間の視覚特性は色情報には鈍感であるため、色情報を取得する画素は多少の欠損が生じても画質劣化は認識され難い。そこで本実施形態においては、2行×2列の画素のうち、G画素は撮像用画素として残し、R画素とB画素を焦点検出用画素に置き換える。この焦点検出用画素を図4(a)においてSHA及びSHBと示す。
図4(a)におけるA−A断面図を図4(b)に示す。マイクロレンズMLと、光電変換素子PDは図3(b)に示した撮像用画素と同一構造である。そして、撮像素子14のうち中心付近の画素、すなわち撮影レンズ300の軸上付近の画素構造を示す図である。
本実施形態においては、焦点検出用画素の信号は画像生成には用いないため、色分離用カラーフィルタの代わりに透明膜CFW(白色)が配置される。また、撮像素子で射出瞳411を分割するため、配線層CLの開口部はマイクロレンズMLの中心線に対して一方向に偏心している。具体的には、画素SHAの開口部OPHAはマイクロレンズMLの中心線に対して右側に421HAだけ偏心しているため、レンズ311の光軸Lを挟んで左側の射出瞳領域422HAを通過した光束420HAを受光する。同様に、画素SHBの開口部OPHBはマイクロレンズMLの中心線に対して左側に421HBだけ偏心しているため、レンズ311の光軸Lを挟んで右側の射出瞳領域422HBを通過した光束420HBを受光する。そして、図4から明らかなように、偏心量421HAは偏心量421HBに等しい。このように、マイクロレンズMLと開口部OPの偏心により撮影レンズ300の異なる瞳領域を通過する光束420を取り出すことが可能となっている。
以上のような構成で、画素SHAを水平方向に複数配列し、これらの画素群で取得した被写体像をA像とする。また、画素SHBも水平方向に配列し、これらの画素群で取得した被写体像をB像とする。そして、A像とB像の相対位置を検出することで、被写体像のピントずれ量(デフォーカス量)が検出できる。したがって、撮像素子14は第2の焦点検出手段としての機能を備えることとなり、同時に第2の瞳分割手段をも備えている。
なお、図4は撮像素子14の中央付近の焦点検出用画素についての説明であるが、中央以外では、マイクロレンズMLと配線層CLの開口部OPHA、OPHBを図4(b)とは異なる状態で偏心させることにより射出瞳411を分割することができる。具体的には、開口部OPHAの方を例にとって説明すると、開口部OPHAの中心と射出瞳領域411の中心を結ぶ線上に略球状でできたマイクロレンズMLの球芯を合わせるよう偏心させることにより撮像素子14の周辺部においても図4で示した中央付近の焦点検出用画素とほぼ同等の瞳分割を行うことができる。なお、詳細な説明は省略する。
ところで、上記画素SHA及びSHBでは、撮影画面の横方向に輝度分布を有した被写体、例えば縦線に対しては焦点検出可能だが、縦方向に輝度分布を有する横線は焦点検出不能である。そのためには、撮影レンズの垂直方向(縦方向)にも瞳分割を行なう画素も備えるよう構成すればよい。本実施形態では、縦横両方向に焦点検出用の画素構造を備える構成としている。
また、上記焦点検出用画素は本来の色情報を有さないため、撮影画像形成にあたっては周辺部の画素信号から補間演算することによって信号を作成する。したがって、撮像素子14に焦点検出用画素を連続的に並べるのではなく離散的に並べることで撮影画像の画質を低減させることもない。
以上図2、図3、図4で説明したように、撮像素子14は撮像のみの機能だけではなく焦点検出手段としての機能も有している。また、焦点検出方法としては、射出瞳411を分割した光束を受光する焦点検出用画素を備えているため、位相差方式AFを行うことが可能となっている。
図5は、撮像素子14と画像処理部20における焦点検出構成を概略的に示す図である。なお図1のカメラシステムブロック図の説明では、撮像素子14で得られた画像データはA/D変換器16を介して画像処理部20へ送られたが、図5では分かりやすく説明するためにA/D変換器16を省略してある。
撮像素子14は、瞳分割された焦点検出用画素901aと901bとで構成される焦点検出部901を複数有する。なお、焦点検出部901は図4(a)に相当し、焦点検出用画素901aが画素SHAに、焦点検出用画素901bが画素SHBにそれぞれ対応する。また、撮像素子14は撮影レンズで結像された被写体像を光電変換するための撮像用画素を複数含む。
画像処理部20は、合成部902と、連結部903とを含む。また、画像処理部20は複数の焦点検出部901を含むように、撮像素子14の撮像面にセクション(領域)CSTを複数割り当てる。そして、画像処理部20はセクションCSTの大きさ、配置、数等を適宜変更することができる。合成部902は、撮像素子14に割り当てられた複数のセクションCSTの各々において、焦点検出用画素901aからの出力信号を合成して1画素の第1の合成信号を得る処理を行う。合成部902はまた、各セクションCSTにおいて、焦点検出用画素901bからの出力信号を合成して1画素の第2の合成信号を得る処理を行う。連結部903は、複数のセクションCSTにおいて、第1の合成信号である各画素を連結して第1の連結信号を得る処理と、第2の合成信号を連結して第2の連結信号を得る処理とを行う。このように、焦点検出用画素901a及び901bのそれぞれに対して、セクション数の画素が連結された連結信号が得られる。AF部42内の演算部904は、第1の連結信号及び第2の連結信号に基づいて、撮影レンズ300の焦点ずれ量を演算する。このように、セクション内に配置された同一の瞳分割方向における焦点検出用画素の出力信号を合成するため、焦点検出部の1つ1つの輝度は小さい場合であっても、被写体の輝度分布を十分に検出することが可能となる。
図6は、図5の焦点検出部901、合成部902、連結部903により形成され、AF部42へ送られる対の焦点検出用信号を示す。図6において、横軸は連結された信号の画素並び方向を示し、縦軸は信号の強度である。焦点検出用信号430aは焦点検出用画素901aで、焦点検出用信号430bは焦点検出用画素901bでそれぞれ形成される信号である。そして、撮影レンズ300が撮像素子14に対してデフォーカスした状態であるため、焦点検出用信号430aは左側に、焦点検出用信号430bは右側にずれた状態となっている。
この焦点検出用信号430a、430bのずれ量をAF部42では周知の相関演算などによって算出することにより、撮影レンズ100がどれだけデフォーカスしているかを知ることができるため、焦点調節手段による焦点合わせを行うことが可能となる。
図7は、撮影範囲内における焦点検出領域を示す図で、この焦点検出領域内で撮像素子14による位相差方式AFが行われる。図7において、点線で示す長方形217は撮影素子14の画素が形成された撮影範囲を示す。撮影範囲内にはそれぞれ3つの縦横方向の焦点検出領域218ah、218bh、218ch、218av、218bv、218cvが形成されている。そして、縦横の焦点検出領域は互いに交わるように配置され、いわゆるクロス型の焦点検出領域となっている。本実施形態ではクロス型の焦点検出領域を図のように撮影範囲217の中央部と左右2箇所の計3箇所に備える構成とした。
以上のような構成で、本実施形態では撮像素子14により位相差方式AFを実現している。しかしながら、位相差方式AFでは撮影レンズ300の射出瞳411を通過する光束のうち異なる2つの領域を通過する光束を用いて焦点検出を行うため、撮影光束と焦点検出光束は異なる。そうすると撮影光束と焦点検出光束で撮影レンズの最良像面位置に差が出てしまうため、この差を補正する焦点検出補正値が必要となる。以下詳細を説明する。
図8は、図1のカメラシステムブロック図におけるレンズ311と撮像素子14を光学ファインダ104側からみた光学断面図で、撮像素子14の中央に結像する撮影光束と撮像素子14による位相差方式AFの焦点検出光束を示す図である。なお、レンズ311と撮像素子14以外の説明に不要な部材については省略してある。
図8において、点線で示す光束401は、撮影レンズ300のレンズ311と絞り312を通過し撮像素子14の受光面の中央付近に結像する撮影光束である。一方、図中斜線部で示す対の光束440a、440bは、図5の焦点検出用画素901aと901bでそれぞれ受光される焦点検出光束のうち、撮像素子14の受光面の中央付近に結像する焦点検出光束である。
ここで、焦点検出光束440a、440bと撮影光束401の最良像面位置(合焦位置)は、光束が異なるためにずれが生じる。図8は焦点検出手段により撮影レンズ300の焦点調節を行った場合を示し、この場合、撮影光束401の最良像面位置は撮像素子14に対して前ピン側となっている。このような撮影光束と焦点検出光束の最良像面位置のずれは、撮影レンズ300の球面収差などの諸収差に起因して生じる。図中のBPは、このずれ量を示し、焦点検出手段で撮影レンズ300の焦点調節を行っても、このままではBPのピントずれが発生してしまう。そこで、あらかじめBPを焦点検出補正値として用意しておき、焦点検出結果に加味することで、この問題を解決する。
図9(A)、(B)、(C)は、撮影レンズ300内の不揮発性メモリ348に格納されている撮像素子14による位相差方式AFの焦点検出補正値を示す。図9(A)は図7の焦点検出領域218ah、218avに対応した焦点検出補正値を、図9(B)は図7の焦点検出領域218bh、218chに対応した焦点検出補正値を、図9(C)は図7の焦点検出領域218bv、218cvに対応した焦点検出補正値を示す。なお、焦点検出領域218ahと218av、焦点検出領域218bhと218ch、焦点検出領域218bvと218cvは、それぞれ光学的に光軸Lを中心として軸対称な構成となっているため、設計上の最良像面位置のずれは同じとなる。したがって、6つの焦点検出領域に対して3つの焦点検出補正値で共用する構成となっている。
図9(A)において、本実施形態では撮影レンズ300のズーム位置とフォーカス位置を8つのゾーンに分割し、その分割ゾーンごとに焦点検出補正値BP111〜BP188を備える構成としている。したがって、撮影レンズ300のズーム位置やフォーカス位置に応じてより高精度な補正ができる構成となっている。なお、図9(B)、(C)についても同様である。
しかしながら、焦点検出補正値は離散的なデータとなっているため、分割ゾーンが切り替わる際にこの焦点検出補正値の切り替わりの差が大きいと不自然な焦点合わせの動きとなってしまう。従来、静止画を撮影する場合においては、切り替わりの差が大きくても構成上問題とならなかった。しかしながら、電子ファインダ表示中や動画撮影中には、リアルタイムで撮影画像を表示および撮影しているため、この不自然な動きが顕著に表れてしまう。そこで、本実施形態では、焦点検出補正値の切り替わりを前もって検出する切り替わり検知手段により、電子ファインダ表示中や動画撮影中に焦点検出補正値の切り替わりが検知された場合には、切り替わり前の焦点検出補正値から切り替わり後の焦点検出補正値へ向けて焦点検出補正値を連続的に変化させるための追加補正値を算出する追加補正値算出手段を備える構成としている。以下詳細を説明する。
図10(A)は、移動被写体を撮影画面中央の焦点検出領域218ahと218avで所定時間追従した際の様子を示す図である。図10(A)において、横軸は時間、縦軸は焦点検出量を示しており、直線450は、焦点検出結果を上記縦軸、横軸のグラフに示したものである。そして、時間が経過するにつれて焦点検出量も変化しており、被写体はほぼ等速で移動しているため、450は直線となっている。
図10(B)は、図10(A)の横軸を撮影レンズ300のフォーカス位置に変更した図である。直線451は、図10(A)の場合と同じように、焦点検出量の変化に伴いフォーカス位置が変動していることを示している。ここで、フォーカス位置は図に示すように3つの範囲452、453、454に分割されており、それぞれの範囲は、図9(A)のズーム位置が1、フォーカス位置が1〜3の場合に対応しているものとする。すなわち範囲452がフォーカス位置1に、範囲453がフォーカス位置2に、範囲454がフォーカス位置3にそれぞれ対応している。
図10(C)は、焦点検出補正量とフォーカス位置の関係を示す図である。図10(B)と同様に、矢印で示す範囲452、453、454は、それぞれ図9(A)のフォーカス位置1、2、3に対応している。そして、そのときの焦点検出補正値は、それぞれBP111、BP121、BP131となり、階段状に変化しているのがわかる。図中一点鎖線で示す曲線455は、フォーカス位置変動による理想的な焦点検出補正値を示し、滑らかな曲線となっている。そして、この曲線454を離散的な焦点検出補正値BP111、BP121、BP131で近似している。
図10(D)は、図10(B)の焦点検出量に図10(C)の焦点検出補正量を加えたフォーカス制御部342によるレンズ駆動量を示す図である。図10(B)と同様に、矢印で示す範囲452、453、454は、それぞれ図9(A)のフォーカス位置1、2、3に対応している。そして、レンズ駆動量は焦点検出補正量の影響を受けて、フォーカス範囲の切り替わり位置で階段状となっている。曲線456は焦点検出補正量を曲線455とした場合に対応しており、理想的なレンズ駆動量を示している。
このように、離散的な焦点検出補正値をそのまま用いるとフォーカス位置の範囲の切り替わりが階段状となってしまうため、電子ファインダ表示時や動画撮影時には不自然な画像となってしまう。そこで、本実施形態では、焦点検出補正値の切り替わりを前もって検知する切り替わり検出手段を備え、切り替わり前の焦点検出補正値から切り替わり後の焦点検出補正値へ向けて焦点検出補正値を連続的に変化させるための追加補正値を算出する追加補正値算出手段を備える。
図11(A)は、焦点検出補正量とフォーカス位置の関係を示す図で、図10(C)に対応している。そして、フォーカス範囲452と453の切り替わり付近のフォーカス位置Fb111とFa121の間においては、焦点検出補正量がBP111からBP121へ向けて連続的に切り替わっている。同様に、範囲453と454の切り替わり付近のフォーカス位置Fb121とFa131の間においては、焦点検出補正量がBP121からBP131へ向けて連続的に切り替わっている。したがって、図11(A)による焦点検出補正量は、図10(C)のそれに比べて、理想的な焦点検出補正値を示す曲線455により近づいている。
図11(B)は、図10(B)の焦点検出量に図11(A)の焦点検出補正量を加えたフォーカス制御部342によるレンズ駆動量を示す図である。図10(D)に比べて、フォーカス範囲452、453、454の切り替わり位置での階段形状が緩和されており、理想的なレンズ駆動量である曲線456に近づいている。そして、図10(D)で階段状であったレンズ駆動量は、フォーカス範囲452、453、454の切り替わり付近で連続的に変化するよう改善されている。
すなわち、撮影レンズ300の現在のフォーカス位置が図11に示すフォーカス位置Fb111とFa121の間、及びフォーカス位置Fb121とFa131の間に存在するかを検知する。これが、切り替わり検知手段である。そして、存在すると検知された場合には、連続的に焦点検出補正値を変化するよう追加補正値を算出する。そして、この追加補正値をBP’とすると、以下の式(1)により算出される。
BP’=(BPn+1−BPn)・(F’−Fbn)/(Fan+1−Fbn) …(1)
ここで、BPnが切り替わり前の焦点検出補正値、BPn+1が切り替わり後の焦点検出補正値、F’は追加補正値BP’に対応した任意のフォーカス位置を表す。また、FbnとFan+1は焦点検出補正値を連続的に変化させる範囲のフォーカス位置で、Fbnが切り替わり前、Fan+1が切り替わり後にそれぞれ対応している。そして、これが追加補正値算出手段に対応しており、式(1)による算出結果を焦点検出補正値に加味して撮影レンズ300のレンズ駆動を行う。なお、実際のFbnとFan+1は、切り替わり前後の焦点検出補正値BPnとBPn+1の差から決めるとよい。すなわち、この差が大きい場合は、FbnとFan+1に比較的大きい値を設定し、逆に差が小さい場合には、FbnとFan+1も小さい値とすればよい。また、切り替わり前後の焦点検出補正値BPnとBPn+1の差が所定のレベルより小さい場合は、上記追加補正を行わず、通常のレンズ駆動とすることで、高速化が可能となる。
なお、式(1)は焦点検出補正値の切り替わりを直線的に変化させる式となっているが、より滑らかにレンズ駆動を行うため、曲線に対応した式としてもよい。本実施形態では、演算負荷と実際のフォーカスレンズの応答性によるエッジの鈍りを考慮して直線の式とした。また、上記説明はフォーカス位置を例に説明したが、ズーム位置の切り替わりでも同様であり、詳細な説明は省略する。
次に、カメラ100における実際の動作について説明する。図12は、システム制御部50に格納された実際の焦点検出動作を示すフローチャートである。なお、本フローチャートは、主ミラー130とサブミラー131が撮影光束外へ退避し、撮像素子14による位相差方式AFを行う電子ファインダ表示時、もしくは動画撮影時の焦点検出動作となっている。
まず、S501では、SW1や操作部70などの操作により焦点検出開始指示ボタンがONされたかを検知し、ONされた場合にはS502へ進む。
S502では、逐次読み出されている画像データから画像処理部20の合成部902と連結部903により対の焦点検出用信号を生成する。そして、その焦点検出用信号をAF部42へ送り、S503へ進む。なお、本実施形態では電子ファインダ表示中、もしくは動画撮影中に撮像素子14による焦点検出を行うため、焦点検出用画素901a、901bは、間引き読み出しに対応した離散配置としている。
S503では、AF部42にて公知の相関演算などを用いて対の焦点検出用信号のずれ量を算出し、デフォーカス量に換算する。S504では、図9で説明したように、撮影レンズ300の現在のフォーカス位置とそれに対応した焦点検出補正値などの各種レンズデータをインターフェース部38、338、コネクタ122、322を介して取得する。なお、本実施形態では上記で説明したように追加補正値BP’を算出するため、現在位置前後の焦点検出補正値と、フォーカス位置の切り替わり位置などの情報についても取得する。
S505では、切り替わり検知手段により現在のフォーカス位置が焦点検出補正値を連続的に変化させる範囲内に存在するかを検知する。範囲内に存在する場合はS506へ進み、範囲内に存在しない場合は、2ステップとばしてS508へ進む。
S506では、切り替わり前後の焦点検出補正値の差が所定の閾値以上か否かを判定する。閾値以上の場合は、S507へ進み、閾値以下の場合は、1ステップとばしてS508へ進む。ここで、閾値については、撮影レンズの焦点深度から決定すればよい。なお、焦点深度Fdについては、周知のように撮影レンズのFナンバーFnと許容錯乱円δを用いて、以下の式(2)により算出できる。
Fd=Fn×δ …(2)
なお、許容錯乱円δとしては、電子ファインダ表示時、もしくは動画撮影時のそれぞれに応じて最適な値が設定される。なぜなら、許容錯乱円δは、撮像素子14の画素ピッチと間引き読み出しの間隔によって決めることができるため、それぞれの撮影状態に合わせて異なる値となる。本実施形態では、各撮影モードごとの許容錯乱円δをあらかじめ不揮発性メモリ56に備えており、撮影モードに応じて選択する構成としている。
S507では、式(1)を用いて追加補正値算出手段により追加補正値BP’を算出する。
S508では、S503で算出したデフォーカス量とS504で取得した焦点検出用補正値とS507で算出した追加補正値に基づき、撮影レンズ300のレンズ駆動量を算出する。
S509では、インターフェース部38、338、コネクタ122、322を介して、レンズ駆動量を撮影レンズ300のフォーカス制御部342に送り、フォーカスレンズを駆動することで撮影レンズ300の焦点調節を行う。
以上が、本実施形態のカメラ100の焦点検出動作となる。なお、図12のフォローチャートによる説明はフォーカス位置を例に説明したが、ズーム位置の切り替わりでも同様であり、詳細な説明は省略する。
以上のように、本実施形態では、切り替わり検知手段により焦点検出補正値の切り替わりを検知し、切り替わり前後の焦点検出補正値差が所定の閾値以上の場合は、追加補正値算出手段により追加補正値を算出し、焦点検出補正値の切り替わりを連続的となるようにする。したがって、電子ファインダ表示時や動画撮影時においても、高精度で自然な焦点合わせを行うことができる。
なお、上記の実施形態では撮像素子14による位相差方式AFを例に説明したが、焦点検出装置105による位相差方式AFにおいても本発明を適用可能である。また、電子ファインダ、動画撮影のみならず、静止画撮影においても本発明を適用可能である。
また、上記の実施形態では、撮影レンズ300のフォーカスレンズを駆動することで焦点合わせを行う例を説明したが、撮像素子14を撮影レンズ300の光軸方向に進退可能な構成とし、撮像素子14を駆動することで焦点調節を行ってもよい。特に、微小量駆動や低速駆動が苦手な撮影レンズをカメラ100に装着した際には、撮像素子14を駆動することで、滑らかな焦点合わせを行うことが可能となる。