JP2011191194A - Quality measuring instrument of water and steam quality monitoring device - Google Patents

Quality measuring instrument of water and steam quality monitoring device Download PDF

Info

Publication number
JP2011191194A
JP2011191194A JP2010057943A JP2010057943A JP2011191194A JP 2011191194 A JP2011191194 A JP 2011191194A JP 2010057943 A JP2010057943 A JP 2010057943A JP 2010057943 A JP2010057943 A JP 2010057943A JP 2011191194 A JP2011191194 A JP 2011191194A
Authority
JP
Japan
Prior art keywords
condensed water
flow cell
air
quality
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010057943A
Other languages
Japanese (ja)
Other versions
JP5679258B2 (en
Inventor
克浩 ▲吉▼岡
Katsuhiro Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2010057943A priority Critical patent/JP5679258B2/en
Publication of JP2011191194A publication Critical patent/JP2011191194A/en
Application granted granted Critical
Publication of JP5679258B2 publication Critical patent/JP5679258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam quality monitoring device capable of accurately measuring the quality of condensed water flowing through a flow cell using a dissolved oxygen concentration sensor or the like even if air is mixed in steam. <P>SOLUTION: In the steam quality monitoring device 1 constituted so that the condensed water W generated by cooling the air-containing steam S generated from a boiler 100 using a cooling device 2 is made to successively pass through a plurality of the flow cells 30a, 31a and 32a in a quality measuring instrument 3 of water and the quality of the condensed water W is measured by the measuring sensors 30b, 31b and 32b provided in the respective flow cells to monitor the quality of the steam S from which air is removed, the condensed water flow channel 33 of the outlet of the first flow cell 30a is branched into a downward flow channel 33c going toward the next flow cell 31a and an upward air venting flow channel 35a larger than the downward flow channel 33c in size and opened toward the atmosphere at the end side thereof. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、空気を多量に含んだ蒸気の凝縮水について、その水質を計測する水質計測装置に関するものである。また、本発明は、空気を多量に含む蒸気を冷却し、このとき発生した凝縮水の水質を計測することにより、空気を除いた蒸気の質をモニタリングする蒸気質モニタリング装置に関するものである。   The present invention relates to a water quality measuring device for measuring the water quality of steam condensate containing a large amount of air. The present invention also relates to a vapor quality monitoring device that monitors the quality of steam excluding air by cooling the steam containing a large amount of air and measuring the quality of the condensed water generated at this time.

ボイラで発生した蒸気を冷却装置で冷却し、このとき生じた凝縮水の水質を水質計測装置により計測することで、蒸気の質、すなわち、蒸気中に含まれる不純物量や蒸気の腐食性等をリアルタイムにモニタリング(監視)する、蒸気質モニタリング装置は知られている(例えば、特許文献1)。   The steam generated in the boiler is cooled by a cooling device, and the quality of the condensed water generated at this time is measured by a water quality measuring device, so that the quality of the steam, that is, the amount of impurities contained in the steam and the corrosiveness of the steam, etc. A vapor quality monitoring device that monitors (monitors) in real time is known (for example, Patent Document 1).

この蒸気質モニタリング装置では、サンプリングされた蒸気を冷却装置により冷却して得られる凝縮水を、例えば、特許文献1に記載されているように、水質計測装置中の、溶存酸素濃度計測用のフローセルと、電気伝導率計測用のフローセルと、pH計測用のフローセルとに順次通して、この凝縮水の、溶存酸素濃度と電気伝導率とpH値とを測定することにより、蒸気の質をモニタリングしている。   In this vapor quality monitoring device, the condensed water obtained by cooling the sampled vapor by the cooling device is used as a flow cell for measuring the dissolved oxygen concentration in the water quality measurement device as described in Patent Document 1, for example. The quality of the steam is monitored by measuring the dissolved oxygen concentration, electrical conductivity, and pH value of the condensed water through a flow cell for measuring electrical conductivity and a flow cell for measuring pH. ing.

ところで、近年では、大型の水管ボイラや炉筒煙管ボイラに換えて、1缶当たりの蒸発量の小さい小型貫流ボイラを複数缶設置することが主流となっている。かかるボイラを複数缶設置のボイラ装置では、全ボイラが同時に稼働することは稀であり、一般に、一定のローテーションにより、稼働ボイラと停止ボイラとを定期的に取り換えていく運転がなされるし、蒸気の負荷が低い場合には、一部のボイラしか稼働されない。   By the way, in recent years, it has become the mainstream to install a plurality of small once-through boilers with a small amount of evaporation per can instead of a large water tube boiler or a flue tube boiler. In a boiler apparatus having a plurality of such boilers, it is rare that all the boilers operate at the same time. When the load is low, only some boilers are operated.

この場合、停止ボイラ内の圧力がゲージ圧でゼロまで下がると、真空破壊弁を介して、ボイラ内に空気が入り込むが、この停止ボイラが稼働ボイラとなった場合、蒸気中に多量の空気が混入することとなる。   In this case, when the pressure in the stop boiler is reduced to zero by gauge pressure, air enters the boiler through the vacuum breaker valve, but when this stop boiler becomes an operating boiler, a large amount of air is in the steam. It will be mixed.

したがって、蒸気質モニタリング装置では、多量に空気が混入した蒸気の質をモニタリングする場合も多い。この場合、凝縮水中に多量の空気が存在することとなるが、蒸気質モニタリング装置により、凝縮水の水質を測定して、空気以外の蒸気の質をモニタリングしている。   Therefore, the vapor quality monitoring device often monitors the quality of vapor mixed with a large amount of air. In this case, although a large amount of air exists in the condensed water, the quality of the vapor other than air is monitored by measuring the quality of the condensed water using a vapor quality monitoring device.

特開2007−93128号公報JP 2007-93128 A

しかしながら、凝縮水中に多量の空気が存在すると、フローセル内に一時的に大量の空気が入り込み、このことによって、フローセル内の凝縮水流量が減少して、凝縮水の溶存酸素濃度や電気伝導率が正しく測定できないという問題があった。   However, if there is a large amount of air in the condensed water, a large amount of air temporarily enters the flow cell, which reduces the flow rate of the condensed water in the flow cell and reduces the dissolved oxygen concentration and electrical conductivity of the condensed water. There was a problem that it could not be measured correctly.

また、凝縮水中に多量の空気が存在すると、溶存酸素濃度計測用のフローセル内が加圧状態となり、溶存酸素濃度の計測に悪影響を与えて、溶存酸素濃度が正しく計測できないという問題があった。   In addition, when a large amount of air is present in the condensed water, the flow cell for measuring the dissolved oxygen concentration becomes pressurized, which adversely affects the measurement of the dissolved oxygen concentration and the dissolved oxygen concentration cannot be measured correctly.

上記問題は、空気を多量に含んだ蒸気の凝縮水を複数のフローセル中に順次通すことにより、この凝縮水の水質を、前記各フローセルに設けられている計測センサにより計測する水質計測装置についても同様に生じる。   The above problem also relates to a water quality measuring device that measures the water quality of the condensed water by measuring sensors provided in each flow cell by sequentially passing the condensed water of steam containing a large amount of air through a plurality of flow cells. It happens in the same way.

この発明は、以上の点に鑑み、蒸気中に空気が混入していても、溶存酸素濃度センサ等を用いて、フローセル内を流れる凝縮水の水質を正しく計測できる水質計測装置及び蒸気質モニタリング装置を提供することを目的とする。   In view of the above points, the present invention provides a water quality measurement device and a vapor quality monitoring device that can correctly measure the quality of condensed water flowing in a flow cell using a dissolved oxygen concentration sensor or the like even when air is mixed in the steam. The purpose is to provide.

この発明の請求項1記載の発明は、空気を含んだ蒸気の凝縮水を複数のフローセル中に順次通すことにより、この凝縮水の水質を、前記各フローセルに設けられている計測センサにより計測する水質計測装置であって、最初のフローセル出口の凝縮水流路を、次のフローセルに向かう下向き流路と、この下向き流路よりサイズが大きく、かつ、端部側が大気に開放されている上向きのエア抜き流路とに分岐させていることを特徴とする。   According to the first aspect of the present invention, the condensed water of steam containing air is sequentially passed through the plurality of flow cells, and the quality of the condensed water is measured by the measurement sensors provided in the respective flow cells. A water quality measurement device, wherein a condensate flow path at the outlet of the first flow cell has a downward flow path toward the next flow cell, and an upward air that is larger in size than the downward flow path and is open to the atmosphere at the end side. It is characterized in that it is branched into a discharge channel.

凝縮水中に空気が含まれる場合、エア抜き流路が無ければ、最初のフローセルを出た凝縮水が、次のフローセルに向かうため下向き流路中を下降すると、凝縮水中の空気泡は、軽いため、凝縮水と共に移動せず、最初のフローセルの出口付近に溜まってくる。そして、この空気泡は、順次、最初のフローセル内に侵入して、最初のフローセル中の凝縮水の流量を減少させるとともに、凝縮水の流れがせき止められる分、最初のフローセル内の圧力を上昇させる。   When air is contained in the condensed water, if there is no air vent flow path, the condensed water that has exited the first flow cell goes to the next flow cell and descends in the downward flow path, so the air bubbles in the condensed water are light. It does not move with the condensed water, but collects near the outlet of the first flow cell. Then, the air bubbles sequentially enter the first flow cell to decrease the flow rate of the condensed water in the first flow cell and increase the pressure in the first flow cell by the amount that the flow of the condensed water is blocked. .

この発明では、最初のフローセル出口側の下向き流路の入口部に、この下向き流路よりサイズが大きい上向きのエア抜き流路を設けているので、最初のフローセルから下向き流路に向かう空気泡を含む凝縮水は、内部の空気泡が上側のエア抜き流路内を上昇して排出されるとともに、凝縮水のみが下向き流路を通って、次のフローセルに入っていく。したがって、最初のフローセルの出口側には、空気の溜まりは生じず、最初のフローセル内に空気が溜まって、最初のフローセル内の凝縮水の流量が減少したり、最初のフローセル内が加圧されてしまうこともない。このことは、後のフローセルについても同様である。   In the present invention, an upward air vent channel having a size larger than the downward channel is provided at the inlet of the downward channel on the first flow cell outlet side. Condensed water contained therein is discharged while the internal air bubbles rise in the upper air vent channel, and only the condensed water enters the next flow cell through the downward channel. Therefore, there is no accumulation of air on the outlet side of the first flow cell, and air accumulates in the first flow cell, reducing the flow rate of condensed water in the first flow cell or pressurizing the first flow cell. There is no end to it. The same applies to the subsequent flow cells.

この発明の請求項2記載の発明は、請求項1記載の発明の場合において、最終のフローセル出口の凝縮水排出流路に、前記エア抜き流路を接続するとともに、このエア抜き流路の上部に、上向きに延びる大気開放部を設けていることを特徴とする。   According to a second aspect of the present invention, in the case of the first aspect of the present invention, the air vent channel is connected to the condensed water discharge channel at the final flow cell outlet, and the upper part of the air vent channel Further, it is characterized in that an air release portion extending upward is provided.

エア抜き流路には、凝縮水流路内の圧力バランスにしたがって、一定高さだけ凝縮水が貯められているが、この凝縮水中を上昇する空気泡が、凝縮水から出た段階で破裂を生じ、周りの凝縮水を周辺に飛散させる。この発明では、エア抜き流路を、計測済み凝縮水を排出する凝縮水排出流路に接続し、空気泡の破裂時に飛散した凝縮水を凝縮水排出流路側に逃がしてやるようにした。この場合、大気開放部は、エア抜き流路の上部から上向きに延びているため、この大気開放部を介して、凝縮水が飛散することはない。   Condensed water is stored at a certain height in the air vent channel according to the pressure balance in the condensate channel, but the air bubbles rising in the condensed water burst when it exits the condensed water. , The surrounding condensed water is scattered around. In the present invention, the air vent channel is connected to the condensed water discharge channel for discharging the measured condensed water, and the condensed water scattered when the air bubbles burst is allowed to escape to the condensed water discharge channel side. In this case, since the atmosphere release portion extends upward from the upper part of the air vent channel, the condensed water does not scatter through the atmosphere release portion.

この発明の請求項3記載の発明は、ボイラから発生した空気を含む蒸気を、冷却装置を用いて冷却し、生じた凝縮水を水質計測装置内の複数のフローセル中に順次通すことにより、この凝縮水の水質を前記各フローセルに設けられている計測センサにより計測して、前記空気を除いた前記蒸気の質をモニタリングする蒸気質モニタリング装置であって、最初のフローセル出口の凝縮水流路を、次のフローセルに向かう下向き流路と、この下向き流路よりサイズが大きく、かつ、端部側が大気に開放されている上向きのエア抜き流路とに分岐させていることを特徴とする。   According to a third aspect of the present invention, the steam containing air generated from the boiler is cooled by using a cooling device, and the generated condensed water is sequentially passed through a plurality of flow cells in the water quality measuring device. A vapor quality monitoring device that measures the quality of condensed water by a measurement sensor provided in each flow cell and monitors the quality of the vapor excluding the air, the condensed water flow path at the first flow cell outlet, It is characterized in that it is branched into a downward flow path toward the next flow cell and an upward air vent flow path having a size larger than this downward flow path and having an end portion open to the atmosphere.

この発明の請求項4記載の発明は、請求項3記載の発明の場合において、最終のフローセル出口の凝縮水排出流路に、前記エア抜き流路を接続するとともに、このエア抜き流路の上部に、上向きに延びる大気開放部を設けていることを特徴とする。   According to a fourth aspect of the present invention, in the case of the third aspect of the present invention, the air vent channel is connected to the condensed water discharge channel at the final flow cell outlet, and the upper part of the air vent channel. Further, it is characterized in that an air release portion extending upward is provided.

この発明の請求項1記載の発明によれば、蒸気中に空気が混入していても、凝縮水中の空気泡を最初のフローセル内等に溜め込んでしまうことなく、エア抜き流路を介して外部に排出できるので、例えば、最初のフローセル内に設けられている溶存酸素濃度センサを用いて、凝縮水の溶存酸素濃度を正しく計測することができるとともに、その後のフローセル内に設けられている、例えば、電気伝導率センサやpHセンサを用いて、凝縮水の電気伝導率センサやpH値を正しく計測できる。   According to the first aspect of the present invention, even if air is mixed in the steam, the air bubbles in the condensed water are not collected in the first flow cell, etc. For example, the dissolved oxygen concentration sensor provided in the first flow cell can be used to correctly measure the dissolved oxygen concentration of the condensed water, and provided in the subsequent flow cell. The electrical conductivity sensor and pH value of the condensed water can be correctly measured using the electrical conductivity sensor and pH sensor.

この発明の請求項2記載の発明によれば、凝縮水中の空気泡破裂により飛び散った凝縮水を、エア抜き流路から凝縮水排出流路に導くことができ、凝縮水の外部への飛散を防止できる。   According to the invention described in claim 2 of the present invention, the condensed water scattered by the bursting of air bubbles in the condensed water can be guided from the air vent channel to the condensed water discharge channel, so that the condensed water is scattered outside. Can be prevented.

この発明の請求項3記載の発明によれば、蒸気中に空気が含まれていても、水質測定装置により凝縮水の水質を適正に計測できるので、空気を除いた蒸気の質を適正にモニタリングすることができる。   According to the invention described in claim 3 of the present invention, even if air is contained in the steam, the water quality can be appropriately measured by the water quality measuring device, so that the quality of the steam excluding air is properly monitored. can do.

この発明の請求項4記載の発明によれば、水質測定装置からの凝縮水の飛散を防止できるので、安全に蒸気の質をモニタリングすることができる。   According to invention of Claim 4 of this invention, since the scattering of the condensed water from a water quality measuring apparatus can be prevented, the quality of a vapor | steam can be monitored safely.

この発明の一実施の形態に係る蒸気質モニタリング装置における、蒸気や凝縮水の流れを示す図である。It is a figure which shows the flow of a vapor | steam and condensed water in the vapor quality monitoring apparatus which concerns on one embodiment of this invention. エア抜き流路の作用を示す図であり、(a)はエア抜き流路が設けられていない場合を示し、(b)はエア抜き流路が設けられている場合を示す。It is a figure which shows the effect | action of an air vent flow path, (a) shows the case where the air vent flow path is not provided, (b) shows the case where the air vent flow path is provided.

以下、この発明の実施の形態を図面を参照しつつ説明する。
図1はこの発明の一実施の形態に係る蒸気質モニタリング装置を示している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a vapor quality monitoring apparatus according to an embodiment of the present invention.

蒸気質モニタリング装置1は、図1で示されるように、冷却装置2と、水質計測装置3と、凝縮水Wの流量調整弁4と、冷却水Cの流量調整弁5と、蒸気ライン6と、凝縮水ライン7と、凝縮水排出ライン8と、冷却水供給ライン9と、冷却水排出ライン10等とから構成されている。   As shown in FIG. 1, the steam quality monitoring device 1 includes a cooling device 2, a water quality measuring device 3, a flow rate adjusting valve 4 for condensed water W, a flow rate adjusting valve 5 for cooling water C, and a steam line 6. , The condensed water line 7, the condensed water discharge line 8, the cooling water supply line 9, the cooling water discharge line 10 and the like.

なお、この蒸気質モニタリング装置1により蒸気Sの質がモニタリングされるボイラ装置100は、図1で示されるように、1缶当たりの蒸発量の小さい、例えば4缶の小型貫流ボイラ100aから構成されている。このボイラ装置100では、3缶の小型貫流ボイラ100aを稼働ボイラとするとともに、1缶の小型貫流ボイラ100aを停止ボイラとして、一定のローテーションにより、停止ボイラが順次替えられていく運転がなされる。このボイラ装置100からの蒸気Sは、蒸気ヘッダ101を介して、工場内の需要部門に送られる。   In addition, the boiler apparatus 100 by which the quality of the steam S is monitored by this steam quality monitoring apparatus 1 is comprised from the small through-flow boiler 100a of 4 cans with small evaporation amount, for example, as shown in FIG. ing. In this boiler apparatus 100, an operation is performed in which the stop boilers are sequentially changed by a constant rotation with the three cans of the small once-through boiler 100a as the operating boiler and the one can of the small once-through boiler 100a as the stop boiler. The steam S from the boiler device 100 is sent to the demand department in the factory via the steam header 101.

冷却装置2は、図1で示されるように、ボイラ100からの蒸気Sを、冷却水Cによって冷却して、水質計測用の凝縮水Wに変えるものであり、ケーシング20内に伝熱管からなる熱交換部21が収納されたものである。熱交換部21の凝縮水出口側のケーシング20には、冷却水供給ライン9が接続され、熱交換部21の蒸気入口側のケーシング20には、冷却水排出ライン10が接続されている。また、熱交換部21の蒸気S入口側には、蒸気ライン6が接続され、熱交換部21の凝縮水W出口側には、凝縮水ライン7が接続されている。   As shown in FIG. 1, the cooling device 2 cools the steam S from the boiler 100 with cooling water C and converts it into condensed water W for water quality measurement, and includes a heat transfer tube in the casing 20. The heat exchange part 21 is accommodated. The cooling water supply line 9 is connected to the casing 20 on the condensed water outlet side of the heat exchange unit 21, and the cooling water discharge line 10 is connected to the casing 20 on the steam inlet side of the heat exchange unit 21. Further, the steam line 6 is connected to the steam S inlet side of the heat exchange unit 21, and the condensed water line 7 is connected to the condensed water W outlet side of the heat exchange unit 21.

この冷却装置2では、冷却水供給ライン9中に設けられた流量調整弁5により、冷却水Cの流量がコントロールされて、凝縮水Wの温度が、水質の計測に適した所定の温度になるように調整されている。   In the cooling device 2, the flow rate of the cooling water C is controlled by the flow rate adjusting valve 5 provided in the cooling water supply line 9, and the temperature of the condensed water W becomes a predetermined temperature suitable for water quality measurement. Have been adjusted so that.

水質計測装置3は、図1で示されるように、凝縮水Wを複数のフローセル中に順次通すことにより、各フローセルに設けられている計測センサにより、凝縮水Wの種々の水質、例えば、溶存酸素濃度(DO)と電気伝導率(EC)とpH値とを計測するものである。この水質計測器3は、図1で示されるように、最初の第1フローセル30a中に溶存酸素濃度センサ30bが設けられている溶存酸素濃度計30と、次の第2フローセル31a中に電気伝導率センサ31bが設けられている電気伝導率計31と、最後の第3フローセル32a中にpHセンサ32bが設けられているpH計32と、溶存酸素濃度計30と電気伝導率計31とを接続する凝縮水流路33と、電気伝導率計31とpH計32とを連結する凝縮水流路34とを有している。   As shown in FIG. 1, the water quality measuring device 3 sequentially passes the condensed water W through a plurality of flow cells, and various water qualities of the condensed water W, for example, dissolved by the measurement sensor provided in each flow cell. The oxygen concentration (DO), electrical conductivity (EC), and pH value are measured. As shown in FIG. 1, the water quality measuring instrument 3 includes a dissolved oxygen concentration meter 30 in which a dissolved oxygen concentration sensor 30b is provided in the first first flow cell 30a, and an electric conduction in the next second flow cell 31a. The electrical conductivity meter 31 provided with the rate sensor 31b, the pH meter 32 provided with the pH sensor 32b in the last third flow cell 32a, the dissolved oxygen concentration meter 30 and the electrical conductivity meter 31 are connected. A condensate water flow path 33, and a condensate water flow path 34 connecting the electric conductivity meter 31 and the pH meter 32.

ここで、凝縮水Wは、各フローセル30a、30b、30cの下部側から内部に流入して、各フローセル30a、30b、30cの上部側から排出される。このため、凝縮水ライン7は、第1フローセル30aの下部に接続され、凝縮水排出ライン8は、第3フローセル32aの上部に接続される。また、第1フローセル30aの上部と第2フローセル31aの下部とに接続される凝縮水流路33は、水平流路部33a,33b間に下降する下向き流路部33cを有しており、第2フローセル31aの上部と第3フローセル32aの上部とに接続される凝縮水流路34も、水平流路部間に下降する下向き流路部を有している。なお、凝縮水流路33,34の流路径は、内径が4.0mmとなるように形成されている。   Here, the condensed water W flows into the inside from the lower side of each flow cell 30a, 30b, 30c, and is discharged | emitted from the upper side of each flow cell 30a, 30b, 30c. For this reason, the condensed water line 7 is connected to the lower part of the 1st flow cell 30a, and the condensed water discharge line 8 is connected to the upper part of the 3rd flow cell 32a. The condensed water flow path 33 connected to the upper part of the first flow cell 30a and the lower part of the second flow cell 31a has a downward flow path part 33c that descends between the horizontal flow path parts 33a and 33b. The condensed water channel 34 connected to the upper part of the flow cell 31a and the upper part of the third flow cell 32a also has a downward channel part that descends between the horizontal channel parts. In addition, the flow path diameter of the condensed water flow paths 33 and 34 is formed so that an internal diameter may be 4.0 mm.

また、この水質計測装置3には、図1で示されるように、電気伝導率計31とpH計32とを跨ぐように、第1フローセル30aと第2フローセル31a間の凝縮水流路34と、第3フローセル32a出口の凝縮水排出ライン8とを接続する、エア抜き流路35が設けられている。このエア抜き流路35は、垂直に上昇する上向き流路部35aと、その後の水平流路部35bと、その後下降する下向き流路部35cとを有して、略(コ)字形に形成されており、流路径は、凝縮水流路33,34より充分に大きい、内径8mmに形成されている。そして、このエア抜き流路35は、上向き流路部35aの下端が、凝縮水流路33の下向き流路部33cの直上に(T)字形をなすように接続され、下向き流路部35cの下端が、凝縮水排出ライン8の下降部直上に(T)字形をなすように接続されている。   In addition, as shown in FIG. 1, the water quality measuring device 3 includes a condensed water flow path 34 between the first flow cell 30a and the second flow cell 31a so as to straddle the electric conductivity meter 31 and the pH meter 32. An air vent channel 35 for connecting the condensed water discharge line 8 at the outlet of the third flow cell 32a is provided. The air vent channel 35 has an upward channel part 35a that rises vertically, a horizontal channel part 35b that follows, and a downward channel part 35c that descends thereafter, and is formed in a substantially (U) shape. The flow path diameter is formed to be 8 mm, which is sufficiently larger than the condensed water flow paths 33 and 34. The air vent channel 35 is connected such that the lower end of the upward channel part 35a forms a (T) shape directly above the downward channel part 33c of the condensed water channel 33, and the lower end of the downward channel part 35c. Are connected so as to form a (T) shape directly above the descending portion of the condensed water discharge line 8.

エア抜き流路35の上向き流路部35aには、図2の(b)で示されるように、凝縮水流路33内の圧力バランスにより、一定の高さだけ凝縮水Wが溜められる。したがって、上向き流路部35aは、内部の凝縮水Wが凝縮水排出ライン8側に流れ込まないような高さまで立ち上げられている。また、このエア抜き流路35の上部側の水平流路部35bには、上向きに、上部が90度屈曲した大気開放部35dが形成されており、その一端側に大気開放孔が形成されている。   Condensed water W is accumulated in the upward flow path portion 35a of the air vent flow path 35 by a certain height due to the pressure balance in the condensed water flow path 33, as shown in FIG. Therefore, the upward flow path part 35a is raised to such a height that the internal condensed water W does not flow into the condensed water discharge line 8 side. Further, an air release portion 35d whose upper portion is bent 90 degrees upward is formed in the horizontal flow passage portion 35b on the upper side of the air vent flow passage 35, and an air release hole is formed on one end side thereof. Yes.

蒸気ライン6は、ボイラ装置100側の蒸気Sを、詳細には、図1で示されるように、ボイラ装置100の蒸気ヘッダ101に設けられた圧力計102横の枝管103側から、冷却装置2に取り込むための蒸気流路である。この蒸気ライン6の流路径は、内径4mmとなっている。   The steam line 6 is a cooling device for the steam S on the boiler device 100 side, specifically, from the side of the branch pipe 103 next to the pressure gauge 102 provided in the steam header 101 of the boiler device 100 as shown in FIG. 2 is a steam flow path for taking in the gas. The steam line 6 has a flow path diameter of 4 mm.

凝縮水ライン7は、冷却装置2からの凝縮水Wを水質計測装置3に送るための凝縮水流路であり、途中に流量調整弁4が設けられている。この蒸気ライン6の流路径は、内径4mmとなっている。なお、流量調整弁4は、水質計測装置3に送られる凝縮水Wの流量を、計測に適した所定の流量にコントロールするものである。   The condensed water line 7 is a condensed water flow path for sending the condensed water W from the cooling device 2 to the water quality measuring device 3, and a flow rate adjusting valve 4 is provided in the middle. The steam line 6 has a flow path diameter of 4 mm. The flow rate adjusting valve 4 controls the flow rate of the condensed water W sent to the water quality measuring device 3 to a predetermined flow rate suitable for measurement.

凝縮水排出ライン8は、水質計測装置3から排出される計測済み凝縮水Wを外部に排出するための凝縮水排出流路であり、その流路径は、エア抜き流路35と同じく、内径8mmとなっている。   The condensed water discharge line 8 is a condensed water discharge channel for discharging the measured condensed water W discharged from the water quality measuring device 3 to the outside. It has become.

この蒸気質モニタリング装置1では、蒸気ライン6を通って取り込まれたボイラ100側の蒸気Sは、冷却装置2により冷却されて凝縮水Wに変えられる。この凝縮水Wは、凝縮水ライン7を通って水質計測装置3に送られ、この水質計測装置3内の、第1フローセル30a、凝縮水流路33、第2フローセル31a、凝縮水流路34、第3フローセル32aを通って、凝縮水排出ライン8に送られる。この凝縮水Wは、第1フローセル30aを通過中に、溶存酸素濃度センサ30bにより、溶存酸素濃度が計測され、第2フローセル31aを通過中に、電気伝導率センサ31bにより、電気伝導率が計測され、第3フローセル32aを通過中に、pHセンサ32bにより、pH値が計測される。そして、計測された凝縮水Wの、溶存酸素濃度と電気伝導率とpH値とにより、ボイラ装置100からの蒸気Sの質がモニタリングされる。   In the steam quality monitoring device 1, the steam S on the boiler 100 side taken in through the steam line 6 is cooled by the cooling device 2 and converted into condensed water W. The condensed water W is sent to the water quality measuring device 3 through the condensed water line 7, and the first flow cell 30 a, the condensed water flow channel 33, the second flow cell 31 a, the condensed water flow channel 34, the first in the water quality measuring device 3. 3 is sent to the condensed water discharge line 8 through the flow cell 32a. The condensed water W is measured by the dissolved oxygen concentration sensor 30b while passing through the first flow cell 30a, and the electrical conductivity is measured by the conductivity sensor 31b while passing through the second flow cell 31a. During the passage through the third flow cell 32a, the pH value is measured by the pH sensor 32b. And the quality of the vapor | steam S from the boiler apparatus 100 is monitored by the dissolved oxygen concentration of the measured condensed water W, an electrical conductivity, and pH value.

一方、ボイラ装置100では、4缶の小型貫流ボイラ100aのうち、1缶の小型貫流ボイラ100aを停止ボイラとし、一定のローテーションにより、この停止ボイラを取り換えていく運転がなされる。ところが、この停止ボイラには、停止中の蒸気圧の低下により、真空破壊弁を介して、内部に空気が導入されるため、この停止ボイラが稼働ボイラとなった場合に、一時的ではあるが、蒸気S中に多量の空気が混入することとなる。   On the other hand, in the boiler apparatus 100, an operation is performed in which one of the small once-through boilers 100a is a stop boiler among the four cans of the once-through boiler 100a, and this stop boiler is replaced by a fixed rotation. However, because this stop boiler is introduced with air through the vacuum breaker valve due to a drop in the steam pressure during stoppage, when this stop boiler becomes an operation boiler, it is temporary. A large amount of air is mixed in the steam S.

つぎに、蒸気S中に多量の空気が混入している場合に、この蒸気質モニタリング装置1で蒸気Sの質をモニタリングするにあたっての、水質計測装置3の作用効果について、図2を参照しつつ説明する。   Next, in the case where a large amount of air is mixed in the steam S, the operational effects of the water quality measuring device 3 when the quality of the steam S is monitored by the steam quality monitoring device 1 will be described with reference to FIG. explain.

ここで、溶存酸素濃度計30は、図2で示されるように、第1フローセル30aが、下部に入口部H1、上部に出口部H2を有する、上方が開口した凹状に形成されており、溶存酸素濃度センサ30bが、つば部B3から下方に延びる棒状部B1の下端にセンサ部B2が設けられた形状に形成されている。第1フローセル30aに溶存酸素濃度センサ30bを取り付けるには、溶存酸素濃度センサ30bのつば部B3で蓋をするように、棒状部B1を第1フローセル30a内に差し込むようにすればよい。   Here, as shown in FIG. 2, in the dissolved oxygen concentration meter 30, the first flow cell 30a is formed in a concave shape having an inlet portion H1 in the lower portion and an outlet portion H2 in the upper portion and opened upward. The oxygen concentration sensor 30b is formed in a shape in which a sensor part B2 is provided at the lower end of a rod-like part B1 extending downward from the collar part B3. In order to attach the dissolved oxygen concentration sensor 30b to the first flow cell 30a, the rod-like portion B1 may be inserted into the first flow cell 30a so as to cover the rib portion B3 of the dissolved oxygen concentration sensor 30b.

図2の(a)は、水質計測装置3の凝縮水流路33側にエア抜き流路35が設けられていない場合の、溶存酸素濃度計30内と凝縮水流路33内の状態を示している。   FIG. 2A shows a state in the dissolved oxygen concentration meter 30 and in the condensed water channel 33 when the air vent channel 35 is not provided on the condensed water channel 33 side of the water quality measuring device 3. .

凝縮水W中に多量の空気Aが含まれる場合、エア抜き流路35が無ければ、最初の第1フローセル30aを出た凝縮水Wが、次の第2フローセル31aに向かうため凝縮水流路33の下向き流路部33cを下降すると、凝縮水W中の空気泡A1は、軽いため、凝縮水Wと共に移動せず、図2の(a)で示されるように、第1フローセル30aの出口部H2付近の水平流路部33aに溜まってくる。そして、この空気泡A1は、順次、第1フローセル30a内に侵入して、第1フローセル30a内の凝縮水Wの流量を減少させるとともに、凝縮水Wの流れをせき止め、第1フローセル30a内の圧力を上昇させる。このため、この溶存酸素濃度計30により、正確な溶存酸素濃度が測定できなくなる。   When a large amount of air A is contained in the condensed water W, if there is no air vent channel 35, the condensed water W that has exited the first first flow cell 30a is directed to the next second flow cell 31a, and therefore the condensed water channel 33. When the downward flow path portion 33c is lowered, the air bubbles A1 in the condensed water W are light and therefore do not move with the condensed water W, and as shown in FIG. 2A, the outlet portion of the first flow cell 30a. It collects in the horizontal flow path part 33a near H2. The air bubbles A1 sequentially enter the first flow cell 30a to reduce the flow rate of the condensed water W in the first flow cell 30a and to block the flow of the condensed water W. Increase pressure. For this reason, the dissolved oxygen concentration meter 30 cannot accurately measure the dissolved oxygen concentration.

図2の(b)は、水質計測装置3の凝縮水流路33側にエア抜き流路35を設けた場合の、溶存酸素濃度計30内と、エア抜き流路35及び凝縮水流路33内の状態を示している。   FIG. 2B shows the dissolved oxygen concentration meter 30, the air vent channel 35, and the condensate channel 33 in the case where the air vent channel 35 is provided on the condensate channel 33 side of the water quality measuring device 3. Indicates the state.

凝縮水流路33側にエア抜き流路35が設けられていると、第1フローセル30aから凝縮水流路33の下向き流路部33cに向かう空気泡A1を含む凝縮水Wは、内部の空気泡A1が上側のエア抜き流路35の上向き流路部35a内を上昇して排出されるとともに、凝縮水Wのみが下向き流路部33cを通って、次の第2フローセル31aに入っていく。特に、凝縮水流路33に比べてエア抜き流路35の流路径が大きく形成されているため、凝縮水W中の空気泡A1は、流路抵抗の少ないエア抜き流路35側へ容易に移動する。したがって、第1フローセル30aの出口部H2側には、空気Aの溜まりは生じず、第1フローセル30a内に空気Aが溜まって、第1フローセル30a内の凝縮水Wの流量が減少したり、第1フローセル30aが加圧されてしまうこともない。このことは、後の第2フローセル31a等についても同様である。したがって、この水質計測装置3では、溶存酸素濃度計30により凝縮水Wの溶存酸素濃度を正確に計測できるとともに、電気伝導率計31等により凝縮水Wの電気伝導率等を正確に計測できる。   When the air vent channel 35 is provided on the condensate channel 33 side, the condensed water W including the air bubbles A1 heading from the first flow cell 30a to the downward channel part 33c of the condensate channel 33 is converted into the internal air bubbles A1. Rises in the upward flow path portion 35a of the upper air vent flow path 35 and is discharged, and only the condensed water W passes through the downward flow path section 33c and enters the next second flow cell 31a. In particular, since the air vent channel 35 has a larger diameter than the condensed water channel 33, the air bubbles A1 in the condensed water W easily move to the air vent channel 35 side with less channel resistance. To do. Therefore, the accumulation of air A does not occur on the outlet H2 side of the first flow cell 30a, the air A accumulates in the first flow cell 30a, and the flow rate of the condensed water W in the first flow cell 30a decreases. The first flow cell 30a is not pressurized. The same applies to the second flow cell 31a and the like later. Therefore, in this water quality measuring device 3, the dissolved oxygen concentration of the condensed water W can be accurately measured by the dissolved oxygen concentration meter 30, and the electrical conductivity and the like of the condensed water W can be accurately measured by the electrical conductivity meter 31 and the like.

一方、エア抜き流路35の上向き流路部35aには、図2の(b)で示されるように、一定の高さまで凝縮水Wが溜められているので、上向き流路部35a中を上昇する空気泡A1が、凝縮水Wから出たときに破裂して、周りの凝縮水Wを周囲に飛散させる。このため、この水質計測装置3では、エア抜き流路35の他端側を、凝縮水排出ライン8に接続し、空気泡A1の破裂時に飛び散った凝縮水Wを凝縮水排出ライン8に回収して、安全を確保するようにしている。なお、エア抜き流路35の大気開放部35dは、水平流路部35bから上方に延びるように設けられ、上端が90度屈曲されているので、この大気開放部35dから凝縮水Wが飛び出すことはない。   On the other hand, as shown in FIG. 2B, since the condensed water W is stored up to a certain height in the upward flow path portion 35a of the air vent flow path 35, it rises in the upward flow path portion 35a. The air bubbles A1 to be ruptured when coming out of the condensed water W, and the surrounding condensed water W is scattered around. For this reason, in this water quality measuring device 3, the other end side of the air vent channel 35 is connected to the condensed water discharge line 8, and the condensed water W scattered when the air bubbles A1 burst is recovered in the condensed water discharge line 8. To ensure safety. In addition, since the air release part 35d of the air vent channel 35 is provided so as to extend upward from the horizontal channel part 35b and the upper end is bent by 90 degrees, the condensed water W jumps out from the air release part 35d. There is no.

以上のように、この蒸気質モニタリング装置1では、蒸気S中に多量の空気Aを有すため、凝縮水W中に多くの空気泡A1を有すこととなっても、水質計測装置3の最初のフローセルである、第1フローセル30a出口の凝縮水流路33を、次の第2フローセル31aに向かう下向き流路33cと、この下向き流路33cよりサイズが大きく、かつ、端部側が大気に開放されている上向きのエア抜き流路35とに分岐させているので、凝縮水W中の空気泡A1が、このエア抜き流路35から外部に排出され、この空気泡A1が凝縮水流路33の水平流路部33a内や第1フローセル30a内に溜められていくことはない。このため、この蒸気質モニタリング装置1では、蒸気S中に多量の空気Aを有す場合でも、水質計測装置3により凝縮水Wの水質を正確に計測でき、空気Aを除いた蒸気Sの質を精度よくモニタリングすることができる。   As described above, since the steam quality monitoring device 1 has a large amount of air A in the steam S, the water quality measuring device 3 has a large amount of air bubbles A1 in the condensed water W. The condensate flow path 33 at the outlet of the first flow cell 30a, which is the first flow cell, has a downward flow path 33c toward the next second flow cell 31a and a size larger than the downward flow path 33c, and the end side is open to the atmosphere. The air bubbles A1 in the condensed water W are discharged to the outside from the air vent channel 35, and the air bubbles A1 are discharged from the condensed water channel 33. It is not stored in the horizontal flow path portion 33a or the first flow cell 30a. For this reason, in this steam quality monitoring device 1, even when the steam S has a large amount of air A, the water quality measuring device 3 can accurately measure the water quality of the condensed water W, and the quality of the steam S excluding the air A can be measured. Can be monitored accurately.

また、この蒸気質モニタリング装置1では、最終のフローセルである第3フローセル32a出口の凝縮水排出ライン8に、エア抜き流路35を接続するとともに、このエア抜き流路35の上部、すなわち、水平流路部35bに、上向きに延びる大気開放部35cを設けているので、エア抜き流路35中の空気泡A1が内部で破裂して凝縮水Wを飛び散らせても、この飛散凝縮水Wを外部に排出してしまうことなく、凝縮水排出ライン8を使って安全に排出することができる。   Moreover, in this vapor quality monitoring apparatus 1, while connecting the air vent flow path 35 to the condensed water discharge line 8 of the 3rd flow cell 32a exit which is the last flow cell, the upper part of this air vent flow path 35, ie, horizontal Since the air opening part 35c extending upward is provided in the flow path part 35b, even if the air bubbles A1 in the air vent flow path 35 burst inside and cause the condensed water W to scatter, the scattered condensed water W The condensed water discharge line 8 can be safely discharged without discharging to the outside.

なお、この蒸気質モニタリング装置1は、水冷式の冷却装置ではなく、大気中の空気により、蒸気Sや凝縮水Wを強制的に冷却する空冷式の冷却装置を有するものであってもよいのはもちろんである。   Note that the vapor quality monitoring device 1 is not a water-cooled cooling device, but may have an air-cooling cooling device that forcibly cools the steam S and the condensed water W by air in the atmosphere. Of course.

1 蒸気質モニタリング装置
2 冷却装置
3 水質計測装置
8 凝縮水排出ライン(凝縮水排出路)
30a 第1フローセル(最初のフローセル)
30b 第2フローセル(次のフローセル)
30c 第3フローセル(最後のフローセル)
33 凝縮水流路
33c 下向き流路部
35 エア抜き流路
35d 大気開放部
A 空気
S 蒸気
W 凝縮水
1 Steam quality monitoring device 2 Cooling device 3 Water quality measuring device 8 Condensate drain line (Condensate drain)
30a First flow cell (first flow cell)
30b Second flow cell (next flow cell)
30c 3rd flow cell (last flow cell)
33 Condensed water flow path 33c Downward flow path part 35 Air vent flow path 35d Atmospheric release part A Air S Steam W Condensed water

Claims (4)

空気を含んだ蒸気の凝縮水を複数のフローセル中に順次通すことにより、この凝縮水の水質を、前記各フローセルに設けられている計測センサにより計測する水質計測装置であって、
最初のフローセル出口の凝縮水流路を、次のフローセルに向かう下向き流路と、この下向き流路よりサイズが大きく、かつ、端部側が大気に開放されている上向きのエア抜き流路とに分岐させていることを特徴とする水質計測装置。
A water quality measuring device that measures the quality of this condensed water by a measurement sensor provided in each flow cell by sequentially passing condensed water of steam containing air through a plurality of flow cells,
The condensed water flow path at the first flow cell outlet is branched into a downward flow path toward the next flow cell and an upward air vent flow path that is larger in size than the downward flow path and that is open to the atmosphere at the end side. Water quality measuring device characterized by that.
最終のフローセル出口の凝縮水排出流路に、前記エア抜き流路を接続するとともに、このエア抜き流路の上部に、上向きに延びる大気開放部を設けていることを特徴とする請求項1記載の水質測定装置。   2. The air vent channel is connected to a condensate discharge channel at the final flow cell outlet, and an air opening portion extending upward is provided above the air vent channel. Water quality measuring device. ボイラから発生した空気を含む蒸気を、冷却装置を用いて冷却し、生じた凝縮水を水質計測装置内の複数のフローセル中に順次通すことにより、この凝縮水の水質を前記各フローセルに設けられている計測センサにより計測して、前記空気を除いた前記蒸気の質をモニタリングする蒸気質モニタリング装置であって、
最初のフローセル出口の凝縮水流路を、次のフローセルに向かう下向き流路と、この下向き流路よりサイズが大きく、かつ、端部側が大気に開放されている上向きのエア抜き流路とに分岐させていることを特徴とする蒸気質モニタリング装置。
The steam generated from the boiler is cooled using a cooling device, and the resulting condensed water is sequentially passed through a plurality of flow cells in the water quality measuring device so that the water quality of the condensed water is provided in each flow cell. A vapor quality monitoring device that monitors the quality of the vapor, excluding the air, measured by a measurement sensor,
The condensed water flow path at the first flow cell outlet is branched into a downward flow path toward the next flow cell and an upward air vent flow path that is larger in size than the downward flow path and that is open to the atmosphere at the end side. Vapor quality monitoring device characterized by that.
最終のフローセル出口の凝縮水排出流路に、前記エア抜き流路を接続するとともに、このエア抜き流路の上部に、上向きに延びる大気開放部を設けていることを特徴とする請求項3記載の蒸気質モニタリング装置。   4. The air vent channel is connected to a condensate discharge channel at the final flow cell outlet, and an air opening portion extending upward is provided at an upper portion of the air vent channel. Vapor quality monitoring device.
JP2010057943A 2010-03-15 2010-03-15 Water quality measuring device and vapor quality monitoring device Expired - Fee Related JP5679258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010057943A JP5679258B2 (en) 2010-03-15 2010-03-15 Water quality measuring device and vapor quality monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010057943A JP5679258B2 (en) 2010-03-15 2010-03-15 Water quality measuring device and vapor quality monitoring device

Publications (2)

Publication Number Publication Date
JP2011191194A true JP2011191194A (en) 2011-09-29
JP5679258B2 JP5679258B2 (en) 2015-03-04

Family

ID=44796282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010057943A Expired - Fee Related JP5679258B2 (en) 2010-03-15 2010-03-15 Water quality measuring device and vapor quality monitoring device

Country Status (1)

Country Link
JP (1) JP5679258B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104391099A (en) * 2014-12-17 2015-03-04 国网上海市电力公司 Water quality testing equipment
JP2019081121A (en) * 2017-10-27 2019-05-30 株式会社東芝 Carbon dioxide separation recovery system and method for operation of carbon dioxide separation recovery system
CN112730525A (en) * 2020-12-25 2021-04-30 杭州绿洁环境科技股份有限公司 Low-concentration trace water sample pH conductivity detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398100B2 (en) 2020-01-22 2023-12-14 国立大学法人東海国立大学機構 heat ray sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067045U (en) * 1992-07-01 1994-01-28 日機装株式会社 Sampling device and continuous analyzer
JP2000126507A (en) * 1998-10-22 2000-05-09 Nikkiso Co Ltd Deaerator
US20030136723A1 (en) * 2002-01-24 2003-07-24 Xerox Corporation. Airtight waste solution sampling apparatus
JP2007093128A (en) * 2005-09-29 2007-04-12 Kurita Water Ind Ltd Vapor quality monitoring device
JP2009139047A (en) * 2007-12-10 2009-06-25 Kurita Water Ind Ltd Boiler water quality management device and boiler water quality management method
JP2009198032A (en) * 2008-02-19 2009-09-03 Kurita Water Ind Ltd Steam monitoring device and boiler system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067045U (en) * 1992-07-01 1994-01-28 日機装株式会社 Sampling device and continuous analyzer
JP2000126507A (en) * 1998-10-22 2000-05-09 Nikkiso Co Ltd Deaerator
US20030136723A1 (en) * 2002-01-24 2003-07-24 Xerox Corporation. Airtight waste solution sampling apparatus
JP2007093128A (en) * 2005-09-29 2007-04-12 Kurita Water Ind Ltd Vapor quality monitoring device
JP2009139047A (en) * 2007-12-10 2009-06-25 Kurita Water Ind Ltd Boiler water quality management device and boiler water quality management method
JP2009198032A (en) * 2008-02-19 2009-09-03 Kurita Water Ind Ltd Steam monitoring device and boiler system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014052923; '「産業用火力プラント化学管理及び地熱発電所の概要: 1. 産業用火力プラント化学管理」' 火力原子力発電 Vol. 59, No. 2, 20080215, p. 133-146, 社団法人火力原子力発電技術協会 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104391099A (en) * 2014-12-17 2015-03-04 国网上海市电力公司 Water quality testing equipment
JP2019081121A (en) * 2017-10-27 2019-05-30 株式会社東芝 Carbon dioxide separation recovery system and method for operation of carbon dioxide separation recovery system
CN112730525A (en) * 2020-12-25 2021-04-30 杭州绿洁环境科技股份有限公司 Low-concentration trace water sample pH conductivity detector
CN112730525B (en) * 2020-12-25 2024-01-16 杭州绿洁科技股份有限公司 Low-concentration trace water sample pH conductivity detector

Also Published As

Publication number Publication date
JP5679258B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
JP5679258B2 (en) Water quality measuring device and vapor quality monitoring device
JP2008128783A (en) Boiler condensation system corrosion monitoring device
US20100044024A1 (en) Apparatus and method for controlled cooling
JP2013236533A (en) Apparatus and method for detecting water level of cooling system of fuel cell vehicle
KR101644060B1 (en) Measuring device for micro flow rate and nuclear power plant having the same
JP4900783B2 (en) Boiler steam quality monitoring device
JP5315844B2 (en) Vapor quality monitoring device
JP5549804B2 (en) Vapor quality monitoring device
JP2007255838A (en) Boiler device
JP5549805B2 (en) Vapor quality monitoring device
WO2012096165A1 (en) Water level measuring system and non-condensable gas discharge device for same
CN102539337A (en) Total organic carbon measuring apparatus
WO2019203235A1 (en) Monitoring system
JP5277933B2 (en) Condensate quality monitoring device
RU168476U1 (en) Device for monitoring and controlling the quality of steam in surface-type evaporators
CN104391099A (en) Water quality testing equipment
US10746678B2 (en) Dew point and carry-over monitoring
JP2008007336A (en) Ozone concentrating apparatus and method for driving ozone concentrating apparatus
JP2007333566A (en) Gas cavitation testing method and apparatus
JP2008241610A (en) Vapor sampling method
JP2007192686A (en) Precision inspecting method of dew point meter and fuel cell evaluation device
JP2011257381A (en) Thermal hydrolysis device and analysis system using the same
US4608065A (en) Moisture removal for stack gas monitor
JP5370836B2 (en) Steam property monitoring device
JP2011179708A (en) Method and device for controlling water level in boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5679258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees