JP2007333566A - Gas cavitation testing method and apparatus - Google Patents
Gas cavitation testing method and apparatus Download PDFInfo
- Publication number
- JP2007333566A JP2007333566A JP2006165771A JP2006165771A JP2007333566A JP 2007333566 A JP2007333566 A JP 2007333566A JP 2006165771 A JP2006165771 A JP 2006165771A JP 2006165771 A JP2006165771 A JP 2006165771A JP 2007333566 A JP2007333566 A JP 2007333566A
- Authority
- JP
- Japan
- Prior art keywords
- test
- water
- gas
- cavitation
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
本発明は、ガスキャビテーションの発生条件を求めるための試験方法、およびそのための試験装置に関する。 The present invention relates to a test method for obtaining conditions for generating gas cavitation and a test apparatus therefor.
周知のように、ポンプにおいて生じるキャビテーションには、蒸気キャビテーションとガスキャビテーションの2つの現象がある。
蒸気キャビテーションは、ある温度の液体の圧力がその温度によって決まる飽和蒸気圧より低くなると、そこで液体が蒸発して蒸気の泡が生じることに起因する現象である。ポンプやプロペラの流れは場所により加速され圧力が低くなるので、常温でも液体が蒸発し気泡となり易く、それにより蒸気キャビテーションが発生し易くなる。
一方、ガスキャビテーションは、液体中の溶存ガスが過飽和になって液体中に溶出する現象である。通常、ガスキャビテーションは蒸気キャビテーションが発生する前に生じ、サイホン切れの原因となるとこが知られている。
As is well known, there are two phenomena of cavitation occurring in a pump: steam cavitation and gas cavitation.
Vapor cavitation is a phenomenon caused by the evaporation of liquid and the generation of vapor bubbles when the pressure of the liquid at a certain temperature falls below the saturated vapor pressure determined by the temperature. The flow of the pump and propeller is accelerated depending on the location and the pressure is lowered, so that the liquid is easily evaporated and bubbles are formed even at room temperature, thereby easily causing vapor cavitation.
On the other hand, gas cavitation is a phenomenon in which dissolved gas in a liquid is supersaturated and eluted into the liquid. It is known that gas cavitation usually occurs before steam cavitation occurs, causing siphon cuts.
それら2つのキャビテーションのうち、蒸気キャビテーションは気泡の崩壊時にきわめて高い圧力が発生し、それにより固体面が破壊(壊食)されたり、振動や騒音の原因となることが古くより知られており、そのため、ポンプについての一般的な性能試験(NPSHR試験)においてもキャビテーション発生圧力についての試験が行われている。
一方、ガスキャビテーションはその現象こそ知られているが、それに関する研究はさほど進んでおらず、特に発生因子の定量的な把握はいまだできていない。従来より実施されているポンプの性能試験においてもガスキャビテーションについては全く考慮されておらず、上記のNPSHR試験においても完全脱気状態(つまり溶存ガスはない状態)で試験することが前提となっているので溶存ガスの影響を把握することはできない。
それ故、たとえば特許文献1に示されるような取水施設に設置される大規模な吸水装置等においては、ガスキャビテーションに起因するサイホン切れ等の限界を定量的に把握できておらず、したがってそのような施設の計画や設計は経験に頼って充分な安全率を見込んで行っているのが実状である。
On the other hand, gas cavitation is known for its phenomenon, but research on it has not progressed so far, and in particular, it has not been possible to quantitatively grasp the generation factors. Gas cavitation is not considered at all in the performance tests of pumps that have been performed conventionally, and it is assumed that the above-described NPSHR test is performed in a completely deaerated state (that is, in a state where there is no dissolved gas). Therefore, the effect of dissolved gas cannot be grasped.
Therefore, for example, in a large-scale water absorption device or the like installed in a water intake facility as shown in Patent Document 1, the limit of siphon breakage due to gas cavitation, etc. cannot be quantitatively grasped. The actual situation is that the planning and design of such facilities is based on experience and expects a sufficient safety factor.
このように、従来においてはガスキャビテーションについての定量的な把握ができておらず、したがってガスキャビテーションに対する有効な対策技術や防止技術も確立していないことから、ガスキャビテーションが問題となることが想定されるような施設の計画・設計に当たってはポンプをはじめとする装置類の設計や仕様決定に充分な安全率を見込まざるを得ず、そのことがその種の施設の建設コスト削減を阻む一因ともなっている。 As described above, gas cavitation is assumed to be a problem because quantitative cavitation about gas cavitation has not been achieved in the past, and effective countermeasure technology and prevention technology for gas cavitation have not been established. When planning and designing such a facility, it is necessary to expect a sufficient safety factor for the design and specification of equipment such as pumps, which is one of the factors that hinder the cost of construction of such facilities. ing.
上記事情に鑑み、本発明はガスキャビテーションの発生条件を定量的に把握するためのできる簡易にして有効適切な試験方法およびそのための試験装置を提供することを目的としている。 In view of the above circumstances, an object of the present invention is to provide a simple and effective test method and a test apparatus therefor, which can quantitatively grasp the generation conditions of gas cavitation.
請求項1記載の発明のガスキャビテーション試験方法は、試験水が循環可能な閉鎖循環系に、試験水を循環させるための試験ポンプを設置するとともに、該試験ポンプの吸込側に試験水中の溶存ガス飽和度を調整可能な調整槽を設置し、該調整槽と試験ポンプとの間には、循環中の試験水の状況を目視観測可能かつそこでの真空度を計測可能な気液分離器を設置しておき、前記調整槽により試験水の溶存ガス飽和度を調整して試験ポンプを運転し、循環中の試験水におけるガスキャビテーションの発生状況を前記気液分離器により確認してその時点の真空度を計測することによって、ガスキャビテーションが発生する限界の水圧を試験水中の溶存ガス飽和度をパラメータとして求めることを特徴とする。 In the gas cavitation test method of the invention described in claim 1, a test pump for circulating the test water is installed in a closed circulation system in which the test water can be circulated, and dissolved gas in the test water is provided on the suction side of the test pump. An adjustment tank capable of adjusting the degree of saturation is installed, and a gas-liquid separator is installed between the adjustment tank and the test pump so that the status of the circulating test water can be visually observed and the degree of vacuum can be measured there. In addition, the dissolved gas saturation degree of the test water is adjusted by the adjustment tank, the test pump is operated, and the occurrence of gas cavitation in the circulating test water is confirmed by the gas-liquid separator, and the vacuum at that time is confirmed. By measuring the degree, the limit water pressure at which gas cavitation occurs is obtained using the dissolved gas saturation in the test water as a parameter.
請求項2記載の発明は、請求項1記載の発明のガスキャビテーション試験方法において、試験水中の溶存ガス飽和度を設定することに加えて、試験水の水温と試験ポンプの吸込流速を設定して試験水を循環させることにより、ガスキャビテーションが発生する限界の水圧を、溶存ガス飽和度のみならず水温および吸込流速をパラメータとして求めることを特徴とする。 The invention according to claim 2 is the gas cavitation test method according to claim 1, wherein, in addition to setting the dissolved gas saturation in the test water, the water temperature of the test water and the suction flow rate of the test pump are set. By circulating the test water, the limit water pressure at which gas cavitation occurs is obtained using not only the dissolved gas saturation but also the water temperature and suction flow velocity as parameters.
請求項3記載の発明のガスキャビテーション試験装置は、試験水が循環可能な閉鎖循環系に、試験水を循環させるための試験ポンプを設置するとともに、該試験ポンプの吸込側に試験水中の溶存ガス飽和度を調整可能な調整槽を設置し、該調整槽と試験ポンプとの間に、循環中の試験水の状況を目視観測可能かつそこでの真空度を計測可能な気液分離器を設置してなることを特徴とする。 The gas cavitation test apparatus according to claim 3 is provided with a test pump for circulating the test water in a closed circulation system through which the test water can be circulated, and a dissolved gas in the test water on the suction side of the test pump. An adjustment tank capable of adjusting the degree of saturation is installed, and a gas-liquid separator is installed between the adjustment tank and the test pump so that the state of the circulating test water can be visually observed and the degree of vacuum can be measured. It is characterized by.
請求項4記載の発明は、請求項3記載の発明のガスキャビテーション試験装置において、調整槽には循環水の水温を調整し維持するための水温調整手段を備え、かつ試験ポンプの吸込流速を計測するための流速計を具備してなることを特徴とする。 According to a fourth aspect of the present invention, in the gas cavitation test apparatus according to the third aspect of the present invention, the adjustment tank includes a water temperature adjusting means for adjusting and maintaining the water temperature of the circulating water, and measures the suction flow velocity of the test pump. It is characterized by comprising an anemometer for performing the above.
本発明のガスキャビテーション試験方法および試験装置によれば、調整槽により溶存ガス飽和度を様々に変更して試験水を循環させつつ、気液分離器を目視観測してガスキャビテーションの発生の有無やその状況を確認し、ガスキャビテーションが発生する限界の水圧を測定する試験を繰り返すことにより、ガスキャビテーションの発生やその状況と溶存ガス飽和度との関係を定量的に把握することができる。また、調整槽による試験水の水温を調節可能とし、試験ポンプの流速を計測することにより、溶存ガス飽和度のみならず水温や吸込流速の影響も同様に定量的に把握することができる。したがって本発明によれば、その試験結果を取水施設における吸水装置等の計画や設計や活用することにより、過度の安全率を見込むことなく合理的かつ経済的な計画・設計が可能となる。 According to the gas cavitation test method and the test apparatus of the present invention, the gas-liquid separator is visually observed and the presence or absence of gas cavitation is observed while circulating the test water with various changes in the dissolved gas saturation by the adjustment tank. By confirming the situation and repeating the test for measuring the limit water pressure at which gas cavitation occurs, it is possible to quantitatively grasp the occurrence of gas cavitation and the relationship between the situation and dissolved gas saturation. In addition, by making it possible to adjust the water temperature of the test water in the adjustment tank and measuring the flow rate of the test pump, it is possible to quantitatively grasp not only the dissolved gas saturation but also the influence of the water temperature and the suction flow rate. Therefore, according to the present invention, it is possible to plan and design rationally and economically without expecting an excessive safety factor by taking the test result and planning, designing or utilizing a water absorption device or the like in the water facility.
図1は本発明の一実施形態であるガスキャビテーション試験装置の概略構成を示す系統図である。
本実施形態の試験装置は、試験ポンプ1によって試験水を実線矢印のように循環させるための閉鎖循環系を基本構成としており、試験水の循環水量や水圧、流速等の試験条件を様々に変更して試験を繰り返すことによってガスキャビテーションの発生を再現し、その際の諸データを採取するために、試験ポンプ1の吐出圧を計測するための圧力計2、吸込圧を計測するための連成計3、吸込流速を計測するための流速計4をはじめとして、適宜のセンサ類が適所に設置されているものである。
FIG. 1 is a system diagram showing a schematic configuration of a gas cavitation test apparatus according to an embodiment of the present invention.
The test apparatus according to the present embodiment is based on a closed circulation system for circulating test water as indicated by solid arrows by the test pump 1, and variously changes test conditions such as the circulating water volume, water pressure, and flow rate of the test water. In order to reproduce the occurrence of gas cavitation by repeating the test and collect various data at that time, a pressure gauge 2 for measuring the discharge pressure of the test pump 1, a coupled for measuring the suction pressure Appropriate sensors are installed in place, including a total of 3 and an anemometer 4 for measuring the suction flow velocity.
特に本実施形態の試験装置は、ガスキャビテーションの発生に対する溶存ガス飽和度および水温の影響を把握することを主たる目的として構成されており、そのため上記の閉鎖循環系には試験水中の溶存ガス飽和度および水温を調整するための調整槽5と、試験ポンプ1の吸込側におけるガスキャビテーションの発生状況を目視観測するための気液分離器6とを設置しているものである。
In particular, the test apparatus of the present embodiment is configured mainly for the purpose of grasping the effects of dissolved gas saturation and water temperature on the occurrence of gas cavitation. Therefore, the above-mentioned closed circulation system has dissolved gas saturation in test water. And an
調整槽5は、試験水を貯留可能な小容量(たとえば0.1m3程度)の水槽7中に、試験水に溶け込むガス(一般には大気で良い)を鎖線矢印で示すように調整弁8、エジェクタ9を介して吹き込みつつ、水槽7中の試験水を破線矢印で示すように調整用循環ポンプ10により循環させ、かつ調整弁11によりその循環水量を調節することによって溶存ガス飽和度を所望値に設定し維持するためのものである。なお、水槽7に設けられている符号12は排水管、13は給水管、14はオーバーブロー管である。
また、この調整槽5においては試験水の水温も調整可能とされていて、水温調整手段としての加熱冷却コイル15と熱源装置16(たとえば冷温水ヒートポンプが好適に採用可能である)とが付設されている。
The
Further, in the
さらに、この調整槽5には、溶存ガス飽和度の設定と維持、および水温の設定と維持のための制御装置17が付設されている。
制御装置17は、主制御部18、溶存ガス濃度取得部19、水温取得部20、状態設定部21、指令部22、およびメモリ23を有しており、状態設定部21により溶存ガス飽和度を所望値に設定し、水槽7に設置されている溶存ガスセンサ24により溶存ガス濃度を検出し、それに基づき指令部22が上記の調整弁8、11をフィードバック制御してエアの吹き込み量と循環水量を調節することによって溶存ガス飽和度を設定値に維持するようにされている。なお、溶存ガス飽和度を低下させるように制御する場合には、気液分離器6(詳細後述)に付設されている真空ポンプ28を作動させて気液分離器6内の圧力を下げ、それによって系内から脱気を行うと良い。
また、水温の設定および維持は、状態設定部21により水温を所望値に設定し、水温センサ25により水槽7内の水温を検出し、それにより指令部22が熱源装置16をフィードバック制御して水温を設定値に維持するようになっている。
Further, the adjusting
The
The water temperature is set and maintained by setting the water temperature to a desired value using the
上記の調整槽5によって溶存ガス飽和度と水温が調整された試験水は、試験ポンプ1により吸い込まれてこの閉鎖循環系を循環するのであるが、調整槽5と試験ポンプ1との間には上記の気液分離器6が配置されていて、調整槽5からの試験水はこの気液分離器6を通ってから試験ポンプ1により吸い込まれるようになっている。符号26はバイパス管である。
気液分離器6は内部を目視可能な透明な小容量(たとえば0.004m3程度)の縦型容器であって、試験水が試験ポンプ1に吸い込まれる直前にこの気液分離器6を通過することによって、そこでのガスキャビテーションの発生の有無やその状況(つまり、ガスキャビテーション現象の発生により溶存ガスが試験水中から気泡として発生する状況)を容易に目視観測することができ、かつ装置内の真空度を真空計27により計測することにより、ガスキャビテーションが発生する時点の水圧を定量的に把握できるようになっている。また、気液分離器6には装置内を負圧とするための真空ポンプ28も付設されている。
The test water whose dissolved gas saturation and water temperature are adjusted by the
The gas-liquid separator 6 is a transparent small container (for example, about 0.004 m 3 ) that can be visually observed inside, and passes through the gas-liquid separator 6 immediately before the test water is sucked into the test pump 1. By doing so, the presence or absence of gas cavitation there and its situation (that is, the situation where dissolved gas is generated as bubbles from the test water due to the occurrence of gas cavitation phenomenon) can be easily visually observed, and By measuring the degree of vacuum with the vacuum gauge 27, the water pressure at the time when gas cavitation occurs can be quantitatively grasped. The gas-liquid separator 6 is also provided with a
上記構成の試験装置による試験は、試験ポンプ1を運転して試験水を循環させた際のガスキャビテーションの発生の有無やその状況を気液分離器6で確認することで行い、その際には試験水の循環水量や吐出圧、吸込圧、吸込流速等を様々に変更して試験を繰り返すことにより、ガスキャビテーションの発生因子に関するデータを採取することを基本とするのであるが、本実施形態の試験装置では特に従来においては考慮されていなかった溶存ガス飽和度および水温の影響を把握することが可能である。
すなわち、上記装置では試験水中の溶存ガス飽和度および試験水の水温を任意に調整可能な調整槽5を備えたことにより、その調整槽5によって溶存ガス飽和度と水温を様々に変更して試験を繰り返すことによりガスキャビテーションに対する溶存ガス飽和度および水温の影響を把握することができ、ガスキャビテーションが発生する限界の水圧を溶存ガス飽和度および水温をパラメータとして定量的に求めることができる。
The test by the test apparatus having the above-described configuration is performed by confirming the presence or state of gas cavitation when the test pump 1 is operated and the test water is circulated and the state thereof by the gas-liquid separator 6. It is based on collecting data on gas cavitation generation factors by repeating the test with various changes in test water circulating water volume, discharge pressure, suction pressure, suction flow velocity, etc. In the test apparatus, it is possible to grasp the influence of the dissolved gas saturation and the water temperature, which were not considered in the past.
That is, in the above apparatus, by providing the
図2は上記試験装置による試験により得た結果の一例を示す。これは、ガスキャビテーションが発生した時点の水圧と水温との関係を溶存ガス飽和度(100%と80%の2段階)および吸込流速(1.0m/sと0.5m/sの2段階)をパラメータとして求めたものである。図中1a〜4aはガスキャビテーションが発生するものの連続運転はそのまま可能である限界、1b〜4bはガスキャビテーションが発生すると連続運転が不可能(10分程度の短時間のうちには停止してしまう)となる場合を示す。
この図から、他の条件が同じであれば、水温が低いほど、溶存ガス飽和度が低いほど、吸込流速が小さいほど、ガスキャビテーションが生じ難く、したがって安定な運転を継続し易い傾向にあることが分かり、ガスキャビテーションの発生条件や運転限界としての水温や溶存ガス飽和度、流速の値をこの図から定量的に決定することができる。
FIG. 2 shows an example of the results obtained by the test using the test apparatus. This is based on the relationship between the water pressure and water temperature at the time when gas cavitation occurs, and the dissolved gas saturation (100% and 80% in two stages) and the suction flow rate (1.0 m / s and 0.5 m / s in two stages). Is obtained as a parameter. In the figure, 1a to 4a indicate that gas cavitation occurs but continuous operation is possible, and 1b to 4b indicate that continuous operation is impossible when gas cavitation occurs (the operation will stop within a short period of about 10 minutes). ).
From this figure, if the other conditions are the same, the lower the water temperature, the lower the dissolved gas saturation, and the lower the suction flow velocity, the less likely gas cavitation will occur, and therefore there is a tendency to continue stable operation. From this figure, it is possible to quantitatively determine the values of water cavities, dissolved gas saturation, and flow velocity as gas cavitation generation conditions and operation limits.
なお、上記実施形態では溶存ガス飽和度の他に水温と吸込流速もパラメータとしたが、それらの影響を特に考慮する必要がなければ溶存ガス飽和度のみをパラメータとすることでも充分に有効であり、その場合には調整槽5や制御装置17には水温調整のための手段や機構は省略して良いし、流速計4の設置やその計測も不要であれば省略して差し支えない。
In the above embodiment, the water temperature and the suction flow velocity are also used as parameters in addition to the dissolved gas saturation. However, it is sufficiently effective to use only the dissolved gas saturation as a parameter unless it is particularly necessary to consider their influence. In that case, means and mechanisms for adjusting the water temperature may be omitted in the
1 試験ポンプ
2 圧力計
3 連成計
4 流速計
5 調整槽
6 気液分離器
7 水槽
8 調整弁
9 エジェクタ
10 調整用循環ポンプ
11 調整弁
15 加熱冷却コイル
16 熱源装置
17 制御装置
18 主制御部
19 溶存ガス濃度取得部
20 水温取得部
21 状態設定部
22 指令部
23 メモリ
24 溶存ガスセンサ
25 水温センサ
27 真空計
28 真空ポンプ
DESCRIPTION OF SYMBOLS 1 Test pump 2 Pressure gauge 3 Compound meter 4
Claims (4)
前記調整槽により試験水の溶存ガス飽和度を調整して試験ポンプを運転し、循環中の試験水におけるガスキャビテーションの発生状況を前記気液分離器により確認してその時点の真空度を計測することによって、ガスキャビテーションが発生する限界の水圧を溶存ガス飽和度をパラメータとして求めることを特徴とするガスキャビテーション試験方法。 A test pump for circulating the test water is installed in a closed circulation system through which the test water can circulate, and an adjustment tank capable of adjusting the dissolved gas saturation in the test water is installed on the suction side of the test pump. Between the adjustment tank and the test pump, a gas-liquid separator capable of visually observing the status of the circulating test water and measuring the degree of vacuum there is installed.
Adjust the dissolved gas saturation of the test water with the adjustment tank, operate the test pump, check the occurrence of gas cavitation in the circulating test water with the gas-liquid separator, and measure the degree of vacuum at that time A gas cavitation test method characterized in that a water pressure at a limit at which gas cavitation occurs is obtained using dissolved gas saturation as a parameter.
試験水中の溶存ガス飽和度を設定することに加えて、試験水の水温と試験ポンプの吸込流速を設定して試験水を循環させることにより、ガスキャビテーションが発生する限界の水圧を、溶存ガス飽和度のみならず水温および吸込流速をパラメータとして求めることを特徴とするガスキャビテーション試験方法。 A gas cavitation test method according to claim 1,
In addition to setting the dissolved gas saturation in the test water, set the test water temperature and the test pump suction flow rate to circulate the test water, thereby reducing the water pressure at the limit where gas cavitation occurs to the dissolved gas saturation. A gas cavitation test method characterized by determining water temperature and suction flow velocity as parameters as well as the temperature.
調整槽には循環水の水温を調整し維持するための水温調整手段を備え、かつ試験ポンプの吸込流速を計測するための流速計を具備してなることを特徴とするガスキャビテーション試験装置。
A gas cavitation test apparatus according to claim 3,
A gas cavitation test apparatus characterized in that the adjustment tank is provided with a water temperature adjusting means for adjusting and maintaining the water temperature of the circulating water, and further comprising a flowmeter for measuring the suction flow velocity of the test pump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006165771A JP4793645B2 (en) | 2006-06-15 | 2006-06-15 | Gas cavitation test method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006165771A JP4793645B2 (en) | 2006-06-15 | 2006-06-15 | Gas cavitation test method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007333566A true JP2007333566A (en) | 2007-12-27 |
JP4793645B2 JP4793645B2 (en) | 2011-10-12 |
Family
ID=38933177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006165771A Expired - Fee Related JP4793645B2 (en) | 2006-06-15 | 2006-06-15 | Gas cavitation test method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4793645B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107884427A (en) * | 2017-11-09 | 2018-04-06 | 北京理工大学 | Gas content measuring system in a kind of bubbling crystallzation bubble based on circulating water tunnel |
CN108169062A (en) * | 2017-12-26 | 2018-06-15 | 中国石油大学(华东) | Simulate the visual test device and method of subterranean coal gas preservation desorption process |
CN112683520A (en) * | 2020-12-08 | 2021-04-20 | 宁波市产品食品质量检验研究院(宁波市纤维检验所) | Hydraulic valve cavitation erosion test device under multiphase flow condition and test method thereof |
CN114923667A (en) * | 2021-06-16 | 2022-08-19 | 中国科学院力学研究所 | Circulating water tank experimental device and method for realizing controllable solution saturation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4895889A (en) * | 1972-03-01 | 1973-12-08 | ||
JPS5737244A (en) * | 1980-08-18 | 1982-03-01 | Fuji Electric Co Ltd | Device for measuring amount of gas dissolved in liquid |
JPH04232437A (en) * | 1990-06-18 | 1992-08-20 | Westinghouse Electric Corp <We> | On-line measuring apparatus for measuring effective partial pressure of dissolved gas in liquid |
JP3579822B2 (en) * | 1999-07-19 | 2004-10-20 | 清水建設株式会社 | Water absorption device |
WO2006034040A2 (en) * | 2004-09-17 | 2006-03-30 | Product Systems Incorporated | Method and apparatus for cavitation threshold characterization and control |
-
2006
- 2006-06-15 JP JP2006165771A patent/JP4793645B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4895889A (en) * | 1972-03-01 | 1973-12-08 | ||
JPS5737244A (en) * | 1980-08-18 | 1982-03-01 | Fuji Electric Co Ltd | Device for measuring amount of gas dissolved in liquid |
JPH04232437A (en) * | 1990-06-18 | 1992-08-20 | Westinghouse Electric Corp <We> | On-line measuring apparatus for measuring effective partial pressure of dissolved gas in liquid |
JP3579822B2 (en) * | 1999-07-19 | 2004-10-20 | 清水建設株式会社 | Water absorption device |
WO2006034040A2 (en) * | 2004-09-17 | 2006-03-30 | Product Systems Incorporated | Method and apparatus for cavitation threshold characterization and control |
JP2008514125A (en) * | 2004-09-17 | 2008-05-01 | プロダクト・システムズ・インコーポレイテッド | Method and apparatus for characterization and control of cavitation threshold |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107884427A (en) * | 2017-11-09 | 2018-04-06 | 北京理工大学 | Gas content measuring system in a kind of bubbling crystallzation bubble based on circulating water tunnel |
CN108169062A (en) * | 2017-12-26 | 2018-06-15 | 中国石油大学(华东) | Simulate the visual test device and method of subterranean coal gas preservation desorption process |
CN112683520A (en) * | 2020-12-08 | 2021-04-20 | 宁波市产品食品质量检验研究院(宁波市纤维检验所) | Hydraulic valve cavitation erosion test device under multiphase flow condition and test method thereof |
CN114923667A (en) * | 2021-06-16 | 2022-08-19 | 中国科学院力学研究所 | Circulating water tank experimental device and method for realizing controllable solution saturation |
CN114923667B (en) * | 2021-06-16 | 2024-01-26 | 中国科学院力学研究所 | Experimental device and method for realizing controllable solution saturation of circulating water tank |
Also Published As
Publication number | Publication date |
---|---|
JP4793645B2 (en) | 2011-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4793645B2 (en) | Gas cavitation test method and apparatus | |
JP2016525682A5 (en) | ||
US9651486B2 (en) | Method and device for measuring the gas content in a liquid, and use of such a device | |
EP2568169A1 (en) | Wind turbine with tower climatisation system using outside air | |
KR20130036711A (en) | Method for cooling a heat-producing device and a cooling device for a heat-producing device | |
EP3036025B1 (en) | Method and device for degassing | |
JP6192796B1 (en) | Leak detection device | |
JP2010139207A (en) | Steam generation amount calculating method for boiler | |
SE513882C2 (en) | Method and apparatus for detecting leakage from a chemical soda boiler system | |
Bidhandi et al. | The influence of SiO2 nanoparticles on cavitation initiation and intensity in a centrifugal water pump | |
US10384957B2 (en) | Apparatus and method for detecting degassed cation conductivity | |
JP6235687B1 (en) | Leak detection device | |
JP4231024B2 (en) | Absorption diagnosis method and apparatus for absorption refrigerator | |
KR101393136B1 (en) | Testing system for deaerater and method thereof | |
JP5384401B2 (en) | Boiler water level control method | |
JP5772765B2 (en) | Water supply pump and method for detecting full water in water supply pump | |
JP2009024935A (en) | Flow rate control system of circulating pump and flow rate control method of circulating pump | |
CN210153562U (en) | Quick detection device that heat supply network heat exchange tube and tube sheet leaked | |
RU168476U1 (en) | Device for monitoring and controlling the quality of steam in surface-type evaporators | |
BE1023923B1 (en) | METHOD AND DETECTOR FOR DETECTING AIR BUBBLES OR AIR CONCLUSIONS IN A SYSTEM, AS WELL AS AN INSTALLATION CONTAINING SUCH DETECTOR | |
KR101057418B1 (en) | Dyeing coolant recycling unit | |
JP2007192686A (en) | Precision inspecting method of dew point meter and fuel cell evaluation device | |
JP2007101537A (en) | Improved online steam flow velocity measurement device and method | |
RU182097U1 (en) | Device for monitoring and controlling the quality of steam in surface-type evaporators | |
CN210534112U (en) | Scale inhibitor testing arrangement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110614 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110713 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140805 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |