JP2009139047A - Boiler water quality management device and boiler water quality management method - Google Patents

Boiler water quality management device and boiler water quality management method Download PDF

Info

Publication number
JP2009139047A
JP2009139047A JP2007318037A JP2007318037A JP2009139047A JP 2009139047 A JP2009139047 A JP 2009139047A JP 2007318037 A JP2007318037 A JP 2007318037A JP 2007318037 A JP2007318037 A JP 2007318037A JP 2009139047 A JP2009139047 A JP 2009139047A
Authority
JP
Japan
Prior art keywords
water
boiler
water quality
condensed water
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007318037A
Other languages
Japanese (ja)
Other versions
JP5182553B2 (en
Inventor
Manabu Yamada
学 山田
Yasushi Tabuchi
靖 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007318037A priority Critical patent/JP5182553B2/en
Publication of JP2009139047A publication Critical patent/JP2009139047A/en
Application granted granted Critical
Publication of JP5182553B2 publication Critical patent/JP5182553B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily set an optimum chemical injection concentration and an optimum blow rate in accordance with the operating state of a boiler even if there is large fluctuation in the water quality of boiler feed water caused by the use of condensed water. <P>SOLUTION: A boiler water quality management device and boiler water quality management method has a condensed water use rate calculating means 27 for calculating a condensed water use rate being a proportion of the condensed water in the boiler feed water from one of a temperature, electric conductivity or the like of the boiler feed water, soft water, or the condensed water, a water quality management value storing means 26 for storing an equation or the like for calculating one of the optimum chemical injection concentration into the boiler feed water, or the optimum blow rate of boiler water, or the like determined by the condensed water use rate on the basis of the water quality of the soft water and the condensed water, a water quality management amount calculating means 28 for calculating one of the optimum chemical injection concentration, the optimum blow rate or the like on the basis of an output from the condensed water use rate calculating means and the equation or the like in the water quality management value storing means, and an output transmitting means 22 for transmitting information based on an output from the water quality management amount calculating means 28 to one of a chemical injection device, a blow-down device 6, or the like. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、ボイラ給水中への薬液の注入とボイラ水のブローとを適正に行わせることによって、ボイラ水の水質を適正に管理するボイラの水質管理装置及びボイラの水質管理方法に関するものである。   The present invention relates to a boiler water quality management device and a boiler water quality management method for appropriately managing the quality of boiler water by appropriately injecting chemicals into the boiler feed water and blowing the boiler water. .

ボイラ給水の水質項目には、不純物の濃度と、気体(特に酸素)の溶存濃度とがあるが、これらの不純物や溶存気体には、ボイラを安全に運転するのに必要な物質(例えば、Mアルカリ(酸消費量(pH4.8)成分)と、有害な物質(例えば、酸素、酸化鉄や酸化銅といった腐食生成物、塩化物イオン、硫酸イオン、シリカ)とがある。そして、必要な物質が不足している場合には、不足している物質を薬液としてボイラの給水系統に補充するとともに、有害な物質については、無害化するような物質を薬液としてボイラの給水系統中に注入する。また、ボイラ水(缶水)中の不純物濃度が適切な範囲になるように、ボイラ給水流量に対して所定の割合(ブロー率)のボイラ水を、ボイラ本体外に放出(ブロー)することが行われている。   The water quality items of boiler feed water include the concentration of impurities and the dissolved concentration of gas (especially oxygen). These impurities and dissolved gas include substances necessary for safe operation of the boiler (for example, M There are alkali (acid consumption (pH 4.8) component) and harmful substances (for example, oxygen, corrosion products such as iron oxide and copper oxide, chloride ions, sulfate ions, silica) and necessary substances. In the case where the amount of water is insufficient, the missing substance is replenished to the boiler water supply system as a chemical solution, and the harmful substance is injected into the boiler water supply system as a chemical solution to make it harmless. Moreover, it is possible to discharge (blow) boiler water at a predetermined ratio (blow rate) to the boiler feed water flow rate outside the boiler body so that the impurity concentration in the boiler water (can water) falls within an appropriate range. Has been done.

一方、最近の工場では、蒸気発生コストを削減するため、蒸気の熱エネルギーを利用した後の凝縮水(復水、ドレン)をできるだけ回収し、ボイラ給水を純水から軟水に変更している。そして、かかるボイラでは、回収した凝縮水に軟水を加えたものが、ボイラ給水として使用される。   On the other hand, in recent factories, in order to reduce steam generation costs, condensed water (condensate, drain) after using the thermal energy of steam is collected as much as possible, and boiler feed water is changed from pure water to soft water. And in this boiler, what added soft water to the collected condensed water is used as boiler feed water.

ところで、凝縮水は、蒸留水であり、含まれる不純物量が軟水に比べて著しく少ない。ただし、凝縮水中の不純物は、ほとんどのものが、有害な物質(腐食生成物)であって、軟水のように、ボイラを安全に運転するために必要な物質をほとんど含んでいない。また、凝縮水の回収割合は、工場の操業状況によって大きく変化し、このため、ボイラ給水として再利用される凝縮水の割合も、大きく変化する。   By the way, the condensed water is distilled water, and the amount of impurities contained is significantly smaller than that of soft water. However, most of the impurities in the condensed water are harmful substances (corrosion products) and hardly contain substances necessary for safe operation of the boiler, such as soft water. In addition, the condensate recovery ratio varies greatly depending on the operation status of the factory. For this reason, the ratio of condensate reused as boiler feed water also varies greatly.

したがって、凝縮水に軟水を加えてボイラ給水としているボイラでは、ボイラ給水中の凝縮水の割合によってボイラ給水の水質が大きく変動しやすく、ボイラ給水の平均的な水質に対して、薬液注入濃度を一定にした運転やブロー率を一定にしたボイラの運転では、有害物質の無害化が充分に図れず、ボイラ本体内のボイラ水の不純物濃度が適切な範囲を超えてしまう場合も生じる。そこで、かかるボイラでは、ボイラ給水中の有害物質の量が最も高くなる場合(最悪時の場合)でも、これらを無害化できるように、かつ、ボイラ水の不純物濃度が大きく増大しないように、ボイラ給水への薬液注入濃度やボイラ本体からのブロー率を高く設定した運転がなされる。   Therefore, in boilers where soft water is added to condensed water to supply boiler water, the quality of the boiler feed water is likely to fluctuate greatly depending on the proportion of condensed water in the boiler feed water. In a boiler operation with a constant operation and a constant blow rate, harmful substances cannot be sufficiently detoxified, and the impurity concentration of boiler water in the boiler body may exceed an appropriate range. Therefore, in such a boiler, even if the amount of harmful substances in the boiler feed water is the highest (in the worst case), the boiler can be made harmless and the boiler water impurity concentration should not be greatly increased. An operation is performed in which the concentration of the chemical solution injected into the feed water and the blow rate from the boiler body are set high.

しかしながら、薬液注入濃度を最悪時を見込んで高めに設定したり、ブロー率を最悪時を見込んで高めに設定することは、有害物質が最大である時点以外では、過剰な薬液注入が行われ、過剰なボイラ水のブローが行われていることになる。すなわち、ブロー率の過剰な設定により、熱及び給水の無駄な廃棄を生じさせ、過剰な薬液注入濃度の設定により、無駄な薬品の使用を生じさせるとともに、排水処理の負荷を高めることになって、最終的に、蒸気発生コストの上昇を招いてしまう。   However, if the chemical injection concentration is set to a higher value in anticipation of the worst, or the blow rate is set to a higher value in anticipation of the worst, excessive chemical injection is performed except at the point when the harmful substance is maximum. Excess boiler water is being blown. In other words, excessive setting of the blow rate causes unnecessary waste of heat and water supply, and excessive setting of the chemical injection concentration causes use of unnecessary chemicals and increases the load of wastewater treatment. Eventually, the cost of steam generation will increase.

この発明は、以上の点に鑑み、凝縮水の使用によってボイラ給水の水質に大きな変動があっても、ボイラの運転状態に合わせて、簡単に、最適な薬液注入濃度や最適なブロー率を設定できるボイラの水質管理装置及び水質管理方法を提供することを目的とする。   In view of the above points, the present invention can easily set the optimum chemical injection concentration and the optimum blow rate according to the operation state of the boiler even if the quality of the boiler feed water varies greatly due to the use of condensed water. An object of the present invention is to provide a boiler water quality management device and a water quality management method.

この発明の請求項1記載の発明は、ボイラの給水系統に水処理薬品を注入する薬液注入装置と、ボイラ本体中のボイラ水を連続的にブローするブローダウン装置とを備えるとともに、回収した蒸気の凝縮水に軟水を加えた水がボイラ給水として使用されているボイラの水質管理装置であって、前記ボイラ給水と前記軟水と前記凝縮水の、温度、電気伝導度、又は使用流量の何れかから、前記ボイラ給水のうち前記凝縮水が占める割合である凝縮水使用率を算出する凝縮水使用率演算手段と、前記軟水及び前記凝縮水の水質を基準として定められる、前記ボイラ給水への最適薬液注入濃度、前記ボイラ本体からのボイラ水の最適ブロー率、又は、前記最適薬液注入濃度及び最適ブロー率の何れかを、前記凝縮水使用率を用いて定めたテーブル又は式を記憶する水質管理値記憶手段と、前記凝縮水使用率演算手段からの出力と前記水質管理値記憶手段中の前記テーブル又は式に基づき、最適薬液注入濃度、最適ブロー率、又は、前記最適薬液注入濃度及び最適ブロー率の、何れかを算出する水質管理量演算手段と、前記水質管理量演算手段からの出力に基づく情報を、前記薬液注入装置、前記ブローダウン装置、又は前記薬液注入装置及びブローダウン装置の、何れかに伝達する出力伝達手段とを有することを特徴とする。   Invention of Claim 1 of this invention is equipped with the chemical | medical solution injection | pouring apparatus which inject | pours a water treatment chemical | medical agent into the water supply system of a boiler, and the blow-down apparatus which blows the boiler water in a boiler main body continuously, The collect | recovered steam A water quality management device for a boiler in which soft water is added to the condensed water of the boiler as water supply for the boiler, and the boiler water supply, the soft water, and the condensed water are any of temperature, electrical conductivity, or flow rate used. From the boiler feed water, the condensed water usage rate calculating means for calculating the usage rate of the condensed water, which is the ratio occupied by the condensed water, and the optimum for the boiler feed water, which is determined based on the water quality of the soft water and the condensed water Either a chemical solution injection concentration, an optimum blow rate of boiler water from the boiler body, or an optimum chemical solution injection concentration and an optimum blow rate are determined by using the condensate use rate. Based on the water quality management value storage means for storing the formula, the output from the condensed water usage rate calculation means and the table or formula in the water quality management value storage means, the optimum chemical solution injection concentration, the optimum blow rate, or the optimum Water quality control amount calculation means for calculating one of the chemical solution injection concentration and the optimum blow rate, and information based on the output from the water quality control amount calculation means, the chemical liquid injection device, the blowdown device, or the chemical liquid injection device And an output transmission means for transmitting to any one of the blow-down devices.

凝縮水に軟水を加えた水をボイラ給水として使用する場合、凝縮水と軟水との水質が明らかであれば、凝縮水使用率によって、ボイラ給水の水質を容易に決定できる。この場合、水道水のような原水を軟化処理した軟水の水質は、原水の取水場所が変わらない限り、原水の季節的な水質変動による影響を除けば、大きく変化しない。また、ボイラ自身で発生した蒸気の凝縮水の水質も、蒸気や凝縮水の経路が一定であれば、大きく変動することはなく、かつ、凝縮水に含まれる不純物濃度も小さい。したがって、軟水と凝縮水の水質は、ある程度の期間(場合によっては1年中)ほぼ一定と見なすことができ、一度、軟水と凝縮水の水質を明らかにしておけば、ボイラ給水の水質は、凝縮水使用率によって容易に推定できる。すなわち、軟水と凝縮水との水質が明らかであれば、凝縮水使用率によって、ボイラ給水の水質が推定できるので、ボイラ給水に対する最適薬液注入濃度やボイラ水の最適ブロー率も容易に決定できる。   When water obtained by adding soft water to condensed water is used as boiler feed water, if the quality of the condensed water and soft water is clear, the quality of the boiler feed water can be easily determined based on the condensed water usage rate. In this case, the quality of soft water obtained by softening raw water, such as tap water, does not change greatly except for the influence of seasonal water quality fluctuations unless the intake location of the raw water is changed. Further, the quality of the condensed water of the steam generated in the boiler itself does not vary greatly as long as the path of the steam or condensed water is constant, and the impurity concentration contained in the condensed water is small. Therefore, the water quality of soft water and condensed water can be considered to be almost constant for a certain period of time (sometimes throughout the year). Once the quality of soft water and condensed water is clarified, the quality of boiler feed water is It can be easily estimated by the condensed water usage rate. That is, if the water quality of soft water and condensed water is clear, the quality of boiler feed water can be estimated from the usage rate of condensed water, so that the optimum chemical solution injection concentration and the optimum blow rate of boiler water can be easily determined.

この発明では、水質が明らかな軟水と凝縮水とを基準として、凝縮水使用率が分かれば、ボイラ給水に対する最適薬液注入濃度やボイラ水の最適ブロー率が分かるテーブル又は式を水質管理値記憶手段中に記憶させている。また、この発明では、凝縮水使用率を、ボイラ給水、軟水、及び凝縮水の、温度等から凝縮水使用率演算手段により算出している。したがって、この発明では、水質管理量演算手段が、水質管理値記憶手段中のテーブルの一部や式を読み出し、凝縮水使用率演算手段により算出された凝縮水使用率を用いて、この凝縮水使用率時のボイラ給水やボイラ水に合った最適薬液注入濃度や最適ブロー率を算出することにより、薬液注入装置やブローダウン装置は、水質管理量演算手段からの情報が出力伝達手段により与えられて、ボイラの運転状態に追従するように(合わせて)、薬液注入やブローを行うことができる。   In the present invention, a water quality management value storage means is a table or formula for knowing the optimal chemical injection concentration for boiler feed water and the optimal blow rate of boiler water if the condensate usage rate is known based on soft water and condensed water with clear water quality. I remember it inside. In the present invention, the condensed water usage rate is calculated by the condensed water usage rate calculating means from the temperature of the boiler feed water, the soft water, and the condensed water. Therefore, in the present invention, the water quality management amount calculation means reads out a part of the table in the water quality management value storage means and the formula, and uses the condensed water usage rate calculated by the condensed water usage rate calculation means. By calculating the optimal chemical injection concentration and the optimal blow rate that match the boiler water supply and boiler water at the time of use, the chemical injection device and blowdown device are given the information from the water quality control amount calculation means by the output transmission means. Thus, the chemical solution can be injected or blown so as to follow the operating state of the boiler.

この発明の請求項2記載の発明は、請求項1記載の発明の場合において、前記水質管理値記憶手段は、前記軟水の水質の変化、又は前記軟水及び前記凝縮水の水質の変化に対応させて、前記テーブル又は式を記憶しているとともに、前記水質管理量演算手段は、現在使用している軟水の水質、又は、現在使用している軟水及び凝縮水の水質に基づいて、前記水質管理値記憶手段中から必要なテーブル又は式を選択することを特徴とする。   According to a second aspect of the present invention, in the case of the first aspect, the water quality management value storage means is adapted to respond to a change in the quality of the soft water or a change in the quality of the soft water and the condensed water. The water quality management amount calculating means stores the water quality management based on the quality of soft water currently used or the quality of soft water and condensed water currently used. A necessary table or expression is selected from the value storage means.

この発明では、水質管理量演算手段は、現在使用している軟水等の水質に対応するように、水質管理値記憶手段中から最適なテーブル又は式を選択するとともに、凝縮水使用率演算手段により算出された凝縮水使用率を使用して、最適薬液注入濃度や最適ブロー率を算出する。   In this invention, the water quality control amount calculation means selects an optimum table or formula from the water quality management value storage means so as to correspond to the water quality such as soft water currently used, and the condensed water usage rate calculation means Using the calculated condensate usage rate, the optimal chemical injection concentration and the optimal blow rate are calculated.

この発明の請求項3記載の発明は、ボイラの給水系統に水処理薬品を注入する薬液注入装置と、ボイラ本体中のボイラ水を連続的にブローするブローダウン装置とを備えるとともに、軟水に蒸気の凝縮水を加えた水がボイラ給水として使用されているボイラの水質管理方法であって、前記ボイラ給水と前記軟水と前記凝縮水の、温度、電気伝導度、又は使用流量の何れかから、前記ボイラ給水のうち前記凝縮水が占める割合である凝縮水使用率を算出する凝縮水使用率演算ステップと、前記軟水及び前記凝縮水の水質を基準として、前記凝縮水使用率により決定される、前記ボイラ給水への最適薬液注入濃度、前記ボイラ本体からのボイラ水の最適ブロー率、又は、前記最適薬注濃度及び最適ブロー率の、何れかを算出するために記憶されたテーブル又は式と、前記凝縮水使用率演算ステップの出力とにより、最適薬注濃度、最適ブロー率、又は、前記最適薬注濃度及び最適ブロー率の、何れかを算出する水質管理量演算ステップと、前記水質管理量演算ステップからの出力に基づく情報を、前記薬液注入装置、前記ブローダウン装置、又は前記薬液注入手装置及びブローダウン装置の、何れかに伝達する出力伝達ステップとを有することを特徴とする。   According to a third aspect of the present invention, there is provided a chemical liquid injection device for injecting water treatment chemicals into a boiler water supply system, and a blow-down device for continuously blowing boiler water in the boiler body. Is a boiler water quality management method in which water added with the condensed water is used as boiler feed water, from the boiler feed water, the soft water, and the condensed water, temperature, electrical conductivity, or use flow rate, Determined by the condensed water usage rate, based on the condensed water usage rate calculating step for calculating the condensed water usage rate, which is the proportion occupied by the condensed water in the boiler feed water, and the water quality of the soft water and the condensed water, Stored in order to calculate either the optimal chemical injection concentration to the boiler feed water, the optimal blow rate of boiler water from the boiler body, or the optimal chemical injection concentration and optimal blow rate A water quality control amount calculating step for calculating either the optimum chemical injection concentration, the optimal blow rate, or the optimal chemical injection concentration and the optimal blow rate based on the output of the table or formula and the condensed water usage rate calculating step; And an output transmission step of transmitting information based on the output from the water quality control amount calculation step to any one of the chemical solution injection device, the blowdown device, or the chemical solution injection device and the blowdown device. Features.

この発明の請求項1及び3記載の発明によれば、凝縮水使用率によってボイラ給水の水質を容易に推定できるので、凝縮水の使用によってボイラ給水の水質に大きな変動があっても、ボイラの運転状態に合わせて、簡単に、最適な薬液注入濃度や最適なブロー率を設定できる。   According to the first and third aspects of the present invention, the quality of the boiler feed water can be easily estimated based on the condensate usage rate, so even if there is a large fluctuation in the quality of the boiler feed water due to the use of the condensate, The optimal chemical injection concentration and optimal blow rate can be set easily according to the operating conditions.

この発明の請求項2記載の発明によれば、軟水等の水質が大きく変化することにより、凝縮水の使用以外の理由でボイラ給水の水質に変化が生じても、ボイラの運転状態に合わせて、簡単に、最適な薬液注入濃度や最適なブロー率を設定できる。   According to the invention described in claim 2 of the present invention, even if the quality of the boiler feed water changes due to a reason other than the use of the condensed water due to a large change in the water quality such as soft water, it is matched to the operation state of the boiler. , You can easily set the optimal chemical injection concentration and optimal blow rate.

以下、この発明の最良の実施形態を図面を参照しつつ説明する。
図1はこの発明に係る水質管理装置を備えたボイラ装置を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The best embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a boiler apparatus equipped with a water quality management apparatus according to the present invention.

ボイラ装置1は、図1で示されるように、ボイラ本体2と、給水タンク3と、軟水タンク4と、薬液注入装置である清缶剤注入装置5Aと、脱酸素剤注入装置5Bと、ブローダウン装置6と、給水流量計7a、給水温度計7b及び電気伝導度計7cからなる計測機器類と、給水配管8a、補給水配管8b、薬注配管8c,8d、及びブローダウン配管8eからなる配管類と、水質管理装置9と、計測機器類から水質管理装置9までの入力信号配線10と、水質管理装置9から清缶剤注入装置5A、脱酸素剤注入装置5B、及びブローダウン装置6等までの出力信号配線11等とから構成されている。   As shown in FIG. 1, the boiler device 1 includes a boiler body 2, a water supply tank 3, a soft water tank 4, a cleansing agent injection device 5 </ b> A that is a chemical solution injection device, an oxygen scavenger injection device 5 </ b> B, A down device 6, a measuring device comprising a feed water flow meter 7a, a feed water thermometer 7b, and an electrical conductivity meter 7c, a feed water pipe 8a, a makeup water pipe 8b, a chemical injection pipe 8c, 8d, and a blow down pipe 8e. Pipes, water quality management device 9, input signal wiring 10 from measuring instruments to water quality management device 9, water quality management device 9 to cleansing agent injection device 5A, oxygen scavenger injection device 5B, and blowdown device 6 Output signal wiring 11 and the like.

ボイラ本体2は、例えば圧力が0.7MPaで、定格蒸発量が数トン/hの蒸気Gを発生させる小型貫流ボイラであり、気水分離器下部のボイラ水B1の貯留部に、ブローダウン配管8eと給水配管8aの一端側が連結されている。ボイラ本体2には、給水配管8aを介して、給水タンク3からボイラ給水B2が供給されるとともに、ボイラ本体2で発生した蒸気Jは、蒸気配管12を通って熱交換器13に入り、この熱交換器13で放熱して凝縮水Gとなる。そして、この凝縮水Gの一部は、凝縮水回収配管14を通って、給水タンク3に集められる。   The boiler body 2 is a small once-through boiler that generates steam G having a pressure of 0.7 MPa and a rated evaporation amount of several tons / h, for example, and a blow-down pipe is provided in a storage portion of the boiler water B1 below the steam-water separator. 8e and the one end side of the water supply piping 8a are connected. Boiler feed water B2 is supplied from the feed water tank 3 to the boiler body 2 through the feed water pipe 8a, and steam J generated in the boiler body 2 enters the heat exchanger 13 through the steam pipe 12, Heat is dissipated by the heat exchanger 13 to become condensed water G. A part of the condensed water G is collected in the water supply tank 3 through the condensed water recovery pipe 14.

給水タンク3は、ボイラ本体2に、その定格蒸発量の30分ぶん以上のボイラ給水B2を供給できる容量を有している。給水タンク3には、凝縮水回収配管14を介して凝縮水Gが供給されるとともに、凝縮水Gの不足分を補うように、軟水タンク4から軟水Nが供給される。なお、軟水タンク4には、原水である水道水を軟化処理した軟水Nが貯められている。   The feed water tank 3 has a capacity capable of supplying the boiler body 2 with boiler feed water B2 having a rated evaporation amount of 30 minutes or more. Condensed water G is supplied to the water supply tank 3 through the condensed water recovery pipe 14 and soft water N is supplied from the soft water tank 4 so as to compensate for the shortage of the condensed water G. The soft water tank 4 stores soft water N obtained by softening tap water that is raw water.

清缶剤注入装置5Aは、ボイラ水B1のpHを調整してボイラ本体2内の腐食等を防止するアルカリ剤と、ボイラ本体2内で生じたかまどろ等がスケールとして付着するのを防止するスケール分散剤からなる清缶剤W1を、一定濃度の薬液にして、ボイラ給水B2中に注入するものである。この清缶剤注入装置5Aは、薬注配管8cの上流側に設けられており、薬液タンク5aと、薬液ポンプ5cと、コントローラ5eとから構成されている。脱酸素剤注入装置5Bは、腐食の原因となる溶存酸素を除去する脱酸素剤W2を、一定濃度の薬液として、ボイラ給水B2中に注入するものである。この脱酸素剤注入装置5Bは、薬注配管8dの上流側に設けられており、薬液タンク5bと、薬液ポンプ5dと、コントローラ5fとから構成されている。両装置5A,5Bのコントローラ5e,5fは、水質管理装置9から出力信号配線10を介して伝えられる清缶剤注入信号P1と脱酸素剤注入信号P2とに基づき、それぞれ必要な量の清缶剤W1と脱酸素剤W2とが供給できるように、互いの薬液ポンプ5c,5dのストローク等を調整する働きを有している。   The cleansing agent injecting device 5A prevents the alkali agent that adjusts the pH of the boiler water B1 to prevent corrosion or the like in the boiler main body 2 and the stove or the like generated in the boiler main body 2 from adhering as a scale. A canning agent W1 made of a scale dispersant is made into a chemical solution with a constant concentration and injected into the boiler feed water B2. The cleansing agent injection device 5A is provided on the upstream side of the chemical injection pipe 8c, and includes a chemical liquid tank 5a, a chemical liquid pump 5c, and a controller 5e. The oxygen scavenger injection device 5B injects a oxygen scavenger W2 that removes dissolved oxygen that causes corrosion into the boiler feed water B2 as a chemical solution having a constant concentration. The oxygen scavenger injection device 5B is provided on the upstream side of the chemical injection pipe 8d, and includes a chemical liquid tank 5b, a chemical liquid pump 5d, and a controller 5f. The controllers 5e and 5f of the both devices 5A and 5B are provided with the necessary amount of cans based on the canning agent injection signal P1 and the oxygen scavenger injection signal P2 transmitted from the water quality management device 9 via the output signal wiring 10, respectively. It has a function of adjusting the strokes of the chemical pumps 5c and 5d so that the agent W1 and the oxygen scavenger W2 can be supplied.

ブローダウン装置6は、ボイラ本体2内で濃縮されたボイラ水B1を、ボイラ給水流量に見合った量だけボイラ系外に連続的に排出(連続ブロー)し、ボイラ本体2内のボイラ水B1中の不純物濃度を規定値内に調整するものである。このブローダウン装置6は、ブローダウン配管8c中に設けられる流量調整弁6aと、水質管理装置9から出力信号配線11を介して伝えられるブロー信号P3に基づき、流量調整弁6aが必要な量のボイラ水B1を排出できるように、流量調整弁6aの開度等を調整するコントローラ6bとから構成されている。   The blow-down device 6 continuously discharges boiler water B1 concentrated in the boiler body 2 to the outside of the boiler system by an amount commensurate with the boiler feed water flow rate, and in the boiler water B1 in the boiler body 2 This adjusts the impurity concentration within a specified value. This blow-down device 6 has a flow adjustment valve 6a provided in the blow-down pipe 8c and a blow signal P3 transmitted from the water quality management device 9 via the output signal wiring 11 so that the flow adjustment valve 6a has a necessary amount. It is comprised from the controller 6b which adjusts the opening degree etc. of the flow regulating valve 6a so that boiler water B1 can be discharged | emitted.

給水流量計7aは、ボイラ本体2に供給されるボイラ給水B2の流量を計測し、その流量信号P4を入力信号配線10を介して水質管理装置9に伝達するものである。また、給水温度計7bは、凝縮水Gと軟水Nとが混ぜられたボイラ給水B2の温度を測定し、その温度信号P5を入力信号配線10を介して水質管理装置9に伝達するものである。なお、電気伝導度計7cは、ボイラ給水B2の電気伝導度を計測するものである。   The feed water flow meter 7a measures the flow rate of the boiler feed water B2 supplied to the boiler body 2 and transmits the flow rate signal P4 to the water quality management device 9 via the input signal wiring 10. The feed water thermometer 7b measures the temperature of the boiler feed water B2 in which the condensed water G and the soft water N are mixed, and transmits the temperature signal P5 to the water quality management device 9 through the input signal wiring 10. . The electrical conductivity meter 7c measures the electrical conductivity of the boiler feed water B2.

図2はこの発明の一実施の形態にかかる水質管理装置9を示している。
水質管理装置9は、凝縮水Gの使用によってボイラ給水B2の水質に大きな変動が生じる場合でも、ボイラ装置1の運転状態に合わせて、清缶剤注入装置5Aや脱酸素剤注入装置5Bに最適な薬液注入量を伝達するとともに、ブローダウン装置6に最適なブロー量を伝達するものである。この水質管理装置9は、図2で示されるように、不図示のケーシング内に納められたコンピュータ部20と、作業者がコンピュータ部20への入力を行うためのキーボード40、スタートボタン41、及び記憶内容書換ボタン42と、作業者がコンピュータ部20からの出力を認識するためのディスプレイ43と、コンピュータ部20からの警報信号P6によって警報を発する警報装置44とを有している。
FIG. 2 shows a water quality management device 9 according to one embodiment of the present invention.
Even if the water quality of the boiler feed water B2 varies greatly due to the use of the condensed water G, the water quality management device 9 is optimal for the cleansing agent injection device 5A and the oxygen scavenger injection device 5B in accordance with the operation state of the boiler device 1. In addition to transmitting a proper chemical injection amount, an optimal blow amount is transmitted to the blow-down device 6. As shown in FIG. 2, the water quality management device 9 includes a computer unit 20 housed in a casing (not shown), a keyboard 40 for an operator to input to the computer unit 20, a start button 41, and The stored content rewriting button 42, a display 43 for the operator to recognize the output from the computer unit 20, and an alarm device 44 that issues an alarm by an alarm signal P6 from the computer unit 20 are provided.

コンピュータ部20は、種々の情報を記憶するメモリと、入力情報とメモリ内の記憶情報に基づいて、情報を演算処理するCPU(中央処理ユニット)と、入力手段40や計測機器(給水温度計7bや給水流量計7a)からの入力情報をCPUに伝えるための入力インターフェイス21と、CPUによる演算処理結果を出力情報として、ディスプレイ43、警報機44、及び外部機器(清缶剤注入装置5A、脱酸素剤注入装置5B、やブローダウン装置6)に伝えるための出力インターフェイス22とを有している。   The computer unit 20 includes a memory for storing various information, a CPU (central processing unit) for calculating information based on the input information and the stored information in the memory, an input means 40 and a measuring device (feed water thermometer 7b). And the input interface 21 for transmitting the input information from the feed water flow meter 7a) to the CPU, and the display 43, the alarm device 44, and the external device (cleaning agent injection device 5A, removal) And an output interface 22 for communicating with the oxygen agent injection device 5B and the blowdown device 6).

このコンピュータ部20は、メモリとして、プログラム内容を記憶したプログラムROM23と、CPUに対する作業メモリを提供するRAM24と、書き換え可能なROMに運転データの一部を記憶する第1データメモリ25と、ROMに、凝縮水使用率X(ボイラ給水B2のうち凝縮水Gが占める割合であり、図4参照)に対応させて、ボイラ給水B2に対する清缶剤W1の注入濃度とボイラ水B1のブロー率(ボイラ給水流量に対する、ボイラ水B1の連続ブローの割合)とを定める式Y1,Y2(図4参照)を記憶するとともに、給水温度Zに対応させて、ボイラ給水B2に対する脱酸素剤W2の注入濃度を定める式Y3(図4参照)を記憶する第2データメモリ26とを有している。   The computer unit 20 includes, as memories, a program ROM 23 that stores program contents, a RAM 24 that provides a working memory for the CPU, a first data memory 25 that stores a part of operation data in a rewritable ROM, and a ROM. Corresponding to the condensed water usage rate X (the ratio of the condensed water G in the boiler feed water B2, see FIG. 4), the injection concentration of the cleansing agent W1 with respect to the boiler feed water B2 and the blow rate of the boiler water B1 (boiler) The formulas Y1 and Y2 (see FIG. 4) for determining the boiler water B1 continuous blow ratio with respect to the feed water flow rate are stored, and the injection concentration of the oxygen scavenger W2 with respect to the boiler feed water B2 is set in correspondence with the feed water temperature Z. And a second data memory 26 for storing a formula Y3 to be determined (see FIG. 4).

第1データメモリ25には、図3で示されるように、運転データのうち変動の少ない軟水温度T1と凝縮水温度T2とが、それぞれ、25℃、100℃として記憶されているとともに、同様に運転データのうち変動の少ない、現在使用している軟水Nの使用水質Us(例えば図8において示されるようなもの)が記憶されている。   As shown in FIG. 3, in the first data memory 25, soft water temperature T1 and condensate water temperature T2 with little fluctuation in the operation data are stored as 25 ° C. and 100 ° C., respectively. The use water quality Us (for example, as shown in FIG. 8) of the soft water N that is currently used and that has little fluctuation among the operation data is stored.

第2データメモリ26は、図4で示されるように、種々の軟水水質U毎に、凝縮水使用率Xを関数とした清缶剤注入濃度の式Y1とブロー率の式Y2とを記憶するとともに、給水温度Zを関数とした脱酸素剤注入濃度の式Y3を記憶している。清缶剤注入濃度の式Y1(例えば、図9で示される、Y1=0.0003X3−0.0306X2+0.3056X+45)は、所定水質の軟水Nと所定水質(純水と仮定)の凝縮水G(図9で示される式Y1,Y2の場合には、軟水水質は、図8で示されるものが使用されている)を使用した場合に、図9で示されるように、凝縮水使用率Xが、例えば、0,30,60,90(%)における最適清缶剤注入濃度(mg/L)を試験で求め、これらの4点間を凝縮水使用率Xの3次式で補間するようにして定めたものである。また、ブロー率の式Y2(例えば、図9で示される、Y2=0.0011X2−0.18X+12.1)も、同様にして求められた最適ブロー率(%)の4点間を、凝縮水使用率Xの2次式で補間するようにして定めたものである。なお、式Y1,Y2は、凝縮水使用率Xの関数で表されておれば、どのようなものであってもよい。 As shown in FIG. 4, the second data memory 26 stores, for each type of soft water quality U, a formula Y1 of the canning agent injection concentration and a formula Y2 of the blow rate as a function of the condensed water usage rate X. At the same time, a formula Y3 of the oxygen scavenger injection concentration as a function of the feed water temperature Z is stored. The formula Y1 (for example, Y1 = 0.0003X 3 −0.0306X 2 + 0.3056X + 45 shown in FIG. 9) of the canning agent injection concentration is the condensation of soft water N having a predetermined water quality and a predetermined water quality (assuming pure water). When water G is used (in the case of the formulas Y1 and Y2 shown in FIG. 9, the soft water quality is that shown in FIG. 8), as shown in FIG. 9, the use of condensed water is used. For example, when the rate X is 0, 30, 60, and 90 (%), the optimum concentration of the fresh canning agent (mg / L) is obtained by a test, and these four points are interpolated with a cubic expression of the condensed water usage rate X. It is determined as follows. Also, the blow rate equation Y2 (for example, Y2 = 0.0011X 2 −0.18X + 12.1 shown in FIG. 9) condenses between the four points of the optimum blow rate (%) obtained in the same manner. It is determined by interpolating with a quadratic expression of the water usage rate X. The formulas Y1 and Y2 may be anything as long as they are expressed as a function of the condensed water usage rate X.

なお、最適清缶剤注入濃度や最適ブロー率は、ボイラ水B1の水質を図7で示される管理目標値にできるだけ近づけさせるようにして決定される。   Note that the optimum concentration of the cleansing agent and the optimum blow rate are determined by bringing the water quality of the boiler water B1 as close as possible to the management target value shown in FIG.

さらに脱酸素剤注入濃度の式Y3(例えば、図10で示される、Y3=−0.0001Z3+0.0187Z2−2.0252Z+140.86)は、給水温度Zが25〜90℃までの、例えば、20ポイントにおける飽和溶存酸素濃度を基準として、かかる溶存酸素濃度がボイラ水B1において0となるような、各ポイントにおける最適脱酸素剤注入濃度(mg/L)を試験で求め、これらの20ポイント間を給水温度Zの3次式で補間するようにして定めたものである。なお、清缶剤W1や脱酸素剤W2には、広く市場に流通している入手容易なものが使用される。また、式Y3は、凝縮水使用率Xの関数で表されておれば、どのようなものであってもよい。 Further, the formula for oxygen absorber injection concentration Y3 (for example, Y3 = −0.0001Z 3 + 0.0187Z 2 −2.0252Z + 140.86 shown in FIG. 10) indicates that the feed water temperature Z is 25 to 90 ° C. Using the saturated dissolved oxygen concentration at 20 points as a reference, the optimum oxygen scavenger injection concentration (mg / L) at each point such that the dissolved oxygen concentration becomes 0 in the boiler water B1 is determined by testing, and these 20 points The interval is determined by interpolating with a cubic equation of the feed water temperature Z. In addition, as the cleansing agent W1 and the oxygen scavenger W2, those readily available in the market are used. The expression Y3 may be any expression as long as it is expressed as a function of the condensed water usage rate X.

このコンピュータ部20は、CPUの演算処理機能の一部をなす、凝縮水使用率演算手段27と、第1水管理量演算手段28と、第1水管理量演算手段29と、警報発信手段30と、出力伝達手段31と、記憶内容変更手段32とを有している。   The computer unit 20 includes a condensed water usage rate calculating unit 27, a first water management amount calculating unit 28, a first water management amount calculating unit 29, and an alarm transmitting unit 30 which form a part of the calculation processing function of the CPU. And an output transmission means 31 and a storage content change means 32.

凝縮水使用率演算手段27は、給水温度計7bから伝えられる給水温度Zと、第1データメモリ25から読み出された軟水温度T1と凝縮水温度T2とから、ボイラ給水B2中の凝縮水Gの占める割合、すなわち、凝縮水使用率Xを算出する。この凝縮水使用率Xは、例えば、給水温度Zが50℃であれば、軟水温度T1と凝縮水温度T2とは、それぞれ、25℃と100℃であるから、水の比熱を一定とすれば、100X/100+25(100−X)/100=50であるから、X=33.3(%)と算出される。   The condensed water usage rate calculating means 27 calculates the condensed water G in the boiler feed water B2 from the feed water temperature Z transmitted from the feed water thermometer 7b, the soft water temperature T1 and the condensed water temperature T2 read from the first data memory 25. , Ie, the condensed water usage rate X is calculated. For example, if the feed water temperature Z is 50 ° C., the condensed water usage rate X is 25 ° C. and 100 ° C. when the soft water temperature T 1 and the condensed water temperature T 2 are respectively constant. Since 100X / 100 + 25 (100−X) / 100 = 50, X = 33.3 (%) is calculated.

第1水管理量演算手段28は、第1データメモリ25から読み出された軟水Nの使用水質Usから、第2データメモリ26中の最適な清缶剤注入濃度を定める式Y1、及び最適なブロー率を定める式Y2を選択し、これらの式Y1,Y2と凝縮水使用率演算手段27からの出力である凝縮水使用率Xを用いて、最適な清缶剤注入濃度と最適なブロー率を算出する。また、この第1水管理量演算手段28は、給水温度計7bから伝えられる給水温度Zと、第2データメモリ27から読み出された脱酸素剤注入濃度を定める式Y3とから、最適な脱酸素剤注入濃度を算出する。   The first water management amount calculating means 28 uses the formula Y1 for determining the optimum concentration of the cleansing agent in the second data memory 26 from the use water quality Us of the soft water N read from the first data memory 25, and the optimum water quality Us. The formula Y2 for determining the blow rate is selected, and using these formulas Y1 and Y2 and the condensed water usage rate X which is the output from the condensed water usage rate calculating means 27, the optimum concentration of the cleanser agent and the optimal blow rate are selected. Is calculated. In addition, the first water management amount calculation means 28 calculates the optimum desorption from the feed water temperature Z transmitted from the feed water thermometer 7b and the formula Y3 for determining the oxygen scavenger injection concentration read from the second data memory 27. The oxygen agent injection concentration is calculated.

第2水管理量演算手段29は、給水流量計7aから伝えられる給水流量と、第1水管理量演算手段28にて算出された清缶剤注入濃度、脱酸素剤注入濃度及びブロー率とから、清缶剤注入装置5Aが注入する清缶剤量(g/h)、脱酸素剤注入装置5Bが注入する脱酸素剤量(g/h)を算出するとともに、ブローダウン装置6がブローするボイラ水B1のブロー流量(Kg/h)を算出する。   The second water management amount calculation means 29 is based on the feed water flow rate transmitted from the feed water flow meter 7a and the cleaning agent injection concentration, oxygen scavenger injection concentration and blow rate calculated by the first water management amount calculation means 28. In addition to calculating the amount of the canning agent (g / h) injected by the canning agent injection device 5A and the amount of the oxygen removal agent (g / h) injected by the oxygen removal agent injection device 5B, the blowdown device 6 blows. The blow flow rate (Kg / h) of the boiler water B1 is calculated.

警報発信手段30は、第2水管理量演算手段29の出力値が、想定外の値や実行不可能な値など異常値である場合に、例えば、ブザーやランプからなる警報装置44に警報信号P6を発し、この警報装置44に警報音の発生やランプの点滅等を行わせるものである。なお、警報信号P6は、出力信号配線11を介して、作業者が常駐するオペレータルームに設けられた警報装置にも伝えられる。   When the output value of the second water management amount calculation means 29 is an abnormal value such as an unexpected value or an infeasible value, the alarm transmission means 30 sends an alarm signal to the alarm device 44 including a buzzer or a lamp, for example. P6 is issued to cause the alarm device 44 to generate an alarm sound or blink a lamp. The alarm signal P6 is also transmitted to an alarm device provided in an operator room where an operator is resident through the output signal wiring 11.

出力伝達手段31は、第1水管理量演算手段29の出力値である、清缶剤量に関する清缶剤注入信号P1を清缶剤注入装置5Aに、脱酸素剤量に関する脱酸素剤注入信号P2を脱酸素剤注入装置5Bに、ブロー量に関するブロー信号P3をブローダウン装置6に、それぞれ伝達して、これらの装置5A,5B,6を信号値通りに作動させるものである。また、出力伝達手段31は、警報発信手段30が警報信号をP6を発する場合には、第1水管理量演算手段29からの出力の伝達を取りやめ、警報信号P6を警報装置44等の機器に伝達する。   The output transmission means 31 outputs the cleaning agent injection signal P1 related to the amount of the cleaning agent, which is the output value of the first water management amount calculation means 29, to the cleaning agent injection device 5A, and the oxygen scavenger injection signal related to the amount of oxygen removal agent. P2 is transmitted to the oxygen scavenger injection device 5B, and a blow signal P3 relating to the blow amount is transmitted to the blowdown device 6 to operate these devices 5A, 5B, 6 in accordance with the signal values. Further, the output transmission means 31 cancels the transmission of the output from the first water management amount calculation means 29 when the warning transmission means 30 issues a warning signal P6, and sends the warning signal P6 to the device such as the warning device 44. introduce.

記憶内容変更手段32は、ボイラ装置1の運転状態に変更があった場合や水質管理装置9の使い始め(記憶内容変更手段31中には、事前に代表的な軟水温度T1や軟水Nの使用水質Us等が入力されている)に、第1データメモリ25中の記憶内容を書き換える必要がある場合に、その記憶内容を書き換えるためものである。記憶内容変更手段32は、作業者が記憶内容書換ボタン42を押して書き換えを要求した場合に作動し、例えば、ディスプレイ43に第1データメモリ25中の記憶内容を表示させて、作業者がキーボード40を使用して第1データメモリ25中の記憶内容を書き換えできるようにする。なお、水質管理装置9は、その後作業者がスタートボタン41を押すと、本来の作業に復帰する。   The stored content changing means 32 is used when the operation state of the boiler device 1 is changed or when the water quality management device 9 starts to be used (in the stored content changing means 31, typical soft water temperature T1 or soft water N is used in advance. When the storage content in the first data memory 25 needs to be rewritten when the water quality Us or the like is input), the storage content is rewritten. The stored content changing means 32 operates when the operator presses the stored content rewriting button 42 to request rewriting. For example, the stored content changing means 32 displays the stored content in the first data memory 25 on the display 43 so that the operator can use the keyboard 40. Can be used to rewrite the contents stored in the first data memory 25. The water quality management device 9 returns to the original work when the operator subsequently presses the start button 41.

つぎに、この水質管理装置9のプログラム動作の主要部を、図6で示されるフローチャートを参照しつつ説明する。なお、水質管理装置9の第1データメモリ25中には、現在使用されている軟水Nの使用水質Us、軟水温度T1、凝縮水温度T2が書き込まれているものとする。   Next, the main part of the program operation of the water quality management device 9 will be described with reference to the flowchart shown in FIG. In the first data memory 25 of the water quality management device 9, it is assumed that the used water quality Us, the soft water temperature T1, and the condensed water temperature T2 of the soft water N currently used are written.

水質管理装置9は、電源が入れられ、スタートボタン41が押されると動作を開始する。まず、第1データメモリ25から、軟水温度T1と凝縮水温度T2のデータと、現在使用されている軟水Nの使用水質Usのデータが読み出され(ステップS1)、つづいて、給水温度計7bから伝えられる給水温度Zに関するデータと、第1データメモリ25から読み出された軟水温度T1と凝縮水温度T2のデータとから、凝縮水使用率Xが算出される(ステップS2)。つぎに、第1データメモリ25から読み出された軟水Nの使用水質Usを用いて、第2データメモリ26から、この使用水質Usに最も適する清缶剤注入濃度の式Y1とブロー率の式Y2とを読み出し(ステップS3)、この清缶剤注入濃度の式Y1及びブロー率の式Y2と、既に算出された凝縮水使用率Xとから、現在のボイラ装置1の運転状態に最も適した(最適の)清缶剤注入濃度とブロー率とを算出する(ステップS4)。   The water quality management device 9 starts operating when the power is turned on and the start button 41 is pressed. First, the data of the soft water temperature T1 and the condensed water temperature T2 and the data of the used water quality Us of the soft water N currently used are read from the first data memory 25 (step S1), and then the feed water thermometer 7b. The condensate usage rate X is calculated from the data relating to the feed water temperature Z transmitted from the data and the data of the soft water temperature T1 and the condensate water temperature T2 read from the first data memory 25 (step S2). Next, using the used water quality Us of the soft water N read from the first data memory 25, from the second data memory 26, the formula Y1 of the cleaning agent injection concentration and the blow rate expression that are most suitable for this used water quality Us. Y2 is read out (step S3), and from the formula Y1 and the blow rate formula Y2 of the canning agent injection concentration, and the condensed water usage rate X already calculated, it is most suitable for the current operating state of the boiler device 1. The (optimal) canning agent injection concentration and blow rate are calculated (step S4).

つぎに、脱酸素剤注入濃度の式Y3を第2データメモリ26から読み出し(ステップS5)、この式Y3と給水温度計7bから伝えられる給水温度Zに関するデータとを用いて、現在のボイラ装置1の運転状態に最も適した(最適の)脱酸素剤注入濃度を算出する(ステップS6)。つぎに、算出された、清缶剤注入濃度(mg/L)、ブロー率(%)、及び脱酸素剤注入濃度(mg/L)と、給水流量計7aから伝えられる給水流量に関するデータとから、最適清缶剤注入量(g/h)、最適ブロー量(Kg/h)、最適脱酸素剤注入量(g/h)を算出する(ステップS7)。つぎに、算出された、清缶剤注入量、ブロー量、脱酸素剤注入量が異常値であるか否かがチェックされ(ステップS8)、異常値でなくNOであれば、清缶剤注入量は清缶剤注入装置5Aに伝達され、脱酸素剤注入量は脱酸素剤注入装置5Bに伝達され、ブロー量はブローダウン装置6に伝達される(ステップS9)。そして、各装置5A,5B,6は、水質管理装置9からの出力値に基づき、現在のボイラ装置1の運転状態に最も適した状態で一定時間運転される。   Next, the formula Y3 of the oxygen scavenger injection concentration is read from the second data memory 26 (step S5), and using this formula Y3 and data relating to the feed water temperature Z transmitted from the feed water thermometer 7b, the current boiler apparatus 1 is used. The most suitable (optimum) oxygen scavenger injection concentration is calculated (step S6). Next, from the calculated data related to the canned chemical injection concentration (mg / L), the blow rate (%), and the oxygen scavenger injection concentration (mg / L), and the data relating to the feed water flow rate transmitted from the feed water flow meter 7a. The optimum amount of canning agent injection (g / h), the optimum blow amount (Kg / h), and the optimum oxygen scavenger injection amount (g / h) are calculated (step S7). Next, it is checked whether or not the calculated amount of the cleansing agent injected, the amount of blow, and the amount of oxygen scavenger injected are abnormal values (step S8). The amount is transmitted to the cleansing agent injection device 5A, the oxygen scavenger injection amount is transmitted to the oxygen scavenger injection device 5B, and the blow amount is transmitted to the blow down device 6 (step S9). Each of the devices 5A, 5B, 6 is operated for a certain period of time in a state most suitable for the current operation state of the boiler device 1 based on the output value from the water quality management device 9.

ステップS8において、算出された、清缶剤注入量、ブロー量、脱酸素剤注入量のうち、1つにでも異常値があると、YESとなって警報信号P6が発せられ(ステップS10)、これによって警報装置44が警報を発するとともに、作業者が常駐する管理室の警報装置にも、出力信号配線11を介して警報信号P6が伝えられる。このことにより、水質管理装置9は、警報原因が究明され、再度スタートボタン41が押されるまで動作を中止する。以上、ステップS1からステップS9までの動作は、凝縮水使用率Xの変動周期や給水流量の変動周期を考慮して、例えば数分の時間間隔で繰り返される。もちろん、ステップ1からステップ9までの動作を、時間間隔なしに連続的に繰り返してもよい。   In step S8, if there is an abnormal value in any one of the calculated amount of the cleaning agent injection, the amount of blow, and the amount of oxygen scavenger injection, it becomes YES and an alarm signal P6 is issued (step S10). As a result, the alarm device 44 issues an alarm, and the alarm signal P6 is transmitted via the output signal wiring 11 to the alarm device in the management room where the worker resides. Thus, the water quality management device 9 stops the operation until the cause of the alarm is investigated and the start button 41 is pressed again. As described above, the operations from step S1 to step S9 are repeated at time intervals of, for example, several minutes in consideration of the fluctuation cycle of the condensed water usage rate X and the fluctuation cycle of the feed water flow rate. Of course, the operations from step 1 to step 9 may be repeated continuously without a time interval.

また、使用している軟水Nの使用水質Usに変更が生じたり、軟水Nや凝縮水Gの温度に変更が生じた場合には、記憶内容書換ボタン42を押して、水質管理装置9の動作を停止させ、必要事項の書換を行った後、スタートボタン41を押せば、水質管理装置9は、書き換え後のデータを基準にして動作する。   In addition, when the use water quality Us of the soft water N used is changed or the temperature of the soft water N or the condensed water G is changed, the stored content rewrite button 42 is pressed to operate the water quality management device 9. If the start button 41 is pushed after stopping and rewriting necessary items, the water quality management device 9 operates based on the rewritten data.

以上のように、この水質管理装置9では、軟水水質の変化に対応して、凝縮水使用率Xが分かれば、ボイラ給水B2に対する最適清缶剤注入濃度やボイラ水の最適ブロー率が分かる複数の式を記憶し、かつ、ボイラ装置1の運転状態に合わせて凝縮水使用率Xを算出しているので、使用している軟水Nの使用水質Usが分かれば、このボイラ装置1の運転状態に最適の清缶剤注入濃度やブロー率を算出でき、これらの算出値に基づいて、薬液注入装置5やブローダウン装置6を適正に運転することができる。   As described above, in this water quality management device 9, if the condensate usage rate X is known in response to changes in the quality of soft water, a plurality of optimum canning agent injection concentrations for boiler feed water B2 and an optimum blow rate for boiler water can be known. Since the condensed water usage rate X is calculated in accordance with the operating state of the boiler device 1, if the used water quality Us of the soft water N used is known, the operating state of the boiler device 1 Therefore, the chemical injection device 5 and the blow-down device 6 can be appropriately operated based on these calculated values.

すなわち、この水質管理装置9では、凝縮水Gの使用によってボイラ給水B2の水質に大きな変動があっても、ボイラ装置1の運転状態に合わせて、簡単に、最適な清缶剤注入濃度や最適なブロー率を設定でき、このことによって、ボイラ装置1が過剰な薬液注入や過剰なボイラ水のブローを行うのを、簡単に防止できる。   That is, in this water quality management device 9, even if there is a large fluctuation in the quality of the boiler feed water B2 due to the use of the condensed water G, it is possible to easily and optimally inject the optimal cleaning agent injection concentration and the optimum according to the operating state of the boiler device 1. Therefore, it is possible to easily prevent the boiler apparatus 1 from injecting excessive chemical liquid or blowing excessive boiler water.

また、この水質管理装置9では、給水温度Zが分かれば、ボイラ給水B2に対する最適脱酸素剤注入濃度が分かる式を記憶し、かつ、給水温度計7bから給水温度Zに関するデータを受領しているので、ボイラ装置1の運転状態に最適な脱酸素剤注入濃度を簡単に算出でき、このことによって、ボイラ装置1が過剰な薬液注入を行うのを簡単に防止することができる。   Moreover, in this water quality management device 9, if the feed water temperature Z is known, an equation for determining the optimum oxygen scavenger injection concentration for the boiler feed water B2 is stored, and data relating to the feed water temperature Z is received from the feed water thermometer 7b. Therefore, the oxygen scavenger injection concentration optimum for the operating state of the boiler device 1 can be easily calculated, and this can easily prevent the boiler device 1 from injecting excessive chemical liquid.

ここで、軟水Nの使用水質Usに大きな変化が生じない場合には、第2データメモリ26中には、軟水Nの平均的な使用水質Usに対する、凝縮水使用率Xを関数とした清缶剤注入濃度の式Y1とブロー率の式Y2とを1つずつ記憶させておけばよく、第1データメモリ25中に、軟水Nの使用水質Usに関するデータを記憶させる必要はない。   Here, when there is no significant change in the used water quality Us of the soft water N, in the second data memory 26, the cans as a function of the condensed water usage rate X with respect to the average used water quality Us of the soft water N. It is only necessary to store the formula Y1 of the agent injection concentration and the formula Y2 of the blow rate one by one, and it is not necessary to store data regarding the water quality Us of the soft water N in the first data memory 25.

また、凝縮水Gの使用水質が無視できない場合には、第1データメモリ24中に凝縮水Gの使用水質に関するデータを記憶させるとともに、第2データメモリ25中の清缶剤注入濃度の式Y1とブロー率の式Y2も、例えば、図5で示されるように、1つの軟水水質Uに対して複数種の凝縮水水質Vが対応できるようにして、清缶剤注入濃度の式Y1とブロー率の式Y2を、軟水Nの使用水質Usと凝縮水Gの使用水質とを用いて選択するようにする。この場合、清缶剤注入濃度の式Y1やブロー率の式Y2を決定するに当たっては、凝縮水Gの水質を無視することなく(純水と考えることなく)、この凝縮水Gの水質もボイラ給水B2の水質に反映させるようにする必要がある。   When the water quality of the condensed water G cannot be ignored, the data regarding the water quality of the condensed water G is stored in the first data memory 24 and the formula Y1 of the cleaning agent injection concentration in the second data memory 25 is stored. As shown in FIG. 5, for example, as shown in FIG. 5, a plurality of types of condensed water quality V can correspond to one soft water quality U. The rate equation Y2 is selected using the used water quality Us of the soft water N and the used water quality of the condensed water G. In this case, in determining the formula Y1 of the canning agent injection concentration and the formula Y2 of the blow rate, the water quality of the condensed water G is not ignored (not considered as pure water), and the water quality of the condensed water G is also boiler. It is necessary to reflect the water quality of the water supply B2.

なお、軟水タンク4に軟水温度計を設けるとともに、凝縮水回収配管14に凝縮水温度計を設け、これらの温度計からの温度信号を水質管理装置9に入力できるようにすれば、水質管理装置9は、より正確な凝縮水使用率Xを算出できる。もちろん、この場合、第1データメモリ25中には、軟水温度T1と凝縮水温度T2のデータを記憶させる必要は無い。   If a soft water thermometer is provided in the soft water tank 4 and a condensed water thermometer is provided in the condensed water recovery pipe 14 so that a temperature signal from these thermometers can be input to the water quality management device 9, the water quality management device. 9 can calculate a more accurate condensed water usage rate X. Of course, in this case, it is not necessary to store the data of the soft water temperature T1 and the condensed water temperature T2 in the first data memory 25.

また、軟水Nの補給水配管8bに電気伝導度計を設け、この電気伝導度計と給水配管8a中の電気伝導度計7cからの電気伝導信号を水質管理装置9に入力して、軟水Nの電気伝導値とボイラ給水B2の電気伝導値とから凝縮水使用率Xを算出するようにしてもよい。この場合、凝縮水Gの電気伝導値は0として考える。凝縮水Gの電気伝導値が無視できない場合は、凝縮水回収配管中にも電気伝導度計を設け、これからの電気伝導度信号も水質管理装置9に入力するようにする。もちろん、軟水Nの補給水配管8bと凝縮水回収配管中とに流量計を設け、これらの流量計からの流量信号を水質管理装置9に入力して、ボイラ給水B2や軟水Nや凝縮水Gの流量から凝縮水使用率Xを算出するようにしてもよい。   In addition, an electrical conductivity meter is provided in the makeup water pipe 8b of the soft water N, and an electrical conduction signal from the electrical conductivity meter and the electrical conductivity meter 7c in the water supply pipe 8a is input to the water quality management device 9, and the soft water N The condensate usage rate X may be calculated from the electrical conductivity value of the boiler and the electrical conductivity value of the boiler feed water B2. In this case, the electric conduction value of the condensed water G is considered as 0. When the electrical conductivity value of the condensed water G cannot be ignored, an electrical conductivity meter is provided also in the condensed water recovery pipe, and an electrical conductivity signal from this is also input to the water quality management device 9. Of course, flow meters are provided in the makeup water pipe 8b and the condensed water recovery pipe for the soft water N, and flow rate signals from these flow meters are input to the water quality management device 9 to supply boiler feed water B2, soft water N, and condensed water G. The condensate usage rate X may be calculated from the flow rate.

さらに、給水配管8aにボイラ給水B2の溶存酸素濃度を計測する溶存酸素濃度計を設け、この溶存酸素濃度計からの溶存酸素濃度信号を水質管理装置9に入力するようにして、この水質管理装置9が、溶存酸素濃度計から伝えられる溶存酸素濃度に基づいて、脱酸素剤注入濃度を算出するようにしてもよい。この場合、第2データメモリ26中の脱酸素剤注入濃度を定める式Y3は、給水温度Zでなく、溶存酸素濃度を関数とする必要がある。   Further, the water supply pipe 8a is provided with a dissolved oxygen concentration meter for measuring the dissolved oxygen concentration of the boiler feed water B2, and a dissolved oxygen concentration signal from the dissolved oxygen concentration meter is input to the water quality management device 9, so that this water quality management device 9 may calculate the oxygen scavenger injection concentration based on the dissolved oxygen concentration transmitted from the dissolved oxygen concentration meter. In this case, the equation Y3 for determining the oxygen scavenger injection concentration in the second data memory 26 needs to use the dissolved oxygen concentration as a function instead of the feed water temperature Z.

また、第2データメモリ25中に記憶される清缶剤注入濃度やブロー率に関する情報は、凝縮水使用率Xを関数とした式Y1,Y2ではなく、0,1,2,3,・・100と細分された凝縮水使用率Xに対応させて、清缶剤注入濃度やブロー率を定めたテーブルとしてもよい。この場合、第1水管理量演算手段28は、算出された凝縮水使用率Xに最も近いテーブル中の凝縮水使用率Xに対応する清缶剤注入濃度やブロー率を選択するか、又は、テーブル中の隣接する2つの清缶剤注入濃度やブロー率を読み出して、これらを算出された凝縮水使用率Xに合うように補完して、最適な清缶剤注入濃度やブロー率を算出する。もちろん、このことは、第2データメモリ25中に記憶される脱酸素剤注入濃度に関する情報についても同様である。   In addition, the information regarding the concentration of the plasticizer and the blow rate stored in the second data memory 25 is not the formulas Y1, Y2 as a function of the condensed water usage rate X, but 0, 1, 2, 3,. Corresponding to the condensed water usage rate X that is subdivided as 100, it is possible to use a table in which the concentration of the canning agent injection and the blow rate are determined. In this case, the first water management amount calculation means 28 selects the canning agent injection concentration and the blow rate corresponding to the condensed water usage rate X in the table closest to the calculated condensed water usage rate X, or The two adjacent canning agent injection concentrations and blow rates in the table are read out, and these are complemented to match the calculated condensate usage rate X to calculate the optimum canning agent injection concentration and blow rate. . Of course, the same applies to the information on the oxygen scavenger injection concentration stored in the second data memory 25.

さらに、この実施の形態では、水質管理装置9は、ボイラ装置1の運転状態にあった清缶剤注入濃度、脱酸素剤注入濃度、ブロー率を算出し、これらに基づくデータを、清缶剤注入装置5A、脱酸素剤注入装置5B、及びブローダウン装置6に伝達しているが、例えば、清缶剤注入濃度、脱酸素剤注入濃度、及びブロー率のうちの何れか1つ又は何れか2つの情報を算出し、これらの情報に関係する装置に、これらの情報に基づくデータを伝達するようにしてもよい。   Furthermore, in this embodiment, the water quality management device 9 calculates the cleaning agent injection concentration, the oxygen scavenger injection concentration, and the blow rate that are in the operating state of the boiler device 1, and uses the data based on these as the cleaning agent. It is transmitted to the injection device 5A, the oxygen scavenger injection device 5B, and the blow down device 6. For example, any one or any of the cleaning agent injection concentration, the oxygen scavenger injection concentration, and the blow rate is used. Two pieces of information may be calculated, and data based on these pieces of information may be transmitted to a device related to these pieces of information.

また、清缶剤注入装置5Aを、アルカリ剤注入装置とスケール分散剤注入装置に分け、アルカリ剤とスケール分散剤とを別々にボイラ給水B2中に注入するようにしてもよい。この場合、第2データメモリ26中には、軟水水質U毎に、凝縮水使用率Xを関数としたアルカリ剤注入濃度の式と、同じく軟水水質U毎に、凝縮水使用率Xを関数としたスケール分散剤注入濃度の式とを記憶させておく必要があるとともに、第1水管理量演算手段28は、第2データメモリ26中から、軟水Nの使用水質Usに合った上記2つの算出式を選択後、凝縮水使用率Xを使用して最適アルカリ剤注入濃度と最適スケール分散剤注入濃度とを算出する必要がある。   Further, the cleansing agent injection device 5A may be divided into an alkaline agent injection device and a scale dispersant injection device, and the alkaline agent and the scale dispersant may be separately injected into the boiler feed water B2. In this case, in the second data memory 26, for each soft water quality U, the concentration of the alkaline agent injection as a function of the condensed water usage rate X, and the condensed water usage rate X as a function for each soft water quality U. And the first water management amount calculation means 28 calculates the above two calculations according to the used water quality Us of the soft water N from the second data memory 26. After selecting the equation, it is necessary to calculate the optimum alkali agent injection concentration and the optimum scale dispersant injection concentration using the condensed water usage rate X.

以上の説明は、ボイラ装置1の水質管理装置9についてのものであるが、凝縮水使用率演算ステップと、水質管理量演算ステップと、出力伝達ステップとを有するボイラ装置1の水質管理方法についても、同様のことが言える。この場合、ボイラ装置1は、ボイラ給水B2に、清缶剤W1を注入する清缶剤注入装置5Aと、ボイラ本体2中のボイラ水B2を連続的にブローするブローダウン装置6とを備えるとともに、このボイラ装置1には、蒸気の凝縮水Gに軟水Nを加えた水がボイラ給水B2として使用されている。   Although the above description is about the water quality management apparatus 9 of the boiler apparatus 1, it is also about the water quality management method of the boiler apparatus 1 which has a condensed water usage rate calculation step, a water quality management amount calculation step, and an output transmission step. The same can be said. In this case, the boiler device 1 includes a cleansing agent injection device 5A for injecting the cleansing agent W1 into the boiler feed water B2, and a blowdown device 6 for continuously blowing the boiler water B2 in the boiler body 2. In this boiler apparatus 1, water obtained by adding soft water N to steam condensed water G is used as boiler feed water B2.

ここで、凝縮水使用率演算ステップでは、ボイラ給水B1と軟水Nと凝縮水Gの、温度、電気伝導度、又は使用流量の何れかから、ボイラ給水B2のうち凝縮水Gが占める割合である凝縮水使用率Xを算出する。また、次の水質管理量演算ステップでは、軟水N及び凝縮水Gの水質に基づいて、凝縮水使用率Xにより決定される、ボイラ給水B2への最適清缶剤注入濃度、ボイラ本体2からのボイラ水B1の最適ブロー率、又は、最適清缶剤注入濃度及び最適ブロー率の、何れかを算出するために記憶されたテーブル又は式Y1,Y2と、凝縮水使用率演算ステップの出力とにより、最適清缶剤注入濃度、最適ブロー率、又は、前記最適清缶剤注入濃度及び最適ブロー率の、何れかを算出する。さらに、次の出力伝達ステップでは、水質管理量演算ステップからの出力に基づく情報を、清缶剤注入装置5A、ブローダウン装置6、又は清缶剤注入装置5A及びブローダウン装置6の、何れかに伝達する。   Here, in the condensed water usage rate calculating step, the ratio of the condensed water G in the boiler feed water B2 from the temperature, electrical conductivity, or usage flow rate of the boiler feed water B1, the soft water N, and the condensed water G is the ratio. Condensate usage rate X is calculated. Further, in the next water quality control amount calculation step, the optimum concentration of the cleansing agent injected into the boiler feed water B2, which is determined by the condensed water usage rate X, based on the water quality of the soft water N and the condensed water G, Based on the table or equations Y1 and Y2 stored for calculating either the optimum blow rate of the boiler water B1, or the optimum tinting agent injection concentration and the optimum blow rate, and the output of the condensate use rate calculation step Then, either the optimum canning agent injection concentration, the optimum blow rate, or the optimum canning agent injection concentration and the optimum blow rate are calculated. Furthermore, in the next output transmission step, the information based on the output from the water quality control amount calculation step is any one of the canning agent injection device 5A, the blowdown device 6, or the canning agent injection device 5A and the blowdown device 6. To communicate.

ところで、本実施の形態では、例えば、図9で示されるような清缶剤注入濃度の式Y1を求めるに当たり、凝縮水使用率Xが、0,30,60,90(%)における最適清缶剤注入濃度(mg/L)を試験で求めているが、この場合の試験装置には、図1で示されるボイラ装置1等を試験用に小型化したもの、例えば、ボイラ本体2’の蒸気発生量を給水量換算で7.2L/h(圧力0.7MPa)としたものが使用される。この試験装置では、凝縮水使用率Xが0,30,60,90(%)におけるボイラ装置1’の運転条件において、最適な清缶剤供給濃度と最適なブロー率とが実測によって求められる。また、この試験装置では、給水温度Zにおいて溶存酸素が飽和しているボイラ給水B2についての、給水温度Zが25〜90℃までの20ポイントにおけるボイラ装置1’の運転条件において、最適な脱酸素剤注入濃度が実測によって求められる。   By the way, in the present embodiment, for example, in obtaining the formula Y1 of the cleaning agent injection concentration as shown in FIG. 9, the optimum cleaning can when the condensed water usage rate X is 0, 30, 60, 90 (%). The agent injection concentration (mg / L) is obtained by a test. In this case, the test apparatus is a miniaturized version of the boiler apparatus 1 shown in FIG. 1, for example, steam of a boiler body 2 ′. The generated amount is 7.2 L / h (pressure 0.7 MPa) in terms of water supply amount. In this test apparatus, under the operating conditions of the boiler apparatus 1 'when the condensate usage rate X is 0, 30, 60, 90 (%), the optimum canning agent supply concentration and the optimum blow rate are obtained by actual measurement. Further, in this test apparatus, optimum deoxygenation is performed under the operating conditions of the boiler apparatus 1 ′ at 20 points of the feed water temperature Z from 25 to 90 ° C. for the boiler feed water B2 in which dissolved oxygen is saturated at the feed water temperature Z. The agent injection concentration is obtained by actual measurement.

ここで、この試験装置の水質管理装置9’のコンピュータ部20’には、軟水Nの使用水質Usと凝縮水Gの使用水質とが既知の場合に、凝縮水使用率Xと、清缶剤注入濃度と、ブロー率が分かれば、ボイラ水B1の水質を算出するボイラ水水質算出手段が設けられている。図11は、このボイラ水水質算出手段が、凝縮水使用率Xとの関係で、図9で示される清缶剤注入濃度とブロー率とが用いられる場合(この場合、軟水Nの水質には図8で示されるものが使用され、凝縮水Gの水質は純水と仮定されている)の、ボイラ水B1の水質を、演算によって算出したものを示している。この演算結果は、図7で示される、ボイラ水の水質の上限値及び下限値内に納められている。   Here, when the water quality Us of the soft water N and the water quality of the condensed water G are known, the computer unit 20 ′ of the water quality management device 9 ′ of this test apparatus has a condensed water usage rate X and a cleansing agent. If the injection concentration and the blow rate are known, boiler water quality calculation means for calculating the water quality of the boiler water B1 is provided. FIG. 11 shows the case where the boiler water quality calculation means uses the concentration of the canning agent injection and the blow rate shown in FIG. 9 in relation to the condensed water usage rate X (in this case, the water quality of the soft water N is 8 is used, and the water quality of the boiler water B1 is calculated by calculation. The water quality of the condensed water G is assumed to be pure water). This calculation result is stored in the upper limit value and the lower limit value of the water quality of the boiler water shown in FIG.

なお、図7や図11中の「分散剤濃度比」は、分散剤の所定基準濃度に対するボイラ水B1中の分散剤濃度の比であり、「P比」は、Pアルカリ濃度/シリカ濃度の値である。   The “dispersant concentration ratio” in FIGS. 7 and 11 is the ratio of the dispersant concentration in the boiler water B1 to the predetermined reference concentration of the dispersant, and the “P ratio” is the P alkali concentration / silica concentration. Value.

ボイラ装置の一例を示す図である。It is a figure which shows an example of a boiler apparatus. この発明の一実施の形態に係る水質管理装置の概要を示すブロック図である。It is a block diagram which shows the outline | summary of the water quality management apparatus which concerns on one embodiment of this invention. 第1データメモリの記憶内容を示す図である。It is a figure which shows the memory content of a 1st data memory. 第2データメモリの記憶内容を示す図である。It is a figure which shows the memory content of a 2nd data memory. 第2データメモリの他の記憶内容の一部を示す図である。It is a figure which shows a part of other memory content of a 2nd data memory. 水質管理装置のプログラム動作の主要部を示すフローチャートである。It is a flowchart which shows the principal part of the program operation | movement of a water quality management apparatus. ボイラ水の水質管理基準値例を示す図である。It is a figure which shows the water quality management reference value example of boiler water. 軟水の水質例等を示す図である。It is a figure which shows the water quality example etc. of soft water. 図8で示される水質の軟水と純水水質の凝縮水とを使用した場合に、最適清缶剤注入濃度と最適ブロー率とを凝縮水使用率の関数として示した場合の、これらのグラフ及び式を示す図である。When the soft water of the water quality shown in FIG. 8 and the condensed water of the pure water quality are used, these graphs in the case where the optimum canning agent injection concentration and the optimum blow rate are shown as a function of the condensed water usage rate and It is a figure which shows a type | formula. 給水温度で溶存酸素濃度が飽和するボイラ給水を使用した場合に、最適脱酸素剤注入濃度を給水温度の関数として示した場合の、そのグラフ及び式を示す図である。It is a figure which shows the graph and type | formula at the time of showing the optimal oxygen absorber injection | pouring density | concentration as a function of feed water temperature, when using boiler feed water with which dissolved oxygen concentration is saturated with feed water temperature. 凝縮水使用率Xとの関係で、図9で示される清缶剤注入濃度とブロー率とが用いられた場合に、ボイラ水の水質を演算により算出した結果を示す図である。It is a figure which shows the result of having calculated the water quality of boiler water by calculation, when the cleaning agent injection density | concentration and blow rate which are shown by FIG. 9 are used in relation to the condensed water usage rate X. FIG.

符号の説明Explanation of symbols

1 ボイラ装置(ボイラ)
2 ボイラ本体
5A 清缶剤注入装置(薬液注入装置)
6 ブローダウン装置
9 水質管理装置
26 第2データメモリ(水質管理値記憶手段)
27 凝縮水使用率演算手段
28 第1水管理量演算手段(水質管理量演算手段)
31 出力伝達手段
B1 ボイラ水
B2 ボイラ給水
G 凝縮水
N 軟水
T1 軟水温度
T2 凝縮水温度
W1 清缶剤(水処理薬品)
Y1 清缶剤注入濃度を定める式(薬液注入濃度を定める式)
Y2 ブロー率を定める式
X 凝縮水使用率
Z 給水温度
1 Boiler equipment (Boiler)
2 Boiler body 5A Cleaner injection device (chemical solution injection device)
6 Blowdown device 9 Water quality management device 26 Second data memory (water quality management value storage means)
27 Condensate usage rate calculating means 28 First water management amount calculating means (water quality management amount calculating means)
31 Output transmission means B1 Boiler water B2 Boiler feed water G Condensed water N Soft water T1 Soft water temperature T2 Condensed water temperature W1 Cleaner agent (water treatment chemical)
Formula to determine Y1 cleansing agent injection concentration (Formula to determine chemical solution injection concentration)
Formula to determine Y2 blow rate X Condensate usage rate Z Feed water temperature

Claims (3)

ボイラの給水系統に水処理薬品を注入する薬液注入装置と、ボイラ本体中のボイラ水を連続的にブローするブローダウン装置とを備えるとともに、回収した蒸気の凝縮水に軟水を加えた水がボイラ給水として使用されているボイラの水質管理装置であって、
前記ボイラ給水と前記軟水と前記凝縮水の、温度、電気伝導度、又は使用流量の何れかから、前記ボイラ給水のうち前記凝縮水が占める割合である凝縮水使用率を算出する凝縮水使用率演算手段と、
前記軟水及び前記凝縮水の水質を基準として定められる、前記ボイラ給水への最適薬液注入濃度、前記ボイラ本体からのボイラ水の最適ブロー率、又は、前記最適薬液注入濃度及び最適ブロー率の何れかを、前記凝縮水使用率を用いて定めたテーブル又は式を記憶する水質管理値記憶手段と、
前記凝縮水使用率演算手段からの出力と前記水質管理値記憶手段中の前記テーブル又は式に基づき、最適薬液注入濃度、最適ブロー率、又は、前記最適薬液注入濃度及び最適ブロー率の、何れかを算出する水質管理量演算手段と、
前記水質管理量演算手段からの出力に基づく情報を、前記薬液注入装置、前記ブローダウン装置、又は前記薬液注入装置及びブローダウン装置の、何れかに伝達する出力伝達手段とを有することを特徴とするボイラの水質管理装置。
It is equipped with a chemical injection device that injects water treatment chemicals into the boiler water supply system, and a blow-down device that continuously blows boiler water in the boiler body, and water that is obtained by adding soft water to the condensed water of the recovered steam A boiler water quality management device used as water supply,
Condensate usage rate for calculating the condensed water usage rate, which is the proportion of the boiler feed water occupied by the condensed water, from any of temperature, electrical conductivity, or usage flow rate of the boiler feed water, the soft water, and the condensed water. Computing means;
Any one of the optimal chemical injection concentration to the boiler feed water, the optimal blow rate of boiler water from the boiler body, or the optimal chemical injection concentration and optimal blow rate determined based on the water quality of the soft water and the condensed water A water quality management value storage means for storing a table or formula determined using the condensed water usage rate,
Based on the output from the condensed water usage rate calculating means and the table or formula in the water quality management value storage means, either the optimal chemical solution injection concentration, the optimal blow rate, or the optimal chemical solution injection concentration and the optimal blow rate Water quality control amount calculating means for calculating
Output transmission means for transmitting information based on the output from the water quality control amount calculation means to any one of the chemical liquid injection device, the blowdown device, or the chemical liquid injection device and the blowdown device, Boiler water quality management device.
前記水質管理値記憶手段は、前記軟水の水質の変化、又は前記軟水及び前記凝縮水の水質の変化に対応させて、前記テーブル又は式を記憶しているとともに、
前記水質管理量演算手段は、現在使用している軟水の水質、又は、現在使用している軟水及び凝縮水の水質に基づいて、前記水質管理値記憶手段中から必要なテーブル又は式を選択することを特徴とする請求項1記載のボイラの水質管理装置。
The water quality management value storage means stores the table or formula in correspondence with a change in the quality of the soft water or a change in the quality of the soft water and the condensed water,
The water quality management amount calculation means selects a necessary table or formula from the water quality management value storage means based on the quality of soft water currently used or the quality of soft water and condensed water currently used. 2. The boiler water quality management device according to claim 1, wherein:
ボイラの給水系統に水処理薬品を注入する薬液注入装置と、ボイラ本体中のボイラ水を連続的にブローするブローダウン装置とを備えるとともに、回収した蒸気の凝縮水に軟水を加えた水がボイラ給水として使用されているボイラの水質管理方法であって、
前記ボイラ給水と前記軟水と前記凝縮水の、温度、電気伝導度、又は使用流量の何れかから、前記ボイラ給水のうち前記凝縮水が占める割合である凝縮水使用率を算出する凝縮水使用率演算ステップと、
前記軟水及び前記凝縮水の水質を基準として定められる、前記ボイラ給水への最適薬液注入濃度、前記ボイラ本体からのボイラ水の最適ブロー率、又は、前記最適薬注濃度及び最適ブロー率の何れかを、前記凝縮水使用率を用いて定めたテーブル又は式と、前記凝縮水使用率演算ステップからの出力とにより、最適薬注濃度、最適ブロー率、又は、前記最適薬注濃度及び最適ブロー率の、何れかを算出する水質管理量演算ステップと、
前記水質管理量演算ステップからの出力に基づく情報を、前記薬液注入装置、前記ブローダウン装置、又は前記薬液注入手装置及びブローダウン装置の、何れかに伝達する出力伝達ステップとを有することを特徴とするボイラの水質管理方法。
It is equipped with a chemical injection device that injects water treatment chemicals into the boiler water supply system, and a blow-down device that continuously blows boiler water in the boiler body, and water that is obtained by adding soft water to the condensed water of the recovered steam A water quality management method for boilers used as water supply,
Condensate usage rate for calculating the condensed water usage rate, which is the proportion of the boiler feed water occupied by the condensed water, from any of temperature, electrical conductivity, or usage flow rate of the boiler feed water, the soft water, and the condensed water. A calculation step;
Any one of the optimal chemical injection concentration to the boiler feed water, the optimal blow rate of boiler water from the boiler body, or the optimal chemical injection concentration and optimal blow rate, which is determined based on the water quality of the soft water and the condensed water In accordance with the table or formula determined using the condensed water usage rate and the output from the condensed water usage rate calculating step, the optimal chemical injection concentration, the optimal blow rate, or the optimal chemical injection concentration and the optimal blow rate A water quality control amount calculating step for calculating any one of
An output transmission step of transmitting information based on the output from the water quality control amount calculation step to any one of the chemical solution injection device, the blowdown device, or the chemical solution injection device and the blowdown device. Boiler water quality management method.
JP2007318037A 2007-12-10 2007-12-10 Boiler water quality management device and boiler water quality management method Expired - Fee Related JP5182553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007318037A JP5182553B2 (en) 2007-12-10 2007-12-10 Boiler water quality management device and boiler water quality management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007318037A JP5182553B2 (en) 2007-12-10 2007-12-10 Boiler water quality management device and boiler water quality management method

Publications (2)

Publication Number Publication Date
JP2009139047A true JP2009139047A (en) 2009-06-25
JP5182553B2 JP5182553B2 (en) 2013-04-17

Family

ID=40869822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007318037A Expired - Fee Related JP5182553B2 (en) 2007-12-10 2007-12-10 Boiler water quality management device and boiler water quality management method

Country Status (1)

Country Link
JP (1) JP5182553B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191194A (en) * 2010-03-15 2011-09-29 Kurita Water Ind Ltd Quality measuring instrument of water and steam quality monitoring device
JP2013022535A (en) * 2011-07-22 2013-02-04 Kurita Water Ind Ltd Scale removing method for boiler water system
WO2015129618A1 (en) * 2014-02-28 2015-09-03 栗田工業株式会社 Method and device for controlling charging of chemical into boiler
JP2015161494A (en) * 2014-02-28 2015-09-07 栗田工業株式会社 Control device and control method of chemical injection to boiler
WO2016158512A1 (en) * 2015-03-31 2016-10-06 栗田工業株式会社 Water-treatment management apparatus and method
JP2020065955A (en) * 2018-10-22 2020-04-30 三浦工業株式会社 Device of reusing effluent, and boiler system
CN113606646A (en) * 2021-07-07 2021-11-05 华电电力科学研究院有限公司 Automatic control system and method for drainage recovery of heat supply network
CN114001346A (en) * 2021-10-22 2022-02-01 江苏双良锅炉有限公司 Boiler pollution discharge detection system and detection method thereof
CN114217554A (en) * 2021-12-06 2022-03-22 河南中烟工业有限责任公司 Industrial energy-saving water system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311502A (en) * 2000-04-28 2001-11-09 Samson Co Ltd Method of calculating blow-up ratio of drain recovering boiler and blow-up controller
JP2007263470A (en) * 2006-03-28 2007-10-11 Kurita Water Ind Ltd Operation method of boiler apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311502A (en) * 2000-04-28 2001-11-09 Samson Co Ltd Method of calculating blow-up ratio of drain recovering boiler and blow-up controller
JP2007263470A (en) * 2006-03-28 2007-10-11 Kurita Water Ind Ltd Operation method of boiler apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191194A (en) * 2010-03-15 2011-09-29 Kurita Water Ind Ltd Quality measuring instrument of water and steam quality monitoring device
JP2013022535A (en) * 2011-07-22 2013-02-04 Kurita Water Ind Ltd Scale removing method for boiler water system
US10179743B2 (en) 2014-02-28 2019-01-15 Kurita Water Industries Ltd. Device and method for controlling chemical injection into boiler
JP2015161494A (en) * 2014-02-28 2015-09-07 栗田工業株式会社 Control device and control method of chemical injection to boiler
WO2015129618A1 (en) * 2014-02-28 2015-09-03 栗田工業株式会社 Method and device for controlling charging of chemical into boiler
WO2016158512A1 (en) * 2015-03-31 2016-10-06 栗田工業株式会社 Water-treatment management apparatus and method
JP2016191528A (en) * 2015-03-31 2016-11-10 栗田工業株式会社 Water treatment management device and water treatment management method
JP2020065955A (en) * 2018-10-22 2020-04-30 三浦工業株式会社 Device of reusing effluent, and boiler system
CN113606646A (en) * 2021-07-07 2021-11-05 华电电力科学研究院有限公司 Automatic control system and method for drainage recovery of heat supply network
CN114001346A (en) * 2021-10-22 2022-02-01 江苏双良锅炉有限公司 Boiler pollution discharge detection system and detection method thereof
CN114001346B (en) * 2021-10-22 2024-06-07 江苏双良锅炉有限公司 Boiler pollution discharge detection system and detection method thereof
CN114217554A (en) * 2021-12-06 2022-03-22 河南中烟工业有限责任公司 Industrial energy-saving water system
CN114217554B (en) * 2021-12-06 2024-03-19 河南中烟工业有限责任公司 Industrial energy-saving water use system

Also Published As

Publication number Publication date
JP5182553B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5182553B2 (en) Boiler water quality management device and boiler water quality management method
US7955853B2 (en) Method and device for creating and analyzing an at temerature and pressure oxidation-reduction potential signature in hot water systems for preventing corrosion
TWI654395B (en) Boiler medicine injection control device and method
CA2695087C (en) Method and device for preventing corrosion in hot water systems
CN101776258A (en) System and method for controlling liquid level in a vessel
US7666312B2 (en) Method of inhibiting corrosion in industrial hot water systems by monitoring and controlling oxidant/reductant feed through a nonlinear control algorithm
US7951298B2 (en) Method and device for preventing corrosion in hot water systems undergoing intermittent operations
US7998352B2 (en) Method and device for cleanup and deposit removal from internal hot water system surfaces
JP5000909B2 (en) Operation method of boiler equipment
JP6683008B2 (en) Water treatment system
CN112859940A (en) Multi-water-tank liquid level control system of boiler
JP5983310B2 (en) Boiler water quality management method and apparatus
JP5277933B2 (en) Condensate quality monitoring device
US20080163832A1 (en) Boiler Apparatus
JP4375524B2 (en) Water quality management device
JP4442764B2 (en) Drum boiler and exhaust heat recovery boiler equipped with drum boiler
JP2016142444A (en) Boiler water chemical feeding method, chemical feeding control device and program
JP2019100669A (en) Auxiliary machine power determining device, plant, auxiliary machine power determining method, and program
JP2008157582A (en) Corrosion inhibitor supplying method in steam boiler device
CN210624498U (en) Optimized clean steam generating device based on steam generator
JP4405640B2 (en) Blow rate calculation method and blow control device for drain recovery boiler
JP2002174402A (en) Method and system for treating boiler water
JP5946563B1 (en) Purification device and heat exchange system using the purification device
KR200427038Y1 (en) System for controlling the quality of water real-time for reducing pipe corrosion in a water supply pipe
JP7048259B2 (en) Water treatment system and chemical injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130102

R150 Certificate of patent or registration of utility model

Ref document number: 5182553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees