JP2007263470A - Operation method of boiler apparatus - Google Patents

Operation method of boiler apparatus Download PDF

Info

Publication number
JP2007263470A
JP2007263470A JP2006089266A JP2006089266A JP2007263470A JP 2007263470 A JP2007263470 A JP 2007263470A JP 2006089266 A JP2006089266 A JP 2006089266A JP 2006089266 A JP2006089266 A JP 2006089266A JP 2007263470 A JP2007263470 A JP 2007263470A
Authority
JP
Japan
Prior art keywords
boiler
steam
amount
value
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006089266A
Other languages
Japanese (ja)
Other versions
JP5000909B2 (en
Inventor
Toru Iguchi
徹 井口
Yasushi Tabuchi
靖 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006089266A priority Critical patent/JP5000909B2/en
Publication of JP2007263470A publication Critical patent/JP2007263470A/en
Application granted granted Critical
Publication of JP5000909B2 publication Critical patent/JP5000909B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently and stably operate a boiler apparatus while securing the quality of steam. <P>SOLUTION: This operation method of the boiler apparatus includes: a measuring process H1 of measuring the quantity of impurity contained in steam S2 supplied from the boiler apparatus A always or at intervals of fixed time; and a changing and operating process of changing the operating condition to decrease the quantity of impurity until the quantity of impurity in supply steam S2 is decreased within a preset value when the quantity of impurity measured in the measuring process H1 exceeds a preset value predetermined about the impurity. Since the quality against impurity in the supply steam S2 is secured, and also changing and operation is performed by ordinary operation technique, the boiler apparatus A is operated efficiently and stably. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ボイラ装置の運転方法に関し、特に蒸気の質を監視しながらその結果に応じてボイラ装置の適切な運転を行なうボイラ装置の運転方法に関するものである。   The present invention relates to an operation method of a boiler device, and more particularly to an operation method of a boiler device that performs appropriate operation of a boiler device according to the result while monitoring the quality of steam.

ボイラ給水中の不純物は、ボイラ水中に留まり、これに蓄積されるが、一部は蒸気とともにボイラ装置外へ運ばれる。したがって、ボイラ給水中の不純物は、ボイラ装置内の配管や加熱管だけでなく、ボイラ装置外の熱交換器や配管等に対しても、スケールを生じさせ、かつ、腐食原因を生じさせる。同様に、ボイラ給水中の溶存酸素は、ボイラ装置内において腐食を促進させるだけでなく、蒸気を介してボイラ装置外においても腐食を促進させる。また、ボイラ給水等のpH値に関しても、これが所定の範囲からずれると、同様に、ボイラ装置内外で腐食を生じさせやすくなる。   Impurities in the boiler feedwater remain in the boiler water and accumulate in it, but some are carried out of the boiler device along with the steam. Therefore, the impurities in the boiler feed water cause scale and cause of corrosion not only in the piping and heating pipes in the boiler apparatus but also in the heat exchanger and piping outside the boiler apparatus. Similarly, the dissolved oxygen in the boiler feed water not only promotes corrosion inside the boiler device, but also promotes corrosion outside the boiler device via steam. Also, regarding the pH value of boiler feed water and the like, if this deviates from a predetermined range, similarly, corrosion easily occurs inside and outside the boiler device.

このため、ボイラ装置では、ボイラ水のブローダウンを行ったり、ボイラ給水等に必要な薬液を注入し、種々の箇所における腐食やスケールの発生を防止している。   For this reason, the boiler apparatus blows down boiler water or injects chemicals necessary for boiler water supply or the like to prevent corrosion and scale generation at various locations.

しかしながら、従来のボイラ装置では、ボイラ装置内のボイラ給水やボイラ水に関する水管理は充分になされているが、ボイラ装置から他の設備に供給されるスチーム自体の品質管理は、ボイラ給水やボイラ水に関する水管理に依存したものとなっており、充分になされているとは言えなかった。したがって、ボイラ装置内における配管や加熱管に対する腐食やスケールの発生は防止されても、ボイラ装置外の熱交換器や配管等に対する腐食やスケールの発生は必ずしも確実に防止されているとは言えなかった。   However, in the conventional boiler device, the boiler water supply in the boiler device and the water management related to the boiler water are sufficiently performed. However, the quality control of the steam itself supplied from the boiler device to other facilities is performed by the boiler water supply and the boiler water. It was dependent on water management and could not be said to have been done sufficiently. Therefore, even if corrosion and scale generation on piping and heating pipes in the boiler device are prevented, it cannot be said that corrosion and scale generation on heat exchangers and piping outside the boiler device are necessarily prevented reliably. It was.

また、食品工場や医薬品工場等では、取り扱い物への蒸気の混入又は蒸気の混入のおそれを考慮し、不純物に関する蒸気の品質が重要視されるが、かかる工場において、蒸気の品質を直接監視することは行なわれていない。このため、こうした工場では、脱酸素剤等のボイラ薬品に安全性の高い薬品を使用したり、又は、ボイラ薬品を全く使用しないことにより対応しており、ボイラ装置の運転が効率的かつ安定的になされているとは言えなかった。   In addition, in food factories and pharmaceutical factories, the quality of steam related to impurities is regarded as important in consideration of the possibility of steam contamination or vapor contamination in the handling items. In such factories, the quality of steam is directly monitored. That is not done. For this reason, in such factories, boiler chemicals such as oxygen scavengers are handled by using highly safe chemicals or by not using boiler chemicals at all, and the operation of boiler equipment is efficient and stable. It could not be said that it was made.

この発明は、以上の点に鑑み、蒸気に起因して生じる腐食やスケールの発生を確実に防止できるボイラ装置の運転方法を提供することを目的とする。   This invention aims at providing the operating method of the boiler apparatus which can prevent reliably generation | occurrence | production of the corrosion resulting from a vapor | steam, and a scale in view of the above point.

また、この発明は、蒸気の品質を確保しつつ、ボイラ装置を効率的かつ安定的に運転できるボイラ装置の運転方法を提供することを目的とする。   Another object of the present invention is to provide a method for operating a boiler device that can efficiently and stably operate the boiler device while ensuring the quality of steam.

この発明の請求項1記載の発明は、ボイラ装置から供給される蒸気中に含まれる不純物の量を常時又は一定時間間隔で計測する計測工程と、前記計測工程で計測された前記不純物の量が、この不純物について予め定めた設定値を超えている場合には、前記供給用蒸気中の前記不純物の量が前記設定値以内に減少するまで、前記不純物量を減少させるように運転条件を変更して、前記ボイラ装置の運転を行う変更運転工程とを有することを特徴とする。   According to the first aspect of the present invention, there is provided a measurement step of measuring the amount of impurities contained in the steam supplied from the boiler device at regular or regular intervals, and the amount of the impurities measured in the measurement step. When the predetermined set value for this impurity is exceeded, the operating condition is changed so as to decrease the impurity amount until the amount of the impurity in the supply steam decreases within the set value. And a change operation step of operating the boiler device.

この発明では、供給用蒸気中の不純物量が設定値を超えると、ボイラ装置の運転が、この不純物量を設定値以内に減少させるような運転に変更される。このため、この発明では、供給用蒸気中の不純物量は、設定値内に抑えられ、この不純物に関して供給用蒸気の品質を確保することができる。この場合、供給用蒸気中の不純物量を減少させるような運転は、一般的なボイラ装置の運転手法によって可能であるので、ボイラ装置の運転も効率的かつ安定的になすことができる。また、この発明では、供給用蒸気中の不純物量が設定値より減少すると、ボイラ装置の運転が、変更前の通常運転に戻されるので、供給用蒸気中の不純物量が過剰に減少してしまうことはない。変更運転自体や運転の切り替えは、制御機器を用いて自動的に行ってもよいし、オペレータが手動で行ってもよい。   In the present invention, when the amount of impurities in the supply steam exceeds the set value, the operation of the boiler device is changed to an operation that reduces the amount of impurities within the set value. For this reason, in this invention, the amount of impurities in the supply steam is suppressed within a set value, and the quality of the supply steam can be ensured with respect to this impurity. In this case, since the operation for reducing the amount of impurities in the supply steam can be performed by a general operation method of the boiler device, the operation of the boiler device can also be performed efficiently and stably. Further, in this invention, when the amount of impurities in the supply steam decreases from the set value, the operation of the boiler device is returned to the normal operation before the change, so that the amount of impurities in the supply steam is excessively reduced. There is nothing. The change operation itself or operation switching may be performed automatically using a control device, or may be performed manually by an operator.

この発明の請求項2記載の発明は、請求項1記載の発明の場合に、前記不純物が全有機炭素及び/又はスケール原因物質であることを特徴とする。   According to a second aspect of the present invention, in the case of the first aspect of the present invention, the impurity is total organic carbon and / or a scale-causing substance.

この発明では、不純物が全有機炭素の場合、供給用蒸気中の全有機炭素量が設定値を超えると、ボイラ装置の運転が、この全有機炭素量を減少させるような運転に変更され、この全有機炭素量に関して供給用蒸気の品質が確保される。また、この発明では、不純物がスケール原因物質の場合おいても、不純物が全有機炭素の場合と同様な運転がなされ、供給用蒸気中のスケール原因物質量に関して、供給用蒸気の品質が確保される。   In this invention, when the impurity is total organic carbon, when the total organic carbon amount in the supply steam exceeds the set value, the operation of the boiler device is changed to an operation that reduces the total organic carbon amount. The quality of the supply steam is ensured with respect to the total organic carbon content. In the present invention, even when the impurity is a scale-causing substance, the same operation is performed as when the impurity is total organic carbon, and the quality of the supply steam is ensured with respect to the amount of the scale-causing substance in the supply steam. The

この発明の請求項3記載の発明は、ボイラ装置から供給される蒸気を凝縮させた凝縮水の電気伝導度を常時又は一定時間間隔で計測する計測工程と、前記計測工程で計測された前記電気伝導度値が、予め定めた設定値を超えている場合には、前記供給用蒸気の凝縮水の前記電気伝導度値が前記設定値以内に減少するまで、前記電気伝導度値を前記設定値以内に減少させるように運転条件を変更して、前記ボイラ装置の運転を行う変更運転工程とを有することを特徴とする。   According to a third aspect of the present invention, there is provided a measuring step for measuring the electrical conductivity of condensed water condensed from the steam supplied from the boiler device at regular or regular time intervals, and the electric power measured in the measuring step. If the conductivity value exceeds a predetermined set value, the conductivity value is set to the set value until the conductivity value of the condensed water of the supply steam decreases within the set value. The operation condition is changed so as to decrease within a range, and the operation of the boiler device is changed, and a change operation step is included.

この発明では、供給用蒸気の凝縮水の電気伝導度値が設定値を超えると、ボイラ装置の運転が、電気伝導度値を減少させる運転に変更され、電気伝導度を生じさせる原因物質、すなわち無機系不純物の量が抑えられて、この無機系不純物に関して供給用蒸気の品質が確保される。また、この発明では、供給用蒸気の凝縮水の電気伝導度値が設定値より減少すると、ボイラ装置の運転が、変更前の通常運転に戻されるので、供給用蒸気の凝縮水の電気伝導度値を過剰に低下させてしまうことはない。なお、変更運転自体や運転の切り替えは、制御機器を用いて自動的に行ってもよいし、オペレータが手動で行ってもよい。   In this invention, when the electric conductivity value of the condensed water of the supply steam exceeds the set value, the operation of the boiler device is changed to an operation that decreases the electric conductivity value, and the causative substance that causes the electric conductivity, that is, The amount of inorganic impurities is suppressed, and the quality of the supply steam is ensured with respect to the inorganic impurities. Further, in this invention, when the electric conductivity value of the condensate water for supply steam decreases from the set value, the operation of the boiler device is returned to the normal operation before the change, so the electric conductivity of the condensate water for supply steam The value will not be reduced excessively. Note that the change operation itself or operation switching may be performed automatically using a control device, or may be performed manually by an operator.

この発明の請求項4記載の発明は、請求項3記載の発明の場合に、前記変更運転工程における運転条件の変更は、ボイラ水のブローダウン率を上昇させることであることを特徴とする。   According to a fourth aspect of the present invention, in the case of the third aspect of the present invention, the change of the operating condition in the changed operation step is to increase the blow-down rate of boiler water.

この発明の請求項5記載の発明は、ボイラ装置から供給される蒸気中の溶存酸素量を常時又は一定時間間隔で計測する計測工程と、前記計測工程で計測された前記溶存酸素量が、予め定めた設定値を超えている場合には、前記供給用蒸気中の前記溶存酸素量が前記設定値以内に減少するまで、前記溶存酸素量を減少させるように運転条件を変更して、前記ボイラ装置の運転を行う変更運転工程とを有することを特徴とする。   In the invention according to claim 5 of the present invention, the measurement step of measuring the amount of dissolved oxygen in the steam supplied from the boiler device at regular or regular time intervals, and the amount of dissolved oxygen measured in the measurement step are If the predetermined set value is exceeded, the operating conditions are changed so as to decrease the dissolved oxygen amount until the dissolved oxygen amount in the supply steam decreases within the set value, and the boiler And a change operation step for operating the apparatus.

この発明では、供給用蒸気中の溶存酸素量が設定値を超えると、ボイラ装置の運転が、溶存酸素量を減少させる運転に変更され、溶存酸素量が抑えられて、この溶存酸素に関して供給用蒸気の品質が確保される。また、この発明では、供給用蒸気中の溶存酸素量が設定値より減少すると、ボイラ装置の運転が、変更前の通常運転に戻されるので、供給用蒸気中の溶存酸素量が過剰に低下してしまうことはない。なお、変更運転自体や運転の切り替えは、制御機器を用いて自動的に行ってもよいし、オペレータが手動で行ってもよい。   In this invention, when the amount of dissolved oxygen in the supply steam exceeds the set value, the operation of the boiler device is changed to an operation for reducing the amount of dissolved oxygen, and the amount of dissolved oxygen is suppressed. Steam quality is ensured. In this invention, when the amount of dissolved oxygen in the supply steam decreases from the set value, the operation of the boiler device is returned to the normal operation before the change, so the amount of dissolved oxygen in the supply steam is excessively reduced. There is no end. Note that the change operation itself or operation switching may be performed automatically using a control device, or may be performed manually by an operator.

この発明の請求項6記載の発明は、請求項5記載の発明の場合に、前記変更運転工程における運転条件の変更は、ボイラ給水の温度を上昇させることであることを特徴とする。   According to a sixth aspect of the present invention, in the case of the fifth aspect of the present invention, the change of the operation condition in the change operation step is to increase the temperature of boiler feed water.

この発明の請求項7記載の発明は、ボイラ装置から供給される蒸気のpHを常時又は一定時間間隔で計測する計測工程と、前記計測工程で計測された前記pH値が、予め定めた設定範囲を逸脱する場合には、前記供給用蒸気の前記pH値が前記設定範囲内に納まるまで、前記pH値を前記設定範囲内に納めるように運転条件を変更して、前記ボイラ装置の運転を行う変更運転工程とを有することを特徴とする。   According to a seventh aspect of the present invention, there is provided a measuring step for measuring the pH of the steam supplied from the boiler device at regular time intervals or a predetermined setting range in which the pH value measured in the measuring step is predetermined. In the case of deviating from the above, until the pH value of the supply steam falls within the set range, the operating conditions are changed so that the pH value falls within the set range, and the boiler apparatus is operated. And a modified operation process.

この発明では、供給用蒸気のpH値が設定範囲を逸脱すると、ボイラ装置の運転が、pH値を設定範囲内に納めるような運転に変更され、pH値が設定範囲内に調整されて、
このpH値に関して供給用蒸気の品質が確保される。なお、変更運転自体や運転の切り替えは、制御機器を用いて自動的に行ってもよいし、オペレータが手動で行ってもよい。
In the present invention, when the pH value of the supply steam deviates from the set range, the operation of the boiler device is changed to an operation that keeps the pH value within the set range, and the pH value is adjusted within the set range,
With this pH value, the quality of the supply steam is ensured. Note that the change operation itself or operation switching may be performed automatically using a control device, or may be performed manually by an operator.

この発明の請求項1記載の発明によれば、供給用蒸気中の不純物量を設定値より増加させてしまうことはないので、不純物量に関する蒸気の品質が確保され、かかる不純物量に関して蒸気の品質が重要視される食品工場や医薬品工場等においても、かかるボイラ装置からの蒸気を容易に利用することができる。したがって、このような工場において、特殊な運転をしなくてもボイラ装置の運転が可能となり、効率的かつ安定的なボイラ運転が達成できる。   According to the first aspect of the present invention, since the amount of impurities in the supply steam is not increased from the set value, the quality of the steam with respect to the amount of impurities is secured, and the quality of the steam with respect to the amount of impurities. Even in food factories and pharmaceutical factories where importance is attached to the steam, steam from such boiler devices can be easily used. Therefore, in such a factory, it is possible to operate the boiler device without performing a special operation, and an efficient and stable boiler operation can be achieved.

また、この発明によれば、供給用蒸気中の不純物量を設定値より増加させてしまうことはないので、不純物に起因して、この蒸気が用いられる熱交換器や配管等に生じる弊害を確実に防止できるとともに、この蒸気の復水をボイラ給水として使用した場合に、このボイラ給水中の不純物量を低減できる。   In addition, according to the present invention, the amount of impurities in the supply steam is not increased from the set value, so that it is possible to reliably prevent the adverse effects caused by the impurities on the heat exchanger, piping, etc. in which this steam is used. When the steam condensate is used as boiler feed water, the amount of impurities in the boiler feed water can be reduced.

この発明の請求項2記載の発明によれば、供給用蒸気中の全有機炭素やスケール原因物質の量を低減でき、これらに関する供給用蒸気の品質を確保できる。また、この発明によれば、供給用蒸気中の腐食の原因物質となる全有機炭素やスケール原因物質の量を減少できるので、これらに起因して、この蒸気が用いられる熱交換器や配管等に生じる腐食やスケールの付着を確実に防止できる。   According to invention of Claim 2 of this invention, the quantity of the total organic carbon and scale causative substance in supply steam can be reduced, and the quality of supply steam regarding these can be ensured. Further, according to the present invention, the amount of total organic carbon and scale causative substances that cause corrosion in the supply steam can be reduced, and as a result, heat exchangers, piping, and the like in which this steam is used It is possible to reliably prevent corrosion and scale adhesion that occur on the surface.

この発明の請求項3記載の発明によれば、電気伝導度を生じさせる供給用蒸気中の無機系不純物の量を設定値より増加させてしまうことはないので、この無機系不純物に関する蒸気の品質が確保され、かかる無機系不純物に関して蒸気の品質が重要視される食品工場や医薬品工場等においても、かかるボイラ装置からの蒸気を利用することができる。したがって、このような工場において、特殊な運転をしなくてもボイラ装置の運転が可能となり、効率的かつ安定的なボイラ運転が達成できる。また、この発明によれば、無機系不純物にはスケール原因物質も含まれるため、スケールの付着防止に関して、請求項2記載の発明と同様な効果を得ることができる。   According to the third aspect of the present invention, since the amount of inorganic impurities in the supply steam that causes electrical conductivity is not increased from the set value, the quality of the steam related to the inorganic impurities is not increased. Therefore, the steam from the boiler apparatus can also be used in food factories, pharmaceutical factories, and the like where the quality of the steam is important with respect to such inorganic impurities. Therefore, in such a factory, it is possible to operate the boiler device without performing a special operation, and an efficient and stable boiler operation can be achieved. Further, according to the present invention, since the inorganic impurities include scale-causing substances, the same effects as those of the invention described in claim 2 can be obtained with respect to prevention of scale adhesion.

この発明の請求項4記載の発明によれば、比較的容易に、供給用蒸気中の電気伝導度を生じさせる原因物質、すなわち無機系不純物を減少させることができる。   According to the fourth aspect of the present invention, causative substances that cause electrical conductivity in the supply vapor, that is, inorganic impurities, can be reduced relatively easily.

この発明の請求項5記載の発明によれば、供給用蒸気中の溶存酸素量を設定値より増加させてしまうことはないので、溶存酸素に起因して、この蒸気が用いられる熱交換器や配管等に生じる腐食を確実に防止できる。また、この発明によれば、この蒸気の復水をボイラ給水として使用した場合に、このボイラ給水中の溶存酸素量を低減できるとともに、腐食による水質悪化が抑えられる分、この復水を効果的にボイラ給水として利用することができる。   According to the invention described in claim 5 of the present invention, the amount of dissolved oxygen in the supply steam is not increased more than the set value. Therefore, due to the dissolved oxygen, the heat exchanger in which this steam is used, Corrosion that occurs in pipes can be reliably prevented. Further, according to the present invention, when this steam condensate is used as boiler feed water, the amount of dissolved oxygen in the boiler feed water can be reduced, and the water quality deterioration due to corrosion can be suppressed, so that this condensate is effectively used. It can be used as boiler feed water.

この発明の請求項6記載の発明によれば、比較的容易に、供給用蒸気中の溶存酸素量を減少させることができる。   According to the sixth aspect of the present invention, the amount of dissolved oxygen in the supply steam can be reduced relatively easily.

この発明の請求項7記載の発明によれば、供給用蒸気中のpH値を設定範囲内に納めることができるので、pH値に起因して、この蒸気が用いられる熱交換器や配管等に生じる腐食を確実に防止することができるとともに、この蒸気の復水をボイラ給水として使用した場合に、腐食による水質悪化が抑えられる分、この復水を効果的にボイラ給水として利用することができる。   According to the invention described in claim 7 of the present invention, the pH value in the supply steam can be kept within the set range. Therefore, due to the pH value, the heat exchanger or piping or the like in which this steam is used. Corrosion that occurs can be surely prevented, and when this steam condensate is used as boiler feedwater, this condensate can be effectively used as boiler feedwater as much as water quality deterioration due to corrosion can be suppressed. .

以下、この発明の実施の形態を図面を参照しつつ説明する。
実施形態1.
図1はこの発明の一実施の形態に係るボイラ装置周りの主要機器配置を示している。
Embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1. FIG.
FIG. 1 shows a main equipment arrangement around a boiler apparatus according to an embodiment of the present invention.

ボイラ装置Aは、図1の鎖線で示されるように、給水タンク10と、蒸気発生器としてのボイラ20と、スチームヘッダ30と、薬液注入装置40と、ブローダウン装置50と、蒸気品質管理装置60とを有している。また、このボイラ装置Aの外側には、図1で示されるように、ボイラ装置外設備として、原水タンク100と、蒸気利用設備110とが設けられている。   As shown by a chain line in FIG. 1, the boiler apparatus A includes a water supply tank 10, a boiler 20 as a steam generator, a steam header 30, a chemical liquid injector 40, a blowdown device 50, and a steam quality control device. 60. In addition, as shown in FIG. 1, a raw water tank 100 and a steam utilization facility 110 are provided outside the boiler device A as facilities outside the boiler device.

ここで、ボイラ装置Aは、供給用蒸気の品質を確保するという観点から、その範囲が定められており、この実施形態1のボイラ装置Aでは、例えば、給水タンク10はボイラ装置外設備であってもよい。また、ボイラ20は、比較的低圧の水管ボイラを前提としているが、丸ボイラ、貫流ボイラ、その他特殊ボイラであってもよいし、圧力も低圧、中圧、高圧の何れであってもよい。   Here, the range of the boiler apparatus A is determined from the viewpoint of ensuring the quality of supply steam. In the boiler apparatus A of the first embodiment, for example, the feed water tank 10 is equipment outside the boiler apparatus. May be. Moreover, although the boiler 20 presupposes a comparatively low pressure water tube boiler, a round boiler, a once-through boiler, and other special boilers may be sufficient, and a pressure may be any of a low pressure, a medium pressure, and a high pressure.

原水タンク100に貯留された原水W0は、必要により水処理された後、配管L1を通って給水タンク10に供給される。給水タンク10内のボイラ給水W1は、不図示の給水ポンプで加圧された後、配管L2を通って、ボイラ20に供給される。ボイラ20で発生した蒸気S1は、必要により過熱された後、配管L3を通って、ボイラ装置出口に設けられたスチームヘッダ30に送られる。スチームヘッダ30中の供給用蒸気S2は、配管L10,L11,L12を通って、例えば熱交換器のような蒸気使用設備(この実施形態では蒸気使用設備110のみ示す)に供給され、その復水が、配管L13,L14,L15を通って、給水タンク10に回収される。   The raw water W0 stored in the raw water tank 100 is treated with water if necessary, and then supplied to the water supply tank 10 through the pipe L1. The boiler feed water W1 in the feed water tank 10 is pressurized by a feed pump (not shown) and then supplied to the boiler 20 through the pipe L2. The steam S1 generated in the boiler 20 is superheated as necessary, and then sent to the steam header 30 provided at the boiler device outlet through the pipe L3. The supply steam S2 in the steam header 30 is supplied to a steam use facility such as a heat exchanger (only the steam use facility 110 is shown in this embodiment) through the pipes L10, L11, L12, and its condensate. Is recovered in the water supply tank 10 through the pipes L13, L14, L15.

薬液注入装置40は、薬液タンク41と、薬注ポンプ42と、これらと配管L2とを連結する配管L4とから構成されている。薬液タンク41には、亜硫酸ナトリウムやヒドラジン等といった脱酸素剤を水に溶かした薬液が充填されている。薬注ポンプ42は、例えば、ストロークが調整可能なプランジャポンプであり、薬注タンク41内の薬液を、配管L4を通って、ボイラ給水ライン(配管L2中)に注入する。   The chemical solution injection device 40 includes a chemical solution tank 41, a chemical injection pump 42, and a pipe L4 that connects these pipes L2. The chemical solution tank 41 is filled with a chemical solution in which an oxygen scavenger such as sodium sulfite or hydrazine is dissolved in water. The medicinal pump 42 is, for example, a plunger pump whose stroke can be adjusted, and injects the medicinal solution in the medicinal tank 41 into the boiler water supply line (in the pipe L2) through the pipe L4.

ブローダウン装置50は、流量調整弁51と、ブローダウンタンク52と、これらとボイラ20(詳しくはボイラ20の缶体)とを連結する配管L5とから構成されている。ボイラ20中のボイラ水W2は、流量調整弁51を通って、例えば、一定量ずつブローダウンドラム52内に連続ブローされ、ブローダウンドラム52中で水と蒸気に分けられた後、ボイラ装置A内で利用されるか又は利用されずに排出される。   The blow-down device 50 includes a flow rate adjusting valve 51, a blow-down tank 52, and a pipe L5 that connects these to the boiler 20 (specifically, the boiler body of the boiler 20). The boiler water W2 in the boiler 20 passes through the flow rate adjustment valve 51 and is continuously blown into the blow-down drum 52 by a certain amount, for example, and is divided into water and steam in the blow-down drum 52, and then the boiler device A Used or not used.

蒸気品質管理装置60は、供給用蒸気S2の凝縮水W3の水質(この実施形態では、全有機炭素(TOC)と電気伝導度)を分析し、所定の信号を発するものである。この蒸気品質管理装置60は、冷却器61と、水質分析用のTOC計62及び電気伝導度計63と、スチームヘッダ30の圧力計31用配管L6と冷却器61とを連結する配管L7と、冷却器61で冷却された供給用蒸気S2の凝縮水W3を流す配管L8とから構成される。TOC計62と電気伝導度計63とは、配管L8に接続され、供給用蒸気S2の凝縮水W3についてのTOC値と電気伝導度値とを、常時計測している。   The steam quality control device 60 analyzes the water quality of the condensed water W3 of the supply steam S2 (in this embodiment, total organic carbon (TOC) and electrical conductivity) and generates a predetermined signal. The steam quality control device 60 includes a cooler 61, a TOC meter 62 and an electrical conductivity meter 63 for water quality analysis, a pipe L7 for connecting the pressure gauge 31 of the steam header 30 and the cooler 61, and a pipe L7. It comprises a pipe L8 through which the condensed water W3 of the supply steam S2 cooled by the cooler 61 flows. The TOC meter 62 and the electrical conductivity meter 63 are connected to the pipe L8 and constantly measure the TOC value and the electrical conductivity value for the condensed water W3 of the supply steam S2.

ここで、計測されたTOC値は、蒸気中の有機系不純物の量を示すものであり、このTOCが金属部材の腐食原因ともなるものであるので、これが多ければ、蒸気やその復水と接する金属部材に腐食を生じさせる。また、電気伝導度値は、蒸気中の無機系不純物の量を示す値であり、この無機系不純物には、例えば、Ca2+、Mg2+、Fe2+、Na+、Cl-、SO4 2-、SiO2といったスケール原因物質が含まれる。したがって、電気伝導度値が大きく無機系不純物が多ければ、蒸気やその復水と接する部材にスケールが形成される。 Here, the measured TOC value indicates the amount of organic impurities in the steam, and since this TOC also causes corrosion of the metal member, if it is large, it comes into contact with the steam and its condensate. Causes corrosion on metal parts. The electrical conductivity value is a value indicating the amount of inorganic impurities in the vapor. Examples of the inorganic impurities include Ca 2+ , Mg 2+ , Fe 2+ , Na + , Cl , SO 4 2- and scale-causing substances such as SiO 2 are included. Therefore, if the electrical conductivity value is large and there are many inorganic impurities, a scale is formed on the member in contact with the steam or its condensate.

TOC計62は、薬注ポンプ42のストロークを自動的に制御できるように、薬液注入装置40と配線により電気的に接続されている。TOC計62には、薬液注入装置40との関連で、ボイラ装置Aに変更運転を行わせるコントローラ62aが設けられている。このコントローラ63aは、計測された供給用蒸気S2中のTOC値が予め定めた設定値(例えば、50mS/m)を超えると、このTOC値が設定値内に減少するまで、通常運転の場合より、薬注ポンプ42のストロークを所定量だけ小さくして、給水ラインへの薬注量を減少(場合によっては無くす)させるような運転(変更運転)を行わせる。   The TOC meter 62 is electrically connected to the chemical liquid injector 40 by wiring so that the stroke of the chemical injection pump 42 can be automatically controlled. The TOC meter 62 is provided with a controller 62a that causes the boiler apparatus A to perform a change operation in relation to the chemical liquid injector 40. When the measured TOC value in the supply steam S2 exceeds a predetermined set value (for example, 50 mS / m), the controller 63a is more than in the case of normal operation until the TOC value decreases within the set value. Then, the operation (change operation) is performed such that the stroke of the medicinal pump 42 is reduced by a predetermined amount, and the medicinal amount to the water supply line is reduced (or eliminated in some cases).

電気伝導度計63は、流量調整弁51の開度を自動的に制御できるように、ブローダウン装置50と配線により電気的に接続されている。電気伝導度計63には、ブローダウン装置50との関連で、ボイラ装置Aに変更運転を行わせるコントローラ63aが設けられている。このコントローラ63aは、計測された供給用蒸気S2の凝縮水W3の電気伝導度値が予め定めた設定値(例えば、3mS/m)を超えると、この電気伝導度値が設定値内に減少するまで、通常運転の場合より、流量調整弁51の開度を所定量だけ大きくして、ボイラ水W2のブローダウン量を増加させるような運転(変更運転)を行わせる。   The electrical conductivity meter 63 is electrically connected to the blow-down device 50 by wiring so that the opening degree of the flow rate adjustment valve 51 can be automatically controlled. The electrical conductivity meter 63 is provided with a controller 63 a that causes the boiler device A to perform a change operation in connection with the blow-down device 50. When the measured electrical conductivity value of the condensed water W3 of the supply steam S2 exceeds a predetermined set value (for example, 3 mS / m), the controller 63a decreases the electrical conductivity value within the set value. Until the normal operation, the opening of the flow rate adjustment valve 51 is increased by a predetermined amount, and the operation (change operation) is performed to increase the blow-down amount of the boiler water W2.

つぎに、このボイラ装置Aの運転方法について説明する。
まず、通常運転について説明する。ここで、通常運転とは、供給用蒸気S2の使用目的や使用条件等によって予め定められたボイラ装置Aの定常運転をいうものとする。
Next, an operation method of the boiler apparatus A will be described.
First, normal operation will be described. Here, the normal operation refers to a steady operation of the boiler apparatus A that is determined in advance according to the purpose of use, use conditions, and the like of the supply steam S2.

給水タンク10中のボイラ給水W1は、給水ポンプによってボイラ20に供給されるが、ボイラ給水W1には、薬液注入装置40によって一定量ずつ脱酸素効果のある薬液が注入されるので、ボイラ給水W1中の酸素濃度は減少する。この場合、ボイラ給水W1のpH値は、規定で定められた6〜9程度に保持されている。ボイラ20には、pH調整剤が初期投与されているので、ボイラ20中のボイラ水W2のpH値も、規定で定められた11〜12程度に保持されている。   The boiler feed water W1 in the feed water tank 10 is supplied to the boiler 20 by a feed water pump. Since a chemical solution having a deoxygenation effect is injected into the boiler feed water W1 by a certain amount by the chemical solution injection device 40, the boiler feed water W1. The oxygen concentration inside decreases. In this case, the pH value of the boiler feed water W1 is maintained at about 6 to 9 defined by regulations. Since the pH adjuster is initially administered to the boiler 20, the pH value of the boiler water W <b> 2 in the boiler 20 is also maintained at about 11 to 12 defined by regulations.

また、ボイラ20の缶体からは、ブローダウン装置50により、一定量(例えば、通常のボイラ給水量の3%)のボイラ水W2が連続的にブローダウンされているので、ボイラ給水W1によって持ち込まれたボイラ水W2中の不純物(有機系不純物や無機系不純物)量は、比較的低く抑えられている。したがって、ボイラ20の缶体(詳しくはスチームドラム)中では、キャリオーバ等はほとんど生じず、蒸発したスチームのみがスチームヘッダ30へ送られる。スチームヘッダ30を出た供給用蒸気S2は、蒸気使用設備110に送られ、この蒸気利用設備110の熱交換器等で使用された後、復水に戻されて給水タンク10に回収される。   Further, since a certain amount (for example, 3% of the normal boiler water supply amount) of boiler water W2 is continuously blown down from the can body of the boiler 20 by the blow-down device 50, it is brought in by the boiler water supply W1. The amount of impurities (organic impurities and inorganic impurities) in the boiler water W2 is kept relatively low. Therefore, in the can body (specifically, the steam drum) of the boiler 20, almost no carryover or the like occurs, and only the evaporated steam is sent to the steam header 30. The supply steam S2 exiting the steam header 30 is sent to the steam use facility 110 and used in a heat exchanger or the like of the steam use facility 110, and then returned to the condensate and collected in the feed water tank 10.

スチームヘッダ30内の供給用蒸気S2は、蒸気品質管理装置60によって、その凝縮水W3のTOC値と電気伝導度値が計測されるが、これらの値は設定値内であり、TOC計62や電気伝導度計63のコントローラ62a,63aから、薬液注入装置40やブローダウン装置50に変更運転を指示する信号は発せられない。したがって、不純物に関する供給用蒸気S2の品質は、適正に確保され、蒸気使用設備110や配管L10〜L15において、腐食やスケールが発生することはほとんどない。   The supply steam S2 in the steam header 30 is measured by the steam quality control device 60 for its TOC value and electrical conductivity value of the condensed water W3. These values are within the set values, and the TOC meter 62 and The controller 62a, 63a of the electrical conductivity meter 63 does not issue a signal for instructing the chemical liquid injector 40 or the blowdown device 50 to perform a change operation. Therefore, the quality of the supply steam S2 related to impurities is ensured appropriately, and corrosion and scale are hardly generated in the steam use facility 110 and the pipes L10 to L15.

つぎに、このボイラ装置Aの変更運転について説明する。例えば、蒸気の使用量がある時間帯だけ多くなり、この間、ボイラ装置の負荷が上がった場合には、給水タンク10からボイラ20への給水流量が増加する。この場合、ボイラ給水W1によって持ち込まれる無機系不純物は増加するが、ボイラ20からブローダウン量は一定であるため、この不純物はボイラ20に蓄積され、ボイラ水W2の不純物濃度は上昇する。このため、ボイラ20中でキャリオーバ等が生じやすくなり、供給用蒸気S2中にボイラ水W2が多く混入する。   Next, the changing operation of the boiler apparatus A will be described. For example, the amount of steam used increases for a certain period of time, and during this time, when the load on the boiler device increases, the feed water flow rate from the feed water tank 10 to the boiler 20 increases. In this case, although the inorganic impurities brought in by the boiler feed water W1 increase, the amount of blowdown from the boiler 20 is constant, so this impurity is accumulated in the boiler 20 and the impurity concentration of the boiler water W2 increases. For this reason, a carryover or the like is likely to occur in the boiler 20, and a lot of boiler water W2 is mixed in the supply steam S2.

この場合、電気伝導度計63が、設定値を超える電気伝導度値を計測するため、コントローラ63aがブローダウン装置50に信号を送って、流量調整弁51の開度を現状より大きく開かせ、ボイラ20からのブローダウン量を増加させる。そして、コントローラ63aは、供給用蒸気S2の凝縮水W3の電気伝導度値が設定値より減少するまで、この変更運転を継続させる。供給用蒸気S2の凝縮水W3の電気伝導度値が設定値より減少すると、ブローダウン量を元に戻し、この変更運転を終了させて、ボイラ装置Aの運転を以前の通常運転に復帰させる。   In this case, since the electric conductivity meter 63 measures the electric conductivity value exceeding the set value, the controller 63a sends a signal to the blow-down device 50 to open the opening of the flow rate adjustment valve 51 larger than the current state, The amount of blowdown from the boiler 20 is increased. Then, the controller 63a continues this change operation until the electric conductivity value of the condensed water W3 of the supply steam S2 decreases from the set value. When the electric conductivity value of the condensed water W3 of the supply steam S2 decreases from the set value, the blow-down amount is returned to the original state, the change operation is terminated, and the operation of the boiler device A is returned to the previous normal operation.

また、例えば、何らかの理由で薬液注入装置40からボイラ給水W1に注入される薬液の量が増加すると、薬液自体又はその反応物がボイラ20に蓄積され、ボイラ水W2中のTOC値が増加する。このため、TOCに由来する有機系不純物が、例えばキャリオーバ等により供給用蒸気S2に混入し、TOC計62が設定値を超えるTOC値を計測する。この場合、コントローラ62aが薬液注入装置40に信号を送って、薬注ポンプ42のストロークを小さくし、薬液注入装置40からボイラ給水ラインへの薬液注入量を減少させる。そして、コントローラ62aは、供給用蒸気S2の凝縮水W3のTOC値が設定値より減少するまで、この変更運転を継続させ、供給用蒸気S2の凝縮水W3のTOC値が設定値より減少すると、この変更運転を終了させて、ボイラ装置Aの運転を以前の通常運転に復帰させる。   Further, for example, when the amount of the chemical liquid injected from the chemical liquid injector 40 into the boiler feed water W1 for some reason increases, the chemical liquid itself or a reaction product thereof is accumulated in the boiler 20 and the TOC value in the boiler water W2 increases. For this reason, organic impurities derived from the TOC are mixed into the supply steam S2 by, for example, carryover, and the TOC meter 62 measures the TOC value exceeding the set value. In this case, the controller 62a sends a signal to the chemical injection device 40 to reduce the stroke of the chemical injection pump 42 and reduce the chemical injection amount from the chemical injection device 40 to the boiler water supply line. Then, the controller 62a continues this change operation until the TOC value of the condensed water W3 of the supply steam S2 decreases from the set value, and when the TOC value of the condensed water W3 of the supply steam S2 decreases from the set value, This change operation is terminated, and the operation of the boiler device A is returned to the previous normal operation.

もちろん、TOC計62のコントローラ62aと電気伝導度計63のコントローラ63aとが、同時に作動し、薬液注入装置40とブローダウン装置50との運転が同時に変更される変更運転も生じ得る。   Of course, the controller 62a of the TOC meter 62 and the controller 63a of the electrical conductivity meter 63 are simultaneously operated, and a change operation in which the operations of the chemical solution injector 40 and the blowdown device 50 are simultaneously changed may occur.

図2は、このボイラ装置Aの運転方法を分かりやすく示すフローチャートである。すなわち、このボイラ装置Aの運転方法では、供給用蒸気S2の不純物(有機系又は無機系不純物)量を計測する計測工程H1の後に、この計測値が設定値以下であるか否かを判断する判断工程H2が設けられ、この判断工程H2の後に、計測値が設定値以下なら通常運転を行う通常運転工程H3と、計測値が設定値を超えていると、変更した運転条件でボイラ装置Aを運転する変更運転工程H4とが設けられる。その後計測工程H1に戻り、以下同様な工程が繰り返される。   FIG. 2 is a flowchart showing the operation method of the boiler device A in an easily understandable manner. That is, in the operation method of the boiler apparatus A, it is determined whether or not the measured value is equal to or less than a set value after the measurement process H1 for measuring the amount of impurities (organic or inorganic impurities) in the supply steam S2. A determination process H2 is provided, and after this determination process H2, a normal operation process H3 in which normal operation is performed if the measured value is equal to or less than the set value, and the boiler apparatus A is operated under the changed operation condition if the measured value exceeds the set value. And a change operation process H4 for driving the vehicle. Thereafter, the process returns to the measuring step H1, and the same steps are repeated thereafter.

以上のように、このボイラ装置Aの運転方法では、供給用蒸気S2中のTOC値(有機系不純物量)や電気伝導度値(無機系不純物量)が設定値を超えると、ボイラ装置の運転が、これらの不純物量を設定値以内に減少させるような運転に変更されるため、供給用蒸気S2中の有機系不純物量又は無機系不純物量又はこれらを合わせた全体の不純物量を、設定値内に抑えることができ、これらの不純物に関して供給用蒸気S2の品質を確保することができる。したがって、不純物量に関して蒸気の品質が重要視される食品工場や医薬品工場等においても、かかる運転がなされるボイラ装置Aからの蒸気を容易に利用することができ、このような工場において、安全性の高い特殊な薬液を用いた、非効率的なボイラ装置の運転をしたり、薬液を使用しない非安定的なボイラ装置の運転を行う必要はなくなる。   As described above, in the operation method of the boiler apparatus A, when the TOC value (organic impurity amount) or the electrical conductivity value (inorganic impurity amount) in the supply steam S2 exceeds the set value, the operation of the boiler apparatus is performed. However, since the operation is changed to reduce the amount of these impurities within the set value, the amount of organic impurities or the amount of inorganic impurities in the supply steam S2 or the total amount of impurities combined with these is set to the set value. The quality of the supply steam S2 can be ensured with respect to these impurities. Therefore, even in food factories and pharmaceutical factories where steam quality is important with respect to the amount of impurities, the steam from the boiler apparatus A that is operated can be easily used. It is no longer necessary to operate an inefficient boiler device using a special chemical solution having a high level or to operate an unstable device without using a chemical solution.

また、このボイラ装置Aの運転方法では、供給用蒸気S2中の各不純物量が設定値より減少すると、ボイラ装置の運転が、変更前の通常運転に戻されるので、供給用蒸気S2中の各不純物量を過剰(必要以上)に減少させてしまうことはない。   Further, in the operation method of the boiler apparatus A, when the amount of each impurity in the supply steam S2 is decreased from the set value, the operation of the boiler apparatus is returned to the normal operation before the change, so that each of the supply steam S2 in the supply steam S2 The amount of impurities is not reduced excessively (more than necessary).

さらに、このボイラ装置Aの運転方法では、供給用蒸気S2中の有機系不純物量を設定値より増加させてしまうことはないので、有機系不純物に起因して、この蒸気が用いられる蒸気使用設備110や配管L10〜L15に生じる腐食を確実に防止できる。   Further, in the operation method of the boiler apparatus A, the amount of organic impurities in the supply steam S2 is not increased from the set value, so that the steam using equipment in which this steam is used due to the organic impurities. 110 and the pipes L10 to L15 can be reliably prevented from being corroded.

また、このボイラ装置Aの運転方法では、供給用蒸気S2中の無機系不純物量を設定値より増加させてしまうことはないので、、無機系不純物に起因して、この蒸気が用いられる蒸気使用設備110や配管L10〜L15に生じるスケールの形成を確実に防止でき、熱交換効率の低下抑制による省エネルギー効果を達成できる。   Further, in the operation method of the boiler apparatus A, the amount of inorganic impurities in the supply steam S2 is not increased from the set value. Therefore, the use of steam in which this steam is used due to inorganic impurities. Scale formation occurring in the facility 110 and the pipes L10 to L15 can be reliably prevented, and an energy saving effect can be achieved by suppressing a decrease in heat exchange efficiency.

さらに、このボイラ装置Aの運転方法では、供給用蒸気S2中の有機系不純物量や無機系不純物量をそれぞれ設定値より増加させてしまうことはないので、、供給用蒸気S2の復水の清浄化が図られ、この復水をボイラ給水W1として利用する場合に、ボイラ水W2中の不純物濃度を小さく維持できる。このことにより、このボイラ装置Aでは、ボイラ水W2のブローダウン率を低く維持でき、節水効果を得ることができるとともに、ボイラ20中で生じるキャリオーバを低減でき、その分、ボイラ20の運転を安定させることができる。   Further, in the operation method of the boiler apparatus A, the amount of organic impurities and inorganic impurities in the supply steam S2 are not increased from the set values, respectively, so that the condensate of the supply steam S2 is purified. When this condensate is used as boiler feed water W1, the impurity concentration in boiler water W2 can be kept small. As a result, in this boiler apparatus A, the blow-down rate of the boiler water W2 can be kept low, a water saving effect can be obtained, and the carryover that occurs in the boiler 20 can be reduced, and the operation of the boiler 20 is stabilized accordingly. Can be made.

なお、蒸気品質管理装置60に、TOC計62又は電気伝導度計63の何れかのみを設け、TOC計62のコントローラ62aで薬液注入装置40を制御するか、又は電気伝導度計63のコントローラ63aでブローダウン装置50を制御するようにしてもよい。   In addition, either the TOC meter 62 or the electrical conductivity meter 63 is provided in the vapor quality control device 60, and the chemical liquid injector 40 is controlled by the controller 62a of the TOC meter 62, or the controller 63a of the electrical conductivity meter 63. The blow-down device 50 may be controlled by

また、通常運転において、薬液注入装置40からの薬液注入量や、ブローダウン装置50によるボイラ水W2のブローダウン量を、ボイラ20へ供給されるボイラ給水W1の流量に比例させるようにしてもよい。この場合、供給用蒸気S2の凝縮水W3の電気伝導度値を上昇させる原因としては、何らかの理由によるボイラ給水W1中の無機系不純物の増加が考えられる。   Further, in the normal operation, the amount of chemical liquid injected from the chemical liquid injector 40 and the amount of blowdown of the boiler water W2 by the blowdown device 50 may be proportional to the flow rate of the boiler feed water W1 supplied to the boiler 20. . In this case, the cause of increasing the electrical conductivity value of the condensed water W3 of the supply steam S2 may be an increase in inorganic impurities in the boiler feed water W1 for some reason.

さらに、TOC計62や電気伝導度計63に、コントローラ62a,63aに替えて警報機を設け、TOC値や電気伝導度値が設定値を超えた場合に警報機から警報を発し、薬液注入装置40やブローダウン装置50を人手で操作するようにしてもよい。   Further, an alarm device is provided in the TOC meter 62 or the electric conductivity meter 63 in place of the controllers 62a and 63a, and when the TOC value or the electric conductivity value exceeds a set value, an alarm is issued from the alarm device. 40 or blow-down device 50 may be operated manually.

実施形態2.
図3はこの発明の他の実施の形態に係るボイラ装置周りの主要機器配置示している。
実施形態2のボイラ装置Aの、実施形態1のボイラ装置Aとの違いは、給水タンク10に、ボイラ給水W1を加熱する給水加熱装置70を設けたことと、蒸気品質管理装置60に、TOC計62及び電気伝導度計63の替わりに、溶存酸素計64を設け、溶存酸素計64により計測された供給用蒸気S2の溶存酸素量によって、給水加熱装置70を制御するようにしたことである。
Embodiment 2. FIG.
FIG. 3 shows an arrangement of main equipment around a boiler apparatus according to another embodiment of the present invention.
The difference between the boiler device A of the second embodiment and the boiler device A of the first embodiment is that the feed water heating device 70 for heating the boiler feed water W1 is provided in the feed water tank 10, and the TOC is set in the steam quality control device 60. Instead of the meter 62 and the conductivity meter 63, a dissolved oxygen meter 64 is provided, and the feed water heating device 70 is controlled by the amount of dissolved oxygen in the supply steam S2 measured by the dissolved oxygen meter 64. .

給水加熱装置70は、給水タンク10中に設けられる蒸気ヒータ71と、蒸気ヒータ71への蒸気量をON−OFF制御する制御弁72とから構成されており、制御弁72の制御によって、給水タンク10中のボイラ給水W1の温度がコントロールされる。なお、使用される加熱用蒸気には、ボイラ装置A内のもの(例えばブローダウンドラム52から排出されたもの)が使用される。   The feed water heating device 70 includes a steam heater 71 provided in the feed water tank 10, and a control valve 72 that controls the amount of steam to the steam heater 71 on and off, and the feed water tank is controlled by the control valve 72. The temperature of the boiler feed water W1 in 10 is controlled. In addition, the thing in the boiler apparatus A (For example, what was discharged | emitted from the blowdown drum 52) is used for the steam for heating used.

すなわち、溶存酸素計64は、制御弁72を自動的に制御できるように、この給水加熱装置70と配線により電気的に接続されているとともに、この溶存酸素計64には、給水加熱装置70との関連で、ボイラ装置Aの変更運転を行わせるコントローラ64aが設けられている。このコントローラ64aは、計測された供給用蒸気S2中の溶存酸素量が予め定めた設定値(1mg/Lが好ましく、0.5mg/Lが更に好ましい)を超えると、この溶存酸素量が設定値内に減少するまで、制御弁72を開いて給水タンク10内のボイラ給水W1の温度を上昇又は上昇後一定値に維持させる変更運転を行わせる。供給用蒸気S2中の溶存酸素量は、ボイラ給水W1中の溶存酸素量に比例すると考えられるので、給水タンク10内でボイラ給水W1の温度を上昇させることにより減少させることができる。   That is, the dissolved oxygen meter 64 is electrically connected to the feed water heating device 70 by wiring so that the control valve 72 can be automatically controlled, and the dissolved oxygen meter 64 is connected to the feed water heating device 70. In connection with this, the controller 64a which performs the change driving | operation of the boiler apparatus A is provided. When the measured dissolved oxygen amount in the supply steam S2 exceeds a predetermined set value (preferably 1 mg / L, more preferably 0.5 mg / L), the controller 64a sets the dissolved oxygen amount to the set value. Until the temperature decreases, the control valve 72 is opened, and the temperature of the boiler feed water W1 in the feed water tank 10 is raised or changed so as to maintain a constant value after the rise. Since the dissolved oxygen amount in the supply steam S2 is considered to be proportional to the dissolved oxygen amount in the boiler feed water W1, it can be reduced by increasing the temperature of the boiler feed water W1 in the feed water tank 10.

つぎに、このボイラ装置Aの運転方法について説明する。なお、通常運転の方法は、実施形態1のボイラ装置Aの運転方法と同じなので説明を省略する。   Next, an operation method of the boiler apparatus A will be described. In addition, since the method of normal operation is the same as the operation method of the boiler apparatus A of Embodiment 1, description is abbreviate | omitted.

何らかの原因でボイラ給水W1中の溶存酸素量が上昇すると、これに伴い、供給用蒸気S2中の溶存酸素量も上昇する。この場合、溶存酸素計64が、設定値を超える溶存酸素量を計測するため、コントローラ64aが制御弁72を開かせ、蒸気ヒータ71に蒸気を送って給水タンク10中のボイラ給水W1の温度を上昇等させる。そして、コントローラ64aは、供給用蒸気S2中の溶存酸素量が設定値より減少するまで、この変更運転を継続させ、供給用蒸気S2中の溶存酸素量が設定値より減少すると、この変更運転を終了させて、ボイラ装置Aの運転を以前の通常運転に復帰させる。   When the amount of dissolved oxygen in the boiler feed water W1 increases for some reason, the amount of dissolved oxygen in the supply steam S2 also increases accordingly. In this case, since the dissolved oxygen meter 64 measures the amount of dissolved oxygen exceeding the set value, the controller 64a opens the control valve 72, sends steam to the steam heater 71, and sets the temperature of the boiler feed water W1 in the feed water tank 10. Raise etc. Then, the controller 64a continues this change operation until the dissolved oxygen amount in the supply steam S2 decreases from the set value. When the dissolved oxygen amount in the supply steam S2 decreases from the set value, the controller 64a performs the change operation. The operation of the boiler apparatus A is returned to the previous normal operation.

以上のように、このボイラ装置Aの運転方法では、供給用蒸気S2中の溶存酸素量を設定値より増加させてしまうことはないので、溶存酸素に起因して、供給用蒸気S2が用いられる蒸気使用設備110や配管L10〜L15に生じる腐食を確実に防止できる。なお、このボイラ装置Aの運転方法では、供給用蒸気S2中の溶存酸素量が設定値より減少すると、ボイラ装置Aの運転が、変更前の通常運転に戻されるので、供給用蒸気S2中の溶存酸素量を過剰(必要以上)に減少させてしまうことはない。   As described above, in the operation method of the boiler apparatus A, the amount of dissolved oxygen in the supply steam S2 is not increased from the set value, so the supply steam S2 is used due to the dissolved oxygen. Corrosion occurring in the steam using facility 110 and the pipes L10 to L15 can be reliably prevented. In this operation method of the boiler apparatus A, when the amount of dissolved oxygen in the supply steam S2 decreases from the set value, the operation of the boiler apparatus A is returned to the normal operation before the change, so The amount of dissolved oxygen is not reduced excessively (more than necessary).

また、このボイラ装置Aの運転方法では、供給用蒸気S2の復水をボイラ給水W1として使用した場合に、このボイラ給水W1中の溶存酸素量を低減できるとともに、腐食による水質悪化が抑えられる分、この復水を効果的にボイラ給水W1として利用することができる。   Further, in the operation method of the boiler apparatus A, when the condensate of the supply steam S2 is used as the boiler feed water W1, the amount of dissolved oxygen in the boiler feed water W1 can be reduced, and deterioration of water quality due to corrosion can be suppressed. This condensate can be effectively used as boiler feed water W1.

なお、溶存酸素計64に、コントローラ64aに替えて警報機を設け、供給用蒸気S2中の溶存酸素量が設定値を超えた場合に警報機から警報を発し、蒸気ヒータへの蒸気量をオペレータが手動弁にて操作するようにしてもよい。   An alarm device is provided in the dissolved oxygen meter 64 in place of the controller 64a. When the dissolved oxygen amount in the supply steam S2 exceeds a set value, an alarm is issued from the alarm device, and the steam amount to the steam heater is set by the operator. May be operated by a manual valve.

また、溶存酸素の除去を化学的処理、例えば、脱酸素剤を使用する薬液注入装置40を用いて行なってもよい。この場合、コントローラ64aは、供給用蒸気S2の溶存酸素量が設定値を超えると、薬注ポンプ42のストロークを増加させて、ボイラ給水W1中に脱酸素剤を含む薬液を多めに注入させるとともに、溶存酸素量が設定値より減少すると、薬注ポンプ42のストロークを通常運転の状態に復帰させる。   Moreover, you may perform removal of dissolved oxygen using chemical treatment, for example, the chemical | medical solution injection | pouring apparatus 40 which uses a deoxidizer. In this case, when the amount of dissolved oxygen in the supply steam S2 exceeds the set value, the controller 64a increases the stroke of the chemical injection pump 42 and injects a large amount of the chemical solution containing the oxygen absorber into the boiler feed water W1. When the amount of dissolved oxygen decreases from the set value, the stroke of the medicinal pump 42 is returned to the normal operation state.

さらに、溶存酸素の除去を機械的処理、例えば、窒素ガスを使用する窒素脱気器で行なってもよい。この場合、コントローラ64aは、供給用蒸気S2の溶存酸素量が設定値を超えると、ボイラ給水W1を窒素脱気器に導いて、ボイラ給水W1中の溶存酸素量を減少させ、溶存酸素量が設定値より減少すると、窒素脱気器をパイパスさせて、ボイラ給水W1をボイラ20に供給し、ボイラ装置Aの運転を通常運転に復帰させる。   Further, the removal of dissolved oxygen may be performed by a mechanical treatment, for example, a nitrogen deaerator using nitrogen gas. In this case, when the dissolved oxygen amount of the supply steam S2 exceeds the set value, the controller 64a guides the boiler feed water W1 to the nitrogen deaerator so as to reduce the dissolved oxygen amount in the boiler feed water W1, and the dissolved oxygen amount is reduced. If it reduces from a setting value, a nitrogen deaerator will be bypassed and the boiler feed water W1 will be supplied to the boiler 20, and the operation | movement of the boiler apparatus A will be returned to a normal operation.

実施形態3.
図4はこの発明の他の実施の形態に係るボイラ装置周りの主要機器配置示している。
この実施形態3のボイラ装置Aの、実施形態1のボイラ装置Aとの違いは、蒸気品質管理装置60に、TOC計62及び電気伝導度計63の替わりに、pH計65を設け、pH計65により計測された供給用蒸気S2中のpH値によって、ブローダウン装置50の流量調整弁51を制御するようにしたことである。
Embodiment 3. FIG.
FIG. 4 shows an arrangement of main equipment around a boiler apparatus according to another embodiment of the present invention.
The difference between the boiler device A of the third embodiment and the boiler device A of the first embodiment is that a pH meter 65 is provided in the steam quality control device 60 in place of the TOC meter 62 and the electrical conductivity meter 63, and the pH meter The flow rate adjusting valve 51 of the blow-down device 50 is controlled by the pH value in the supply steam S2 measured by 65.

すなわち、pH計65は、流量調整弁51を自動的に制御できるように、ブローダウン装置50と配線により電気的に接続されているとともに、このpH計65には、ブローダウン装置50との関係で、ボイラ装置Aに変更運転を行わせるコントローラ65aが設けられている。このコントローラ65aは、計測された供給用蒸気S2中のpH値が予め定めた設定範囲5〜7を逸脱すると、このpH値が設定範囲内に収まるまで、流量調整弁51の開度を所定量だけ大きくして、ボイラ水W2のブローダウン量を増加させるような運転(変更運転)を行わせる。なお、通常、供給用蒸気S2中のpH値が5より小さくなることはあまりないので、ここでは、pH値が7を超える場合を想定して説明している。   That is, the pH meter 65 is electrically connected to the blow-down device 50 by wiring so that the flow rate adjusting valve 51 can be automatically controlled, and the pH meter 65 has a relationship with the blow-down device 50. Thus, a controller 65a for causing the boiler device A to perform a change operation is provided. When the measured pH value in the supply steam S2 deviates from the predetermined setting range 5 to 7, the controller 65a increases the opening of the flow rate adjustment valve 51 by a predetermined amount until the pH value falls within the setting range. The operation (change operation) that increases the blow-down amount of the boiler water W2 is performed. Normally, the pH value in the supply steam S2 is not so much smaller than 5, and here, the case where the pH value exceeds 7 is described.

つぎに、このボイラ装置Aの運転方法について説明する。なお、通常運転の方法は、実施形態1のボイラ装置Aの運転方法と同じなので説明を省略する。   Next, an operation method of the boiler apparatus A will be described. In addition, since the method of normal operation is the same as the operation method of the boiler apparatus A of Embodiment 1, description is abbreviate | omitted.

例えば、ボイラ水W2中の不純物濃度が上昇すると、ボイラ20内でキャリオーバが生じやすくなり、pH値の高いボイラ水W2が蒸気S1に混入して、供給用蒸気S2のpH値が上昇する。この場合、pH計65が設定範囲を逸脱するpH値を計測するため、コントローラ65aがブローダウン装置50に信号を送って、流量調整弁51の開度を現状より大きく開かせ、ボイラ20からのブローダウン量を増加させる。そして、コントローラ65aは、供給用蒸気S2のpH値が設定範囲に収まるまで、この変更運転を継続させ、供給用蒸気S2のpH値が設定範囲に収まるると、この変更運転を終了させて、ボイラ装置Aの運転を以前の通常運転に復帰させる。   For example, when the impurity concentration in the boiler water W2 increases, carry-over easily occurs in the boiler 20, and the boiler water W2 having a high pH value is mixed into the steam S1, and the pH value of the supply steam S2 increases. In this case, in order for the pH meter 65 to measure a pH value that deviates from the set range, the controller 65a sends a signal to the blow-down device 50 to open the opening of the flow rate adjustment valve 51 larger than the current state, and from the boiler 20 Increase blowdown amount. Then, the controller 65a continues this change operation until the pH value of the supply steam S2 falls within the set range. When the pH value of the supply steam S2 falls within the set range, the controller 65a ends the change operation, The operation of the boiler device A is returned to the previous normal operation.

以上のように、このボイラ装置Aの運転方法では、供給用蒸気S2のpH値を設定範囲に納めるようにしているので、pH値に起因して、供給用蒸気S2が用いられる蒸気使用設備110や配管L10〜L15に生じる腐食を確実に防止できる。   As described above, in the operation method of the boiler apparatus A, the pH value of the supply steam S2 is set within the set range. Therefore, the steam using facility 110 in which the supply steam S2 is used due to the pH value. Corrosion occurring in the pipes L10 to L15 can be reliably prevented.

また、このボイラ装置Aの運転方法では、供給用蒸気S2の復水をボイラ給水W1として使用した場合に、このボイラ給水W1のpH値を適正な範囲に維持できるとともに、腐食による水質悪化が抑えられる分、この復水を効果的にボイラ給水W1として利用することができる。   Further, in the operation method of the boiler apparatus A, when the condensate of the supply steam S2 is used as the boiler feed water W1, the pH value of the boiler feed water W1 can be maintained within an appropriate range, and deterioration of water quality due to corrosion is suppressed. Therefore, this condensate can be effectively used as boiler feed water W1.

なお、ボイラ給水W1は、比較的pH値の高い復水と比較的pH値の低い原水W0とが給水タンク10中で混合されたものであるので、変更運転を、ボイラ20からのブローダウン量の増加とせず、ボイラ給水W1に対する原水W0の割合を増加させるような運転としてもよい。もちろん、変更運転を、ブローダウン量の増加と、ボイラ給水W1に対する原水W0の割合の増加とを組み合わせたものとしてもよい。   The boiler feed water W1 is obtained by mixing the condensate having a relatively high pH value and the raw water W0 having a relatively low pH value in the feed water tank 10, so that the change operation is performed by the amount of blowdown from the boiler 20. It is good also as an operation which increases the ratio of the raw | natural water W0 with respect to boiler feed water W1, without making it increase. Of course, the change operation may be a combination of an increase in the blowdown amount and an increase in the ratio of the raw water W0 to the boiler feed water W1.

また、pH計65に、コントローラ64aに替えて警報機を設け、供給用蒸気S2のpH値が設定範囲を逸脱した場合に警報機から警報を発し、ブローダウン装置50を人手で操作するようにしてもよい。   Further, an alarm device is provided in the pH meter 65 in place of the controller 64a so that an alarm is issued from the alarm device when the pH value of the supply steam S2 deviates from the set range, and the blow-down device 50 is operated manually. May be.

さらに、実施形態1〜実施形態3のボイラ装置Aにおいて、TOC計62、電気伝導度計63、溶存酸素計64、及びpH計65による計測を、常時でなく、一定時間毎に所定時間だけ行い、その計測値に基づいて、コントローラ62a,63a,64a,65aが、薬液注入装置40、ブローダウン装置50、及び給水加熱装置70等を制御するようにしてもよい。   Further, in the boiler apparatus A of the first to third embodiments, the measurement by the TOC meter 62, the electrical conductivity meter 63, the dissolved oxygen meter 64, and the pH meter 65 is performed not only at a constant time but for a predetermined time every fixed time. Based on the measured values, the controllers 62a, 63a, 64a, 65a may control the chemical liquid injector 40, the blowdown device 50, the feed water heater 70, and the like.

また、実施形態1〜実施形態3のボイラ装置Aにおいて、コントローラ62a,65aによる薬注ポンプ42のストローク調整や、コントローラ63a,64aによる流量調整弁51や制御弁72の開度調整は、一度に行ってもよいし、所定値まで少しずつ変化させるようにしてもよいし、一度行った後、計測値に変化が生じない場合、追加して行ってもよい。   In the boiler apparatus A of the first to third embodiments, the stroke adjustment of the chemical injection pump 42 by the controllers 62a and 65a and the opening adjustment of the flow rate adjustment valve 51 and the control valve 72 by the controllers 63a and 64a are performed at a time. May be performed, or may be changed little by little to a predetermined value, or may be additionally performed when the measurement value does not change after being performed once.

さらに、計測される、TOC値、電気伝導度値、溶存酸素値に、許容値と、これより小さい変更運転開始設定値を設け、これらの計測値が確実に許容値を超えないようにしてもよい。また、変更運転開始設定値より小さい通常運転復帰設定値を設け、変更運転と通常運転とが頻繁に繰り返されるのを防止してもよい。pH値の場合には、上下の変更運転開始設定値の間に通常運転復帰設定値をそれぞれ設ければよい。   In addition, the measured TOC value, electrical conductivity value, and dissolved oxygen value are provided with an allowable value and a change operation start setting value smaller than this, so that these measured values do not exceed the allowable value reliably. Good. Further, a normal operation return set value smaller than the changed operation start set value may be provided to prevent the changed operation and the normal operation from being repeated frequently. In the case of the pH value, a normal operation return setting value may be provided between the upper and lower changed operation start setting values.

また、実施形態1〜実施形態3で示した以外に、TOC、電気伝導度、溶存酸素濃度、pHの組合せを考え、組み合わされたものを同時に計測して、ボイラ装置Aの運転をするようにしてもよい。   In addition to those shown in the first to third embodiments, a combination of TOC, electric conductivity, dissolved oxygen concentration, and pH is considered, and the combined one is measured simultaneously to operate the boiler apparatus A. May be.

さらに、変更運転は、実施形態1〜実施形態3で示したものを組み合わせてもよいし、他の運転であってもよい。   Furthermore, the changed operation may be a combination of those shown in the first to third embodiments, or may be another operation.

本発明は、各種工場内ボイラ、発電所用ボイラなど様々なボイラに適用することができる。   The present invention can be applied to various boilers such as various factory boilers and power plant boilers.

この発明の実施形態1に係るボイラ装置周りの主要機器配置と、水、蒸気、信号等の流れを示す図である。It is a figure which shows the main equipment arrangement | positioning around the boiler apparatus which concerns on Embodiment 1 of this invention, and flows of water, a vapor | steam, a signal, etc. 図1で示されるボイラ装置の運転方法を示すフローチャートである。It is a flowchart which shows the operating method of the boiler apparatus shown by FIG. この発明の実施形態1に係るボイラ装置周りの主要機器配置と、水、蒸気、信号等の流れを示す図である。It is a figure which shows the main equipment arrangement | positioning around the boiler apparatus which concerns on Embodiment 1 of this invention, and flows of water, a vapor | steam, a signal, etc. この発明の実施形態1に係るボイラ装置周りの主要機器配置と、水、蒸気、信号等の流れを示す図である。It is a figure which shows the main equipment arrangement | positioning around the boiler apparatus which concerns on Embodiment 1 of this invention, and flows of water, a vapor | steam, a signal, etc.

符号の説明Explanation of symbols

20 ボイラ
40 薬液注入装置
50 ブローダウン装置
60 蒸気品質管理装置
62 TOC計
63 電気伝導度計
64 溶存酸素計
65 pH計
70 給水加熱装置
A ボイラ装置
H1 計測工程
H4 変更運転工程
S2 供給用蒸気
20 Boiler 40 Chemical Solution Injection Device 50 Blowdown Device 60 Steam Quality Control Device 62 TOC Meter 63 Electrical Conductivity Meter 64 Dissolved Oxygen Meter 65 pH Meter 70 Feed Water Heating Device A Boiler Device H1 Measurement Process H4 Change Operation Process S2 Supply Steam

Claims (7)

ボイラ装置から供給される蒸気中に含まれる不純物の量を常時又は一定時間間隔で計測する計測工程と、前記計測工程で計測された前記不純物の量が、この不純物について予め定めた設定値を超えている場合には、前記供給用蒸気中の前記不純物の量が前記設定値以内に減少するまで、前記不純物量を減少させるように運転条件を変更して、前記ボイラ装置の運転を行う変更運転工程とを有することを特徴とするボイラ装置の運転方法。 A measurement process for measuring the amount of impurities contained in the steam supplied from the boiler device at regular or regular intervals, and the amount of the impurities measured in the measurement process exceeds a preset value for the impurities. A change operation for changing the operating conditions so as to reduce the amount of impurities and operating the boiler device until the amount of the impurities in the supply steam decreases within the set value. A method of operating a boiler device, comprising: a step. 前記不純物が全有機炭素及び/又はスケール原因物質であることを特徴とする請求項1に記載のボイラ装置の運転方法。 2. The operation method of the boiler apparatus according to claim 1, wherein the impurities are total organic carbon and / or scale-causing substances. ボイラ装置から供給される蒸気を凝縮させた凝縮水の電気伝導度を常時又は一定時間間隔で計測する計測工程と、前記計測工程で計測された前記電気伝導度値が、予め定めた設定値を超えている場合には、前記供給用蒸気の凝縮水の前記電気伝導度値が前記設定値以内に減少するまで、前記電気伝導度値を前記設定値以内に減少させるように運転条件を変更して、前記ボイラ装置の運転を行う変更運転工程とを有することを特徴とするボイラ装置の運転方法。 A measurement process for measuring the electrical conductivity of condensed water condensed with steam supplied from the boiler device at regular or regular time intervals, and the electrical conductivity value measured in the measurement process is a predetermined set value. If so, the operating conditions are changed to decrease the electrical conductivity value within the set value until the conductivity value of the condensate of the supply steam decreases within the set value. And a change operation step of operating the boiler device. 前記変更運転工程における運転条件の変更は、ボイラ水のブローダウン率を上昇させることであることを特徴とする請求項3に記載のボイラ装置の運転方法。 The operation method of the boiler apparatus according to claim 3, wherein the change of the operation condition in the change operation step is to increase a blow-down rate of boiler water. ボイラ装置から供給される蒸気中の溶存酸素量を常時又は一定時間間隔で計測する計測工程と、前記計測工程で計測された前記溶存酸素量が、予め定めた設定値を超えている場合には、前記供給用蒸気中の前記溶存酸素量が前記設定値以内に減少するまで、前記溶存酸素量を減少させるように運転条件を変更して、前記ボイラ装置の運転を行う変更運転工程とを有することを特徴とするボイラ装置の運転方法。 When the amount of dissolved oxygen in the steam supplied from the boiler device is measured constantly or at regular time intervals, and when the amount of dissolved oxygen measured in the measurement step exceeds a preset value A change operation step of changing the operating conditions so as to decrease the dissolved oxygen amount and operating the boiler device until the dissolved oxygen amount in the supply steam decreases within the set value. The operation method of the boiler apparatus characterized by the above-mentioned. 前記変更運転工程における運転条件の変更は、ボイラ給水の温度を上昇させることであることを特徴とする請求項5に記載のボイラ装置の運転方法。 The operation method of the boiler apparatus according to claim 5, wherein the change of the operation condition in the change operation step is to increase a temperature of boiler feed water. ボイラ装置から供給される蒸気のpHを常時又は一定時間間隔で計測する計測工程と、前記計測工程で計測された前記pH値が、予め定めた設定範囲を逸脱する場合には、前記供給用蒸気の前記pH値が前記設定範囲内に納まるまで、前記pH値を前記設定範囲内に納めるように運転条件を変更して、前記ボイラ装置の運転を行う変更運転工程とを有することを特徴とするボイラ装置の運転方法。 When the measurement step of measuring the pH of the steam supplied from the boiler device at regular or regular time intervals and the pH value measured in the measurement step deviates from a predetermined setting range, the supply steam A change operation step of operating the boiler device by changing operating conditions so that the pH value falls within the set range until the pH value falls within the set range. Operation method of boiler equipment.
JP2006089266A 2006-03-28 2006-03-28 Operation method of boiler equipment Expired - Fee Related JP5000909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089266A JP5000909B2 (en) 2006-03-28 2006-03-28 Operation method of boiler equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089266A JP5000909B2 (en) 2006-03-28 2006-03-28 Operation method of boiler equipment

Publications (2)

Publication Number Publication Date
JP2007263470A true JP2007263470A (en) 2007-10-11
JP5000909B2 JP5000909B2 (en) 2012-08-15

Family

ID=38636627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089266A Expired - Fee Related JP5000909B2 (en) 2006-03-28 2006-03-28 Operation method of boiler equipment

Country Status (1)

Country Link
JP (1) JP5000909B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139047A (en) * 2007-12-10 2009-06-25 Kurita Water Ind Ltd Boiler water quality management device and boiler water quality management method
JP2009162463A (en) * 2008-01-10 2009-07-23 Kurita Water Ind Ltd Control method of deoxidizer injection amount
JP2010203728A (en) * 2009-03-05 2010-09-16 Miura Co Ltd Boiler and concentrated blow method
JP2011021771A (en) * 2009-07-13 2011-02-03 Kurita Water Ind Ltd Steam property monitoring device
JP2013022535A (en) * 2011-07-22 2013-02-04 Kurita Water Ind Ltd Scale removing method for boiler water system
KR101558099B1 (en) 2014-05-12 2015-10-06 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Boiler control device and control method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858205A (en) * 1981-09-30 1983-04-06 Sumitomo Metal Ind Ltd Operating method for blast furnace
JPS63116004A (en) * 1986-11-03 1988-05-20 コンバッション・エンヂニアリング・インコーポレーテッド Chemical controlling device and method of steam-generator steam cycle
JPH06108274A (en) * 1992-09-11 1994-04-19 Japan Organo Co Ltd Treatment of boiler water
JPH08165587A (en) * 1994-12-12 1996-06-25 Touzai Kogyo Kk Corrosion inhibitor
JPH09170704A (en) * 1995-12-21 1997-06-30 Hitachi Ltd Water quality monitoring for vapour condensed water and energy converting system using the same
JP2003114002A (en) * 2001-10-02 2003-04-18 Kurita Water Ind Ltd Boiler device
JP2003240204A (en) * 2002-02-08 2003-08-27 Kurita Water Ind Ltd Dissolved oxygen eliminating method for boiler water system
JP2004028475A (en) * 2002-06-27 2004-01-29 Miura Co Ltd Corrosion suppressing method of boiler device
JP2005337585A (en) * 2004-05-27 2005-12-08 Miura Co Ltd Boiler device and its corrosion suppressing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858205A (en) * 1981-09-30 1983-04-06 Sumitomo Metal Ind Ltd Operating method for blast furnace
JPS63116004A (en) * 1986-11-03 1988-05-20 コンバッション・エンヂニアリング・インコーポレーテッド Chemical controlling device and method of steam-generator steam cycle
JPH06108274A (en) * 1992-09-11 1994-04-19 Japan Organo Co Ltd Treatment of boiler water
JPH08165587A (en) * 1994-12-12 1996-06-25 Touzai Kogyo Kk Corrosion inhibitor
JPH09170704A (en) * 1995-12-21 1997-06-30 Hitachi Ltd Water quality monitoring for vapour condensed water and energy converting system using the same
JP2003114002A (en) * 2001-10-02 2003-04-18 Kurita Water Ind Ltd Boiler device
JP2003240204A (en) * 2002-02-08 2003-08-27 Kurita Water Ind Ltd Dissolved oxygen eliminating method for boiler water system
JP2004028475A (en) * 2002-06-27 2004-01-29 Miura Co Ltd Corrosion suppressing method of boiler device
JP2005337585A (en) * 2004-05-27 2005-12-08 Miura Co Ltd Boiler device and its corrosion suppressing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139047A (en) * 2007-12-10 2009-06-25 Kurita Water Ind Ltd Boiler water quality management device and boiler water quality management method
JP2009162463A (en) * 2008-01-10 2009-07-23 Kurita Water Ind Ltd Control method of deoxidizer injection amount
JP2010203728A (en) * 2009-03-05 2010-09-16 Miura Co Ltd Boiler and concentrated blow method
JP2011021771A (en) * 2009-07-13 2011-02-03 Kurita Water Ind Ltd Steam property monitoring device
JP2013022535A (en) * 2011-07-22 2013-02-04 Kurita Water Ind Ltd Scale removing method for boiler water system
KR101558099B1 (en) 2014-05-12 2015-10-06 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Boiler control device and control method

Also Published As

Publication number Publication date
JP5000909B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5000909B2 (en) Operation method of boiler equipment
US7208117B2 (en) Automated process for inhibiting corrosion in an inactive boiler containing an aqueous system
CA2863154C (en) Method for purifying and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant
RU2475568C2 (en) Corrosion-preventive method and device in hot water supply systems
CA2694312A1 (en) Method and device for creating and analyzing an at temperature and pressure oxidation-reduction potential signature in hot water systems for preventing corrosion
JPWO2010090307A1 (en) Plant operating method and system
JP5182553B2 (en) Boiler water quality management device and boiler water quality management method
WO2021207758A1 (en) Methods and systems for optimizing corrosion and scale inhibitor injection rates in process plants
CN102165383A (en) Proactive control system for industrial water systems
JPH01127894A (en) Condenser in water and steam circuit for power plant
JP6213215B2 (en) Boiler system
JP2016057009A (en) Boiler and suspension processing method for boiler
JP2009228991A (en) Boiler system and operating method of boiler system
KR100569761B1 (en) Automatic apparatus and method to diagnose and control water quality in boiler facilities
JP2008170112A (en) Chemical agent supplying method to steam boiler
JP2007263385A (en) Boiler water supply processing device, boiler device, and operation method of boiler water supply processing device
KR20050058447A (en) Method for cleaning a steam generating device of a compressed water reactor
JP2012241259A (en) System for chemical cleaning within boiler unit
JP4442764B2 (en) Drum boiler and exhaust heat recovery boiler equipped with drum boiler
Panigrahi et al. Boiler Water Treatment
JP7193921B2 (en) Pure water production equipment
JP5768377B2 (en) Boiler water pH adjuster and boiler operation method
JP6021739B2 (en) Boiler water supply system
JP2010236034A (en) Corrosion prevention method for boiler in rest condition and anticorrosive for boiler in rest condition
JP5474610B2 (en) Equipment for supplying oxygen and decarbonated water for boilers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees