JP2009198032A - Steam monitoring device and boiler system - Google Patents

Steam monitoring device and boiler system Download PDF

Info

Publication number
JP2009198032A
JP2009198032A JP2008037850A JP2008037850A JP2009198032A JP 2009198032 A JP2009198032 A JP 2009198032A JP 2008037850 A JP2008037850 A JP 2008037850A JP 2008037850 A JP2008037850 A JP 2008037850A JP 2009198032 A JP2009198032 A JP 2009198032A
Authority
JP
Japan
Prior art keywords
water
steam
boiler
cause
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008037850A
Other languages
Japanese (ja)
Other versions
JP5211742B2 (en
Inventor
Yasushi Tabuchi
靖 田渕
克浩 ▲吉▼岡
Katsuhiro Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008037850A priority Critical patent/JP5211742B2/en
Publication of JP2009198032A publication Critical patent/JP2009198032A/en
Application granted granted Critical
Publication of JP5211742B2 publication Critical patent/JP5211742B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam monitoring device capable of continuously monitoring the quality of steam from a boiler system and immediately taking measures against degradation of steam quality. <P>SOLUTION: This boiler system comprising a plurality of compact once-through boilers, further comprises a measuring means 30 manufacturing condensate water G by cooling the steam S1 continuously collected, and measuring the water quality of condensate water, a determining means 43 determining whether a water quality value of the condensate water measured by the measuring means satisfies predetermined criteria or not, a cause/measure memorizing means 42 memorizing the cause when the water quality value of the condensate water does not satisfy the criteria, and the measures for eliminating the cause, an operating information memorizing means 41 memorizing the operating information of an apparatus from the boiler system, and a cause/measure exhibiting means 42 specifying the cause and the measure in the cause/measure memorizing means on the basis of the operating information in the operating information memorizing means, and exhibiting the cause and the measure to a worker when the determining means determines that the water quality of the condensate water does not satisfy the criteria. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、複数の小型貫流ボイラを備えたボイラシステムから発生する蒸気の質を調べて、この蒸気質が悪化しないように監視・制御する蒸気監視装置と、かかる蒸気監視装置を備えたボイラシステムとに関するものである。   The present invention relates to a steam monitoring device for monitoring the quality of steam generated from a boiler system including a plurality of small once-through boilers, and monitoring and controlling the steam quality so as not to deteriorate, and a boiler system including the steam monitoring device. It is about.

複数の小型貫流ボイラを備えたボイラシステムから発生する蒸気中の不純物濃度は、ボイラ給水中に含まれる物質の濃度、これらの物質のボイラ缶水中の濃度、これらの物質の熱反応生成物のボイラ缶水中の濃度、各ボイラの運転状態(例えば、発生蒸気量、缶内圧力、燃焼量、缶内水位の高低)、蒸気負荷の変動などにより決定される。このため、かかるボイラシステムから発生する蒸気中の不純物濃度、すなわち、蒸気の質は、このボイラシステムの運転状態にしたがって、刻一刻と変化する。   Impurity concentration in steam generated from a boiler system equipped with multiple small once-through boilers is the concentration of substances contained in the boiler feed water, the concentration of these substances in the boiler can water, the boilers of the thermal reaction products of these substances It is determined by the concentration in the can water, the operating state of each boiler (for example, the amount of steam generated, the pressure in the can, the combustion amount, the level of the water level in the can), the fluctuation of the steam load, and the like. For this reason, the impurity concentration in the steam generated from the boiler system, that is, the quality of the steam, changes every moment according to the operating state of the boiler system.

一方、このようなボイラシステムでは、ボイラならびに付帯設備の腐食を防止するとともに、蒸気中の不純物濃度が許容範囲を超えないように、運転上種々の対策がとられている。すなわち、例えば、ボイラ給水並びにボイラ缶水を定期的に採取・分析し、これらの中の不純物濃度を基準値内に収めるべく、所定の対策(例えば、ボイラ給水への薬品注入濃度の変更、濃縮ブロー率の変更)を行ったり、蒸気負荷の変動に対してバーナの燃焼量を充分に追従させるために、ボイラ毎の燃焼制御及びボイラの台数制御の特性を調整するといった対策が取られている。   On the other hand, in such a boiler system, various measures are taken in operation so that the corrosion of the boiler and incidental equipment is prevented and the impurity concentration in the steam does not exceed the allowable range. That is, for example, boiler supply water and boiler can water are periodically collected and analyzed, and predetermined measures (for example, change or concentration of chemical injection into boiler supply water to keep the impurity concentration within the standard value) Measures are taken to adjust the characteristics of combustion control for each boiler and the number of boilers in order to make the combustion amount of the burner sufficiently follow the fluctuation of the steam load. .

また、ボイラからの蒸気を凝縮させて、この凝縮水の水質を測定する蒸気監視装置(例えば、特許文献1参照)を備え、この蒸気監視装置を用いてオンラインで蒸気質を監視することもなされている。   Further, a steam monitoring device (for example, see Patent Document 1) that condenses steam from the boiler and measures the quality of the condensed water is provided, and the steam quality is monitored online using this steam monitoring device. ing.

特開2007−93128号公報JP 2007-93128 A

しかしながら、ボイラ缶水などの定期的(例えば1日に一回)な分析結果に基づいて、蒸気質等に対する対策を講じるという従来のやり方は、炉筒煙管ボイラなどのように蒸発量に対する保有水量が多く、缶水の水質変動が数時間以上かかるボイラならばよいが、保有水量が少なく数十分で缶水の水質が変動する小型貫流ボイラには必ずしも適しているとは言えない。すなわち、小型貫流ボイラの場合、従来のやり方では、分析と分析の間ではどのような缶水水質であったかは解らず、この間に充分な蒸気質等の対策を取ることができないからである。また、ボイラの台数制御等についても、必要な場合に的確な制御がなされているとは言えない。   However, the conventional method of taking measures against steam quality, etc. based on periodic (for example, once a day) analysis results such as boiler can water, the amount of retained water relative to the amount of evaporation, such as a flue tube boiler However, it may be a boiler that can change the water quality of canned water for several hours or more, but it is not necessarily suitable for a small once-through boiler in which the amount of water held is small and the water quality of canned water fluctuates. That is, in the case of a small once-through boiler, the conventional method does not know what kind of water quality was between analysis, and it is not possible to take measures such as sufficient steam quality during this period. Moreover, it cannot be said that the number of boilers is controlled accurately when necessary.

さらに、蒸気監視装置を備え、ボイラシステムからの蒸気の質を連続的に監視している場合であっても、蒸気中の不純物濃度が許容値を超えたことは解るが、測定値に対して定期的または随時に人手で対策が取られているにすぎず、ボイラシステムからの蒸気の質の悪化に即応して、復旧・改善の策が取られているとは言えない。   Furthermore, even if a steam monitoring device is provided and the quality of steam from the boiler system is continuously monitored, it is understood that the impurity concentration in the steam has exceeded the allowable value, Countermeasures are only taken manually or regularly, and it cannot be said that recovery and improvement measures are being taken in response to the deterioration of the steam quality from the boiler system.

この発明は、以上の点に鑑み、ボイラシステムからの蒸気の質を連続的に監視するとともに、この蒸気の質の悪化に対応して直ちに、ボイラシステム側に蒸気の質を改善させるような対策を取らせることができる蒸気監視装置を提供することを目的とする。また、この発明は、発生した蒸気の質を連続的に監視するとともに、この蒸気の質の悪化に対応して直ちに、この蒸気の質を改善させるような対策を取ることができるボイラシステムを提供することを目的とする。   In view of the above, the present invention continuously monitors the quality of the steam from the boiler system and immediately takes measures to improve the quality of the steam on the boiler system side in response to the deterioration of the quality of the steam. An object of the present invention is to provide a steam monitoring device that can be removed. In addition, the present invention provides a boiler system capable of continuously monitoring the quality of the generated steam and immediately taking measures to improve the quality of the steam in response to the deterioration of the quality of the steam. The purpose is to do.

この発明の請求項1記載の発明は、複数の小型貫流ボイラを備えたボイラシステムから発生する蒸気の質を調べて監視する蒸気監視装置であって、連続的に採取される前記蒸気を冷却して凝縮水を作り、この凝縮水の水質を計測する計測手段と、前記計測手段にて計測された前記凝縮水の水質値が、予め定めた基準を充たしているか否かを判定する判定手段と、前記凝縮水の水質が前記基準を充たしていない場合の原因と、この原因を取り除くための、前記ボイラシステムで取り得る対策とを記憶した原因対策記憶手段と、前記ボイラシステムから伝えられる機器の運転情報を記憶する運転情報記憶手段と、前記判定手段が、前記凝縮水の水質値が前記基準を充たしていないと判定した場合に、前記運転情報記憶手段の運転情報に基づいて、前記原因対策記憶手段に記載されたものから原因と対策を特定し、この原因と対策とを作業者に提示する原因対策提示手段とを有することを特徴とする。   The invention according to claim 1 of the present invention is a steam monitoring device for monitoring and monitoring the quality of steam generated from a boiler system having a plurality of small once-through boilers, which cools the continuously collected steam. Measuring means for making condensed water and measuring the quality of the condensed water, and determining means for determining whether or not the water quality value of the condensed water measured by the measuring means satisfies a predetermined standard; The cause countermeasure storage means for storing the cause when the quality of the condensed water does not satisfy the standard and the measures that can be taken by the boiler system to remove the cause, and the equipment transmitted from the boiler system When the operation information storage means for storing operation information and the determination means determine that the water quality value of the condensed water does not satisfy the standard, based on the operation information of the operation information storage means, Serial Cause Action causes and identify measures from those described in the storage means, and having a cause measures presenting means for presenting the measures this causes the operator.

この発明によれば、ボイラシステムから発生された蒸気は、計測手段によって、その凝縮水の水質が連続的に計測され、この計測値に基づいて、判定手段が、その水質が所定の基準を充たしているか否かを判定する。そして、判定手段が凝縮水の水質値が基準を充たしていない(蒸気の質が悪化している)と判定した場合には、原因対策提示手段が、運転情報記憶手段中の運転情報に基づいて、原因対策記憶手段に記憶されたものから原因と対策とを特定し、この原因と対策とを作業者に提示させる。   According to the present invention, the steam generated from the boiler system is continuously measured for the quality of the condensed water by the measuring means, and based on this measured value, the judging means satisfies the predetermined quality for the water quality. It is determined whether or not. And when the determination means determines that the water quality value of the condensed water does not satisfy the standard (the quality of the steam is deteriorated), the cause countermeasure presentation means is based on the operation information in the operation information storage means. Then, the cause and the countermeasure are specified from those stored in the cause countermeasure storage means, and the cause and the countermeasure are presented to the operator.

この発明の請求項2記載の発明は、請求項1記載の発明の場合において、前記原因対策提示手段が特定した前記対策を、前記ボイラシステムの制御手段に伝達し、このボイラシステム内の機器の運転状態を変更させる情報伝達手段を有することを特徴とする。   In the invention according to claim 2 of the present invention, in the case of the invention according to claim 1, the countermeasure specified by the cause countermeasure presenting means is transmitted to the control means of the boiler system, and the equipment in the boiler system is It has the information transmission means to change a driving | running state, It is characterized by the above-mentioned.

この発明の請求項3記載の発明は、複数の小型貫流ボイラを備えたボイラ装置と、このボイラ装置にボイラ給水用の処理水を供給する水処理装置と、前記ボイラ装置から発生する蒸気の質を調べて、この蒸気の質が大きく悪化しないように監視する蒸気監視装置とを有するボイラシステムであって、前記ボイラ装置と前記水処理装置とが、これらの装置内の機器の運転情報を前記蒸気監視装置に伝えるとともに、前記蒸気監視装置からの対策指令信号に従って、これらの装置内の機器の運転設定を変更する制御手段を有しており、前記蒸気監視装置が、連続的に採取される前記蒸気を冷却して凝縮水を作り、この凝縮水の水質を計測する計測手段と、前記計測手段にて計測された前記凝縮水の水質値が、予め定めた基準を充たしているか否かを判定する判定手段と、前記凝縮水の水質が前記基準を充たしていない場合の原因と、この原因を取り除くための、前記ボイラ装置及び水処理装置側で取り得る対策とを記憶した原因対策記憶手段と、前記ボイラ装置及び水処理装置から伝えられる機器の運転情報を記憶する運転情報記憶手段と、前記判定手段が、前記凝縮水の水質値が前記基準を充たしていないと判断した場合に、前記運転情報記憶手段中の運転情報に基づいて、前記原因対策記憶手段に記憶されたものから原因と対策を特定し、この原因と対策とを作業者に提示する原因対策提示手段と、前記原因対策提示手段が特定した対策を、前記対策指令信号として、前記ボイラ装置及び水処理装置の前記制御手段に伝達する情報伝達手段とを有していることを特徴とする。   According to a third aspect of the present invention, there is provided a boiler device including a plurality of small once-through boilers, a water treatment device that supplies treated water for boiler feed water to the boiler device, and a quality of steam generated from the boiler device. And a steam monitoring device that monitors the quality of the steam so as not to greatly deteriorate, wherein the boiler device and the water treatment device provide the operation information of the equipment in these devices. In addition to transmitting to the steam monitoring device, in accordance with a countermeasure command signal from the steam monitoring device, it has control means for changing the operation settings of the equipment in these devices, and the steam monitoring device is continuously collected The measuring means for cooling the steam to produce condensed water and measuring the quality of the condensed water, and whether or not the water quality value of the condensed water measured by the measuring means satisfies a predetermined standard. Cause countermeasure storage means for storing determination means, causes when the water quality of the condensed water does not satisfy the criteria, and measures that can be taken on the boiler device and the water treatment device side to remove the cause And the operation information storage means for storing the operation information of the equipment transmitted from the boiler device and the water treatment device, and when the determination means determines that the water quality value of the condensed water does not satisfy the criterion, Based on the driving information stored in the driving information storage means, the cause and countermeasure are identified from those stored in the cause countermeasure storage means, and the cause countermeasure presenting means for presenting the cause and the countermeasure to the operator, and the cause countermeasure It has the information transmission means which transmits the countermeasure which the presentation means specified to the control means of the boiler apparatus and the water treatment apparatus as the countermeasure command signal.

この発明によれば、蒸気の質が悪化している場合には、蒸気監視装置の原因対策記憶手段等を介して、蒸気の質を改善させる対策が、ボイラ装置や水処理装置の制御手段に伝達され、この制御手段によって、自動的に、ボイラ装置や水処理装置側において前記対策が実行される。   According to this invention, when the quality of the steam is deteriorated, the measures for improving the quality of the steam are provided to the control means of the boiler device and the water treatment device via the cause countermeasure storage means of the steam monitoring device. The countermeasure is automatically executed by the control means on the boiler device or water treatment device side.

この発明の請求項1記載の発明では、作業者は、刻一刻と移り変わるボイラシステムの運転状態に対応して、蒸気の質が基準より悪化すれば、原因対策提示手段が提示する蒸気の質を改善する対策を、直ちに行うことができるとともに、対策を行った後には、蒸気の質が改善していくことを容易に確認することができる。   In the invention according to claim 1 of the present invention, if the steam quality deteriorates from the standard in response to the operating state of the boiler system that changes every moment, the worker can obtain the steam quality presented by the cause countermeasure presenting means. Measures to improve can be taken immediately, and after taking measures, it can be easily confirmed that the quality of the steam will improve.

この発明の請求項2記載の発明によれば、原因対策提示手段が特定した対策が、情報伝達手段を介して、ボイラシステムの制御手段に伝達されるので、ボイラシステムの制御手段が、この対策を実施すれば、自動的に蒸気の質は改善される。従って、この場合には、蒸気の質の監視が連続的になされるだけではなく、必要な時には直ちに、蒸気の質の改善が図られることになり、蒸気の質の悪化を確実にかつ初期段階で抑えることができる。 According to the second aspect of the present invention, since the countermeasure specified by the cause countermeasure presenting means is transmitted to the control means of the boiler system via the information transmitting means, the control means of the boiler system Will automatically improve the quality of the steam. Therefore, in this case, not only the quality of the steam is continuously monitored, but also the quality of the steam is improved immediately when necessary, so that the deterioration of the quality of the steam is ensured in an early stage. Can be suppressed.

この発明の請求項3記載の発明によれば、蒸気の質の監視が連続的になされるだけでなく、必要な場合には直ちに、蒸気の質の改善を図る対策が自動的になされることとなり、蒸気の質の悪化を、確実にかつ初期段階で抑えることができる。 According to the invention described in claim 3 of the present invention, not only the quality of the steam is continuously monitored, but also a measure for improving the quality of the steam is automatically taken when necessary. Thus, the deterioration of the quality of the steam can be surely suppressed at the initial stage.

以下、この発明の実施形態の一例を図面を参照しつつ説明する。
図1はこの発明の一実施の形態に係るボイラシステムを示している。
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a boiler system according to an embodiment of the present invention.

ボイラシステムAは、図1で示されるように、ボイラ装置1と、水処理装置2と、蒸気監視装置3から構成されている。   As shown in FIG. 1, the boiler system A includes a boiler device 1, a water treatment device 2, and a steam monitoring device 3.

ボイラ装置1は、たとえば3缶の小型貫流ボイラからなるボイラ10…と、蒸気圧力計11aを備えた蒸気ヘッダ11と、給水温度計12aを備えた給水タンク12と、給水タンク12から各ボイラ10にボイラ給水W1を供給する、給水ポンプ13a、給水流量計13b、配管13cからなるボイラ給水設備13と、各ボイラ10から蒸気ヘッダ11までの主蒸気配管15と、ボイラ給水W1に薬液を注入する薬注装置16と、ボイラ給水W1の水質(電気伝導率、TOC、溶存酸素濃度)を測定する水質測定装置17と、ボイラ10毎に設けられた、制御弁18a、配管18bからなる濃縮ブロー装置18と、給水タンク12内のボイラ給水W1を加熱する、制御弁19a、サイレンサ19b、配管19cからなる給水加熱設備19と、蒸気監視装置3にサンプリング蒸気S1を供給するサンプリング配管20と、蒸気の負荷に応じてボイラ10の燃焼台数を決定し、燃焼するボイラ10を指示する、制御手段としての集中制御盤21とを有している。   The boiler apparatus 1 includes, for example, a boiler 10 composed of three cans of small once-through boilers, a steam header 11 provided with a steam pressure gauge 11a, a feed water tank 12 provided with a feed water thermometer 12a, and each boiler 10 from the feed water tank 12. The boiler feed water W1 is supplied to the boiler water supply equipment 13 including the feed water pump 13a, the feed water flow meter 13b, and the pipe 13c, the main steam pipe 15 from each boiler 10 to the steam header 11, and the boiler feed water W1. A chemical blower 16, a water quality measuring device 17 for measuring the water quality (electric conductivity, TOC, dissolved oxygen concentration) of the boiler feed water W 1, and a concentration blow device comprising a control valve 18 a and a pipe 18 b provided for each boiler 10. 18, a feed water heating facility 19 including a control valve 19 a, a silencer 19 b, and a pipe 19 c for heating the boiler feed water W 1 in the feed water tank 12, A sampling pipe 20 for supplying the sampling steam S1 to the air monitoring device 3 and a centralized control panel 21 as a control means for determining the number of boilers 10 to be combusted according to the steam load and instructing the boiler 10 to be combusted. is doing.

ここで、薬注装置16は、清缶剤注入装置16aと、脱酸素剤注入装置16bと、中和性アミン注入装置16cとを有し、これらの装置16a…の運転/停止や、これらの装置16a…からの薬注量の増減が、制御手段である制御盤16dによってコントロールされている。濃縮ブロー装置18は、制御弁18aを開閉してボイラ缶水を間欠的にブローし、ボイラ缶水中の不純物を排出するものである。給水加熱設備19は、給水タンク12中に蒸気Sを吹き込んで、ボイラ給水W1の温度を上げるためのものである。   Here, the medicine injection device 16 has a cleansing agent injection device 16a, an oxygen scavenger injection device 16b, and a neutralizing amine injection device 16c, and the operation / stop of these devices 16a. The increase / decrease in the amount of chemical injection from the devices 16a ... is controlled by a control panel 16d as control means. The concentration blower 18 opens and closes the control valve 18a to intermittently blow boiler boiler water, and discharges impurities in the boiler boiler water. The feed water heating equipment 19 is for blowing steam S into the feed water tank 12 to raise the temperature of the boiler feed water W1.

水処理装置2は、ボイラ装置12に補給水を供給したり、ボイラ給水W1の脱酸素処理を行うものであり、図1で示されるように、軟水装置26と、純水装置27と、脱酸素装置28とから構成されている。軟水装置26は、2台の軟水器26a,26bを切り換えつつ、原水を軟化処理した軟水W3を給水タンク12に供給するものであり、硬度リーク検知器26c、制御弁26d、制御盤26eを有している。制御盤26eは、軟水器26a,26bの切り換え等の軟水装置26全体のコントロールを行う制御手段である。純水装置27は、原水を純水処理した純水W4を給水タンク12に供給するものであり、制御弁27aを有している。脱酸素装置28は、窒素ガスを用いて、給水タンク12中のボイラ給水W1の溶存酸素を除去する窒素置換式の脱酸素装置である。   The water treatment device 2 supplies makeup water to the boiler device 12 and performs deoxygenation treatment of the boiler feed water W1. As shown in FIG. 1, the water treatment device 26, the pure water device 27, And an oxygen device 28. The water softening device 26 supplies soft water W3 obtained by softening raw water to the water supply tank 12 while switching between the two water softeners 26a and 26b, and has a hardness leak detector 26c, a control valve 26d, and a control panel 26e. is doing. The control panel 26e is a control means that controls the entire water softener 26 such as switching between the water softeners 26a and 26b. The pure water device 27 supplies pure water W4 obtained by treating the raw water with pure water to the water supply tank 12, and has a control valve 27a. The deoxygenation device 28 is a nitrogen substitution type deoxygenation device that removes dissolved oxygen from the boiler feed water W <b> 1 in the feed water tank 12 using nitrogen gas.

給水タンク12には、軟水装置26を用いて軟化した軟水W3と、純水装置27を用いて生成した純水W4と、プロセスから戻ってくる回収復水W2とが供給される。これらの通水制御は、制御弁26d,27aを用いて、軟水装置26の制御盤26eが行う。回収復水W2は成り行きで戻ってくるので、給水タンク12の水位が低くなると、軟水W3と純水W4が、蒸気監視装置3により与えられた混合比率で補給される。なお、蒸気監視装置3は、信号線26gを用いて、給水タンク12の水位制御や軟水装置26の運転制御に関する情報を制御盤26eに伝達する。   The water supply tank 12 is supplied with soft water W3 softened using the soft water device 26, pure water W4 generated using the pure water device 27, and recovered condensate W2 returning from the process. These water flow controls are performed by the control panel 26e of the water softener 26 using the control valves 26d and 27a. Since the recovered condensate W2 returns in an eventual manner, when the water level of the water supply tank 12 becomes low, soft water W3 and pure water W4 are replenished at a mixing ratio given by the steam monitoring device 3. The steam monitoring device 3 uses the signal line 26g to transmit information related to the water level control of the water supply tank 12 and the operation control of the soft water device 26 to the control panel 26e.

給水タンク12内のボイラ給水W1は、温度の異なる、回収復水W2と、軟水W3と、純水W4とが集められたものであり、その温度は、成り行きで大きく変動する。そこで、このボイラ給水W1は、温度計12aにて、その温度が測定され、予め設定された温度になるように、蒸気ヘッダ11の蒸気Sを用いて給水加温設備19にて加温される。   The boiler feed water W1 in the feed water tank 12 is a collection of recovered condensate W2, soft water W3, and pure water W4 having different temperatures, and the temperature fluctuates greatly depending on the course. Therefore, the boiler feed water W1 is heated by the feed water heating equipment 19 using the steam S of the steam header 11 so that the temperature is measured by the thermometer 12a and becomes a preset temperature. .

それぞれの機器は、図1で示されるように、動作状態を出力する機構(制御手段)を有している。濃縮ブロー装置18を含めた各ボイラ10の動作状態と、薬注装置16の動作状態と、水質制御装置17の出力と、蒸気圧力計11aで計測した蒸気ヘッダ11の圧力と、温度計12aで計測したボイラ給水W1の温度は、信号線22にて集中制御盤21に集められ、信号線24にて蒸気管理装置3へ伝達される。また、給水タンク12の水位制御の動作状態及び軟水装置26の動作状態は、信号線26fにて蒸気監視装置3へ伝達され、脱酸素装置28の動作状態は、信号線28aにて蒸気監視装置3へ伝達される。   As shown in FIG. 1, each device has a mechanism (control means) that outputs an operation state. The operation state of each boiler 10 including the concentration blow device 18, the operation state of the chemical injection device 16, the output of the water quality control device 17, the pressure of the steam header 11 measured by the steam pressure gauge 11a, and the thermometer 12a The measured temperature of the boiler feed water W <b> 1 is collected on the central control panel 21 through the signal line 22 and transmitted to the steam management device 3 through the signal line 24. The operation state of the water level control of the water supply tank 12 and the operation state of the soft water device 26 are transmitted to the steam monitoring device 3 through the signal line 26f, and the operation state of the deoxygenation device 28 is transmitted through the signal line 28a. 3 is transmitted.

ボイラ10は、例えば、換算蒸発量2.5t/hの小型貫流ボイラであり、高燃焼(100%燃焼)、低燃焼(50%燃焼)、燃焼停止の段階的燃焼をおこなう3位置制御を持っている。集中制御盤21は、蒸気ヘッダ11に設けられた蒸気圧力計11aの値と、目標として設定された蒸気圧力の値の偏差に応じて、燃焼を行うボイラ10と停止させるボイラ10の台数を算出し、予め定められた燃焼の優先順に従い、各ボイラ10それぞれに、信号線23を用いて、燃焼の開始(バーナ着火)又は停止、あるいは高燃焼又は低燃焼の運転状態を指示する。また、集中制御盤21は、信号線23を用いて、薬注装置16や濃縮ブロー装置18をコントロールするとともに、給水タンク12の温度をコントロールする。   The boiler 10 is, for example, a small once-through boiler with a converted evaporation amount of 2.5 t / h, and has three-position control that performs stepwise combustion of high combustion (100% combustion), low combustion (50% combustion), and combustion stop. ing. The centralized control panel 21 calculates the number of boilers 10 to be burned and the number of boilers 10 to be stopped according to the deviation between the value of the steam pressure gauge 11a provided in the steam header 11 and the value of the steam pressure set as a target. Then, according to a predetermined priority order of combustion, each boiler 10 is instructed to start (stop burner ignition) or stop combustion, or to operate in a high combustion or low combustion state, using the signal line 23. Further, the central control panel 21 uses the signal line 23 to control the chemical injection device 16 and the concentration blow device 18 and also controls the temperature of the water supply tank 12.

つぎに、蒸気質制御に関する蒸気監視装置3の一実施の形態を説明する。
蒸気監視装置3は、ボイラ装置1から発生する蒸気Sの質をオンラインで計測し、蒸気Sの質が予め定めた基準から逸脱した場合に、改善するための対策を実施させるものである。蒸気監視装置3は、図2で示されるように、計測手段である蒸気質計測部30と、蒸気質制御部40と、表示手段であるディスプレイ51と、警報手段である警報器52とから構成されている。なお、ディスプレイ51と警報器52とは、蒸気質制御部40の近傍だけではなく、常時作業者のいる場所に設置してもよく、この場合、蒸気質制御部40から通信回線を介して情報が送られる。
Next, an embodiment of the steam monitoring device 3 relating to steam quality control will be described.
The steam monitoring device 3 measures the quality of the steam S generated from the boiler device 1 online, and implements measures for improvement when the quality of the steam S deviates from a predetermined standard. As shown in FIG. 2, the steam monitoring device 3 includes a vapor quality measuring unit 30 that is a measurement unit, a vapor quality control unit 40, a display 51 that is a display unit, and an alarm device 52 that is an alarm unit. Has been. The display 51 and the alarm device 52 may be installed not only in the vicinity of the vapor quality control unit 40 but also in a place where a worker is always present. In this case, information from the vapor quality control unit 40 via the communication line is used. Will be sent.

蒸気質計測部30は、冷却水を用いた熱交換器31により、サンプリング蒸気S1を冷却して連続的に凝縮水Gを作り、この凝縮水Gの水質を、計測器32により連続的に計測するものである。計測器32の計測項目には、これらは蒸気Sの基準により異なるが、pH、電気伝導度(mS/m)、溶存酸素濃度(mg/L)、TOC(mg/L)等がある。   The steam quality measuring unit 30 continuously cools the sampling steam S1 with the heat exchanger 31 using cooling water to create condensed water G, and continuously measures the water quality of the condensed water G with the measuring device 32. To do. The measurement items of the measuring instrument 32 include pH, electrical conductivity (mS / m), dissolved oxygen concentration (mg / L), TOC (mg / L), etc., although these differ depending on the standard of the vapor S.

蒸気質制御部40は、CPU(中央演算処理ユニット)や各種のメモリーを有し、データをプログラムに従って演算処理するコンピュータからなるものである。蒸気質制御部40は、ボイラ装置1や水処理装置2からの運転情報を記憶させた運転情報記憶手段41と、凝縮水Gの水質基準ならびに基準を逸脱した場合の、原因と対策等を記憶させた原因対策記憶手段42を有している。   The vapor quality control unit 40 includes a CPU (Central Processing Unit) and various memories, and is a computer that performs arithmetic processing on data according to a program. The steam quality control unit 40 stores the operation information storage means 41 that stores the operation information from the boiler device 1 and the water treatment device 2, the water quality standard of the condensed water G, and causes and countermeasures in the case of deviating from the standard. The cause countermeasure storage means 42 is provided.

運転情報記憶手段41には、ボイラ装置1側の制御部(集中制御盤21)及び水処理装置2側の制御部(軟水装置26の制御盤26e、及び脱酸素装置28の制御部)から刻々と送られる運転情報信号Mに基づいて、ボイラ装置1と水処理装置2の最新の運転情報が記憶されている。   The operation information storage means 41 is momentarily supplied from the control unit (central control panel 21) on the boiler device 1 side and the control unit (control panel 26e of the soft water device 26 and control unit of the deoxygenation device 28) on the water treatment device 2 side. The latest operation information of the boiler device 1 and the water treatment device 2 is stored on the basis of the operation information signal M sent.

原因対策記憶手段42は、図3で示されるように、凝縮水Gの水質値が基準を逸脱している場合に、生じている現象と、装置の運転状況に対応させて、この現象を生じさせる原因と、この原因をなくす対策とを記憶している。なお、図3で示されるものは、多数の小型貫流ボイラの運転実績から得られた代表的なものであり、すべてを網羅したものではない。また、原因対策記憶手段42に記憶された対策は、緊急の処置方法であり、根本的な対策ではないものもあるので、最終的な対策については、それぞれ充分に検討する必要がある。   As shown in FIG. 3, the cause countermeasure storage means 42 generates this phenomenon in accordance with the phenomenon that occurs when the water quality value of the condensed water G deviates from the standard and the operation status of the apparatus. The cause and the countermeasure for eliminating this cause are stored. In addition, what is shown by FIG. 3 is a typical thing obtained from the driving | operation performance of many small once-through boilers, and is not exhaustive. Moreover, since the countermeasure memorize | stored in the cause countermeasure memory | storage means 42 is an urgent treatment method and there is a thing which is not a fundamental countermeasure, it is necessary to fully examine each final countermeasure.

原因対策記憶手段42は、凝縮水GのpH値が基準より高いか、又は、凝縮水Gの電気伝導率値が基準より高い場合には、蒸気Sへの「缶水混入」の現象が生じていることを記憶するとともに、6つの装置の運転状況に対応させて、原因と対策(緊急処置方法)とを記憶している。   When the pH value of the condensed water G is higher than the reference or the electrical conductivity value of the condensed water G is higher than the reference, the cause countermeasure storage means 42 causes the phenomenon of “canned water mixing” into the steam S. And the cause and countermeasure (emergency treatment method) are stored in correspondence with the operation status of the six devices.

第1原因A1は、省エネルギー運転を優先した場合等に生じる「蒸気負荷変動と台数制御パラメータのミスマッチ」であり、蒸気負荷に対してボイラ10の運転缶数が少なく(高燃焼運転しているボイラが多く)、かつ、バーナの着火回数(ボイラ10の運転回数)が設定値より多い場合である。これは、例えば、通常は、3缶のボイラ10…のうち1缶しか運転(高燃焼運転)されていないが、蒸気負荷の上昇によって、2缶目や3缶目のボイラ10が運転される(ボイラの運転当初は制御遅れによって蒸気圧力の変動が大きいため、2缶目だけでなく3缶目のボイラの運転も開始されやすい)ときに、ボイラ10のバーナ着火時(運転当初)に蒸気Sにボイラ缶水が混入しやすいことに起因して、発生した蒸気S中にボイラ缶水が混入する場合である。この場合の緊急処置方法としては、低燃焼缶数増加へ台数制御設定の変更を行えばよい。   The first cause A1 is a “mismatch between the steam load fluctuation and the number control parameter” that occurs when priority is given to energy saving operation, and the number of operating cans of the boiler 10 is small with respect to the steam load (boilers operating at high combustion). This is a case where the number of times the burner is ignited (the number of times the boiler 10 is operated) is greater than the set value. This is because, for example, normally only one of the three cans 10... Is operated (high combustion operation), but the second and third boilers 10 are operated as the steam load increases. (Since the steam pressure fluctuates greatly due to the control delay at the beginning of boiler operation, it is easy to start the operation of the third boiler as well as the second boiler). This is a case where boiler can water is mixed in the generated steam S due to the fact that boiler can water is easily mixed into S. As an emergency treatment method in this case, the number control setting may be changed to increase the number of low combustion cans.

第2原因A2は、「圧力低下によるキャリオーバ」であり、蒸気負荷が小さい故にボイラ10の運転缶数割合が少なく、かつ、蒸気圧力が低下した場合である。例えば、通常は、3缶のボイラ10…のうち1缶しか運転(高燃焼運転)されていないが、蒸気負荷の上昇によって、2缶目のボイラ10が運転されるときに、2缶目のボイラ10のバーナ着火までの間に蒸気圧力が低下する。このため、この場合には、蒸気圧力の低下によって、ボイラ10の気水分離器に多量のボイラ缶水が同伴した蒸気Sが流入し、キャリオーバを生じさせる。この場合の緊急処置方法としては、全缶の予熱運転を開始させればよい。すなわち、停止ボイラ10を予熱運転(送気している蒸気圧力より僅かに低い圧力まで缶内圧力を上昇させる)させ、ボイラ10…全体の保有熱量を大きくして、一定時間(バーナを着火して、蒸気Sを発生させるまでの時間)、蒸気圧力の低下を防止すればよい。   The second cause A2 is “carryover due to pressure drop”, which is a case where the steam load is small, so that the number of operating cans of the boiler 10 is small, and the steam pressure is lowered. For example, normally, only one of the three boilers 10 is operated (high combustion operation), but when the second boiler 10 is operated due to an increase in the steam load, the second can The steam pressure decreases until the burner ignition of the boiler 10. For this reason, in this case, the steam S accompanied by a large amount of boiler water flows into the steam separator of the boiler 10 due to a decrease in the steam pressure, causing a carryover. As an emergency treatment method in this case, all the cans may be preheated. That is, the stop boiler 10 is preheated (the pressure in the can is increased to a pressure slightly lower than the steam pressure being supplied), the amount of heat retained by the boiler 10 is increased, and the burner is ignited for a certain period of time. Therefore, it is only necessary to prevent the steam pressure from decreasing.

第3原因A3は、「軟水器の故障」であり、運転している一方の軟水器26aからの硬度リークが検知された場合である。この場合には、硬度リーク(軟水器の故障)によって、原水中の硬度成分がボイラ缶水中に導入され、ボイラ缶水の粘度の上昇等が生じるので、気水分離器に多量のボイラ缶水が同伴した蒸気Sが流入することとなり、蒸気S中にボイラ缶水が混入する。この場合の緊急処置方法としては、他方の軟水器26bが再生中でない場合、この軟水器26bへの切り換えを行えばよい。   The third cause A3 is “failure of water softener”, and is a case where a hardness leak from one of the water softeners 26a being operated is detected. In this case, the hardness component in the raw water is introduced into the boiler can water due to the hardness leak (failure of the water softener), resulting in an increase in the viscosity of the boiler can water. Steam S accompanied by water flows in, and boiler can water is mixed in steam S. As an emergency treatment method in this case, when the other water softener 26b is not being regenerated, switching to the water softener 26b may be performed.

第4原因A4は、「過濃縮によるキャリオーバ」であり、ボイラ給水W1の電気伝導度が設定値より高い場合である。通常のブロー処理では対処できなくなるほど、ボイラ給水W1の電気伝導度が高くなると、ボイラ缶水の不純物濃度が上昇し(不純物が過濃縮され)、ボイラ缶水の粘度が上昇する。このため、この場合には、ボイラ缶水の粘度上昇によって、気水分離器に多量の缶水が同伴した蒸気Sが流入し、キャリオーバを生じさせる。この場合の緊急処置方法としては、ボイラ缶水の緊急ブローを行い、かつ、給水タンク12への補給水を純水W4に切り換えて、ボイラ給水W1注の不純物濃度を下げればよい。   The fourth cause A4 is “carryover due to overconcentration”, which is a case where the electric conductivity of the boiler feed water W1 is higher than the set value. When the electrical conductivity of the boiler feed water W1 increases so that it cannot be dealt with by the normal blow process, the impurity concentration of the boiler can water increases (impurities are overconcentrated), and the viscosity of the boiler can water increases. For this reason, in this case, due to the increase in the viscosity of the boiler can water, the steam S accompanied by a large amount of can water flows into the steam separator and causes carryover. As an emergency treatment method in this case, an emergency blow of boiler can water may be performed, and the makeup water supplied to the water supply tank 12 may be switched to pure water W4 to reduce the impurity concentration of the boiler water supply W1.

第5原因A5は、「入熱過大によるキャリオーバ」であり、ボイラ給水W1の温度が設計値より高く、かつ、高燃焼運転されているボイラ10の割合が多い場合である。すなわち、回収復水W2の増加や温度上昇等により、ボイラ給水W1の温度が設定値より高くなった状態で、ボイラ10が高燃焼運転されると、定格蒸発量を超えた(気水分離器の能力を超えた)量の蒸気が発生する。このため、この場合には、気水分離器での蒸気Sの分離が充分になされず、キャリオーバを生じさせる。この場合の緊急処置方法としては、給水タンク12に補給水を注入し、給水タンク12内のボイラ給水W1を設定温度以下に冷却してやればよい。なお、この場合、前提として、給水タンク12のオーバーフロー対策等が必要になる。   The fifth cause A5 is “carryover due to excessive heat input”, and is a case where the temperature of the boiler feed water W1 is higher than the design value and the ratio of the boiler 10 that is operating at high combustion is large. That is, when the boiler 10 is operated with high combustion in a state where the temperature of the boiler feed water W1 is higher than the set value due to an increase in the recovered condensate W2 or a temperature rise, the rated evaporation amount is exceeded (a steam separator). A large amount of steam is generated. For this reason, in this case, the steam S is not sufficiently separated in the steam separator, and a carry-over occurs. As an emergency treatment method in this case, makeup water may be injected into the feed water tank 12 and the boiler feed water W1 in the feed water tank 12 may be cooled to a set temperature or lower. In this case, it is necessary to take measures against overflow of the water supply tank 12 as a premise.

第6原因A6は、「その他の原因による缶水混入」であり、第1から第5原因A1…以外の原因による場合である。缶水伝導度センサーや水位制御装置の異常、ボイラ給水W1中への有機物の混入など、想定されない状況によって、ボイラ缶水中の不純物濃度が上昇し、蒸気S中に缶水混入が生じる場合があるからである。この場合の緊急処置方法としては、ボイラ缶水の緊急ブローを行なえばよい。   The sixth cause A6 is “mixing of can water due to other causes”, which is caused by causes other than the first to fifth causes A1. Impurity concentration in boiler can water may increase due to unforeseen circumstances such as abnormalities in the can water conductivity sensor and water level control device, organic matter contamination in boiler feed water W1, and can water contamination in steam S may occur. Because. As an emergency treatment method in this case, an emergency blow of boiler can water may be performed.

また、原因対策記憶手段42は、凝縮水GのpH値が基準より低い場合には、「炭酸による酸性化」や「給水不純物による酸性化」の現象が生じていることを記憶するとともに、これらの原因及び対策(緊急処置方法)として、以下の3つを記憶している。   In addition, when the pH value of the condensed water G is lower than the standard, the cause countermeasure storage means 42 stores that the phenomenon of “acidification by carbonic acid” or “acidification by water supply impurities” occurs, and these The following three are stored as causes and countermeasures (emergency treatment method).

第1原因B1は、「Mアルカリ分解による二酸化炭素による酸性化」であり、ボイラ給水W1の電気伝導率が設定値より高い場合に生じる。軟化処理されたボイラ給水W1中のアニオン成分は大部分がCO3 2-であり、これがボイラ10中で二酸化炭素(CO2)となる。このため、この場合には、原水硬度の変動や回収復水W4の回収量の減少といった不測の事態により、ボイラ給水W1の電気伝導率が高くなった場合には、ボイラ10中で、多量の二酸化炭素が蒸気中に移動し、これが凝縮水G中で炭酸(H2CO3)となって酸性を示す。この場合の緊急処置方法としては、ボイラ給水W1中の硬度成分を減少させるために、給水タンク12への補給水を純水W4に切り換えるか、又は、薬注装置16を用いてボイラ給水W1中に中和性アミンを注入し、これによって凝縮水Gを中和させればよい。 The first cause B1 is “acidification by carbon dioxide by M alkali decomposition”, and occurs when the electric conductivity of the boiler feed water W1 is higher than a set value. Most of the anion component in the boiler feed water W <b> 1 subjected to the softening process is CO 3 2- , and this is carbon dioxide (CO 2 ) in the boiler 10. For this reason, in this case, if the electrical conductivity of the boiler feed water W1 becomes high due to unforeseen circumstances such as fluctuations in the raw water hardness or a decrease in the recovered amount of the recovered condensate W4, Carbon dioxide moves into the steam, which becomes acidic in the condensed water G as carbonic acid (H 2 CO 3 ). As an emergency treatment method in this case, in order to reduce the hardness component in the boiler feed water W1, the makeup water to the feed water tank 12 is switched to pure water W4, or the boiler feed water W1 is used by using the chemical injection device 16. A neutralized amine is injected into the condensed water G to neutralize the condensed water G.

第2原因B2は、「給水中の有機物の熱分解生成物による酸性化」であり、ボイラ給水W1のTOC(全溶解炭素)値が設定値より高い場合に生じる。何らかの理由によりボイラ給水W1中のTOC値(有機物濃度)が上昇すると、この有機物が、ボイラ缶内で有機酸に変えられ、これが蒸気S側に移動して、凝縮水Gを酸性にするからである。ここで、ボイラ薬品もボイラ缶内で有機酸等の形をとる酸性物質に変えられ、これが蒸気S中に移動して凝縮水Gを酸性にする。したがって、この場合の緊急処置方法としては、とりあえず、ボイラ給水W1への薬品注入を停止すればよい。なお、ボイラ給水W1への薬品注入は必要であるので、直ちに、TOC値の上昇原因を調べ、根本的な対策を取る必要がある。   The second cause B2 is “acidification by thermal decomposition products of organic substances in the feed water”, and occurs when the TOC (total dissolved carbon) value of the boiler feed water W1 is higher than the set value. When the TOC value (organic substance concentration) in the boiler feed water W1 rises for some reason, this organic substance is converted into an organic acid in the boiler can, which moves to the steam S side and makes the condensed water G acidic. is there. Here, the boiler chemical is also changed into an acidic substance in the form of an organic acid or the like in the boiler can, which moves into the steam S and makes the condensed water G acidic. Therefore, as an emergency treatment method in this case, the chemical injection into the boiler feed water W1 may be stopped for the time being. In addition, since the chemical | medical agent injection | pouring to boiler feed water W1 is required, it is necessary to investigate the cause of a raise of a TOC value immediately, and to take a fundamental countermeasure.

第3原因B3は、「TOC以外の給水不純物による酸性化」であり、TOC以外の給水不純物によって、凝縮水Gの酸性化が生じている場合である。例えば、ボイラ給水W1中にイオン性の酸性物質が混入することにより、凝縮水Gが酸性を示す場合がある。この場合、緊急処置方法として、薬注装置16を用いてボイラ給水W1中に中和性アミンを注入し、凝縮水GのpHを上昇させる。   The third cause B3 is “acidification by water supply impurities other than TOC”, and is the case where acidification of the condensed water G occurs due to water supply impurities other than TOC. For example, the condensed water G may show acidity when an ionic acidic substance is mixed in the boiler feed water W1. In this case, as an emergency treatment method, the neutralizing amine is injected into the boiler feed water W1 using the chemical injection device 16 to increase the pH of the condensed water G.

さらに、原因対策記憶手段42は、凝縮水GのDO(溶存酸素)濃度が基準より高い場合には、「脱酸素不良」の現象を記憶し、その原因及び対策(緊急処置方法)として、以下の2つを記憶している。   Further, when the DO (dissolved oxygen) concentration of the condensed water G is higher than the reference, the cause countermeasure storage means 42 stores the phenomenon of “deoxygenation failure”, and the cause and countermeasure (emergency treatment method) are as follows. The two are remembered.

第1原因C1は、「給水中の溶存酸素濃度上昇による脱酸素能力低下」であり、ボイラ給水W1の温度が設定値より低い場合である。脱酸素装置28では、ボイラ給水W1の温度が設定値より低く、ボイラ給水W1中の溶存酸素濃度が高い場合には、脱酸素が充分にできないからである。この場合の緊急処置方法としては、ボイラ装置1の蒸気発生量に余裕がある場合には、給水加熱設備19を使用して、給水タンク12中のボイラ給水W1の温度を設定値以上に上げてやればよい。第2原因C2は、「脱酸素装置の停止」であり、脱酸素装置28が誤操作や故障によって停止している場合である。この場合の緊急処置方法としては、ボイラ給水W1中に薬注装置16から脱酸素剤を注入して、ボイラ給水W1中の溶存酸素を減少させればよい。   The first cause C1 is “deoxygenation capacity reduction due to an increase in dissolved oxygen concentration in the feed water”, and is the case where the temperature of the boiler feed water W1 is lower than the set value. This is because the deoxygenation device 28 cannot sufficiently perform deoxygenation when the temperature of the boiler feed water W1 is lower than the set value and the dissolved oxygen concentration in the boiler feed water W1 is high. As an emergency treatment method in this case, when there is a margin in the amount of steam generated in the boiler device 1, the feed water heating equipment 19 is used to raise the temperature of the boiler feed water W 1 in the feed water tank 12 to a set value or more. Do it. The second cause C2 is “stop of the deoxygenation device”, which is a case where the deoxygenation device 28 is stopped due to an erroneous operation or failure. As an emergency treatment method in this case, an oxygen scavenger may be injected from the chemical injection device 16 into the boiler feed water W1 to reduce dissolved oxygen in the boiler feed water W1.

また、蒸気質制御部40は、図2で示されるように、CPUの演算処理機能の一部をなす、判定手段43と、対策提示手段44と、情報伝達手段46とを有している。   Further, as shown in FIG. 2, the vapor quality control unit 40 includes a determination unit 43, a countermeasure presentation unit 44, and an information transmission unit 46 that form a part of the arithmetic processing function of the CPU.

判定手段43は、蒸気質計測部30の計測器32から伝えられる、凝縮水Gの水質値が、基準を充たしているか否かを、予め記憶した基準(例えば、6.0≧pH≧4.0、5.0(mS/m)≧電気伝導度、0.5(mg/L)≧溶存酸素濃度)に従って判断する機能を有している。判定手段43は、凝縮水Gの水質値の内一つでも、基準を逸脱しているものがあれば、その旨を、対策提示手段44に伝達する。   The determination means 43 determines whether or not the water quality value of the condensed water G transmitted from the measuring device 32 of the vapor quality measuring unit 30 satisfies the standard (for example, 6.0 ≧ pH ≧ 4. 0, 5.0 (mS / m) ≧ electric conductivity, 0.5 (mg / L) ≧ dissolved oxygen concentration). If any of the water quality values of the condensed water G deviates from the standard, the determining unit 43 transmits the fact to the countermeasure presenting unit 44.

対策提示手段44は、凝縮水Gの水質が基準を逸脱しておれば、原因対策記憶手段42を参照して、それがどのような現象に基づいているかを特定する機能を有している。また、対策提示手段44は、運転情報記憶手段41に記憶された、ボイラ装置1や水処理装置2の運転状態と、原因対策記憶手段42に記憶された前記の現象に対する機器の運転状況とを比較して、その原因を特定する機能を有している。さらに、対策提示手段44は、原因対策記憶手段42を参照して、原因に対する対策を特定する機能を有している。そして、原因対策記憶手段42は、凝縮水Gの水質値、生じている現象、原因、及び対策を、情報伝達手段46に伝達する。   The countermeasure presenting means 44 has a function of referring to the cause countermeasure storing means 42 and specifying what kind of phenomenon it is based on if the water quality of the condensed water G deviates from the standard. The countermeasure presenting means 44 also displays the operation state of the boiler device 1 and the water treatment apparatus 2 stored in the operation information storage means 41 and the operation status of the equipment for the phenomenon stored in the cause countermeasure storage means 42. In comparison, it has a function of identifying the cause. Furthermore, the measure presentation unit 44 has a function of referring to the cause measure storage unit 42 and specifying a measure for the cause. Then, the cause countermeasure storage means 42 transmits the water quality value of the condensed water G, the occurring phenomenon, the cause, and the countermeasure to the information transmission means 46.

情報伝達手段46は、対策提示手段44からの情報をディスプレイ51に表示させるとともに、対策提示手段44から伝えられる対策を、対策指令信号Nとして、ボイラ制御盤21や軟水装置26の制御盤26eに伝達する機能を有している。また、情報伝達手段46は、凝縮水Gの水質が基準を逸脱している場合に、警報信号を警報器52に伝達し、警報を発報させる機能を有している。なお、凝縮水Gの水質が基準を満たしている場合には、判定手段43から対策提示手段44にその旨が伝えられ、情報伝達手段46を介して、凝縮水Gの水質値のみがディスプレイ51に表示される。   The information transmission means 46 displays the information from the countermeasure presentation means 44 on the display 51, and the countermeasure transmitted from the countermeasure presentation means 44 is taken as a countermeasure command signal N to the boiler control panel 21 or the control panel 26e of the water softener 26. It has a function to communicate. In addition, the information transmission means 46 has a function of transmitting an alarm signal to the alarm device 52 and issuing an alarm when the water quality of the condensed water G deviates from the standard. When the water quality of the condensed water G satisfies the standard, the determination means 43 notifies the countermeasure presenting means 44 to that effect, and only the water quality value of the condensed water G is displayed on the display 51 via the information transmission means 46. Is displayed.

例えば、蒸気質制御部40の判定手段43が、蒸気質計測部30の計測器32で計測された凝縮水Gの水質のうち、電気電導度値とpH値とが基準値を超えていると判定した場合には、判定手段43は、その旨を、対策提示手段44に伝達する。このことにより、対策提示手段44は、原因対策記憶手段41を参照して、凝縮水Gの水質異常が、ボイラ缶水の蒸気Sへの混入現象、すなわち、「缶水混入」と判断する。また、対策提示手段44は、原因を推定するため、運転情報記憶手段41を参照して、異常が発生した前後のボイラ装置1や水処理装置2の運転状況を入手する。そして、対策提示手段44は、この運転状況を基に、原因対策記憶手段41を参照して、ボイラ缶水の蒸気Sへの混入現象がいかなる原因によるものかを特定するとともに、この原因を除去する対策を決定する。   For example, when the determination means 43 of the vapor quality control unit 40 has an electrical conductivity value and a pH value that exceed the reference values of the water quality of the condensed water G measured by the measuring device 32 of the vapor quality measurement unit 30. When the determination is made, the determination unit 43 transmits a message to that effect to the measure presentation unit 44. Accordingly, the countermeasure presentation unit 44 refers to the cause countermeasure storage unit 41 and determines that the water quality abnormality of the condensed water G is a phenomenon of mixing into the steam S of the boiler can water, that is, “can water mixing”. Further, the measure presentation unit 44 refers to the operation information storage unit 41 in order to estimate the cause, and obtains the operation status of the boiler device 1 and the water treatment device 2 before and after the occurrence of the abnormality. Then, the countermeasure presentation means 44 refers to the cause countermeasure storage means 41 on the basis of this operation state, identifies the cause of the mixing phenomenon in the steam S of the boiler can water, and removes this cause. Decide what measures to take.

すなわち、単位時間当りのバーナの着火回数が基準の回数を越えており、かつ、負荷に対して運転しているボイラ10の数が少ないことが、運転情報記憶手段41を参照することで判明した場合は、原因は、「蒸気負荷変動と台数制御パラメータのミスマッチ」による「缶水混入」と判断され、「低燃焼缶数増加へ台数制御設定変更」という対策が決定される。そして、この対策が、情報伝達手段46を介して、ボイラ装置1の集中制御盤21に伝えられ、この集中制御盤21により、この対策に基づくボイラ装置1の運転変更が直ちに実施される。また、ディスプレイ51に、凝縮水Gの水質値、生じている現象、原因、及び対策が表示され、警報器52が、凝縮水Gの水質値が異常である旨の警報を発する。このため、作業者は、ボイラシステムAに生じている状態を直ちに把握できるとともに、その後のディスプレイ51の観察によって、凝縮水Gの異常に基づく現象(缶水混入現象)が解消されていくのを容易に認識できる。   That is, it has been found by referring to the operation information storage means 41 that the number of burner ignitions per unit time exceeds the standard number and the number of boilers 10 operating with respect to the load is small. In this case, the cause is determined to be “mixing of can water” due to “mismatch between steam load fluctuation and unit control parameter”, and the measure “change unit control setting to increase the number of low combustion cans” is determined. Then, this countermeasure is transmitted to the centralized control panel 21 of the boiler device 1 via the information transmission means 46, and the centralized control panel 21 immediately changes the operation of the boiler apparatus 1 based on this countermeasure. Moreover, the water quality value of the condensed water G, the phenomenon that has occurred, the cause, and the countermeasures are displayed on the display 51, and the alarm device 52 issues an alarm that the water quality value of the condensed water G is abnormal. For this reason, the operator can immediately grasp the state occurring in the boiler system A, and the phenomenon based on the abnormality of the condensed water G (canned water mixing phenomenon) is resolved by the subsequent observation of the display 51. Can be easily recognized.

なお、対策によっては、効果が現れるまでの時間は異なる。対策の解除については、作業者が状況を判断して適時行ってもよいし、予め定めた経過時間後に、自動的に行ってもよい。   Depending on the measure, the time until the effect appears varies. The cancellation of the countermeasure may be performed in a timely manner by the operator judging the situation, or may be automatically performed after a predetermined elapsed time.

図4は、10缶の小型貫流ボイラを有するボイラシステムで計測された、蒸気の凝縮水の電気伝導度とpHと溶存酸素濃度とに関する、ある時刻における運転データを示している。また、図5はこのボイラシステムにおけるボイラ給水W1とボイラ缶水の水質を示している。   FIG. 4 shows operational data at a certain time concerning the electric conductivity, pH, and dissolved oxygen concentration of steam condensate, measured by a boiler system having 10 small-sized once-through boilers. FIG. 5 shows the water quality of the boiler feed water W1 and boiler can water in this boiler system.

図4で示されるように、15時13分10秒に、蒸気の凝縮水につき、電気伝導度値とpH値とが基準(電気伝導度:5mS/m以下、pH:6以下)を逸脱しているので、蒸気に「缶水混入」があると判断される。また、これまで3台のボイラが高燃焼で運転されていたが、12分40秒から、新たに5台のボイラの着火が確認されたことから、負荷変動に追従できずに、多くのボイラに着火が発生したと考えられる。このような運転状態での、電気伝導度値及びpH値の上昇は、「缶水混入」の第1原因A1、すなわち、「蒸気負荷変動と台数制御パラメータのミスマッチ」に該当するので、緊急対策として、「低燃焼缶数増加へ台数制御設定変更」の指示を、集中制御盤21に行った。このことにより、5台のボイラが順次着火、送気を行ない、一時的には電気伝導度値とpH値とが上昇したが、不要なボイラの運転が停止され、低燃焼ボイラ4台と高燃焼ボイラ2台が燃焼を継続して、約1分経過後の15時14分5秒に、電気伝導度値とpH値は基準内に戻った。対策を取らなければ、電気伝導度の高い状態が維持されてしまうが、対策の結果、短時間でこのような状態から回復したことが確認された。   As shown in FIG. 4, at 15:13:10, the electric conductivity value and pH value of the steam condensate deviated from the standard (electric conductivity: 5 mS / m or less, pH: 6 or less). Therefore, it is judged that there is “canned water” in the steam. In addition, three boilers have been operated with high combustion until now, but since 12 boilers were newly ignited since 12 minutes and 40 seconds, many boilers could not follow the load fluctuations. It is probable that ignition occurred. The increase in the electrical conductivity value and the pH value in such an operating state corresponds to the first cause A1 of “mixed can water”, that is, “mismatch between the steam load fluctuation and the unit control parameter”. As an instruction, the central control panel 21 is instructed to “change the unit control setting to increase the number of low combustion cans”. As a result, the five boilers sequentially ignited and supplied air, and the electrical conductivity value and the pH value temporarily increased. However, the operation of unnecessary boilers was stopped, and four low combustion boilers and high Two combustion boilers continued to burn, and at about 15: 14: 5 after the lapse of about 1 minute, the electric conductivity value and the pH value returned to the standard. If no measures are taken, the state of high electrical conductivity will be maintained, but as a result of the measures, it was confirmed that the state recovered from such a state in a short time.

以上のように、この蒸気監視装置3では、ボイラシステムAからの蒸気Sの質を、蒸気質計測部30により連続的に計測するとともに、この計測結果に基づいて、蒸気質制御部40により、蒸気Sの質の悪化を生じさせる現象と、原因と、対策とを調査し、これらをディスプレイ51に表示させているので、作業者は、刻一刻と移り変わるボイラシステムAの運転状況に対応して、蒸気Sの質が基準を満たさず悪化すれば、直ちに蒸気Sの質を改善させるような対策をとることができるとともに、対策を取った場合には、蒸気Sの質が向上していくのを容易に確認することができる。この場合、蒸気監視装置3は、蒸気Sの質が悪化した場合の対策を、ボイラ装置1や水処理装置2に伝えているので、ボイラ装置1や水処理装置2側においても、蒸気Sの質の改善を図る対策を容易に実行することができる。   As described above, in the steam monitoring device 3, the quality of the steam S from the boiler system A is continuously measured by the steam quality measuring unit 30, and based on the measurement result, the steam quality control unit 40 Since the phenomenon causing the deterioration of the quality of the steam S, the cause, and the countermeasure are investigated and these are displayed on the display 51, the operator responds to the operation status of the boiler system A changing every moment. If the quality of the steam S deteriorates without satisfying the standard, it is possible to immediately take measures to improve the quality of the steam S, and if the measures are taken, the quality of the steam S will improve. Can be easily confirmed. In this case, since the steam monitoring device 3 transmits the countermeasure when the quality of the steam S deteriorates to the boiler device 1 and the water treatment device 2, the steam monitoring device 3 also has the steam S of the boiler device 1 and the water treatment device 2 side. Measures to improve quality can be easily implemented.

また、このボイラシステムAでは、蒸気Sの質が悪化した場合に、蒸気監視装置3から伝えられる対策に基づいて、ボイラ制御盤21や軟水装置26の制御盤26eを介して、ボイラ装置1や水処理装置2に蒸気Sの質の改善を図る対策を実行させているので、蒸気Sの質の悪化の更なる進行が、自動的かつ直ちに停止され、作業者が常時監視していなくても、蒸気Sの質の向上を図ることができる。   Moreover, in this boiler system A, when the quality of the steam S deteriorates, the boiler apparatus 1 and the boiler panel 1 are controlled via the boiler control panel 21 and the control panel 26e of the water softener 26 based on the measures transmitted from the steam monitoring device 3. Since the water treatment device 2 is taking measures to improve the quality of the steam S, the further progress of the deterioration of the quality of the steam S is automatically and immediately stopped, even if the operator does not always monitor The quality of the steam S can be improved.

ここで、蒸気監視装置3の蒸気質計測部30は、「缶水混入」、「炭酸による酸性化」、「給水有機物による酸性化」、「脱酸素不良」といった、蒸気Sの質を悪化させている4つの現象うち、少なくとも1つの現象が捉えられるように、凝縮水Gの水質を計測するものであってもよい。この場合、蒸気監視装置3の蒸気質制御部40やボイラ装置1や水処理装置2は、この現象に対処できるような機能を備えておればよい。また、蒸気監視装置3の蒸気質制御部40やボイラ装置1や水処理装置2は、各現象に対して複数設けられた原因及び対策のうち、少なくとも1つの原因及び対策に対処できるものであればよい。   Here, the steam quality measuring unit 30 of the steam monitoring device 3 deteriorates the quality of the steam S, such as “mixed in canned water”, “acidification by carbonic acid”, “acidification by organic water supply”, and “deoxygenation failure”. The water quality of the condensed water G may be measured so that at least one of the four phenomena is captured. In this case, the steam quality control unit 40, the boiler device 1, and the water treatment device 2 of the steam monitoring device 3 only need to have a function that can cope with this phenomenon. In addition, the steam quality control unit 40, the boiler device 1, and the water treatment device 2 of the steam monitoring device 3 can cope with at least one cause and countermeasure among a plurality of causes and countermeasures provided for each phenomenon. That's fine.

なお、このボイラシステムAでは、水処理装置2に、軟水装置26と純水装置27とを備えたが、両者とも備える必要はなく、一方だけあればよい。また、水処理装置2の脱酸素装置28は、なくてもよい。これらの場合、原因対策記憶手段42中に記憶される原因や対策も異なってくる。また、軟水装置26に制御盤26eを設けたが、これを設けず、信号のやりとりを、軟水装置26の各機器の制御手段と蒸気監視装置3とで行うようにしてもよい。この場合、制御弁26d,27aの開閉は、蒸気監視装置3からの信号を、制御弁26d,27aの制御手段に伝達することによって直接行われることとなる。さらに、給水加熱設備19の制御弁19aの開閉も、同様に、集中制御盤21からでなく、蒸気監視装置3から直接行うようにしてもよい。この場合、温度計12aからの温度信号は、蒸気監視装置3に伝達される。   In this boiler system A, the water treatment device 2 includes the soft water device 26 and the pure water device 27. However, both need not be provided, and only one of them may be provided. Further, the deoxygenation device 28 of the water treatment device 2 may be omitted. In these cases, the causes and countermeasures stored in the cause countermeasure storage means 42 are also different. Moreover, although the control board 26e was provided in the water softening device 26, this may not be provided and signal exchange may be performed between the control means of each device of the water softening device 26 and the steam monitoring device 3. In this case, the control valves 26d and 27a are opened and closed directly by transmitting a signal from the steam monitoring device 3 to the control means of the control valves 26d and 27a. Further, the control valve 19 a of the feed water heating equipment 19 may be opened and closed directly from the steam monitoring device 3 instead of from the centralized control panel 21. In this case, the temperature signal from the thermometer 12 a is transmitted to the steam monitoring device 3.

この発明の一実施の形態に係るボイラシステムの流れ図である。It is a flowchart of the boiler system which concerns on one embodiment of this invention. 蒸気監視装置を説明するためのブロック図である。It is a block diagram for demonstrating a vapor | steam monitoring apparatus. 蒸気の質が悪化した場合に、生じている現象と、装置の運転状況に対応させて、この現象を生じさせる原因と、この原因をなくす対策とをブロック状にして示す説明図である。It is explanatory drawing which shows in block form the phenomenon which has arisen when the quality of vapor | steam deteriorates, the cause which produces this phenomenon corresponding to the driving | running state of an apparatus, and the countermeasure which eliminates this cause. 特定のボイラシステムで記録された、蒸気の質に関する具体的な運転データを示す図である。It is a figure which shows the specific operation data regarding the quality of the steam recorded with the specific boiler system. 図4のボイラシステムにおける、ボイラ給水やボイラ水の水質を示す図である。It is a figure which shows the water quality of the boiler feed water and boiler water in the boiler system of FIG.

符号の説明Explanation of symbols

1 ボイラ装置
2 水処理装置
3 蒸気質監視装置
10 ボイラ(小型貫流ボイラ)
21 集中制御盤(制御手段)
26a 制御盤(制御手段)
30 蒸気質計測部(計測手段)
41 運転情報記憶手段
42 原因対策記憶手段
43 判定手段
44 対策提示手段
46 情報伝達手段
A ボイラシステム
G 凝縮水
S 蒸気
N 対策指令信号
W1 ボイラ給水
W3 軟水(処理水)
W4 純水(処理水)
1 Boiler device 2 Water treatment device 3 Steam quality monitoring device 10 Boiler (small once-through boiler)
21 Central control panel (control means)
26a Control panel (control means)
30 Vapor quality measuring unit (measuring means)
41 Operation information storage means 42 Cause countermeasure storage means 43 Judgment means 44 Countermeasure presentation means 46 Information transmission means A Boiler system G Condensed water S Steam N Countermeasure command signal W1 Boiler feed water W3 Soft water (treated water)
W4 pure water (treated water)

Claims (3)

複数の小型貫流ボイラを備えたボイラシステムから発生する蒸気の質を調べて、この蒸気の質を監視する蒸気監視装置であって、
連続的に採取される前記蒸気を冷却して凝縮水を作り、この凝縮水の水質を計測する計測手段と、
前記計測手段にて計測された前記凝縮水の水質が、予め定めた基準を充たしているか否かを判定する判定手段と、
前記凝縮水の水質が前記基準を充たさない場合の原因と、この原因を取り除くための、前記ボイラシステム側で取り得る対策とを記憶した原因対策記憶手段と、
前記ボイラシステムから伝えられる機器の運転状態を記憶する運転情報記憶手段と、
前記判定手段が、前記凝縮水の水質が前記基準を充たしていないと判定した場合に、前記運転情報記憶手段中の運転情報に基づいて、前記原因対策記憶手段に記憶されたものから原因と対策を特定し、この原因と対策を作業者に提示させる原因対策提示手段とを有することを特徴とする蒸気監視装置。
A steam monitoring device for examining the quality of steam generated from a boiler system having a plurality of small once-through boilers and monitoring the quality of the steam,
Measuring means for cooling the steam collected continuously to make condensed water and measuring the quality of the condensed water;
Determining means for determining whether the quality of the condensed water measured by the measuring means satisfies a predetermined criterion;
Cause countermeasure storage means storing the cause when the water quality of the condensed water does not satisfy the standard, and measures that can be taken on the boiler system side to remove the cause,
Operation information storage means for storing the operation state of the equipment transmitted from the boiler system;
When the determination means determines that the quality of the condensed water does not satisfy the standard, the cause and countermeasure are taken from those stored in the cause countermeasure storage means based on the operation information in the operation information storage means. And a cause countermeasure presenting means for causing the worker to present the cause and the countermeasure.
前記原因対策提示手段が特定した前記対策を、前記ボイラシステムの制御手段に伝達し、このボイラシステム内の機器の運転状態を変更させる情報伝達手段を有することを特徴とする請求項1記載の蒸気監視装置。   The steam according to claim 1, further comprising information transmission means for transmitting the countermeasure specified by the cause countermeasure presenting means to a control means of the boiler system and changing an operating state of equipment in the boiler system. Monitoring device. 複数の小型貫流ボイラを備えたボイラ装置と、このボイラ装置にボイラ給水用の処理水を供給する水処理装置と、前記ボイラ装置から発生する蒸気の質を調べて、この蒸気の質を監視する蒸気監視装置とを有するボイラシステムであって、
前記ボイラ装置と前記水処理装置とが、これらの装置内の機器の運転情報を前記蒸気監視装置に伝えるとともに、前記蒸気監視装置からの対策司令信号に従って、これらの装置内の機器の運転操作を行う制御手段を有しており、
前記蒸気監視装置が、連続的に採取される前記蒸気を冷却して凝縮水を作り、この凝縮水の水質を計測する計測手段と、前記計測手段にて計測された前記凝縮水の水質が、予め定めた基準を充たしているか否かを判定する判定手段と、前記凝縮水の水質が前記基準を充たさない場合の原因と、この原因を取り除くための、前記ボイラ装置および水処理装置側で取り得る対策とを記憶した原因対策記憶手段と、前記ボイラ装置および水処理装置から伝えられる機器の運転情報を記憶する運転情報記憶手段と、前記判定手段が、前記凝縮水の水質が前記基準を充たしていないと判定した場合に、前記運転情報記憶手段中の運転情報に基づいて、前記原因対策記憶手段に記載されたものから原因と対策を特定し、この原因と対策を作業者に提示させる原因対策提示手段と、前記原因対策手段が特定した前記対策を、前記対策指令信号として、前記ボイラ装置および水処理装置の前記制御手段に伝達する情報伝達手段とを有していることを特徴とするボイラシステム。
A boiler apparatus equipped with a plurality of small once-through boilers, a water treatment apparatus for supplying treated water for boiler supply to the boiler apparatus, and the quality of the steam generated from the boiler apparatus are monitored to monitor the quality of the steam. A boiler system having a steam monitoring device,
The boiler device and the water treatment device transmit the operation information of the devices in these devices to the steam monitoring device, and operate the devices in these devices in accordance with a countermeasure command signal from the steam monitoring device. Has control means to perform,
The steam monitoring device cools the continuously collected steam to produce condensed water, and measures the quality of the condensed water, and the quality of the condensed water measured by the measuring means is: A determination means for determining whether or not a predetermined standard is satisfied, a cause when the water quality of the condensed water does not satisfy the standard, and the boiler apparatus and the water treatment apparatus side for removing this cause are taken. Cause countermeasure storage means for storing countermeasures to be obtained, operation information storage means for storing operation information of equipment transmitted from the boiler device and the water treatment device, and the determination means, wherein the water quality of the condensed water satisfies the criteria. If it is determined that it is not, based on the driving information stored in the driving information storage means, the cause and countermeasure are identified from those described in the cause countermeasure storage means, and the cause and countermeasure are presented to the operator. A cause countermeasure presenting means; and an information transmission means for transmitting the countermeasure specified by the cause countermeasure means to the control means of the boiler device and the water treatment apparatus as the countermeasure command signal. Boiler system.
JP2008037850A 2008-02-19 2008-02-19 Steam monitoring device and boiler system Expired - Fee Related JP5211742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008037850A JP5211742B2 (en) 2008-02-19 2008-02-19 Steam monitoring device and boiler system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008037850A JP5211742B2 (en) 2008-02-19 2008-02-19 Steam monitoring device and boiler system

Publications (2)

Publication Number Publication Date
JP2009198032A true JP2009198032A (en) 2009-09-03
JP5211742B2 JP5211742B2 (en) 2013-06-12

Family

ID=41141723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008037850A Expired - Fee Related JP5211742B2 (en) 2008-02-19 2008-02-19 Steam monitoring device and boiler system

Country Status (1)

Country Link
JP (1) JP5211742B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191194A (en) * 2010-03-15 2011-09-29 Kurita Water Ind Ltd Quality measuring instrument of water and steam quality monitoring device
JP2020121241A (en) * 2019-01-29 2020-08-13 三菱日立パワーシステムズ株式会社 Water quality monitoring system for power generation plant, water quality monitoring method and water quality monitoring program therefor, and power generation plant
JP2021050830A (en) * 2019-09-20 2021-04-01 クリタ・ビーエムエス株式会社 Steam quality evaluation device and steam quality evaluation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0916245A (en) * 1995-06-27 1997-01-17 Mitsubishi Heavy Ind Ltd Plant operation supporting device
JP2002297228A (en) * 2001-03-30 2002-10-11 Miura Co Ltd Maintenance management method for heat supply facility
JP3896587B2 (en) * 2002-02-08 2007-03-22 栗田工業株式会社 Method for removing dissolved oxygen from water plants
JP2007255838A (en) * 2006-03-24 2007-10-04 Kurita Water Ind Ltd Boiler device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0916245A (en) * 1995-06-27 1997-01-17 Mitsubishi Heavy Ind Ltd Plant operation supporting device
JP2002297228A (en) * 2001-03-30 2002-10-11 Miura Co Ltd Maintenance management method for heat supply facility
JP3896587B2 (en) * 2002-02-08 2007-03-22 栗田工業株式会社 Method for removing dissolved oxygen from water plants
JP2007255838A (en) * 2006-03-24 2007-10-04 Kurita Water Ind Ltd Boiler device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191194A (en) * 2010-03-15 2011-09-29 Kurita Water Ind Ltd Quality measuring instrument of water and steam quality monitoring device
JP2020121241A (en) * 2019-01-29 2020-08-13 三菱日立パワーシステムズ株式会社 Water quality monitoring system for power generation plant, water quality monitoring method and water quality monitoring program therefor, and power generation plant
JP7271205B2 (en) 2019-01-29 2023-05-11 三菱重工業株式会社 POWER PLANT WATER QUALITY MONITORING SYSTEM, WATER QUALITY MONITORING METHOD AND WATER QUALITY MONITORING PROGRAM, POWER PLANT
JP2021050830A (en) * 2019-09-20 2021-04-01 クリタ・ビーエムエス株式会社 Steam quality evaluation device and steam quality evaluation method
JP7293068B2 (en) 2019-09-20 2023-06-19 クリタ・ビーエムエス株式会社 Vapor quality evaluation device and vapor quality evaluation method

Also Published As

Publication number Publication date
JP5211742B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
CN111033253B (en) Water quality diagnosis system, power station, and water quality diagnosis method
JP5657644B2 (en) Method and system for controlling corrosion and release of corrosion products in boiler condensate in a papermaking process
JP5211742B2 (en) Steam monitoring device and boiler system
BRPI0813078B1 (en) method for creating a real-time oxidation-reduction potential signature (&#34;orp&#34;) in a hot water system, digital storage media and device for analyzing an orp signature for a hot water system
EP2179076B1 (en) Method for preventing corrosion in hot water systems
JP5315844B2 (en) Vapor quality monitoring device
JP2007128440A (en) Operation management device for water treatment plant
WO2009036032A1 (en) Method and device for preventing corrosion in hot water systems undergoing intermittent operations
CN106908566A (en) The assay method of chloride content in water
WO2021131666A1 (en) System, device, and method
JP2007255838A (en) Boiler device
JP3624940B2 (en) Equipment management system
KR100569761B1 (en) Automatic apparatus and method to diagnose and control water quality in boiler facilities
JP4962013B2 (en) Method of supplying chemicals to steam boiler
KR101393138B1 (en) A analytical method for industrial boiler condition using operating signal pattern
JP2008064393A (en) Water quality management method and system for boiler water
JP2011076334A (en) Diagnostic method and diagnostic device for plant
JP4853658B2 (en) Steam sampling method
JP3624941B2 (en) Equipment management system
JP2002117468A (en) Plant operation diagnosis and support system
JP2002296268A (en) Method of evaluating water quality, and system for controlling water quality
WO2020230373A1 (en) Corrosion management system, water treatment device, power plant, corrosion management method, and corrosion management program
JP5019030B2 (en) Method for supplying corrosion inhibitor in steam boiler equipment
CN115095845A (en) Method and device for monitoring tube explosion of coke dry quenching boiler and storage medium
JP2002174402A (en) Method and system for treating boiler water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Ref document number: 5211742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees