JP2011178308A - Non-pneumatic tire - Google Patents

Non-pneumatic tire Download PDF

Info

Publication number
JP2011178308A
JP2011178308A JP2010045458A JP2010045458A JP2011178308A JP 2011178308 A JP2011178308 A JP 2011178308A JP 2010045458 A JP2010045458 A JP 2010045458A JP 2010045458 A JP2010045458 A JP 2010045458A JP 2011178308 A JP2011178308 A JP 2011178308A
Authority
JP
Japan
Prior art keywords
annular portion
pneumatic tire
tire
support structure
cord
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010045458A
Other languages
Japanese (ja)
Other versions
JP5314621B2 (en
Inventor
Masahiro Segawa
政弘 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2010045458A priority Critical patent/JP5314621B2/en
Publication of JP2011178308A publication Critical patent/JP2011178308A/en
Application granted granted Critical
Publication of JP5314621B2 publication Critical patent/JP5314621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-pneumatic tire capable of reducing a grounding pressure variation caused by rotation. <P>SOLUTION: This non-pneumatic tire includes: a support structure SS having an inside annular part 1, an outside annular part 3 arranged in a concentrically circular shape outside the inside annular part 1 and a plurality of connecting parts 4 and 5 for connecting the inside annular part 1 and the outside annular part 3 and respectively independent in the peripheral direction, and supporting a load from a vehicle; and an air sac 7 arranged outside the support structure SS, and having a skin part 71 forming a flat doughnut shape in the tire axial direction and a hollow part 72 formed so that air can be filled inside the skin part 71. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、タイヤ構造部材として、車両からの荷重を支持する支持構造体を備える非空気圧タイヤ(non−pneumatic tire)に関するものであり、好ましくは空気入りタイヤの代わりとして使用することができる非空気圧タイヤに関するものである。   The present invention relates to a non-pneumatic tire provided with a support structure that supports a load from a vehicle as a tire structural member, and preferably a non-pneumatic tire that can be used as a substitute for a pneumatic tire. It relates to tires.

空気入りタイヤは、荷重の支持機能、接地面からの衝撃吸収能、および動力等の伝達能(加速、停止、方向転換)を有し、このため、多くの車両、特に自転車、オートバイ、自動車、トラックに採用されている。   The pneumatic tire has a load supporting function, a shock absorbing ability from the ground contact surface, and a transmission ability (acceleration, stop, change of direction) such as power. For this reason, many vehicles, particularly bicycles, motorcycles, automobiles, It is used in trucks.

特に、これらの能力は自動車、その他のモーター車両の発展に大きく貢献した。更に、空気入りタイヤの衝撃吸収能力は、医療機器や電子機器の運搬用カート、その他の用途でも有用である。   In particular, these capabilities greatly contributed to the development of automobiles and other motor vehicles. Furthermore, the impact absorbing ability of pneumatic tires is useful for medical equipment and electronic equipment transport carts and other applications.

従来の非空気圧タイヤとしては、例えばソリッドタイヤ、スプリングタイヤ、クッションタイヤ等が存在するが、空気入りタイヤの優れた性能を有していない。例えば、ソリッドタイヤおよびクッションタイヤは、接地部分の圧縮によって荷重を支持するが、この種のタイヤは重くて、堅く、空気入りタイヤのような衝撃吸収能力はない。また、非空気圧タイヤでは、弾性を高めてクッション性を改善することも可能であるが、空気入りタイヤが有するような荷重支持能または耐久性が悪くなるという問題がある。   Conventional non-pneumatic tires include, for example, solid tires, spring tires, cushion tires, and the like, but do not have the superior performance of pneumatic tires. For example, solid tires and cushion tires support the load by compressing the contact portion, but this type of tire is heavy and stiff, and does not have the ability to absorb shock like a pneumatic tire. Further, in the non-pneumatic tire, it is possible to improve the cushioning property by increasing the elasticity, but there is a problem that the load supporting ability or the durability as the pneumatic tire has is deteriorated.

そこで、下記の特許文献1には、空気入りタイヤと同様な動作特性を有する非空気圧タイヤを開発する目的で、タイヤに加わる荷重を支持する補強された環状バンドと、この補強された環状バンドとホイールまたはハブとの間で張力によって荷重力を伝達する複数のウェブスポークとを有する非空気圧タイヤが提案されている。補強された環状バンドは、エラストマー剪断層(剪断弾性率約3〜20MPa)と、該エラストマー剪断層の放射方向内側に接着した少なくとも1つの第1メンブレンと、該エラストマー剪断層の放射方向外側に接着した少なくとも1つの第2メンブレンとを有している。   Therefore, in Patent Document 1 below, for the purpose of developing a non-pneumatic tire having the same operating characteristics as a pneumatic tire, a reinforced annular band that supports a load applied to the tire, and the reinforced annular band, Non-pneumatic tires have been proposed that have a plurality of web spokes that transmit load forces by tension with a wheel or hub. The reinforced annular band adheres to an elastomer shear layer (shear modulus about 3-20 MPa), at least one first membrane adhered radially inward of the elastomer shear layer, and radially outward of the elastomer shear layer. And at least one second membrane.

特表2005−500932号公報Special Table 2005-500932 Publication

しかしながら、特許文献1に記載された非空気圧タイヤでは、同一たわみ量となるように縦荷重を負荷する場合に、ウェブスポークの位置と接地面中央位置との位置関係によって、縦荷重の変動が生じ易い傾向があることが判明した。つまり、図8(a)に示すように、ウェブスポークS間の中央位置が接地面中央TCに位置する場合には、タイヤからの反力が小さく(軟らかく)なり、図8(b)に示すように、ウェブスポークSの下端の位置が接地面中央TCに位置する場合には、タイヤからの反力が大きく(硬く)なり、両者の接地状態でタイヤ剛性の周方向変動が見られる。その結果、タイヤの回転に伴い、接地圧の変動が起こるため、打撃音や偏摩耗が問題となる。   However, in the non-pneumatic tire described in Patent Document 1, when a longitudinal load is applied so as to have the same amount of deflection, the longitudinal load varies depending on the positional relationship between the position of the web spoke and the center position of the contact surface. It turned out that it tends to be easy. That is, as shown in FIG. 8 (a), when the center position between the web spokes S is located at the contact surface center TC, the reaction force from the tire is small (soft), which is shown in FIG. 8 (b). Thus, when the position of the lower end of the web spoke S is located at the contact surface center TC, the reaction force from the tire becomes large (hard), and the circumferential variation of the tire rigidity is observed in the contact state between the two. As a result, the contact pressure varies with the rotation of the tire, so that the hitting sound and uneven wear become a problem.

また、特許文献1に記載された非空気圧タイヤは、上記のように、エラストマー剪断層を放射方向内側と放射方向外側とから第1、第2メンブレンで挟んだ環状バンドを有しており、環状バンドが剪断変形することで、接地領域における接地圧分布を均一にしようとしている。しかし、本発明者は、エラストマー剪断層の剪断弾性率を10MPaとして、特許文献1の非空気圧タイヤの接地圧分布を解析した結果、接地圧分布は均一とならず、接地圧の分散が不十分であることが判明した。   Further, as described above, the non-pneumatic tire described in Patent Document 1 has an annular band in which an elastomer shear layer is sandwiched between first and second membranes from the radially inner side and the radially outer side. The band is sheared and deformed so as to make the ground pressure distribution in the ground region uniform. However, as a result of analyzing the contact pressure distribution of the non-pneumatic tire of Patent Document 1 with the shear modulus of the elastomer shear layer being 10 MPa, the present inventor has found that the contact pressure distribution is not uniform and the contact pressure distribution is insufficient. It turned out to be.

そこで、本発明の目的は、回転に伴う接地圧変動を低減させることができる非空気圧タイヤを提供することにある。   Therefore, an object of the present invention is to provide a non-pneumatic tire that can reduce the contact pressure fluctuation accompanying rotation.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明の非空気圧タイヤは、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結し周方向に各々が独立する複数の連結部とを有し、車両からの荷重を支持する支持構造体と、前記支持構造体の外側に設けられ、タイヤ軸方向に扁平なドーナツ形状をなす外皮部と、その外皮部の内方にて空気を充填可能に形成された中空部とを有する空気嚢と、を備えることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the non-pneumatic tire according to the present invention includes an inner annular portion, an outer annular portion provided concentrically outside the inner annular portion, and the inner annular portion and the outer annular portion connected in the circumferential direction. A support structure that supports a load from the vehicle, a skin that is provided outside the support structure and has a flat donut shape in the tire axial direction, and the skin And an air sac having a hollow portion formed so as to be filled with air inside the portion.

本発明の非空気圧タイヤは、車両からの荷重を支持する支持構造体を備え、この支持構造体は、内側環状部と、内側環状部の外側に設けられた外側環状部と、内側環状部と外側環状部とを連結する複数の連結部とを有している。連結部間の中央位置が接地面中央に位置する接地する場合と、連結部の下端の位置が接地面中央に位置する場合とでは、タイヤ剛性の周方向変動が生じ、タイヤの回転に伴う接地圧変動が起こり易いが、本発明の非空気圧タイヤは、支持構造体の外側に上記のような空気嚢を備えるため、連結部と接地面中央位置との位置関係による接地圧変動を低減させることができる。   The non-pneumatic tire of the present invention includes a support structure that supports a load from a vehicle. The support structure includes an inner annular portion, an outer annular portion provided outside the inner annular portion, and an inner annular portion. And a plurality of connecting portions that connect the outer annular portion. When the center position between the connecting parts is grounded at the center of the ground surface and when the lower end of the connecting part is located at the center of the ground surface, the tire rigidity changes in the circumferential direction, and the grounding accompanying the rotation of the tire occurs. Although the pressure fluctuation is likely to occur, the non-pneumatic tire of the present invention includes the air sac as described above on the outside of the support structure, and therefore reduces the ground pressure fluctuation due to the positional relationship between the connecting portion and the center position of the ground contact surface. Can do.

本発明にかかる非空気圧タイヤにおいて、前記外皮部は、前記中空部を取り囲むようにラジアル方向に延在してタイヤ周方向に並列されたコードを含むことが好ましい。この構成によれば、外皮部をコードにより補強して空気嚢を堅固に構成できるとともに、操縦安定性能やグリップ性能の向上といったラジアルタイヤの特長を保有することができる。   In the non-pneumatic tire according to the present invention, it is preferable that the outer skin portion includes a cord extending in a radial direction so as to surround the hollow portion and arranged in parallel in the tire circumferential direction. According to this configuration, the outer sack portion can be reinforced with the cord to firmly configure the air sac, and the characteristics of the radial tire such as improved steering stability performance and grip performance can be retained.

本発明にかかる非空気圧タイヤにおいて、前記支持構造体の外周面に隣接して配設され、タイヤ赤道線に対して傾斜した第1コードを含むベルトプライを内外に積層してなる第1ベルト層を備えることが好ましい。この構成によれば、支持構造体の外側環状部が第1ベルト層により補強される。そのため、タイヤに加わる荷重は、連結部の張力によって外側環状部に伝達され、支持構造体全体で確実に支持される。   In the non-pneumatic tire according to the present invention, a first belt layer formed by laminating a belt ply including a first cord disposed adjacent to the outer peripheral surface of the support structure and inclined with respect to the tire equator line. It is preferable to provide. According to this configuration, the outer annular portion of the support structure is reinforced by the first belt layer. Therefore, the load applied to the tire is transmitted to the outer annular portion by the tension of the connecting portion, and is reliably supported by the entire support structure.

本発明にかかる非空気圧タイヤにおいて、前記支持構造体の外周面に隣接して配設され、リング状の金属プレートからなる第1ベルト層を備えることが好ましい。この構成によれば、上記と同様、支持構造体の外側環状部が第1ベルト層により補強されるので、タイヤに加わる荷重は、連結部の張力によって外側環状部に伝達され、支持構造体全体で確実に支持される。   In the non-pneumatic tire according to the present invention, it is preferable that the non-pneumatic tire includes a first belt layer disposed adjacent to the outer peripheral surface of the support structure and made of a ring-shaped metal plate. According to this configuration, since the outer annular portion of the support structure is reinforced by the first belt layer as described above, the load applied to the tire is transmitted to the outer annular portion by the tension of the connecting portion, and the entire support structure It is definitely supported by.

本発明にかかる非空気圧タイヤにおいて、前記支持構造体の外周面に隣接して配設され、タイヤ周方向に沿って延びるコードの積層体からなる第1ベルト層を備えることが好ましい。この構成によれば、上記と同様、支持構造体の外側環状部が第1ベルト層により補強されるので、タイヤに加わる荷重は、連結部の張力によって外側環状部に伝達され、支持構造体全体で確実に支持される。   In the non-pneumatic tire according to the present invention, it is preferable that the non-pneumatic tire includes a first belt layer that is disposed adjacent to the outer peripheral surface of the support structure and is formed of a laminated body of cords extending along the tire circumferential direction. According to this configuration, since the outer annular portion of the support structure is reinforced by the first belt layer as described above, the load applied to the tire is transmitted to the outer annular portion by the tension of the connecting portion, and the entire support structure It is definitely supported by.

本発明にかかる非空気圧タイヤにおいて、前記支持構造体は、前記内側環状部の外側、かつ前記外側環状部の内側に同心円状に設けられた中間環状部を備えることが好ましい。この構成によれば、本発明の非空気圧タイヤは、中間環状部を備えるので、連結部と外側環状部の結合部の位置が接地する際、連結部に集中していた変形(ひずみ)を中間環状部にも負担させることができ、支持構造体の変形を均一化することができる。この結果、本発明の非空気圧タイヤは、連結部の位置と接地面中央位置との位置関係によってタイヤ剛性の周方向変動が生じにくく、回転に伴う接地圧の変動が少なくなる。   In the non-pneumatic tire according to the present invention, the support structure preferably includes an intermediate annular portion provided concentrically outside the inner annular portion and inside the outer annular portion. According to this configuration, since the non-pneumatic tire according to the present invention includes the intermediate annular portion, when the position of the coupling portion between the coupling portion and the outer annular portion is grounded, the deformation (strain) concentrated on the coupling portion is intermediate. The annular portion can also be burdened, and the deformation of the support structure can be made uniform. As a result, in the non-pneumatic tire according to the present invention, the tire rigidity hardly varies in the circumferential direction due to the positional relationship between the position of the connecting portion and the center of the contact surface, and the contact pressure variation due to rotation decreases.

本発明にかかる非空気圧タイヤにおいて、前記空気嚢の外周面に配設された補強材と、前記補強材の外周側に配設されて接地面を構成するトレッドと、を備えることが好ましい。この構成によれば、空気嚢は補強材によって外周側から拘束され、インフレート時の内圧が作用する状態において、その扁平形状を維持できる。走行時には、補強材の外周側に配設されたトレッドが接地し、空気嚢を衝撃や外傷から保護するとともに、タイヤの駆制動力などを路面に伝達する役割を果たす。   The non-pneumatic tire according to the present invention preferably includes a reinforcing member disposed on the outer peripheral surface of the air bag and a tread disposed on the outer peripheral side of the reinforcing member to constitute a ground contact surface. According to this configuration, the air sac is restrained from the outer peripheral side by the reinforcing material, and the flat shape can be maintained in a state where the internal pressure during inflation is applied. During running, the tread disposed on the outer peripheral side of the reinforcing material is grounded to protect the air sac from impacts and trauma, and to transmit the driving force of the tire to the road surface.

本発明にかかる非空気圧タイヤにおいて、前記補強材は、タイヤ赤道線に対して傾斜した第2コードを含むベルトプライを内外に積層してなる第2ベルト層を備えることが好ましい。かかる構成では、空気嚢の内圧に応じて第2ベルト層に張力が発生するため、コーナリングフォースを向上することができる。また、第2ベルト層により踏面部の剛性を高めて、耐摩耗性能を良好に確保できる。   In the non-pneumatic tire according to the present invention, it is preferable that the reinforcing member includes a second belt layer in which a belt ply including a second cord inclined with respect to the tire equator line is laminated inside and outside. In such a configuration, since the tension is generated in the second belt layer according to the internal pressure of the air sac, the cornering force can be improved. In addition, the second belt layer can increase the rigidity of the tread surface portion and ensure good wear resistance.

本発明にかかる非空気圧タイヤにおいて、前記補強材は、タイヤ周方向に沿って延びる第3コードを含むベルト補強層を備えることが好ましい。かかる構成では、空気嚢の内圧に応じてベルト補強層に張力が発生するため、コーナリングフォースを向上することができる。補強材が上記の第2ベルト層を備える場合には、その第2ベルト層の外周にベルト補強層を積層することで、補強効果を有効に高められる。   In the non-pneumatic tire according to the present invention, it is preferable that the reinforcing member includes a belt reinforcing layer including a third cord extending along the tire circumferential direction. In such a configuration, a tension is generated in the belt reinforcing layer according to the internal pressure of the air sac, so that the cornering force can be improved. When the reinforcing material includes the second belt layer, the reinforcing effect can be effectively enhanced by laminating the belt reinforcing layer on the outer periphery of the second belt layer.

本発明の非空気圧タイヤの一例を示す正面図Front view showing an example of the non-pneumatic tire of the present invention 本発明の非空気圧タイヤの一例を概略的に示すタイヤ子午線断面図Tire meridian cross-sectional view schematically showing an example of the non-pneumatic tire of the present invention 外皮部に含まれるコードの形態を説明する図The figure explaining the form of the cord contained in an outer skin part 非空気圧タイヤを部分的に破断させて示した平面図Plan view with non-pneumatic tire partially broken 空気嚢をタイヤ軸方向に分割した例を示すタイヤ子午線断面図Tire meridian cross-sectional view showing an example in which the air bag is divided in the tire axial direction 図5の非空気圧タイヤにおける空気嚢の空気圧、接地長、接地形状Air pressure, contact length, and contact shape of the air bag in the non-pneumatic tire of FIG. 支持構造体の別実施形態を示す正面図Front view showing another embodiment of the support structure 従来の非空気圧タイヤの課題を説明するための説明図Explanatory drawing for demonstrating the subject of the conventional non-pneumatic tire

以下、本発明の実施の形態について、図面を参照しながら説明する。図1は本発明の非空気圧タイヤの一例を示す正面図である。図2は、本発明の非空気圧タイヤの一例を概略的に示すタイヤ子午線断面図である。ここで、Oは軸芯を、Hはタイヤ断面高さを、それぞれ示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a front view showing an example of a non-pneumatic tire of the present invention. FIG. 2 is a tire meridian cross-sectional view schematically showing an example of the non-pneumatic tire of the present invention. Here, O indicates the shaft core, and H indicates the tire cross-sectional height.

非空気圧タイヤTは、車両からの荷重を支持する支持構造体SSを備えている。さらに、本実施形態の非空気圧タイヤTは、支持構造体SSの外周側に第1ベルト層6、空気嚢7、補強材8、トレッド9を備えている。   The non-pneumatic tire T includes a support structure SS that supports a load from the vehicle. Furthermore, the non-pneumatic tire T of the present embodiment includes a first belt layer 6, an air bag 7, a reinforcing material 8, and a tread 9 on the outer peripheral side of the support structure SS.

本実施形態の非空気圧タイヤTは、図1の正面図に示すように、支持構造体SSが、内側環状部1と、その外側に同心円状に設けられた中間環状部2と、その外側に同心円状に設けられた外側環状部3と、内側環状部1と中間環状部2とを連結し周方向に各々が独立する複数の内側連結部4と、外側環状部3と中間環状部2とを連結し周方向に各々が独立する複数の外側連結部5とを備えている。この実施形態では、支持構造体SSが中間環状部2を備えているが、中間環状部2は必ずしも必要ではなく、中間環状部2を設けず、内側連結部4と外側連結部5とが連続し1本の連結部を構成してもよい。   As shown in the front view of FIG. 1, the non-pneumatic tire T according to the present embodiment includes an inner annular portion 1, an intermediate annular portion 2 provided concentrically on the outer side thereof, and an outer side thereof. A concentric outer ring part 3, an inner ring part 1, an intermediate ring part 2, a plurality of inner connection parts 4 that are independent in the circumferential direction, an outer ring part 3, and an intermediate ring part 2 And a plurality of outer connecting portions 5 that are independent of each other in the circumferential direction. In this embodiment, the support structure SS includes the intermediate annular portion 2, but the intermediate annular portion 2 is not always necessary, and the intermediate annular portion 2 is not provided, and the inner connecting portion 4 and the outer connecting portion 5 are continuous. However, you may comprise one connection part.

内側環状部1は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。また、内側環状部1の内周面には、車軸やリムとの装着のために、嵌合性を保持するための凹凸等を設けるのが好ましい。   The inner annular portion 1 is preferably a cylindrical shape having a constant thickness from the viewpoint of improving uniformity. Moreover, it is preferable to provide the inner peripheral surface of the inner annular portion 1 with irregularities or the like for maintaining fitting properties for mounting with an axle or a rim.

内側環状部1の厚みは、内側連結部4に力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの2〜7%が好ましく、3〜6%がより好ましい。   The thickness of the inner annular portion 1 is preferably 2 to 7% of the tire cross-section height H and 3 to 6% from the viewpoint of reducing weight and improving durability while sufficiently transmitting force to the inner connecting portion 4. More preferred.

内側環状部1の内径は、非空気圧タイヤTを装着するリムや車軸の寸法などに併せて適宜決定されるが、本発明では中間環状部2を備えるために、内側環状部1の内径を従来より大幅に小さくすることが可能である。但し、一般の空気入りタイヤの代替を想定した場合、250〜500mmが好ましく、330〜440mmがより好ましい。   The inner annular portion 1 has an inner diameter that is appropriately determined in accordance with the dimensions of the rim on which the non-pneumatic tire T is mounted, the axle, and the like. It can be made much smaller. However, when an alternative to a general pneumatic tire is assumed, 250 to 500 mm is preferable, and 330 to 440 mm is more preferable.

内側環状部1の軸方向の幅は、用途、車軸の長さ等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The axial width of the inner annular portion 1 is appropriately determined according to the application, the length of the axle, and the like, but when an alternative to a general pneumatic tire is assumed, it is preferably 100 to 300 mm, more preferably 130 to 250 mm. preferable.

内側環状部1の引張モジュラスは、内側連結部4に力を十分伝達しつつ、軽量化や耐久性の向上、装着性を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。なお、本発明における引張モジュラスは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した値である。   The tensile modulus of the inner annular portion 1 is preferably 5 to 180000 MPa, more preferably 7 to 50000 MPa, from the viewpoint of reducing weight, improving durability, and wearing properties while sufficiently transmitting force to the inner connecting portion 4. The tensile modulus in the present invention is a value calculated from a tensile stress at 10% elongation by conducting a tensile test according to JIS K7312.

本発明における支持構造体SSは、弾性材料で成形されるが、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1、中間環状部2、外側環状部3、内側連結部4、及び外側連結部5は、補強構造を除いて基本的に同じ材質とすることが好ましい。   The support structure SS in the present invention is formed of an elastic material. From the viewpoint of enabling integral molding when the support structure SS is manufactured, the inner annular portion 1, the intermediate annular portion 2, and the outer annular portion 3 are used. The inner connecting portion 4 and the outer connecting portion 5 are preferably basically made of the same material except for the reinforcing structure.

本発明における弾性材料とは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した引張モジュラスが、100MPa以下のものを指す。本発明の弾性材料としては、十分な耐久性を得ながら、適度な剛性を付与する観点から、好ましくは引張モジュラスが5〜100MPaであり、より好ましくは7〜50MPaである。母材として用いられる弾性材料としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂が挙げられる。   The elastic material in the present invention refers to a material having a tensile modulus calculated from a tensile stress at 10% elongation by a tensile test according to JIS K7312 and 100 MPa or less. The elastic material of the present invention preferably has a tensile modulus of 5 to 100 MPa, more preferably 7 to 50 MPa from the viewpoint of imparting adequate rigidity while obtaining sufficient durability. Examples of the elastic material used as the base material include thermoplastic elastomers, crosslinked rubbers, and other resins.

熱可塑性エラストマーとしては、ポリエステルエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、ポリスチレンエラストマー、ポリ塩化ビニルエラストマー、ポリウレタンエラストマー等が例示される。架橋ゴム材料を構成するゴム材料としては、天然ゴムの他、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IIR)、ニトリルゴム(NBR)、水素添加ニトリルゴム(水添NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)、フッ素ゴム、シリコンゴム、アクリルゴム、ウレタンゴム等の合成ゴムが例示される。これらのゴム材料は必要に応じて2種以上を併用してもよい。   Examples of the thermoplastic elastomer include polyester elastomer, polyolefin elastomer, polyamide elastomer, polystyrene elastomer, polyvinyl chloride elastomer, polyurethane elastomer and the like. Rubber materials constituting the crosslinked rubber material include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IIR), nitrile rubber (NBR), hydrogenated nitrile rubber (hydrogenated NBR). And synthetic rubbers such as chloroprene rubber (CR), ethylene propylene rubber (EPDM), fluorine rubber, silicon rubber, acrylic rubber, and urethane rubber. These rubber materials may be used in combination of two or more as required.

その他の樹脂としては、熱可塑性樹脂、又は熱硬化性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂などが挙げられ、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、シリコン樹脂、ポリイミド樹脂、メラミン樹脂などが挙げられる。   Examples of other resins include thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin include polyethylene resin, polystyrene resin, and polyvinyl chloride resin, and examples of the thermosetting resin include epoxy resin, phenol resin, polyurethane resin, silicon resin, polyimide resin, and melamine resin.

上記の弾性材料のうち、成形・加工性やコストの観点から、好ましくは、ポリウレタン樹脂が用いられる。なお、弾性材料としては、発泡材料を使用してもよく、上記の熱可塑性エラストマー、架橋ゴム、その他の樹脂を発泡させたもの使用可能である。   Of the above elastic materials, a polyurethane resin is preferably used from the viewpoint of moldability / workability and cost. In addition, as an elastic material, you may use a foaming material, and what used said thermoplastic elastomer, crosslinked rubber, and other resin foamed can be used.

弾性材料で一体成形された支持構造体SSは、内側環状部1、中間環状部2、外側環状部3、内側連結部4、及び外側連結部5が、補強繊維により補強されていることが好ましい。   In the support structure SS integrally formed of an elastic material, the inner annular portion 1, the intermediate annular portion 2, the outer annular portion 3, the inner connecting portion 4, and the outer connecting portion 5 are preferably reinforced with reinforcing fibers. .

補強繊維としては、長繊維、短繊維、織布、不織布などの補強繊維が挙げられるが、長繊維を使用する形態として、タイヤ軸方向に配列される繊維とタイヤ周方向に配列される繊維とから構成されるネット状繊維集合体を使用するのが好ましい。   Examples of the reinforcing fibers include reinforcing fibers such as long fibers, short fibers, woven fabrics, and non-woven fabrics. As a form using long fibers, fibers arranged in the tire axial direction and fibers arranged in the tire circumferential direction It is preferable to use a net-like fiber assembly composed of:

補強繊維の種類としては、例えば、レーヨンコード、ナイロン−6,6等のポリアミドコード、ポリエチレンテレフタレート等のポリエステルコード、アラミドコード、ガラス繊維コード、カーボンファイバー、スチールコード等が挙げられる。   Examples of the types of reinforcing fibers include rayon cords, polyamide cords such as nylon-6,6, polyester cords such as polyethylene terephthalate, aramid cords, glass fiber cords, carbon fibers, and steel cords.

本発明では、補強繊維を用いる補強の他、粒状フィラーによる補強や、金属リング等による補強を行うことが可能である。粒状フィラーとしては、カーボンブラック、シリカ、アルミナ等のセラミックス、その他の無機フィラーなどが挙げられる。   In the present invention, in addition to reinforcement using reinforcing fibers, it is possible to perform reinforcement with a granular filler or reinforcement with a metal ring or the like. Examples of the particulate filler include ceramics such as carbon black, silica, and alumina, and other inorganic fillers.

中間環状部2の形状は、円筒形状に限られず、多角形筒状、などでもよい。   The shape of the intermediate annular portion 2 is not limited to a cylindrical shape, and may be a polygonal cylindrical shape.

中間環状部2の厚みは、内側連結部4と外側連結部5とを十分補強しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの3〜10%が好ましく、4〜9%がより好ましい。   The thickness of the intermediate annular portion 2 is preferably 3 to 10% of the tire cross-section height H from the viewpoint of reducing the weight and improving the durability while sufficiently reinforcing the inner connecting portion 4 and the outer connecting portion 5. -9% is more preferable.

中間環状部2の内径は、内側環状部1の内径を超えて、外側環状部3の内径未満となる。但し、中間環状部2の内径としては、前述したような内側連結部4と外側連結部5との補強効果を向上させる観点から、外側環状部3の内径から内側環状部1の内径を差し引いた値の20〜80%の値を、内側環状部1の内径に加えた内径とすることが好ましく、30〜60%の値を、内側環状部1の内径に加えた内径とすることがより好ましい。   The inner annular portion 2 has an inner diameter that exceeds the inner diameter of the inner annular portion 1 and less than the inner diameter of the outer annular portion 3. However, as the inner diameter of the intermediate annular portion 2, the inner diameter of the inner annular portion 1 is subtracted from the inner diameter of the outer annular portion 3 from the viewpoint of improving the reinforcing effect of the inner connecting portion 4 and the outer connecting portion 5 as described above. A value of 20 to 80% of the value is preferably the inner diameter added to the inner diameter of the inner annular portion 1, and a value of 30 to 60% is more preferably the inner diameter added to the inner diameter of the inner annular portion 1. .

中間環状部2の軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The axial width of the intermediate annular portion 2 is appropriately determined according to the application and the like, but is preferably 100 to 300 mm, more preferably 130 to 250 mm, assuming an alternative to a general pneumatic tire.

中間環状部2の引張モジュラスは、内側連結部4と外側連結部5とを十分補強して、耐久性の向上、負荷能力の向上を図る観点から、8000〜180000MPaが好ましく、10000〜50000MPaがより好ましい。   The tensile modulus of the intermediate annular portion 2 is preferably 8000 to 18000 MPa, more preferably 10,000 to 50000 MPa from the viewpoint of sufficiently reinforcing the inner connecting portion 4 and the outer connecting portion 5 to improve durability and load capacity. preferable.

中間環状部2の引張モジュラスは、内側環状部1のそれより高いことが好ましいため、熱可塑性エラストマー、架橋ゴム、その他の樹脂を繊維等で補強した繊維補強材料が好ましい。   Since the tensile modulus of the intermediate annular portion 2 is preferably higher than that of the inner annular portion 1, a fiber reinforced material in which a thermoplastic elastomer, a crosslinked rubber, or other resin is reinforced with fibers or the like is preferable.

外側環状部3の形状は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。外側環状部3の厚みは、外側連結部5からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの2〜7%が好ましく、2〜5%がより好ましい。   The shape of the outer annular portion 3 is preferably a cylindrical shape with a constant thickness from the viewpoint of improving uniformity. The thickness of the outer annular portion 3 is preferably 2 to 7% of the tire cross-section height H from the viewpoint of reducing the weight and improving the durability while sufficiently transmitting the force from the outer connecting portion 5, and is 2 to 5%. Is more preferable.

外側環状部3の内径は、その用途等応じて適宜決定されるが、本発明では中間環状部2を備えるために、外側環状部3の内径を従来より大きくすることが可能である。但し、一般の空気入りタイヤの代替を想定した場合、420〜750mmが好ましく、480〜680mmがより好ましい。   The inner diameter of the outer annular portion 3 is appropriately determined according to its use and the like, but since the intermediate annular portion 2 is provided in the present invention, the inner diameter of the outer annular portion 3 can be made larger than before. However, when an alternative to a general pneumatic tire is assumed, 420 to 750 mm is preferable, and 480 to 680 mm is more preferable.

外側環状部3の軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The axial width of the outer annular portion 3 is appropriately determined according to the application and the like, but is preferably 100 to 300 mm, and more preferably 130 to 250 mm when an alternative to a general pneumatic tire is assumed.

外側環状部3の引張モジュラスは、外側連結部5からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。   The tensile modulus of the outer annular portion 3 is preferably 5 to 180000 MPa and more preferably 7 to 50000 MPa from the viewpoint of reducing weight and improving durability while sufficiently transmitting the force from the outer connecting portion 5.

外側環状部3の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。外側環状部3を補強繊維により補強することで、外側環状部3と第1ベルト層6などとの接着も十分となる。   When the tensile modulus of the outer annular portion 3 is increased, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable. By reinforcing the outer annular portion 3 with the reinforcing fiber, the adhesion between the outer annular portion 3 and the first belt layer 6 is sufficient.

内側連結部4は、内側環状部1と中間環状部2とを連結するものであり、両者の間に適当な間隔を開けるなどして、周方向に各々が独立するように複数設けられる。内側連結部4は、ユニフォミティを向上させる観点から、周方向に規則的に設けることが好ましい。   The inner connecting portion 4 connects the inner annular portion 1 and the intermediate annular portion 2, and a plurality of inner connecting portions 4 are provided so that each is independent in the circumferential direction, for example, by providing an appropriate interval therebetween. The inner connecting portion 4 is preferably provided regularly in the circumferential direction from the viewpoint of improving uniformity.

内側連結部4を全周に渡って設ける際の数(軸方向に複数設ける場合は1個として数える)としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、10〜80個が好ましく、40〜60個がより好ましい。図1には、内側連結部4を40個設けた例を示す。   As for the number of inner connection parts 4 provided over the entire circumference (when a plurality of inner connection parts 4 are provided in the axial direction, it is counted as one), while supporting the load from the vehicle sufficiently, weight reduction, improvement of power transmission, durability From the viewpoint of improving the quality, 10 to 80 are preferable, and 40 to 60 are more preferable. FIG. 1 shows an example in which 40 inner connecting portions 4 are provided.

個々の内側連結部4の形状としては、板状体、柱状体などが挙げられるが、本実施形態では板状体の例を示す。これらの内側連結部4は、正面視断面において、タイヤ径方向又はタイヤ径方向から傾斜した方向に延びている。本発明では、ブレークポイントを高くして剛性変動を生じにくくすると共に、耐久性を向上させる観点から、正面視断面において、内側連結部4の延設方向が、タイヤ径方向±30°以内が好ましく、タイヤ径方向±15°以内がより好ましい。図1では、内側連結部4が、タイヤ径方向から角度θだけ傾斜した方向に延設されている例を示す。また、この例では、隣接する内側連結部4は、タイヤ径方向に対して互いに反対方向に角度θだけ傾斜している。   Examples of the shape of each inner connecting portion 4 include a plate-like body and a columnar body. In this embodiment, an example of a plate-like body is shown. These inner connection parts 4 are extended in the tire radial direction or the direction inclined from the tire radial direction in the front sectional view. In the present invention, from the viewpoint of improving the durability by increasing the break point and making it difficult to change the rigidity, the extending direction of the inner connecting portion 4 is preferably within ± 30 ° in the tire radial direction in the front sectional view. The tire radial direction is more preferably within ± 15 °. FIG. 1 shows an example in which the inner connecting portion 4 extends in a direction inclined by an angle θ from the tire radial direction. In this example, the adjacent inner connecting portions 4 are inclined by an angle θ in directions opposite to each other with respect to the tire radial direction.

内側連結部4の厚みは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、タイヤ断面高さHの2〜12%が好ましく、2〜10%がより好ましい。   The thickness of the inner connecting portion 4 is preferably 2 to 12% of the tire cross-sectional height H from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 2 to 10% is more preferable.

内側連結部4の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、5〜100MPaが好ましく、7〜80MPaがより好ましい。   The tensile modulus of the inner connecting portion 4 is preferably 5 to 100 MPa, more preferably 7 to 80 MPa from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. preferable.

内側連結部4の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。   When the tensile modulus of the inner connecting portion 4 is increased, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable.

外側連結部5は、外側環状部3と中間環状部2とを連結するものであり、両者の間に適当な間隔を開けるなどして、周方向に各々が独立するように複数設けられる。外側連結部5は、ユニフォミティを向上させる観点から、周方向に規則的に設けることが好ましい。   The outer connecting portion 5 connects the outer annular portion 3 and the intermediate annular portion 2, and a plurality of outer connecting portions 5 are provided so that each of them is independent in the circumferential direction, for example, by providing an appropriate interval therebetween. The outer connecting portion 5 is preferably provided regularly in the circumferential direction from the viewpoint of improving uniformity.

なお、外側連結部5と内側連結部4とは全周の同じ位置に設けてもよく、異なる位置に設けてもよい。すなわち、外側連結部5と内側連結部4は、必ずしも図1のように同じ方向に連続するように延設する必要はない。   In addition, the outer side connection part 5 and the inner side connection part 4 may be provided in the same position of a perimeter, and may be provided in a different position. That is, the outer connecting portion 5 and the inner connecting portion 4 do not necessarily extend so as to be continuous in the same direction as shown in FIG.

外側連結部5を全周に渡って設ける際の数(軸方向に複数設ける場合は1個として数える)としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、10〜80個が好ましく、40〜60個がより好ましい。図1には、外側連結部5を内側連結部4と同じく40個設けた例を示す。なお、外側連結部5の数と内側連結部4の数は、必ずしも同じとする必要はなく、外側連結部5を内側連結部4よりも多く設けてもよい。   As for the number of outer connecting parts 5 provided over the entire circumference (when a plurality of outer connecting parts 5 are provided in the axial direction, they are counted as one), while supporting the load from the vehicle sufficiently, weight reduction, improvement of power transmission, durability From the viewpoint of improving the quality, 10 to 80 are preferable, and 40 to 60 are more preferable. FIG. 1 shows an example in which 40 outer connecting portions 5 are provided in the same manner as the inner connecting portions 4. In addition, the number of the outer side connection parts 5 and the number of the inner side connection parts 4 do not necessarily need to be the same, and you may provide more outer side connection parts 5 than the inner side connection parts 4. FIG.

個々の外側連結部5の形状としては、板状体、柱状体などが挙げられるが、本実施形態では板状体の例を示す。これらの外側連結部5は、正面視断面において、タイヤ径方向又はタイヤ径方向から傾斜した方向に延びている。本発明では、ブレークポイントを高くして剛性変動を生じにくくすると共に、耐久性を向上させる観点から、正面視断面において、外側連結部5の延設方向が、タイヤ径方向±30°以内が好ましく、タイヤ径方向±15°以内がより好ましい。図1では、外側連結部5が、タイヤ径方向から傾斜した方向に延設されている例を示す。また、この例では、隣接する外側連結部5は、タイヤ径方向に対して互いに反対方向に角度θだけ傾斜している。   Examples of the shape of each outer connecting portion 5 include a plate-like body and a columnar body. In this embodiment, an example of a plate-like body is shown. These outer connecting portions 5 extend in a tire radial direction or a direction inclined from the tire radial direction in a front sectional view. In the present invention, from the viewpoint of improving the durability by increasing the break point and making it difficult to change the rigidity, the extending direction of the outer connecting portion 5 is preferably within ± 30 ° in the tire radial direction in the front sectional view. The tire radial direction is more preferably within ± 15 °. FIG. 1 shows an example in which the outer connecting portion 5 is extended in a direction inclined from the tire radial direction. Further, in this example, the adjacent outer connecting portions 5 are inclined by an angle θ in opposite directions to the tire radial direction.

外側連結部5の厚みは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、タイヤ断面高さHの2〜12%が好ましく、2〜10%がより好ましい。   The thickness of the outer connecting portion 5 is preferably 2 to 12% of the tire cross-sectional height H from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 2 to 10% is more preferable.

外側連結部5の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、5〜100MPaが好ましく、7〜80MPaがより好ましい。   The tensile modulus of the outer connecting portion 5 is preferably 5 to 100 MPa, more preferably 7 to 80 MPa from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. preferable.

外側連結部5の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。   In order to increase the tensile modulus of the outer connecting portion 5, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable.

第1ベルト層6は、支持構造体SSの外周面に隣接して配設される。第1ベルト層6を構成するベルトプライ6a,6bは、タイヤ赤道線CLに対して10〜60度の角度で傾斜したコード61を含み、そのコード方向が互いに逆向きになるように内外に積層されている。コード61には、一般タイヤのベルト層を構成するコードが使用でき、その素材としては、ポリエステルやレーヨン、ナイロン、アラミドなどの有機繊維、スチールなどが例示される。   The first belt layer 6 is disposed adjacent to the outer peripheral surface of the support structure SS. The belt plies 6a and 6b constituting the first belt layer 6 include a cord 61 inclined at an angle of 10 to 60 degrees with respect to the tire equator line CL, and are laminated inside and outside so that the cord directions are opposite to each other. Has been. As the cord 61, a cord constituting a belt layer of a general tire can be used, and examples of the material include organic fibers such as polyester, rayon, nylon, and aramid, steel, and the like.

第1ベルト層6は、ベルトプライ6a,6bを積層した上記のものに限定されない。すなわち、第1ベルト層6を、例えば、方向性を持たないリング状の金属プレートで構成してもよい。また、第1ベルト層6を、タイヤ周方向に沿って延びるコードの積層体で構成してもよい。コードは、一般タイヤのベルト層を構成する上記のコードが使用できる。   The first belt layer 6 is not limited to the above-described one in which the belt plies 6a and 6b are laminated. That is, you may comprise the 1st belt layer 6 with the ring-shaped metal plate which does not have directionality, for example. Moreover, you may comprise the 1st belt layer 6 with the laminated body of the cord extended along a tire peripheral direction. As the cord, the above cord constituting the belt layer of a general tire can be used.

空気嚢7は、タイヤ軸方向に扁平なドーナツ形状をなす外皮部71と、その外皮部71の内方にて空気を充填可能に形成された中空部72とを有する。空気嚢7のタイヤ径方向内側の内周面は、第1ベルト層6と接合している。支持構造体SSの内周には、第1ベルト層6を貫通し、中空部72と連通する不図示のバルブが設けられており、そのバルブを通じて空気を充填することで、空気嚢7をインフレートすることができる。なお、空気嚢7に充填する気体は、空気に限定されず、窒素ガスなどであってもよい。   The air sac 7 has an outer skin portion 71 that has a donut shape that is flat in the tire axial direction, and a hollow portion 72 that is formed inside the outer skin portion 71 so as to be able to be filled with air. The inner peripheral surface of the air bag 7 on the inner side in the tire radial direction is joined to the first belt layer 6. A valve (not shown) that penetrates the first belt layer 6 and communicates with the hollow portion 72 is provided on the inner periphery of the support structure SS. By filling the air through the valve, the air sac 7 is inserted into the support structure SS. Can be freted. The gas filled in the air sac 7 is not limited to air, and may be nitrogen gas or the like.

図3は、外皮部71に含まれるコード73の形態を説明する図である。図4は、非空気圧タイヤTを部分的に破断させて示した平面図である。外皮部71は、図3,4に示すように、中空部72を取り囲むようにラジアル方向RDに延在してタイヤ周方向CDに並列されたコード(第1コード)73を含む。ラジアル方向RDは、タイヤ周方向CDに対して直角となる方向であり、タイヤ子午線断面においてはコード73が略環状に延在する。コード73には、一般タイヤのカーカスを構成するコードが使用でき、その素材としては、ポリエステルやレーヨン、ナイロン、アラミドなどの有機繊維が例示される。   FIG. 3 is a diagram for explaining the form of the cord 73 included in the outer skin portion 71. FIG. 4 is a plan view showing the non-pneumatic tire T partially broken. As shown in FIGS. 3 and 4, the outer skin portion 71 includes a cord (first cord) 73 extending in the radial direction RD so as to surround the hollow portion 72 and juxtaposed in the tire circumferential direction CD. The radial direction RD is a direction perpendicular to the tire circumferential direction CD, and the cord 73 extends in a substantially annular shape in the cross section of the tire meridian. As the cord 73, a cord constituting a carcass of a general tire can be used, and examples of the material thereof include organic fibers such as polyester, rayon, nylon, and aramid.

本実施形態の外皮部71では、一本のコード73をゴムでトッピングしてなる長尺のゴム被覆コードが、実質的にラジアル方向RDに延びるように螺旋状に巻回されてある。そのため、図2のように扁平な無端管形状に成形しやすく、優れたユニフォミティを実現できる。また、カーカスの巻き返し工程などが不要であるため、製造時の工数が従来よりも削減される。コード73のトッピングには、ゴム以外に例えばポリウレタンを採用してよい。インフレート時の内圧を保持するために、中空部72に面する外皮部71の内面は、ハロゲン化ブチルゴムのような空気透過性が低い物質で被覆されている。   In the outer skin portion 71 of the present embodiment, a long rubber-coated cord formed by topping a single cord 73 with rubber is spirally wound so as to extend substantially in the radial direction RD. Therefore, it can be easily formed into a flat endless tube shape as shown in FIG. 2, and an excellent uniformity can be realized. In addition, since the carcass rewinding process is unnecessary, the number of man-hours for manufacturing is reduced as compared with the conventional method. For the topping of the cord 73, for example, polyurethane may be adopted in addition to rubber. In order to maintain the internal pressure at the time of inflation, the inner surface of the outer skin portion 71 facing the hollow portion 72 is covered with a substance having low air permeability such as halogenated butyl rubber.

本発明の非空気圧タイヤTは、支持構造体SSの外側に上記のような空気嚢7を備えるため、外側連結部5と接地面中央位置との位置関係による接地圧変動を低減させることができる。また、非空気圧タイヤTが接地する場合、支持構造体SSの連結部4,5に変形(たわみ)が生じ易く、屈曲疲労の原因となり、耐久性が低下する。上記の空気嚢7を備える本発明の非空気圧タイヤTは、タイヤ全体のたわみを連結部4,5と空気嚢7とが各々負担するため、空気嚢7が無い場合に比べ、連結部4,5の変形を減少させることができ、耐久性も向上する。   Since the non-pneumatic tire T of the present invention includes the air sac 7 as described above outside the support structure SS, it is possible to reduce ground pressure fluctuation due to the positional relationship between the outer connecting portion 5 and the center position of the ground surface. . Further, when the non-pneumatic tire T is grounded, the connecting portions 4 and 5 of the support structure SS are likely to be deformed (bent), causing bending fatigue and lowering the durability. In the non-pneumatic tire T of the present invention including the air sac 7, since the connecting portions 4 and 5 and the air sac 7 respectively bear the deflection of the entire tire, the connecting portion 4 and the non-pneumatic tire T are compared with the case where there is no air sac 7. 5 deformation can be reduced, and durability is also improved.

空気嚢7は、上記のようにタイヤ軸方向に扁平な形状をしているが、扁平率の大小により耐久性と操縦安定性能のバランスを変えることができる。具体的には、空気嚢7の扁平率を大きくすると耐久性は向上し、扁平率を小さくすると操縦安定性能は向上する。そのため、空気嚢7の扁平率を調節することで、容易にタイヤ性能のバランスを変えることができる。空気嚢7の扁平率としては、15〜30%であることが好ましい。   The air bladder 7 has a flat shape in the tire axial direction as described above, but the balance between durability and steering stability performance can be changed by the magnitude of the flatness ratio. Specifically, when the flatness of the air sac 7 is increased, the durability is improved, and when the flatness is decreased, the steering stability is improved. Therefore, the balance of tire performance can be easily changed by adjusting the flatness of the air sac 7. The flatness of the air sac 7 is preferably 15 to 30%.

また、本発明の非空気圧タイヤTは、走行中に空気嚢7がパンクした場合であっても、空気嚢7は扁平な形状であり、また、支持構造体SSの連結部の張力により車両の荷重を支持可能であるため、空気入りランフラットタイヤ並みの走行距離(例えば、80km/h以下で80km)を確保することができる。さらに、空気嚢7が扁平な形状であるため、高速走行時にバーストした場合でも、タイヤ径の変化が少なく車両の安定性を損ないにくい。   Further, in the non-pneumatic tire T of the present invention, even when the air sac 7 is punctured during traveling, the air sac 7 has a flat shape, and the tension of the connecting portion of the support structure SS causes the vehicle to Since the load can be supported, it is possible to secure a travel distance (for example, 80 km / h or less) equal to that of a pneumatic run-flat tire. Furthermore, since the air sac 7 has a flat shape, even when bursting during high-speed driving, the tire diameter hardly changes and the stability of the vehicle is hardly impaired.

補強材8は、円環状の空気嚢7の外周に配設された第2ベルト層10と、その第2ベルト層10の外周に配設されたベルト補強層11とを備える。第2ベルト層10を構成するベルトプライ10a,10bは、図4に示すように、タイヤ赤道線CLに対して10〜60度の角度で傾斜したコード(第2コード)101を含み、そのコード方向が互いに逆向きになるように内外に積層されている。コード101には、一般タイヤのベルト層を構成するコードが使用でき、その素材としては、ポリエステルやレーヨン、ナイロン、アラミドなどの有機繊維、スチールなどが例示される。   The reinforcing member 8 includes a second belt layer 10 disposed on the outer periphery of the annular air bag 7 and a belt reinforcing layer 11 disposed on the outer periphery of the second belt layer 10. As shown in FIG. 4, the belt plies 10a and 10b constituting the second belt layer 10 include a cord (second cord) 101 inclined at an angle of 10 to 60 degrees with respect to the tire equator line CL. They are stacked on the inside and outside so that the directions are opposite to each other. As the cord 101, a cord constituting a belt layer of a general tire can be used. Examples of the material include organic fibers such as polyester, rayon, nylon, and aramid, and steel.

ベルト補強層11は、タイヤ周方向CDに実質的に平行に延びるコード(第3コード)111を含んでおり、第2ベルト層10による空気嚢7の拘束を外周側から補強する。コード111には、上述した有機繊維のような、一般タイヤのベルト補強層を構成するコードを使用できる。ベルト補強層11は、ゴム被覆した1本のコード111を、或いはゴム被覆した複数本のコード111からなる小幅の帯状プライを、タイヤ周方向CDに沿って螺旋状に巻回することで形成したものでもよい。   The belt reinforcing layer 11 includes a cord (third cord) 111 extending substantially parallel to the tire circumferential direction CD, and reinforces the restraint of the air bag 7 by the second belt layer 10 from the outer peripheral side. As the cord 111, a cord constituting a belt reinforcing layer of a general tire such as the organic fiber described above can be used. The belt reinforcing layer 11 is formed by winding a single cord 111 covered with rubber or a small band-like ply made of a plurality of cords 111 covered with rubber in a spiral manner along the tire circumferential direction CD. It may be a thing.

トレッド9には、一般タイヤのトレッド部に配設されるトレッドゴムを使用可能である。図2では、補強材8の両端部が開放されているように描いているが、実際には両端部を含めて全面的にトレッド9が補強材8を覆っており、第2ベルト層10及びベルト補強層11はトレッド9の下部に埋設されている。トレッド9の外周面には、要求されるタイヤ性能や使用条件に応じたトレッドパターンが形成され、路面との接触部位となる接地面を構成する。   As the tread 9, a tread rubber disposed in a tread portion of a general tire can be used. In FIG. 2, the reinforcing material 8 is depicted as being open at both ends, but actually, the tread 9 entirely covers the reinforcing material 8 including both ends, and the second belt layer 10 and The belt reinforcing layer 11 is embedded under the tread 9. A tread pattern corresponding to required tire performance and use conditions is formed on the outer peripheral surface of the tread 9, and constitutes a ground contact surface that is a contact portion with the road surface.

非空気圧タイヤTの一例としては、タイヤ外径Dが540mm、タイヤ幅が140mm、タイヤ断面高さHが30mm、トレッドの厚みが6mm、空気嚢7の断面高さaが19mm、空気嚢7の内圧が550kPaであるものが例示される。また、非空気圧タイヤTの別な例としては、タイヤ外径Dが640mm、タイヤ幅が210mm、タイヤ断面高さHが35mm、トレッドの厚みが7mm、空気嚢7の断面高さaが23mm、空気嚢7の内圧が650kPaであるものが例示される。タイヤ断面高さHは、タイヤ外径Dの5〜15%であることが好ましい。空気嚢7の断面高さaは、タイヤ断面高さHの40〜80%が好ましく、60〜80%であることがより好ましい。空気嚢7の内圧は、車両重量に応じて増減させるものではあるが、概ね400〜700kPaが好ましい。   As an example of the non-pneumatic tire T, the tire outer diameter D is 540 mm, the tire width is 140 mm, the tire cross-section height H is 30 mm, the tread thickness is 6 mm, the air bag 7 has a cross-sectional height a of 19 mm, An example in which the internal pressure is 550 kPa is exemplified. Further, as another example of the non-pneumatic tire T, the tire outer diameter D is 640 mm, the tire width is 210 mm, the tire cross-section height H is 35 mm, the tread thickness is 7 mm, the cross-section height a of the air bag 7 is 23 mm, An example in which the internal pressure of the air bag 7 is 650 kPa is exemplified. The tire cross-section height H is preferably 5 to 15% of the tire outer diameter D. The cross-sectional height a of the air sac 7 is preferably 40 to 80% of the tire cross-sectional height H, and more preferably 60 to 80%. Although the internal pressure of the air bag 7 is increased or decreased according to the vehicle weight, it is preferably approximately 400 to 700 kPa.

<他の実施形態>
前述の実施形態では、タイヤ軸方向に連続した一つの空気嚢7を設けている例を示したが、本発明では、空気嚢7をタイヤ軸方向に分割して複数設けるようにしてもよい。図5に空気嚢7をタイヤ軸方向に2分割した例、および3分割した例を示す。また、図6に、これらの非空気圧タイヤにおける空気嚢の空気圧、接地長、接地形状を示す。なお、図6は、一般タイヤ155/55R14相当サイズの例である。
<Other embodiments>
In the above-described embodiment, an example in which one air sac 7 continuous in the tire axial direction is provided, but in the present invention, a plurality of air sac 7 may be provided by being divided in the tire axial direction. FIG. 5 shows an example in which the air bag 7 is divided into two in the tire axial direction and an example in which the air bag 7 is divided into three. FIG. 6 shows the air pressure, contact length, and contact shape of the air sac in these non-pneumatic tires. FIG. 6 is an example of a size equivalent to a general tire 155 / 55R14.

図5のように、空気嚢7をタイヤ軸方向に複数個に分割し、各々の空気嚢の空気圧を変えることで、接地形状をコントロール可能となる。すなわち、図5(a)のように空気嚢7を2分割し、それぞれの空気圧を調節することで、車両キャンバに応じ、イン側、アウト側の接地長比を変え、接地形状を非対称とすることができる。これにより、偏摩耗の低減、運動性能の向上を図ることができる。また、図5(b)のように空気嚢7を3分割し、それぞれの空気圧を調節することで、センター側の接地長をイン側およびアウト側の接地長よりも長くし、接地形状をラウンド状とすることができる。これにより、運動性能の向上、排水性の向上を図ることができる。さらに、空気嚢7をタイヤ軸方向に複数個に分割することで、パンクのリスクを軽減させることができるというメリットもある。   As shown in FIG. 5, by dividing the air sac 7 into a plurality in the tire axial direction and changing the air pressure of each air sac, the ground contact shape can be controlled. That is, as shown in FIG. 5 (a), the air sac 7 is divided into two parts and the respective air pressures are adjusted to change the contact length ratio between the in and out sides according to the vehicle camber, thereby making the contact shape asymmetric. be able to. Thereby, it is possible to reduce uneven wear and improve exercise performance. In addition, as shown in FIG. 5B, the air sac 7 is divided into three parts, and the ground contact length on the center side is made longer than the contact length on the in and out sides by adjusting the respective air pressure, and the ground contact shape is rounded. Can be used. Thereby, improvement of exercise performance and improvement of drainage can be aimed at. Furthermore, there is an advantage that the risk of puncture can be reduced by dividing the air sac 7 into a plurality in the tire axial direction.

前述の実施形態では、中間環状部2を1つだけ設ける例を示したが、本発明では、中間環状部2を複数設けることも可能である。これにより内側環状部1の内径をより小さくすることが可能である。   In the above-described embodiment, an example in which only one intermediate annular portion 2 is provided has been described. However, in the present invention, a plurality of intermediate annular portions 2 may be provided. Thereby, it is possible to make the inner diameter of the inner annular portion 1 smaller.

支持構造体SSの形状としては、図1のものに限定されない。図7に、支持構造体SSの他の実施形態を示す。図7(a)の例では、内側連結部4および外側連結部5が、正面視断面において、タイヤ径方向に連続して延設されている。   The shape of the support structure SS is not limited to that shown in FIG. FIG. 7 shows another embodiment of the support structure SS. In the example of Fig.7 (a), the inner side connection part 4 and the outer side connection part 5 are continuously extended in the tire radial direction in the front view cross section.

図7(b)の例では、内側連結部4が40個、外側連結部5が80個設けられている。内側連結部4の数よりも外側連結部5の数が多くすることで、隣り合う外側連結部5の間隔が狭くなり、外側連結部5間での接地部のバックリングを抑制することができる。また、内側連結部4は、タイヤ径方向に延設されているが、隣接する2本の外側連結部5は、タイヤ径方向に対して互いに反対方向に傾斜しており、内側連結部4と2本の外側連結部5とがタイヤ軸方向から見てY字状に配置されている。外側連結部5と中間環状部2との結合部と、内側連結部4と内側環状部2との結合部とが近接することで、外側連結部5のたわみを中間環状部2に負担させることができる。さらに、内側連結部4と中間環状部2との結合部と、外側連結部5と中間環状部2との結合部との間に隙間が設けられている。これにより、内側連結部4の圧縮力が外側連結部5に直接伝達されにくくなり、外側連結部5のひずみが大きくなることを防ぐことができる。さらに、外側連結部5と中間環状部2との結合部どうしの間に隙間を設けることで、この間の中間環状部2に内側連結部4と外側連結部5の張力を分担させることができる。   In the example of FIG. 7B, 40 inner connecting parts 4 and 80 outer connecting parts 5 are provided. By increasing the number of the outer coupling parts 5 more than the number of the inner coupling parts 4, the interval between the adjacent outer coupling parts 5 is narrowed, and the buckling of the grounding part between the outer coupling parts 5 can be suppressed. . Further, the inner connecting portion 4 extends in the tire radial direction, but the two adjacent outer connecting portions 5 are inclined in directions opposite to each other with respect to the tire radial direction. Two outer connecting portions 5 are arranged in a Y shape when viewed from the tire axial direction. By causing the coupling portion between the outer coupling portion 5 and the intermediate annular portion 2 and the coupling portion between the inner coupling portion 4 and the inner annular portion 2 to approach each other, the intermediate annular portion 2 is subjected to the deflection of the outer coupling portion 5. Can do. Further, a gap is provided between the coupling portion between the inner coupling portion 4 and the intermediate annular portion 2 and the coupling portion between the outer coupling portion 5 and the intermediate annular portion 2. Thereby, it becomes difficult to transmit the compressive force of the inner side connection part 4 directly to the outer side connection part 5, and it can prevent that the distortion | strain of the outer side connection part 5 becomes large. Furthermore, by providing a gap between the coupling portions between the outer connecting portion 5 and the intermediate annular portion 2, the intermediate annular portion 2 between them can share the tension of the inner connecting portion 4 and the outer connecting portion 5.

1 内側環状部
2 中間環状部
3 外側環状部
4 内側連結部
5 外側連結部
6 第1ベルト層
7 空気嚢
8 補強材
9 トレッド
10 第2ベルト層
11 ベルト補強層
71 外皮部
72 中空部
SS 支持構造体
T 非空気圧タイヤ
DESCRIPTION OF SYMBOLS 1 Inner ring part 2 Middle ring part 3 Outer ring part 4 Inner connection part 5 Outer connection part 6 1st belt layer 7 Air bag 8 Reinforcement material 9 Tread 10 2nd belt layer 11 Belt reinforcement layer 71 Outer skin part 72 Hollow part SS Support Structure T Non-pneumatic tire

Claims (9)

内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結し周方向に各々が独立する複数の連結部とを有し、車両からの荷重を支持する支持構造体と、
前記支持構造体の外側に設けられ、タイヤ軸方向に扁平なドーナツ形状をなす外皮部と、その外皮部の内方にて空気を充填可能に形成された中空部とを有する空気嚢と、を備える非空気圧タイヤ。
An inner annular portion, an outer annular portion concentrically provided on the outer side of the inner annular portion, and a plurality of connecting portions that connect the inner annular portion and the outer annular portion and are independent in the circumferential direction. A support structure for supporting a load from the vehicle;
An air sac having an outer skin part formed in a donut shape that is flat in the tire axial direction, and a hollow part formed inside the outer skin part so as to be able to be filled with air. Non-pneumatic tire provided.
前記外皮部は、前記中空部を取り囲むようにラジアル方向に延在してタイヤ周方向に並列されたコードを含む請求項1に記載の非空気圧タイヤ。   The non-pneumatic tire according to claim 1, wherein the outer skin portion includes a cord that extends in a radial direction so as to surround the hollow portion and is arranged in parallel in a tire circumferential direction. 前記支持構造体の外周面に隣接して配設され、タイヤ赤道線に対して傾斜した第1コードを含むベルトプライを内外に積層してなる第1ベルト層を備える請求項1又は2に記載の非空気圧タイヤ。   3. The first belt layer according to claim 1, further comprising a first belt layer that is disposed adjacent to an outer peripheral surface of the support structure and includes a belt ply including a first cord that is inclined with respect to the tire equator line. Non-pneumatic tire. 前記支持構造体の外周面に隣接して配設され、リング状の金属プレートからなる第1ベルト層を備える請求項1又は2に記載の非空気圧タイヤ。   3. The non-pneumatic tire according to claim 1, further comprising a first belt layer disposed adjacent to an outer peripheral surface of the support structure and made of a ring-shaped metal plate. 前記支持構造体の外周面に隣接して配設され、タイヤ周方向に沿って延びるコードの積層体からなる第1ベルト層を備える請求項1又は2に記載の非空気圧タイヤ。   3. The non-pneumatic tire according to claim 1, further comprising a first belt layer that is disposed adjacent to an outer peripheral surface of the support structure and includes a cord laminated body that extends along a tire circumferential direction. 前記支持構造体は、前記内側環状部の外側、かつ前記外側環状部の内側に同心円状に設けられた中間環状部を備える請求項1〜5のいずれかに記載の非空気圧タイヤ。   The non-pneumatic tire according to claim 1, wherein the support structure includes an intermediate annular portion provided concentrically outside the inner annular portion and inside the outer annular portion. 前記空気嚢の外周面に配設された補強材と、
前記補強材の外周側に配設されて接地面を構成するトレッドと、を備える請求項1〜6のいずれかに記載の非空気圧タイヤ。
A reinforcing member disposed on the outer peripheral surface of the air bag;
The non-pneumatic tire according to any one of claims 1 to 6, further comprising a tread disposed on an outer peripheral side of the reinforcing member and constituting a ground contact surface.
前記補強材は、タイヤ赤道線に対して傾斜した第2コードを含むベルトプライを内外に積層してなる第2ベルト層を備える請求項7に記載の非空気圧タイヤ。   The non-pneumatic tire according to claim 7, wherein the reinforcing member includes a second belt layer formed by laminating a belt ply including a second cord inclined with respect to the tire equator line inside and outside. 前記補強材は、タイヤ周方向に沿って延びるコードを含むベルト補強層を備える請求項7又は8に記載の非空気圧タイヤ。   The non-pneumatic tire according to claim 7 or 8, wherein the reinforcing member includes a belt reinforcing layer including a cord extending along a tire circumferential direction.
JP2010045458A 2010-03-02 2010-03-02 Non-pneumatic tire Active JP5314621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045458A JP5314621B2 (en) 2010-03-02 2010-03-02 Non-pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045458A JP5314621B2 (en) 2010-03-02 2010-03-02 Non-pneumatic tire

Publications (2)

Publication Number Publication Date
JP2011178308A true JP2011178308A (en) 2011-09-15
JP5314621B2 JP5314621B2 (en) 2013-10-16

Family

ID=44690295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045458A Active JP5314621B2 (en) 2010-03-02 2010-03-02 Non-pneumatic tire

Country Status (1)

Country Link
JP (1) JP5314621B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079037A (en) * 2011-10-05 2013-05-02 Toyo Tire & Rubber Co Ltd Non-pneumatic tire
CN103507571A (en) * 2012-06-27 2014-01-15 韩国轮胎株式会社 Airless tire
KR101356326B1 (en) * 2013-02-28 2014-01-29 한국타이어 주식회사 Non-pneumatic tire having reinforcing material of plate wire structure
WO2014036415A1 (en) * 2012-08-30 2014-03-06 Caterpillar Inc. Non-pneumatic tire
JP2015116868A (en) * 2013-12-17 2015-06-25 東洋ゴム工業株式会社 Non-pneumatic tire
WO2015194277A1 (en) * 2014-06-20 2015-12-23 住友ゴム工業株式会社 Air-less tire
JP2016113099A (en) * 2014-12-17 2016-06-23 東洋ゴム工業株式会社 Non-pneumatic tire
JP2016113104A (en) * 2014-12-17 2016-06-23 東洋ゴム工業株式会社 Non-pneumatic tire
WO2016152887A1 (en) * 2015-03-24 2016-09-29 株式会社ブリヂストン Non-pneumatic tire
US10406860B2 (en) 2014-12-03 2019-09-10 Bridgestone Americas Tire Operations, Llc Non-pneumatic tire
EP3798022A1 (en) * 2019-09-24 2021-03-31 Hankook Tire & Technology Co., Ltd Non-pneumatic tire with structural reinforcement member in tread part

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219403A (en) * 1987-03-06 1988-09-13 Sumitomo Rubber Ind Ltd Cushioned tire
US20060144488A1 (en) * 2005-01-04 2006-07-06 Vannan Frederick F Airless tire
WO2009016962A1 (en) * 2007-07-31 2009-02-05 Toyo Tire & Rubber Co., Ltd. Non-pneumatic tire, and its manufacturing method
JP2009035051A (en) * 2007-07-31 2009-02-19 Toyo Tire & Rubber Co Ltd Non-pneumatic pressure tire and its manufacturing process
WO2009033619A1 (en) * 2007-09-14 2009-03-19 Societe De Technologie Michelin Composite laminated product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219403A (en) * 1987-03-06 1988-09-13 Sumitomo Rubber Ind Ltd Cushioned tire
US20060144488A1 (en) * 2005-01-04 2006-07-06 Vannan Frederick F Airless tire
WO2009016962A1 (en) * 2007-07-31 2009-02-05 Toyo Tire & Rubber Co., Ltd. Non-pneumatic tire, and its manufacturing method
JP2009035051A (en) * 2007-07-31 2009-02-19 Toyo Tire & Rubber Co Ltd Non-pneumatic pressure tire and its manufacturing process
WO2009033619A1 (en) * 2007-09-14 2009-03-19 Societe De Technologie Michelin Composite laminated product

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079037A (en) * 2011-10-05 2013-05-02 Toyo Tire & Rubber Co Ltd Non-pneumatic tire
CN103507571A (en) * 2012-06-27 2014-01-15 韩国轮胎株式会社 Airless tire
JP2014008958A (en) * 2012-06-27 2014-01-20 Hankook Tire Co Ltd Airless tire
US9387726B2 (en) 2012-06-27 2016-07-12 Hankook Tire Co., Ltd. Airless tire
WO2014036415A1 (en) * 2012-08-30 2014-03-06 Caterpillar Inc. Non-pneumatic tire
US9333799B2 (en) 2013-02-28 2016-05-10 Hankook Tire Co., Ltd. Non-pneumatic tire with reinforcing member having plate wire structure
KR101356326B1 (en) * 2013-02-28 2014-01-29 한국타이어 주식회사 Non-pneumatic tire having reinforcing material of plate wire structure
JP2015116868A (en) * 2013-12-17 2015-06-25 東洋ゴム工業株式会社 Non-pneumatic tire
CN106457903A (en) * 2014-06-20 2017-02-22 住友橡胶工业株式会社 Air-less tire
JP2016007863A (en) * 2014-06-20 2016-01-18 住友ゴム工業株式会社 Airless tire
KR20170019382A (en) * 2014-06-20 2017-02-21 스미토모 고무 고교 가부시키가이샤 Air-less tire
WO2015194277A1 (en) * 2014-06-20 2015-12-23 住友ゴム工業株式会社 Air-less tire
US10300742B2 (en) 2014-06-20 2019-05-28 Sumitomo Rubber Industries, Ltd. Air-less tire
KR102352531B1 (en) * 2014-06-20 2022-01-19 스미토모 고무 코교 카부시키카이샤 Air-less tire
US10406860B2 (en) 2014-12-03 2019-09-10 Bridgestone Americas Tire Operations, Llc Non-pneumatic tire
JP2016113099A (en) * 2014-12-17 2016-06-23 東洋ゴム工業株式会社 Non-pneumatic tire
JP2016113104A (en) * 2014-12-17 2016-06-23 東洋ゴム工業株式会社 Non-pneumatic tire
WO2016152887A1 (en) * 2015-03-24 2016-09-29 株式会社ブリヂストン Non-pneumatic tire
JP2016179731A (en) * 2015-03-24 2016-10-13 株式会社ブリヂストン Non-pneumatic tire
EP3798022A1 (en) * 2019-09-24 2021-03-31 Hankook Tire & Technology Co., Ltd Non-pneumatic tire with structural reinforcement member in tread part

Also Published As

Publication number Publication date
JP5314621B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5314621B2 (en) Non-pneumatic tire
JP4530231B2 (en) Non-pneumatic tire
JP4674253B2 (en) Non-pneumatic tire
JP5436365B2 (en) Non-pneumatic tire
JP6092046B2 (en) Non-pneumatic tire
JP5225743B2 (en) Non-pneumatic tire
JP2010126070A (en) Non-pneumatic tire
JP5808048B2 (en) Non-pneumatic tire
JP2015039986A (en) Non-pneumatic tire
JP5432837B2 (en) Non-pneumatic tire
JP2011183894A (en) Non-pneumatic tire
JP5530258B2 (en) Non-pneumatic tire and manufacturing method thereof
JP5972149B2 (en) Non-pneumatic tire
JP5921364B2 (en) Non-pneumatic tire
JP5774905B2 (en) Non-pneumatic tire
JP5461303B2 (en) Non-pneumatic tire
JP6092045B2 (en) Non-pneumatic tire
JP2015116870A (en) Non-pneumatic tire
JP6180313B2 (en) Non-pneumatic tire
JP5543846B2 (en) Non-pneumatic tire
JP6076704B2 (en) Non-pneumatic tire
JP2013018462A (en) Non-pneumatic tire
JP2016199069A (en) Non-pneumatic tire
JP2016113104A (en) Non-pneumatic tire
JP5774406B2 (en) Non-pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130815

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250