JP2011172302A - Axial gap motor - Google Patents

Axial gap motor Download PDF

Info

Publication number
JP2011172302A
JP2011172302A JP2010030817A JP2010030817A JP2011172302A JP 2011172302 A JP2011172302 A JP 2011172302A JP 2010030817 A JP2010030817 A JP 2010030817A JP 2010030817 A JP2010030817 A JP 2010030817A JP 2011172302 A JP2011172302 A JP 2011172302A
Authority
JP
Japan
Prior art keywords
magnetic pole
stator
diameter side
core
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010030817A
Other languages
Japanese (ja)
Other versions
JP5483340B2 (en
Inventor
Tsutomu Michioka
力 道岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010030817A priority Critical patent/JP5483340B2/en
Publication of JP2011172302A publication Critical patent/JP2011172302A/en
Application granted granted Critical
Publication of JP5483340B2 publication Critical patent/JP5483340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an axial gap motor with a stator and a rotor formed by dust cores that is compact and light, can be manufactured easily, and produces a larger motor output. <P>SOLUTION: The stator 4 includes each stator core 5 of the dust core arranged circumferentially with a gap in a magnetically independent state, a magnetic pole 7 at an outside-diameter side is formed by each radial outside-diameter side portion on the front and rear of each stator core 5, and a magnetic pole 8 at an inside-diameter side is formed by a radial inside-diameter side portion. Further, a cassette coil 10 is attached to a yoke unit 9 between the magnetic poles 7, 8 of each stator core 5, and a pair of magnetic poles 11 on the front and rear of each stator core 5 is excited collectively, thus providing the new axial gap motor 1a that is compact and light, can be manufactured easily, and produces a larger motor output. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ステータの表裏の両面側にロータを配置したアキシャルギャップモータに関し、詳しくは、ステータの新規なコイル構造およびロータの新規な磁極構造を提供して小型、軽量、安価で、製造が容易な構成を実現する。   The present invention relates to an axial gap motor in which a rotor is disposed on both sides of a front and back of a stator. More specifically, the present invention provides a new coil structure of a stator and a new magnetic pole structure of a rotor, and is small, lightweight, inexpensive, and easy to manufacture. A simple configuration.

従来、アキシャルギャップモータには、ステータの表裏の両面それぞれに外径側の磁極と内径側の磁極とが形成する複数の磁極対を周方向に配列し、ステータの表裏の両面側にロータを対向するように配置したものがある(例えば、特許文献1(段落[0010]−[0015]、[0029]−[0032]、図1、図5等)参照)。   Conventionally, in an axial gap motor, a plurality of magnetic pole pairs formed by an outer diameter side magnetic pole and an inner diameter side magnetic pole are arranged in the circumferential direction on both the front and back surfaces of the stator, and the rotor is opposed to both the front and back surfaces of the stator. (See, for example, Patent Document 1 (paragraphs [0010]-[0015], [0029]-[0032], FIG. 1, FIG. 5, etc.)).

図14は特許文献1の図1に記載のこの種のアキシャルギャップモータ200を示し、(a)はそのステータ211から見たロータ212aの磁極面の平面図、(b)は(a)のB−B線に沿って切断したアキシャルギャップモータ200の断面図である。アキシャルギャップモータ200は、ステータ211と、その表裏の両面にギャップ(隙間)を設けて配置された一対のロータ212a、212bを備え、ロータ212a、212bは、モータ軸213に軸支されている。   FIG. 14 shows this type of axial gap motor 200 described in FIG. 1 of Patent Document 1, wherein (a) is a plan view of the magnetic pole surface of the rotor 212a viewed from the stator 211, and (b) is B in (a). It is sectional drawing of the axial gap motor 200 cut | disconnected along the -B line. The axial gap motor 200 includes a stator 211 and a pair of rotors 212a and 212b arranged with a gap (gap) between both surfaces of the stator 211, and the rotors 212a and 212b are supported by a motor shaft 213.

ステータ211は、各相のコイル(励磁コイル)214を巻回した複数の外径側コア(ステータコア)215が周方向に略等間隔に配置され、各外径側コア215の内側にコイル214を巻回した内径側コア(ステータコア)216が配置されている。すなわち、ステータ211は周方向の略等間隔の各相の磁極位置にコイル214を巻回した外径側コア215と内径側コア216が同心円状に接近して配置されている。そして、各相の磁極位置のコア215、216のコイル214は通電の電気角が180度異なり、例えばU相の+U(N極)、−U(S極)のように励磁されてそれぞれ磁極対を形成する。   In the stator 211, a plurality of outer-diameter cores (stator cores) 215 around which coils (excitation coils) 214 of respective phases are wound are arranged at substantially equal intervals in the circumferential direction, and the coils 214 are disposed inside the outer-diameter cores 215. A wound inner diameter side core (stator core) 216 is disposed. That is, in the stator 211, the outer diameter side core 215 and the inner diameter side core 216, in which the coil 214 is wound, are arranged concentrically in close proximity to the magnetic pole positions of each phase at substantially equal intervals in the circumferential direction. The coils 214 of the cores 215 and 216 at the magnetic pole positions of the respective phases are different in electrical angle of energization by 180 degrees, and are excited, for example, as U phase + U (N pole) and -U (S pole), respectively. Form.

なお、ロータ212a、212bは、ヨーク217a、217bと、磁極を形成するそれぞれ複数個の外側永久磁石218a、内側永久磁石218bを備え、それぞれ非磁性部材からなる隔壁部219により略4等分され、磁気的に隔離された4つの区画を有する。なお、ステータ211に対向する永久磁石218a、218bは、ステータ211のコア215、216に対応して配置され、周方向及び半径方向に異なる極性である。   The rotors 212a and 212b include yokes 217a and 217b and a plurality of outer permanent magnets 218a and inner permanent magnets 218b that form magnetic poles, respectively, and are divided into approximately four equal parts by a partition 219 made of a nonmagnetic member. It has four compartments that are magnetically isolated. The permanent magnets 218a and 218b facing the stator 211 are arranged corresponding to the cores 215 and 216 of the stator 211 and have different polarities in the circumferential direction and the radial direction.

そして、各相のコイル214の順次の通電により、例えば、図14(b)の磁路r、同図14(a)の磁路r2が形成されてロータ212a、212bが回転する。このとき、モータ軸213に直交する端面を通る磁路r2が短くなってモータ損失が減少する。   By sequentially energizing the coils 214 of each phase, for example, the magnetic path r in FIG. 14B and the magnetic path r2 in FIG. 14A are formed, and the rotors 212a and 212b rotate. At this time, the magnetic path r2 passing through the end surface orthogonal to the motor shaft 213 is shortened, and the motor loss is reduced.

図15は特許文献1の図5に記載の他の例のアキシャルギャップモータ250を示し、(a)はステータ246側から見たロータ212aの平面図、(b)は(a)のB−B線に沿う断面図である。   15 shows another example of the axial gap motor 250 described in FIG. 5 of Patent Document 1, wherein (a) is a plan view of the rotor 212a viewed from the stator 246 side, and (b) is a BB of (a). It is sectional drawing which follows a line.

図15に示すように、アキシャルギャップモータ250は、ステータ246の周方向の各磁極対を、それぞれ励磁用のコイル214を縦巻きした一つのコア247により形成している。その他の構成および作用は、図14のアキシャルギャップモータ200と同様である。   As shown in FIG. 15, in the axial gap motor 250, each magnetic pole pair in the circumferential direction of the stator 246 is formed by a single core 247 in which an exciting coil 214 is wound vertically. Other configurations and operations are the same as those of the axial gap motor 200 of FIG.

コア247は複数個(この例では4個)が周方向に略等間隔に配置され、各コア247の半径方向の中央部には、コイル214をモータ軸213方向に沿って縦巻きするための溝247aが形成されている。この溝247aに、縦方向(軸方向)にコイル214が巻回されている。また、各コア247の溝247aの部分以外の端部247bは、ロータ212a、212bの外径側永久磁石218a、内径側永久磁石218bに対向している。   A plurality of cores 247 (four in this example) are arranged at substantially equal intervals in the circumferential direction, and a coil 214 is vertically wound along the direction of the motor shaft 213 at the central portion in the radial direction of each core 247. A groove 247a is formed. A coil 214 is wound around the groove 247a in the vertical direction (axial direction). Further, the end 247b of each core 247 other than the groove 247a faces the outer diameter side permanent magnet 218a and the inner diameter side permanent magnet 218b of the rotors 212a and 212b.

アキシャルギャップモータ250は、ステータ246の各コア247において、ロータ212bの内径側永久磁石218bから、コア247を通ってロータ212aの外径側永久磁石218aへ向かい、ヨーク217bを通ってロータ212bの内径側永久磁石218bへ向かう磁路rと、回転子212aの内径側永久磁石218bから、コア247を通ってロータ212aの外径側永久磁石218aへ向かい、ヨーク217aを通ってロータ212aの内径側永久磁石218bへ向かう磁路rが形成されて回転する。   In each core 247 of the stator 246, the axial gap motor 250 moves from the inner diameter side permanent magnet 218b of the rotor 212b to the outer diameter side permanent magnet 218a of the rotor 212a through the core 247 and through the yoke 217b. From the magnetic path r toward the side permanent magnet 218b and the inner diameter side permanent magnet 218b of the rotor 212a through the core 247 to the outer diameter side permanent magnet 218a of the rotor 212a, through the yoke 217a, the inner diameter side permanent of the rotor 212a. A magnetic path r toward the magnet 218b is formed and rotates.

特開2007−236130号公報JP 2007-236130 A

図14に示した特許文献1の図1の構成のアキシャルギャップモータ200の場合、ステータ211の外径側、内径側のコア215、216の磁極部分にそれぞれ表裏の両面の磁極の励磁用のコイル214が巻かれているため、これらのコイル214の厚さ等に基づき、その分、各磁極の外径側、内径側および、磁極間の磁極面積が小さくなってモータ出力が小さくなる。しかも、ステータ211の外径側、内径側のコア215、216の磁極部分に個別にコイル214を巻く必要があるため、手間がかかり、製造コストが高くなる。また、多数のコイル214によって嵩張り、コイル質量も大きくなり、アキシャルギャップモータ200の体格や質量が大きくなる問題もある。   In the case of the axial gap motor 200 having the configuration shown in FIG. 1 of Patent Document 1 shown in FIG. 14, coils for exciting the magnetic poles on both the front and back sides of the magnetic pole portions of the cores 215 and 216 on the outer diameter side and inner diameter side of the stator 211. Since 214 is wound, based on the thickness of these coils 214 and the like, the outer diameter side, the inner diameter side of each magnetic pole and the magnetic pole area between the magnetic poles are reduced accordingly, and the motor output is reduced. Moreover, since it is necessary to individually wind the coil 214 around the magnetic pole portions of the cores 215 and 216 on the outer diameter side and inner diameter side of the stator 211, labor is required and the manufacturing cost increases. In addition, the coil 214 is bulky and has a large coil mass, and there is a problem that the physique and mass of the axial gap motor 200 are increased.

また、図15に示した特許文献1の図5の構成のアキシャルギャップモータ250の場合、ステータ246の励磁用のコイル214をステータ246の磁極面よりも後退した位置に巻回するため、その分、ステータ246がモータ軸方向に延長されて突き出る。そのため、ステータ24の体積と質量が大きくなる。しかも、コイル214はステータ246の各コア247に巻き付けなければならず、具体的には、各コア247を巻線機スピンドルに取り付けて回転し、各コア247にコイル214を巻き付ける必要がある。そのため、手間がかかり、製造コストが高くなる。さらに、アキシャルギャップモータ250も一般的なアキシャルギャップモータと同様に磁束の方向が複雑になるため、各コア247は磁束を通す方向が限定されない圧粉磁心により形成することが好ましいが、圧粉磁心は機械的な強度が弱く、前記巻線機スピンドルに取り付けたりする作業工程中に壊れ易い。そのため、アキシャルギャップモータ250を容易に製造できない問題もある。   Further, in the case of the axial gap motor 250 having the configuration shown in FIG. 5 of Patent Document 1 shown in FIG. 15, the exciting coil 214 of the stator 246 is wound at a position retracted from the magnetic pole surface of the stator 246. The stator 246 extends in the motor axial direction and protrudes. Therefore, the volume and mass of the stator 24 are increased. Moreover, the coil 214 must be wound around each core 247 of the stator 246. Specifically, each core 247 needs to be attached to the winding machine spindle and rotated, and the coil 214 needs to be wound around each core 247. Therefore, it takes time and manufacturing costs are increased. Further, the axial gap motor 250 has a complicated magnetic flux direction as in the case of a general axial gap motor. Therefore, each core 247 is preferably formed of a dust core in which the direction of passing the magnetic flux is not limited. Is weak in mechanical strength and easily broken during the work process of attaching to the winding machine spindle. Therefore, there is a problem that the axial gap motor 250 cannot be easily manufactured.

なお、アキシャルギャップモータ200、250において、磁極に重量のある永久磁石を用いたロータ212a、212bは、遠心力などに耐えるための機械的構造でなければならないが、特許文献1にはそのための構成は示されていない。   In the axial gap motors 200 and 250, the rotors 212a and 212b using heavy permanent magnets as the magnetic poles must have a mechanical structure that can withstand centrifugal force. Is not shown.

そして、ステータの表裏の両面側にロータを配置したこの種のアキシャルギャップモータにおいては、極力、小型、軽量で製造し易い構成により、より大きなモータ出力が得られるようにすることが望まれている。   In this type of axial gap motor in which the rotors are arranged on both the front and back sides of the stator, it is desired to obtain a larger motor output with a configuration that is as small and light as possible and easy to manufacture. .

本発明は、圧粉磁心を用いて形成されるアキシャルギャップモータを、小型、軽量で製造し易く、より大きなモータ出力が得られるようにすることを目的とする。   An object of the present invention is to make an axial gap motor formed using a dust core small, light and easy to manufacture, and to obtain a larger motor output.

上記した目的を達成するために、本発明のアキシャルギャップモータは、モータ軸方向の表裏の両面それぞれに外径側の磁極と内径側の磁極とが形成する複数の磁極対を周方向に配列したステータと、前記ステータの表裏の両面に対向して配置されたロータとを備えたアキシャルギャップモータであって、前記ステータは、圧粉磁心で形成された楔形の複数のステータコアを、隙間を設けて磁気的に独立した状態で周方向に配設して形成され、前記各ステータコアの表裏の両面それぞれの半径方向外径側部分が前記外径側の磁極を形成し、前記各ステータコアの表裏の両面それぞれの半径方向内径側部分が前記内径側の磁極を形成し、前記各ステータコアの前記外径側の磁極と前記内径側の磁極との間のヨーク部に、表裏の両面の前記磁極対を一括して励磁するカセットコイルが装着されていることを特徴としている(請求項1)。   In order to achieve the above object, the axial gap motor of the present invention has a plurality of magnetic pole pairs formed by an outer diameter side magnetic pole and an inner diameter side magnetic pole arranged in the circumferential direction on both front and back surfaces in the motor axial direction. An axial gap motor including a stator and a rotor disposed opposite to both the front and back surfaces of the stator, wherein the stator is provided with a plurality of wedge-shaped stator cores formed of dust cores with gaps therebetween. It is formed by being arranged in the circumferential direction in a magnetically independent state, the radially outer diameter side portions of the front and back surfaces of each stator core form the outer diameter side magnetic pole, and both front and back surfaces of each stator core Each radially inner diameter portion forms the inner diameter side magnetic pole, and the pair of magnetic poles on both the front and back sides are formed on the yoke portion between the outer diameter side magnetic pole and the inner diameter side magnetic pole of each stator core. Cassette coil for exciting collectively is characterized in that it is mounted (claim 1).

また、本発明のアキシャルギャップモータは、前記各ステータコアが、前記外径側の磁極が前記内径側の磁極よりモータ軸方向に長く形成されていることを特徴としている(請求項2)。   The axial gap motor of the present invention is characterized in that each stator core is formed such that the outer diameter side magnetic pole is longer in the motor axial direction than the inner diameter side magnetic pole.

また、本発明のアキシャルギャップモータは、前記各ステータコアが、一方の片面コアと他方の片面コアとを、磁極間隔の調節プレートを挟んで背中合せに接合して形成されていること特徴としている(請求項3)。   The axial gap motor of the present invention is characterized in that each stator core is formed by joining one single-sided core and the other single-sided core back to back with an adjustment plate for the magnetic pole interval interposed therebetween (claims). Item 3).

また、本発明のアキシャルギャップモータは、前記ステータの表裏の両面それぞれに環状の界磁コイルが配置されていることを特徴としている(請求項4)。   The axial gap motor of the present invention is characterized in that annular field coils are arranged on both the front and back surfaces of the stator (claim 4).

また、本発明のアキシャルギャップモータは、各ステータの表裏の両面それぞれの各磁極対は、周方向に順に各駆動相の磁極対を形成し、前記外径側の磁極と前記内径側の磁極の極性は、周方向に順次に配置された駆動相の相数の磁極対群毎に逆になり、前記ステータの表裏の両面の前記各磁極対に界磁を与える複数の環状の界磁コイルを備え、前記両面の界磁コイルは、前記磁極対群の磁極対毎に交差して相互に逆に前記ステータの表面から裏面、その逆に入れ替わるように、前記ステータに配設されることを特徴としている(請求項5)。   Further, in the axial gap motor of the present invention, each pair of magnetic poles on both the front and back surfaces of each stator forms a pair of magnetic poles in each drive phase in the circumferential direction, and the outer diameter side magnetic pole and the inner diameter side magnetic pole The polarity is reversed for each pair of magnetic pole pairs of the number of phases of the drive phase sequentially arranged in the circumferential direction, and a plurality of annular field coils for applying a magnetic field to each of the magnetic pole pairs on both sides of the stator The double-sided field coils are arranged in the stator so as to cross each pole pair of the group of magnetic pole pairs and to be reversed from each other to reverse from the front surface to the back surface of the stator. (Claim 5).

さらに、本発明のアキシャルギャップモータは、前記ステータの表裏の両面に対向して配置された前記ロータが、周方向に配設されて外径側の磁極を形成する圧粉磁心の楔形の外径側ロータコアと、周方向に配設されて内径側の磁極を形成する圧粉磁心の楔形の内径側ロータコアを、それぞれの外周側に非磁性の外周リングを嵌め付けて個別に保持し、前記両ロータコアを、モータ軸方向に重ね合わせ、前記両ロータコアの内周側に共通リングを嵌めて組み付けた構成であることを特徴としている(請求項6)。   Further, the axial gap motor of the present invention is a wedge-shaped outer diameter of a dust core in which the rotor disposed opposite to both the front and back surfaces of the stator is disposed in the circumferential direction to form a magnetic pole on the outer diameter side. And a wedge-shaped inner rotor core of a dust core that is disposed in the circumferential direction to form a magnetic pole on the inner diameter side is individually held by fitting a non-magnetic outer ring on each outer peripheral side. The rotor core is superposed in the motor axial direction, and a common ring is fitted on the inner peripheral side of the two rotor cores to be assembled (Claim 6).

請求項1に係る本発明のアキシャルギャップモータの場合、ステータの表裏の両面にロータを配置したこの種のアキシャルギャップモータにおいて、ステータは隙間を設けて磁気的に独立した状態で周方向に配設された圧粉磁心の各ステータコアを備える。また、各ステータコアは、表裏の両面それぞれの半径方向外径側部分が外径側の磁極を形成し、半径方向内径側部分が内径側の磁極を形成する。そして、各ステータコアの外径側の磁極と内径側の磁極との間のヨーク部に装着されたカセットコイルにより、各ステータコアは表裏の両面の磁極対が一括して励磁される。   In the case of the axial gap motor of the present invention according to claim 1, in this type of axial gap motor in which the rotor is disposed on both the front and back surfaces of the stator, the stator is disposed in the circumferential direction in a magnetically independent state with a gap. Each of the stator cores of the powdered magnetic core is provided. Further, in each stator core, the radially outer diameter side portions on both the front and back surfaces form an outer diameter side magnetic pole, and the radial inner diameter side portion forms an inner diameter side magnetic pole. Each stator core is energized with a pair of magnetic poles on both the front and back surfaces by a cassette coil mounted on the yoke portion between the outer diameter side magnetic pole and the inner diameter side magnetic pole of each stator core.

この場合、各ステータコアの表裏の両面それぞれの磁極毎あるいは磁極対毎にコイルを集中巻きしなくてよく、ステータのコイルの個数およびコイル質量が少なくなる。しかも、ステータコア毎に1個のカセットコイルを装着する構成であり、前記したように各ステータコアを巻線機スピンドルに取り付けて回転し、各ステータコア247の表裏の両面の磁極にコイルを巻き付ける等する必要がなく、手間がかからず、製造コストが安価になる。さらに、機械的な強度が弱い圧粉磁心が作業中に壊れる可能性がほとんどなく、アキシャルギャップモータを容易に製造できる。また、ステータの各磁極対が、各ステータコアの半径方向外径側の磁極と内径側の磁極とによって形成されるので、磁極が半径方向に分割されていない場合に比して、各磁極対の磁極間のヨーク部分の磁束量が半減し、ステータおよびロータのヨーク磁路断面積は小さくなり、ステータが小型、軽量になる。   In this case, the coils need not be concentratedly wound for each magnetic pole or each magnetic pole pair on both the front and back surfaces of each stator core, and the number of coils and the coil mass of the stator are reduced. In addition, one cassette coil is attached to each stator core, and as described above, each stator core is attached to the winding machine spindle and rotated, and the coils need to be wound around the magnetic poles on both sides of each stator core 247. There is no problem, and the manufacturing cost is low. Furthermore, there is almost no possibility that the dust core having a low mechanical strength is broken during the operation, and the axial gap motor can be easily manufactured. In addition, since each magnetic pole pair of the stator is formed by the magnetic pole on the radially outer diameter side and the magnetic pole on the inner diameter side of each stator core, the magnetic pole pair of each stator pair is compared with the case where the magnetic poles are not divided in the radial direction. The amount of magnetic flux in the yoke portion between the magnetic poles is halved, the yoke magnetic path cross-sectional area of the stator and the rotor is reduced, and the stator becomes smaller and lighter.

したがって、圧粉磁心を用いて形成されるステータの表裏の両面の各磁極対を、磁気的に独立した状態で周方向に配設された圧粉磁心の各ステータコアの表裏の両面の外径側の磁極と内径側の磁極とにより形成し、各ステータコアの表裏の両面の磁極対を、各ステータコアのヨーク部に装着した1個のカセットコイルにより一括して励磁してアキシャルギャップモータを形成することができ、圧粉磁心を用いて形成されるステータの新規な励磁構造を提供し、小型、軽量で製造し易く、より大きなモータ出力が得られる従来にないアキシャルギャップモータを提供できる。   Therefore, the outer diameter sides of both the front and back surfaces of each stator core of the dust core disposed in the circumferential direction in a magnetically independent manner, the magnetic pole pairs on both sides of the stator formed using the dust core. An axial gap motor is formed by exciting a pair of magnetic poles on the front and back surfaces of each stator core together with one cassette coil mounted on the yoke portion of each stator core. Therefore, it is possible to provide a novel excitation structure of a stator formed by using a dust core, and to provide an unprecedented axial gap motor that is small and lightweight, can be easily manufactured, and can obtain a larger motor output.

請求項2に係る本発明のアキシャルギャップモータの場合、各ステータコアは、外径側の磁極が内径側の磁極よりモータ軸方向に長く突き出ている。換言すれば、各ステータコアは、内径側が外径側より薄く、カセットコイルは各ステータコアに内径側から差し込んで簡単に装着することができる。また、ステータの表裏の両面に対向するロータは、ステータとは逆に、遠心力の作用が大きくなる外周側が内周側より薄くなるので、ロータコア外周部にかかる遠心力は小さくなり、一層速い高速回転が可能になる。   In the case of the axial gap motor of the present invention according to claim 2, each stator core has a magnetic pole on the outer diameter side protruding longer in the motor axis direction than the magnetic pole on the inner diameter side. In other words, the inner diameter side of each stator core is thinner than the outer diameter side, and the cassette coil can be easily mounted by being inserted into each stator core from the inner diameter side. Also, the rotor facing both the front and back surfaces of the stator, contrary to the stator, has a thinner outer peripheral side than the inner peripheral side where the action of centrifugal force is greater, so the centrifugal force applied to the outer periphery of the rotor core is smaller and faster and faster. Rotation is possible.

請求項3に係る本発明のアキシャルギャップモータの場合、圧粉磁心で形成したコアの寸法誤差が比較的大きくなることを考慮し、各ステータコアが、一方の片面コアと他方の片面コアとを、磁極間隔の調節プレートを挟んで背中合せに接合して形成される。このとき、周方向に配列された各ステータコアの表裏の両面の磁極面の前記寸法誤差によるばらつきを解消して精度の高い平面度を保つように、磁極間隔の調節プレートとして、適切な厚み、傾斜の楔形のプレートを選定し、ステータとロータとのモータ軸方向の磁極間隔を調節し、ステータの両面の磁極面を精度よく平面にすることができる。   In the case of the axial gap motor of the present invention according to claim 3, each stator core includes one single-sided core and the other single-sided core in consideration of the relatively large dimensional error of the core formed of the dust core. It is formed by joining back to back with an adjustment plate for the magnetic pole interval. At this time, an appropriate thickness and inclination as a magnetic pole spacing adjustment plate so as to eliminate the variation due to the dimensional error of the magnetic pole surfaces on both the front and back sides of each stator core arranged in the circumferential direction and to maintain high accuracy flatness. The wedge-shaped plate can be selected and the magnetic pole spacing in the motor axial direction between the stator and the rotor can be adjusted, so that the magnetic pole surfaces on both sides of the stator can be made flat with high accuracy.

請求項4に係る本発明のアキシャルギャップモータの場合、製作が容易な環状の界磁コイルによりステータの表裏の両面の磁束を増加してトルクアップを図り、モータ出力を向上できる。   In the case of the axial gap motor of the present invention according to claim 4, it is possible to increase the torque by increasing the magnetic fluxes on both the front and back sides of the stator by the annular field coil that is easy to manufacture, thereby improving the motor output.

請求項5に係る本発明のアキシャルギャップモータの場合、各ステータの表裏の両面それぞれの各磁極対は、例えばU、V、Wの3相駆動の場合、周方向にU、V、W、U、VWの順に磁極対を形成し、しかも、それらの磁極対の外径側の磁極と内径側の磁極の極性は、U、V、Wの一組の磁極対群毎に逆になる。さらにそれに合せて、複数の環状の界磁コイルが、U、V、Wの一組の磁極対群毎に交差して相互に逆にステータの表面から裏面、その逆に入れ替わるようにしてステータに配設されるので、表裏面の界磁コイルによってステータの表裏の両面の各磁極に磁極の励磁を強める界磁を与え、トルクアップを図ってモータ出力を向上できる。また、U、V、Wの一組の磁極対の単位で磁極対の極性方向が逆になるので、両界磁コイルが交差して表裏を往復する個所(回数)は少なく、界磁コイルによる質量増加を防止できる。なお、U、V、Wの一組の磁極対の単位で磁極対の極性方向を逆にするのは、各カセットコイルの渡り線による接続を簡単にするためである。   In the case of the axial gap motor of the present invention according to claim 5, each magnetic pole pair on both the front and back surfaces of each stator is, for example, U, V, W, U in the circumferential direction in the case of U, V, W three-phase driving. , VW are formed in the order of VW, and the polarities of the magnetic poles on the outer diameter side and the inner diameter side of these magnetic pole pairs are reversed for each set of magnetic pole pairs of U, V, and W. Further, in accordance with this, a plurality of annular field coils intersect with each other of a pair of magnetic pole pairs of U, V, and W so that they are reversed from each other and switched from the front surface to the back surface, and vice versa. Since the magnetic field coils are provided on the front and back surfaces of the stator, the field magnets for increasing the excitation of the magnetic poles are applied to the magnetic poles on the front and back surfaces of the stator, thereby increasing the torque and improving the motor output. In addition, since the polarity direction of the magnetic pole pair is reversed in units of a pair of magnetic pole pairs of U, V, and W, there are few places (number of times) in which both field coils cross and reciprocate the front and back, and the field coil Increase in mass can be prevented. The reason why the polarity direction of the magnetic pole pair is reversed in units of a pair of magnetic pole pairs of U, V, and W is to simplify the connection of the cassette coils by the jumper wires.

請求項6に係る本発明のアキシャルギャップモータの場合、ステータに対向する圧粉磁心のロータが、外径側ロータコアと内径側ロータコアとに分けて形成され、それらのロータコアの外周側が、ロータのコアどうしを磁気的に独立させるように、それぞれ非磁性体の外周リングで個別に環状に保持され、さらに、両ロータコアはモータ軸方向に重ね合わせて内周側が共通リングで保持される。   In the case of the axial gap motor of the present invention according to claim 6, the rotor of the dust core facing the stator is divided into an outer diameter side rotor core and an inner diameter side rotor core, and the outer peripheral side of these rotor cores is the core of the rotor In order to make the two magnetically independent, each is individually held in an annular shape by a non-magnetic outer ring, and both rotor cores are overlapped in the motor shaft direction and held on the inner ring side by a common ring.

そして、圧粉磁心を圧縮してモータ軸方向の長さ(高さ)が異なる磁極部分とヨーク部分とを有するロータを一体成形しようとすると、とくに高さのある内径側の磁極は圧縮成形時に金型の側面に横方向の力を受けたパンチが当たって金型が損傷し易く、また、成形したコアの圧縮密度もばらつくが、外径側ロータコアと内径側ロータコアとを別個に形成して重ね、内径側の磁極を形成すると、金型が損傷を受けにくくして形成することができ、圧縮密度も均一になり、遠心力を受けるロータを精度よく形成してモータ性能を向上できる。しかも、内周側の共通リングに金属等を使用すれば、圧入等によって簡単に共通リングを嵌めて両ロータコアを一体化して保持することができる。   When a rotor having a magnetic pole portion and a yoke portion having different lengths (heights) in the motor axial direction by compressing the powder magnetic core is integrally formed, the magnetic pole on the inner diameter side, which is particularly high, is formed during compression molding. The punch that receives lateral force hits the side of the mold and the mold is easily damaged, and the compression density of the molded core varies, but the outer and inner rotor cores are formed separately. When the magnetic poles on the inner diameter side are formed repeatedly, the mold can be formed less easily damaged, the compression density becomes uniform, and the rotor receiving the centrifugal force can be accurately formed to improve the motor performance. In addition, if a metal or the like is used for the common ring on the inner peripheral side, the common ring can be easily fitted by press fitting or the like, so that both rotor cores can be integrated and held.

本発明の第1の実施形態のアキシャルギャップモータの断面図である。It is sectional drawing of the axial gap motor of the 1st Embodiment of this invention. (a)、(b)は図1のステータ、ロータの磁極面側の正面図である。(A), (b) is a front view by the side of the magnetic pole surface of the stator of FIG. 1, and a rotor. 図1のステータの磁極面側の拡大した正面図である。FIG. 2 is an enlarged front view of the stator of FIG. 1 on the magnetic pole surface side. (a)、(b)は図3のステータのステータコアの斜視図、その形成説明図である。(A), (b) is a perspective view of the stator core of the stator of FIG. 3, and its formation explanatory drawing. 本発明の第2の実施形態のステータの磁極面側の正面図である。It is a front view by the side of the magnetic pole surface of the stator of the 2nd Embodiment of this invention. 図5のステータの界磁コイルの説明図である。It is explanatory drawing of the field coil of the stator of FIG. 本発明の第3の実施形態のアキシャルギャップモータの断面図である。It is sectional drawing of the axial gap motor of the 3rd Embodiment of this invention. (a)、(b)は図7のステータ、ロータの磁極面側の正面図である。(A), (b) is a front view by the side of the magnetic pole surface of the stator of FIG. 7, and a rotor. 図7のステータの磁極面側の拡大した正面図である。FIG. 8 is an enlarged front view of the stator of FIG. 7 on the magnetic pole surface side. 図7のステータの界磁コイルの説明図である。It is explanatory drawing of the field coil of the stator of FIG. (a)、(b)は本発明の第4の実施形態のロータの斜視図、その磁束の説明図である。(A), (b) is the perspective view of the rotor of the 4th Embodiment of this invention, and explanatory drawing of the magnetic flux. 図11(a)のロータの組み付けを説明する分解斜視図である。It is a disassembled perspective view explaining the assembly | attachment of the rotor of Fig.11 (a). 図11(a)のロータの一部の分解した状態の斜視図である。FIG. 12 is a perspective view of a part of the rotor of FIG. (a)、(b)は従来の一例のロータの磁極面側の平面図、そのB−B線で切断したモータ全体の断面図である。(A), (b) is a top view by the side of the magnetic pole surface of the rotor of a conventional example, and sectional drawing of the whole motor cut | disconnected by the BB line. (a)、(b)は従来の他の例のロータの磁極面側の平面図、そのB−B線で切断したモータ全体の断面図である。(A), (b) is the top view by the side of the magnetic pole surface of the rotor of the other conventional example, and sectional drawing of the whole motor cut | disconnected by the BB line.

つぎに、本発明をより詳細に説明するため、実施形態について、図1〜図13を参照して詳述する。なお、それらの図面においては、モータ軸等は適宜省略している。   Next, in order to describe the present invention in more detail, embodiments will be described in detail with reference to FIGS. In these drawings, the motor shaft and the like are omitted as appropriate.

(第1の実施形態)
第1の実施形態について、図1〜図4を参照して説明する。
(First embodiment)
A first embodiment will be described with reference to FIGS.

図1は本実施形態のアキシャルギャップモータ1aを示し、アキシャルギャップモータ1aは、モータ軸2の出力側(紙面左側)から順に、ロータ3a、ステータ4、ロータ3bを一定の隙間(ギャップ)を設けて磁極面が対向するように配設されている。なお、ロータ3a、3bはモータ軸2に軸支されて回転する。ステータ4はモータ軸2との間に隙間を有し固定されている。   FIG. 1 shows an axial gap motor 1a according to this embodiment. The axial gap motor 1a is provided with a certain gap (gap) between the rotor 3a, the stator 4, and the rotor 3b in order from the output side (left side of the paper) of the motor shaft 2. The magnetic pole faces are arranged so as to face each other. The rotors 3a and 3b are supported by the motor shaft 2 and rotate. The stator 4 is fixed with a gap between the stator 4 and the motor shaft 2.

図2(a)はステータ4を示し、ステータ4は、平面視円形であり、圧粉磁心で形成された楔形の複数(本実施形態の場合、U、V、Wの3相12極構成で駆動相一相当たりの後述する磁極対数を偶数としているので、12個)のステータコア5を、隙間を設けて磁気的に独立した状態で周方向に配設して形成されている。   FIG. 2A shows the stator 4. The stator 4 has a circular shape in plan view, and has a wedge-shaped plural (in this embodiment, U, V, W, three-phase, 12-pole configuration) formed of dust cores. Since the number of magnetic pole pairs to be described later per drive phase is an even number, 12 stator cores 5 are formed in the circumferential direction in a magnetically independent state with a gap.

各ステータコア5は非磁性体の外側ホルダ61と内側ホルダ62によって環状に保持されている。また、各ステータコア5の隙間は、本実施形態の場合は軽量化を図るために空間であるが、より堅牢に構成する場合は適当な非磁性体の樹脂等で埋めてもよい。   Each stator core 5 is annularly held by a nonmagnetic outer holder 61 and an inner holder 62. The gaps between the stator cores 5 are spaces for reducing the weight in the case of the present embodiment, but may be filled with an appropriate non-magnetic resin or the like when configured to be more robust.

各ステータコア5について、さらに説明すると、各ステータコア5は、表裏の両面それぞれのモータ軸方向(以下、軸方向という)に突出した半径方向外径側部分が外径側の磁極7を形成し、半径方向内径側部分が内径側の磁極8を形成する。そして、後述するカセットコイル10の通電励磁により、磁極7、8はいずれか一方がN極、他方がS極に励磁されて磁極対11を形成する。   Each stator core 5 will be further described. Each stator core 5 has a radially outer diameter side portion projecting in the motor axial direction (hereinafter referred to as the axial direction) on both the front and back surfaces to form a magnetic pole 7 having an outer diameter side. The inner diameter side portion of the direction forms the inner diameter side magnetic pole 8. Then, by energization excitation of the cassette coil 10 described later, one of the magnetic poles 7 and 8 is excited to the N pole and the other to the S pole to form the magnetic pole pair 11.

ところで、磁極7、8間の凹部が磁極7、8を半径方向に繋ぐヨーク部9であり、このヨーク部9に、各ステータコア5の両面の磁極対11を一括して励磁する集中巻のカセットコイル10が装着されている。   By the way, the concave portion between the magnetic poles 7 and 8 is a yoke portion 9 that connects the magnetic poles 7 and 8 in the radial direction, and a concentrated winding cassette that excites the magnetic pole pairs 11 on both surfaces of each stator core 5 collectively to the yoke portion 9. A coil 10 is attached.

この場合、(1)カセットコイル10によりステータコア5の表裏の両面の磁極7、8の磁極対11を一括して励磁するため、励磁コイルの個数および質量が低減される。(2)磁極対11の磁極7、8が一つのステータコア5の外径側と内径側に分割して配置されることにより、磁極対の磁極をそれぞれ1個のステータコアで形成する周知の一般的なアキシャルギャップモータの場合より、ロータ3a、3bおよびステータ4のヨーク部分を通る磁束が半減する。そのため、ステータコア5のヨーク部9およびロータ3a、3bの後述するロータコアのヨーク部を薄くすることができ、ステータコア5およびロータコアが軽量になる。(3)カセットコイル10の内側にステータコア5を差し込んでカセットコイル10をステータコア5に装着するので、組み付けが容易である。さらに、各ステータコア5において、外径側の磁極7は内径側の磁極8よりも軸方向に長くステータ3a、3bの方向に突出し、その結果、磁極対11は外径側が内径側よりも軸方向に短く(薄く)なっている。したがって、カセットコイル10は各ステータコア5に内周部側から差し込んで簡単に装着することができ、組み付けが一層簡単である。また、カセットコイル10は、ジグを用いて空芯コイルを製作する要領でステータコア5と別個に形成され、その後にステータコア5に装着される。この場合、ステータコア5を巻線機スピンドルに取り付けてコイルを巻き付ける必要がなく、ステータコア5の圧粉磁心を作業中に壊したりすることがない。(4)各カセットコイル10が各ステータコア5の磁極面よりも軸方向に突出するので、各ステータコア5は、磁極面がカセットコイル10よりモータ軸方向に突出するように構成する場合より軽量になる。(5)各カセットコイル10が各ステータコア5の磁極面よりも軸方向に突出するので、ステータ4の磁極面の高さを低くでき、圧粉磁心の金型圧縮成形が容易になる利点がある。圧粉磁心は、高さの違いが大きい凹凸があると、金型での圧縮成形時にパンチが横方向の力を受けて金型が傷み易く、また、成形品の密度も圧縮個所毎にばらつき易くなるが、ステータ4の磁極面の高さを低くできるので、圧粉磁心を圧縮して各ステータコア5を歩留まりよく製造することができる。   In this case, (1) since the magnetic pole pairs 11 of the magnetic poles 7 and 8 on both the front and back surfaces of the stator core 5 are excited collectively by the cassette coil 10, the number and mass of the exciting coils are reduced. (2) The magnetic poles 7 and 8 of the magnetic pole pair 11 are divided and arranged on the outer diameter side and the inner diameter side of one stator core 5 so that each of the magnetic poles of the magnetic pole pair is formed by one stator core. The magnetic flux passing through the yoke portions of the rotors 3a and 3b and the stator 4 is halved as compared with the case of an axial gap motor. Therefore, the yoke portion 9 of the stator core 5 and the yoke portion of the rotor core, which will be described later, of the rotors 3a and 3b can be thinned, and the stator core 5 and the rotor core are lightened. (3) Since the stator core 5 is inserted inside the cassette coil 10 and the cassette coil 10 is attached to the stator core 5, assembly is easy. Further, in each stator core 5, the outer diameter side magnetic pole 7 is longer in the axial direction than the inner diameter side magnetic pole 8 and protrudes in the direction of the stators 3 a and 3 b, so that the magnetic pole pair 11 has an outer diameter side in the axial direction more than the inner diameter side. It is short (thin). Therefore, the cassette coil 10 can be easily inserted by being inserted into each stator core 5 from the inner peripheral side, and the assembly is further simplified. Further, the cassette coil 10 is formed separately from the stator core 5 in the manner of manufacturing an air-core coil using a jig, and is then attached to the stator core 5. In this case, it is not necessary to attach the stator core 5 to the winding machine spindle and wind the coil, and the dust core of the stator core 5 is not broken during operation. (4) Since each cassette coil 10 protrudes in the axial direction from the magnetic pole surface of each stator core 5, each stator core 5 becomes lighter than the case where the magnetic pole surface is configured to protrude in the motor axial direction from the cassette coil 10. . (5) Since each cassette coil 10 protrudes in the axial direction from the magnetic pole face of each stator core 5, there is an advantage that the height of the magnetic pole face of the stator 4 can be reduced and the mold compression molding of the dust core becomes easy. . If there are irregularities with large differences in the height of the powder magnetic core, the punch is subject to lateral force during compression molding in the mold, and the mold tends to be damaged, and the density of the molded product varies from one compression site to another. Although it becomes easy, since the height of the magnetic pole surface of the stator 4 can be made low, each stator core 5 can be manufactured with a good yield by compressing the dust core.

ステータコア5およびカセットコイル10について、さらに具体的に説明する。   The stator core 5 and the cassette coil 10 will be described more specifically.

図3はステータ4の磁極面を拡大して示し、例えば図中の破線で囲んだステータコア5を抜き出して示すと、図4(a)に示すようになる。   FIG. 3 shows the magnetic pole surface of the stator 4 in an enlarged manner. For example, when the stator core 5 surrounded by a broken line in the figure is extracted and shown, FIG.

図4(a)はカセットコイル10が装着された状態のステータコア5を示し、ステータコア5は、1個のコア片で形成してもよいが、一般に圧粉磁心を圧縮加工して成形されるコアの誤差が比較的大きくなることを考慮し、本実施形態では、一方(表側)の片面コア51と他方(裏側)の片面コア52とを、磁極間隔の調節プレート12を挟んで背中合せに接合して形成される。片面コア51、52は、それぞれ表面側が磁極7、8およびヨーク部9の凹凸形状であり、背面側(貼り合わせ面側)が面一の平面である。   FIG. 4A shows the stator core 5 with the cassette coil 10 mounted thereon, and the stator core 5 may be formed of a single core piece, but is generally a core formed by compressing a dust core. In this embodiment, one (front side) single-sided core 51 and the other (back side) single-sided core 52 are joined back to back with the magnetic pole spacing adjustment plate 12 in between. Formed. As for the single-sided cores 51 and 52, the surface side is the uneven | corrugated shape of the magnetic poles 7 and 8 and the yoke part 9, respectively, and a back side (bonding surface side) is a flush plane.

図4(b)はステータコア5の組付け手順例を示し、丸で囲んだ数字「1」、「2」、「3」の順に従い、まず、片面コア51、52を背中合せに合せる。つぎに、規定の内径寸法で矩形状に形成されたカセットコイル10に背中合せの片面コア51、52を内周側から嵌入してカセットコイル10をヨーク部9に装着する。さらに、片面コア51、52の合わせ面間に、(片面コア51、52の厚み)+(調節プレート12の厚み)が前記規定の内径寸法に合う所定範囲の厚みになるように選定した適切な厚みの調節プレート12を挟み込み、ステータコア5を、片面コア51、52の間に調節プレート12を挟んだ形状に組付ける。これにより、(6)各ステータコア5を配設したステータ4の磁極面の平面度を確保し、アキシャルギャップモータ1のモータ特性のばらつきを低減することができる。(7)カセットコイル10は、軸方向に突出した磁極7、8の間のヨーク部9に保持されて、脱落することがない。   FIG. 4B shows an example of the assembly procedure of the stator core 5. First, the single-sided cores 51 and 52 are matched back to back in the order of the numbers “1”, “2”, and “3” circled. Next, back-to-back single-sided cores 51 and 52 are fitted into the cassette coil 10 formed in a rectangular shape with a specified inner diameter from the inner peripheral side, and the cassette coil 10 is mounted on the yoke portion 9. Further, between the mating surfaces of the single-sided cores 51 and 52, an appropriate thickness selected so that (thickness of the single-sided cores 51 and 52) + (thickness of the adjusting plate 12) is within a predetermined range that matches the prescribed inner diameter dimension. The thickness adjusting plate 12 is sandwiched, and the stator core 5 is assembled in a shape in which the adjusting plate 12 is sandwiched between the single-sided cores 51 and 52. Thereby, (6) the flatness of the magnetic pole surface of the stator 4 in which each stator core 5 is disposed can be ensured, and variations in motor characteristics of the axial gap motor 1 can be reduced. (7) The cassette coil 10 is held by the yoke portion 9 between the magnetic poles 7 and 8 protruding in the axial direction and does not fall off.

各ステータコア5に装着されたカセットコイル10は、例えば図2(a)の破線のU相配線路に示すように、同相のもの同士が各渡り線13やリード線14により直列に接続されてコイル群を構成し、各相のリード線14に接続された各相の一対の端子15u、15v、15wから給電される。また、図1に示すように、各ステータコア5は軸方向の中央部分が外周部、内周部とも切欠かれて窪んだ形状であり、この切り欠き部分を渡り線13やリード線14が通る。この場合、(8)コイル群の各カセットコイル10を渡り線13で繋ぐ構成であるので、例えば各カセットコイル10の両端を端子15u〜15wの位置まで引き出して配線する場合よりコイル結線個所数が少なく、製作が容易になる。(9)図1の破線矢印に示すように、磁束の磁路は、ステータ4と、その表裏の対向するロータ3a、3bそれぞれとの間に形成され、各ステータコア5の軸方向の中央部(略調節プレート12の位置の近傍部分)は磁束密度が低い個所になる。そして、この磁束密度が低い個所に前記切欠き部が形成されるので、磁束に影響を与えることなく、ステータコア5を軽量化できる利点もある。(10)渡り線13を前記コア切欠き部に収容することにより、ステータ4の体格の配線による増加を防止できる。   As shown in the broken line U-phase wiring path in FIG. 2A, for example, the cassette coils 10 mounted on the stator cores 5 are connected in series by the connecting wires 13 and the lead wires 14 to form a coil group. Power is supplied from a pair of terminals 15u, 15v, 15w of each phase connected to the lead wire 14 of each phase. As shown in FIG. 1, each stator core 5 has a shape in which the central portion in the axial direction is cut out and recessed in both the outer peripheral portion and the inner peripheral portion, and the crossover wire 13 and the lead wire 14 pass through the cutout portion. In this case, since (8) each cassette coil 10 of the coil group is connected by the crossover wire 13, for example, the number of coil connection points is larger than the case where both ends of each cassette coil 10 are drawn and wired to the positions of the terminals 15u to 15w. There are few, and manufacture becomes easy. (9) As indicated by broken line arrows in FIG. 1, the magnetic path of the magnetic flux is formed between the stator 4 and the rotors 3a and 3b facing each other on the front and back sides. The portion in the vicinity of the position of the adjustment plate 12 is a portion where the magnetic flux density is low. And since the said notch part is formed in the location where this magnetic flux density is low, there also exists an advantage which can reduce the weight of the stator core 5 without affecting magnetic flux. (10) By accommodating the crossover wire 13 in the core notch, an increase in the size of the stator 4 due to wiring can be prevented.

つきに、ロータ3a、3bについて説明する。なお、ロータ3a、3bは同じ構成である。   Finally, the rotors 3a and 3b will be described. The rotors 3a and 3b have the same configuration.

図2(b)はロータ3aを示し、ロータ3aによってロータ3a、3bを説明する。   FIG. 2B shows the rotor 3a, and the rotors 3a and 3b will be described with reference to the rotor 3a.

ロータ3a、3bは例えば8極構成であり、それぞれモータ軸2に軸支される非磁性体の円板状のロータカバー16に、圧粉磁心で形成された楔形の8個のロータコア17を、隙間を設けて磁気的に独立した状態で周方向に配設して形成されている。なお、各ロータコア17の隙間は、本実施形態の場合は軽量化を図るために空間であるが、より堅牢に構成する場合は圧粉磁心や積層鋼板のヨークで各ロータコア17を繋ぐようにしてもよい。   The rotors 3a and 3b have, for example, an 8-pole configuration, and eight wedge-shaped rotor cores 17 formed of dust cores are provided on a non-magnetic disk-like rotor cover 16 that is supported by the motor shaft 2, respectively. It is formed by being provided in the circumferential direction in a magnetically independent state with a gap. In this embodiment, the gap between the rotor cores 17 is a space for reducing the weight. However, in the case of a more robust structure, the rotor cores 17 are connected by a dust core or a laminated steel sheet yoke. Also good.

各ロータコア17について、さらに説明すると、各ロータコア17は、ステータ4に対向する磁極面の半径方向外径側部分が外径側の磁極18を形成し、半径方向内径側部分が内径側の磁極19を形成する。各ロータコア17の磁極18、19が磁極対20を形成する。さらに、各ロータコア17は、磁極18、19間の凹部および左右の縁部がヨーク部21a、21b、21cを形成する。ヨーク部21aは磁極18、19を繋ぐものであり、モータ1aに組付けられると、ヨーク部21aの凹部にステータ4の各磁極対11の磁極面より軸方向に突出した各カセットコイル10が回転自在に嵌入するようになっている。また、ヨーク部21b、21cはロータ3a、3bのヨーク面積を広くするものである。なお、各ステータコア5の磁極対11のうち、外径側の磁極7が内径側の磁極8よりも軸方向に長いので、その逆に、各ロータコア17の磁極対20は、外径側の磁極18が内径側の磁極19よりも軸方向に短い。   The rotor cores 17 will be further described. In each rotor core 17, the radially outer diameter side portion of the magnetic pole surface facing the stator 4 forms an outer diameter side magnetic pole 18, and the radially inner diameter side portion is an inner diameter side magnetic pole 19. Form. The magnetic poles 18 and 19 of each rotor core 17 form a magnetic pole pair 20. Further, in each rotor core 17, the concave portion between the magnetic poles 18 and 19 and the left and right edge portions form yoke portions 21 a, 21 b and 21 c. The yoke portion 21a connects the magnetic poles 18 and 19, and when assembled to the motor 1a, each cassette coil 10 protruding in the axial direction from the magnetic pole surface of each magnetic pole pair 11 of the stator 4 rotates in the concave portion of the yoke portion 21a. It is designed to fit freely. The yoke portions 21b and 21c increase the yoke area of the rotors 3a and 3b. Of the magnetic pole pairs 11 of each stator core 5, the outer diameter side magnetic pole 7 is longer in the axial direction than the inner diameter side magnetic pole 8. 18 is shorter in the axial direction than the magnetic pole 19 on the inner diameter side.

そして、(11)各ロータコア17の磁極対20の外径側の磁極18が内径側の磁極19よりも軸方向に短いので、つぎの利点がある。すなわち、各ロータコア17の外径側の磁極18と、それより内径側のヨーク部20aや磁極19とでは、質量や質点位置が異なり、回転時の遠心力の大きさが異なる。一方、圧粉磁心はヤング率が比較的小さいので、遠心力を受けると比較的容易に歪みによる変位が生じる。そして、ロータコア17の遠心力による変位が外径側ほど大きくなり、引張り応力が大きくなってロータ3a、3bのコア破壊が発生し易くなる。しかしながら、アキシャルギャップモータ1aは遠心力が大きく作用する外径側の磁極18の部分が軸方向に短く軽量であるので、遠心力に強い。(12)各カセットコイル10の軸方向に突出した部分が、各ロータコア17の磁極18、19間のヨーク部(凹部)21aに回転自在に嵌入されるので、その分、アキシャルギャップモータ1aの体格や質量が低減される。なお、各ロータコア17の磁極面の高さ(軸方向の高さ)は、ヨーク部21a〜21cのヨーク面に対する磁気的凹凸を付ける高さであればよい。そして、ステータ4の磁極面を各カセットコイル10の突出面よりも後退し、各ロータコア17の磁極18、19間のヨーク部(凹部)21aに各カセットコイル10の突出部分が嵌入することにより、アキシャルギャップモータ1aは、前記したように、軸方向の長さ(体格)と質量とが低減される。なお、ロータ3a、3bのヨーク部分を磁極18、19の背面近傍にのみ形成し、ロータ3a、3bとステータ4の磁極非対向時のインダクタンスが十分に小さくできる場合には、ロータ3a、3bの磁極面の必要高さも緩和される。そこで、この場合には、圧粉磁心のステータコア5とロータコア17の両方の金型成形性を考慮して、ステータコア5、ロータコア17の磁極面の高さを決定することが好ましい。   (11) Since the magnetic pole 18 on the outer diameter side of the magnetic pole pair 20 of each rotor core 17 is shorter in the axial direction than the magnetic pole 19 on the inner diameter side, the following advantages are obtained. That is, the magnetic pole 18 on the outer diameter side of each rotor core 17 and the yoke portion 20a and the magnetic pole 19 on the inner diameter side thereof differ in mass and mass position, and the magnitude of centrifugal force during rotation differs. On the other hand, since the Young's modulus of the dust core is relatively small, displacement due to strain occurs relatively easily when subjected to centrifugal force. Then, the displacement of the rotor core 17 due to the centrifugal force increases toward the outer diameter side, the tensile stress increases, and the core breakage of the rotors 3a and 3b is likely to occur. However, the axial gap motor 1a is strong against centrifugal force because the portion of the magnetic pole 18 on the outer diameter side on which the centrifugal force acts is short and light in the axial direction. (12) Since the portion of each cassette coil 10 protruding in the axial direction is rotatably fitted into a yoke portion (concave portion) 21a between the magnetic poles 18 and 19 of each rotor core 17, the physique of the axial gap motor 1a accordingly. And mass is reduced. The height of the magnetic pole surface of each rotor core 17 (the height in the axial direction) may be a height that provides magnetic unevenness with respect to the yoke surfaces of the yoke portions 21a to 21c. Then, the magnetic pole surface of the stator 4 is retracted from the protruding surface of each cassette coil 10, and the protruding portion of each cassette coil 10 is fitted into the yoke portion (concave portion) 21a between the magnetic poles 18 and 19 of each rotor core 17. As described above, the axial gap motor 1a is reduced in axial length (physique) and mass. If the yoke portions of the rotors 3a and 3b are formed only in the vicinity of the back surfaces of the magnetic poles 18 and 19, and the inductance when the rotors 3a and 3b and the stator 4 are not opposed to the magnetic poles can be made sufficiently small, the rotors 3a and 3b The required height of the pole face is also reduced. Therefore, in this case, it is preferable to determine the heights of the magnetic pole surfaces of the stator core 5 and the rotor core 17 in consideration of the moldability of both the stator core 5 and the rotor core 17 of the dust core.

以上説明したように、アキシャルギャップモータ1aは、各ステータコア5の表裏の両面の磁極対11が一括して励磁されるので、それぞれの磁極毎あるいは磁極対毎にコイルを集中巻きしなくてよく、ステータ4の励磁用のコイルの個数およびコイル質量が少なくなる。しかも、ステータコア5毎に1個のカセットコイル10を装着して簡単に組み付けでき、手間がかからず、製造コストが安価になる。さらに、機械的な強度が弱い圧粉磁心が作業中に壊れる可能性がほとんどなく、アキシャルギャップモータ1bを容易に製造できる。また、ステータ4の各磁極対11が、各ステータコア5の外径側の磁極7と内径側の磁極8とによって形成されるので、磁極7、8を別個のコアによって形成する場合に比して、各磁極対11の磁極7、8間のヨーク部分9の磁束量が半減し、ステータ4の軸方向のヨーク厚が薄くなってステータ4が小型、軽量になる。   As described above, in the axial gap motor 1a, the magnetic pole pairs 11 on both the front and back surfaces of each stator core 5 are energized in a lump, so that it is not necessary to concentrate the coil for each magnetic pole or each magnetic pole pair. The number of coils for exciting the stator 4 and the coil mass are reduced. In addition, one cassette coil 10 can be attached to each stator core 5 and can be easily assembled, so that no labor is required and the manufacturing cost is low. Furthermore, there is almost no possibility that the dust core having a low mechanical strength is broken during the operation, and the axial gap motor 1b can be easily manufactured. Further, since each magnetic pole pair 11 of the stator 4 is formed by the magnetic pole 7 on the outer diameter side and the magnetic pole 8 on the inner diameter side of each stator core 5, compared to the case where the magnetic poles 7 and 8 are formed by separate cores. The amount of magnetic flux in the yoke portion 9 between the magnetic poles 7 and 8 of each magnetic pole pair 11 is halved, the yoke thickness in the axial direction of the stator 4 is reduced, and the stator 4 becomes smaller and lighter.

したがって、圧粉磁心を用いて形成されるステータ4の表裏の両面の各磁極対11を、磁気的に独立した状態で周方向に配設された圧粉磁心の各ステータコア5の表裏の両面の磁極7、8により形成し、各ステータコア5の表裏の両面の磁極対11を、各ステータコア5のヨーク部9に装着した1個のカセットコイル10により一括して励磁してアキシャルギャップモータ1aを形成することができ、圧粉磁心を用いて形成されるステータ4の新規な励磁構造を提供し、小型、軽量で製造し易く、より大きなモータ出力が得られる従来にないアキシャルギャップモータ1aを提供できる。   Accordingly, the magnetic pole pairs 11 on both the front and back surfaces of the stator 4 formed by using the dust core are made magnetically independent on both the front and back surfaces of each stator core 5 of the dust core disposed in the circumferential direction. An axial gap motor 1a is formed by exciting a pair of magnetic poles 11 formed on the front and back surfaces of each stator core 5 by a single cassette coil 10 mounted on a yoke portion 9 of each stator core 5 and formed by magnetic poles 7 and 8. It is possible to provide a novel exciting structure of the stator 4 formed by using a dust core, and to provide an unprecedented axial gap motor 1a that is small, lightweight, easy to manufacture, and capable of obtaining a larger motor output. .

また、各ステータコア5は、外径側の磁極7が内径側の磁極8より軸方向に長く突き出し、各ステータコア5は、内周部が外周部より薄く、カセットコイル10は各ステータコア5に内周部側から差し込んで簡単に装着することができる。また、ステータ4の表裏の両面に対向するロータ3a、3bは、ステータ4とは逆に、遠心力の作用が大きくなる外周側が内周側より薄くなり、遠心力に強くなって一層速い高速回転が可能になる。   Each stator core 5 has an outer diameter side magnetic pole 7 protruding longer in the axial direction than an inner diameter side magnetic pole 8. Each stator core 5 has an inner peripheral portion thinner than an outer peripheral portion, and the cassette coil 10 has an inner peripheral portion. Can be easily installed by inserting from the side. In contrast to the stator 4, the rotors 3a and 3b facing both the front and back surfaces of the stator 4 are thinner at the outer peripheral side where the action of centrifugal force is larger than the inner peripheral side, and are stronger against the centrifugal force and rotate at higher speed. Is possible.

つぎに、圧粉磁心で形成したコアの寸法誤差が比較的大きくなることを考慮し、各ステータコア5が、一方の片面コア51と他方の片面コア52とを、磁極間隔の調節プレート12を挟んで背中合せに接合して形成されるため、ステータ4の両面の磁極面を精度よく平面にすることができる。   Next, considering that the dimensional error of the core formed of the powder magnetic core is relatively large, each stator core 5 sandwiches one single-sided core 51 and the other single-sided core 52 with a magnetic pole interval adjustment plate 12 interposed therebetween. Therefore, the magnetic pole surfaces on both sides of the stator 4 can be made flat with high accuracy.

(第2の実施形態)
第2の実施形態について、図1および図5、図6を参照して説明する。
(Second Embodiment)
A second embodiment will be described with reference to FIGS. 1, 5, and 6.

図5は本実施形態のステータ4の磁極面を示し、本実施形態においては、各カセットコイル10の渡り線13による繋ぎ方および通電方向を適当に設定し、図1のステータ4の各ステータコア5の表裏の両面の外径側の磁極7を全てN極、内径側の磁極8を全てS極にする。なお、磁極7、8の励磁磁極性は逆向きであってもよく、要するに、磁極7は全て同じ極性に励磁し、磁極8も全て磁極7の極性とは逆の同じ極性に励磁する。さらに、ステータ4の表裏のヨーク部9が形成する凹部の隙間を利用するか凹部を半径方向に広げ、ヨーク部9に、励磁用のカセットコイル10と、ステータ4の表裏の面それぞれの図6に示す環状の界磁コイル22a、22bを取り付け、界磁コイル22a、22bによって磁束を増加する向きの界磁を常時発生する。なお、ステータ4の裏表で同じ向きの界磁磁束を発生するため、端子a、aおよび端子b、bからの界磁コイル22a、22bの通電方向は逆になる。また、図1のロータ3a、3bの各ロータコア17のヨーク部21aも凹部の隙間を利用するか凹部を半径方向に広げられることにより、界磁コイル22a、22bの軸方向に突き出ている部分が各ロータコア17のヨーク部21aに回転自在に嵌入する。   FIG. 5 shows the magnetic pole surface of the stator 4 of the present embodiment. In this embodiment, the connecting method and the energizing direction of the cassette coils 10 by the crossover wires 13 are set appropriately, and each stator core 5 of the stator 4 of FIG. The magnetic poles 7 on the outer diameter side on both the front and back sides are all N poles, and the magnetic poles 8 on the inner diameter side are all S poles. The magnetic poles 7 and 8 may be reversed in polarity. In short, all the magnetic poles 7 are excited to the same polarity, and all the magnetic poles 8 are excited to the same polarity opposite to the polarity of the magnetic poles 7. Furthermore, the gaps of the concave portions formed by the yoke portions 9 on the front and back sides of the stator 4 are used or the concave portions are expanded in the radial direction, and the exciting cassette coil 10 and the front and rear surfaces of the stator 4 are respectively shown on the yoke portion 9. The annular field coils 22a and 22b shown in FIG. 5 are attached, and the field coils 22a and 22b always generate a field having a direction of increasing the magnetic flux. In addition, in order to generate the field magnetic flux of the same direction on the back and front of the stator 4, the energization directions of the field coils 22a and 22b from the terminals a and a and the terminals b and b are reversed. Further, the yoke portions 21a of the rotor cores 17 of the rotors 3a and 3b shown in FIG. 1 also have portions protruding in the axial direction of the field coils 22a and 22b by using the gaps of the recesses or by expanding the recesses in the radial direction. The rotor cores 17 are rotatably fitted in the yoke portions 21a.

この場合、(1)界磁コイル22a、22bによりステータ4の磁束に界磁のバイアス磁束が重畳されるので、モータ出力がより向上する。(2)界磁コイル22a、22bはは簡単な円環状であるので、製作が容易である。   In this case, (1) since the field bias magnetic flux is superimposed on the magnetic flux of the stator 4 by the field coils 22a and 22b, the motor output is further improved. (2) Since the field coils 22a and 22b are simple annular shapes, they are easy to manufacture.

したがって、本実施形態の場合、製作が容易な環状の界磁コイル22a、22bにより、ステータ4の表裏の両面の磁束を増加してトルクアップを図り、アキシャルギャップモータ1aのモータ出力を一層向上できる。   Therefore, in the case of the present embodiment, the annular field coils 22a and 22b that are easy to manufacture can increase the torque by increasing the magnetic fluxes on both the front and back surfaces of the stator 4 and further improve the motor output of the axial gap motor 1a. .

(第3の実施形態)
第3の実施形態について、図7〜図10を参照して説明する。図7〜図10において、図1〜図6と同一の符号は、同一又は相当するものを示す。
(Third embodiment)
A third embodiment will be described with reference to FIGS. 7 to 10, the same reference numerals as those in FIGS. 1 to 6 denote the same or corresponding components.

図7は本実施形態のアキシャルギャップモータ1bを示し、図8(a)、(b)はそのステータ4、ロータ3aの磁極面を示す。本実施形態のアキシャルギャップモータ1bは、ステータ4の各ステータコア5の表裏の両面の磁極対11が、周方向に順にU、V、Wの各駆動相の磁極対11を形成する。   FIG. 7 shows the axial gap motor 1b of the present embodiment, and FIGS. 8A and 8B show the magnetic pole surfaces of the stator 4 and the rotor 3a. In the axial gap motor 1b of the present embodiment, the magnetic pole pairs 11 on both the front and back surfaces of each stator core 5 of the stator 4 form the magnetic pole pairs 11 of U, V, and W driving phases in order in the circumferential direction.

そして、本実施形態のアキシャルギャップモータ1bが第1、第2の実施形態のアキシャルギャップモータ1aと異なる点は、第1には、各カセットコイル10の通電方向の設定により、各ステータコア5の表裏の両面の外径側の磁極7と内径側の磁極8の極性が、周方向に順次に配置された駆動相の相数(実施形態の場合は3相なので3個)の磁極対群毎に逆になる点である。   The difference between the axial gap motor 1b of the present embodiment and the axial gap motor 1a of the first and second embodiments is that first, the front and back of each stator core 5 is set by setting the energization direction of each cassette coil 10. The polarity of the magnetic pole 7 on the outer diameter side and the magnetic pole 8 on the inner diameter side of each of the magnetic pole pairs of the number of drive phases arranged in order in the circumferential direction (three in the case of the embodiment is three) is This is the opposite point.

図9は各ステータコア5の例えば表面の外径側の磁極7と内径側の磁極8の極性を示し、周方向に隣り合うW、U、V相の3個のステータコア5の磁極対11が一つの磁極対群#1を形成し、その隣のW、U、V相の3個のステータコア5の磁極対11がつぎの一つの磁極対群#2を形成し、同様にして、磁極対群#3、#4も形成される。そして、磁極対群#1のステータコア5の磁極対11は、いずれも磁極7がS極、磁極8がN極に励磁される。隣の磁極対群#2のステータコア5の磁極対11は、いずれも磁極7がN極、磁極8がS極に励磁される。さらに隣の磁極対群#3のステータコア5の磁極対11は、いずれも磁極7がS極、磁極8がN極に励磁され、その隣の磁極対群#4のステータコア5の磁極対11は、いずれも磁極7がN極、磁極8がS極に励磁される。なお、実際には、各カセットコイル10がU、V、Wの相順に通電されるので、例えば、U相通電時には、磁極対群#1のU相の磁極対11の磁極7がS極、磁極8がN極に励磁され、磁極対群#2のU相の磁極対11の磁極7がN極、磁極8がS極に励磁され、磁極対群#3のU相の磁極対11の磁極7がS極、磁極8がN極に励磁され、磁極対群#4のU相の磁極対11の磁極7がN極、磁極8がS極に励磁される。   FIG. 9 shows, for example, the polarities of the magnetic pole 7 on the outer diameter side and the magnetic pole 8 on the inner diameter side of each stator core 5, and the magnetic pole pairs 11 of three stator cores 5 of W, U, and V phases adjacent in the circumferential direction are one. Two magnetic pole pair groups # 1 are formed, and the adjacent magnetic pole pairs 11 of the three W, U, and V phase stator cores 5 form the next magnetic pole pair group # 2. # 3 and # 4 are also formed. In the magnetic pole pair 11 of the stator core 5 of the magnetic pole pair group # 1, the magnetic pole 7 is excited to the S pole and the magnetic pole 8 is excited to the N pole. The magnetic pole pairs 11 of the stator core 5 of the adjacent magnetic pole pair group # 2 are all excited with the magnetic pole 7 being an N pole and the magnetic pole 8 being an S pole. Further, the magnetic pole pair 11 of the stator core 5 in the adjacent magnetic pole pair group # 3 is excited to have the magnetic pole 7 as the S pole and the magnetic pole 8 as the N pole, and the magnetic pole pair 11 of the stator core 5 in the adjacent magnetic pole pair group # 4 is In both cases, the magnetic pole 7 is excited to the N pole and the magnetic pole 8 is excited to the S pole. In actuality, since each cassette coil 10 is energized in the order of U, V, and W phases, for example, when the U phase is energized, the magnetic pole 7 of the U phase magnetic pole pair 11 of the magnetic pole pair group # 1 is the S pole, The magnetic pole 8 is excited to the N pole, the magnetic pole 7 of the U-phase magnetic pole pair 11 of the magnetic pole pair group # 2 is excited to the N-pole, and the magnetic pole 8 is excited to the S-pole. The magnetic pole 7 is excited to the S pole, the magnetic pole 8 is excited to the N pole, the magnetic pole 7 of the U-phase magnetic pole pair 11 of the magnetic pole pair group # 4 is excited to the N pole, and the magnetic pole 8 is excited to the S pole.

すなわち、各カセットコイル10の巻き方向が同じ場合、同じ相の各カセットコイル10は渡り線13で周方向に上側、下側から交互に繋ぐのが最も簡単で効率的であるが、このように繋ぐことによって、同じ相の各カセットコイル10が通電によって発生する磁束の向きは、周方向に交互に逆になる。そのため、前記したように、U相通電時には、磁極対群#1のU相の磁極対11の磁極7がS極、磁極8がN極に励磁され、磁極対群#2のU相の磁極対11の磁極7がN極、磁極8がS極に励磁され、磁極対群#3のU相の磁極対11の磁極7がS極、磁極8がN極に励磁され、磁極対群#4のU相の磁極対11の磁極7がN極、磁極8がS極に励磁される。   That is, when the winding directions of the respective cassette coils 10 are the same, it is simplest and most efficient to connect the cassette coils 10 of the same phase alternately from the upper side and the lower side in the circumferential direction with the crossover wires 13. By connecting, the direction of the magnetic flux generated by energizing each cassette coil 10 of the same phase is alternately reversed in the circumferential direction. Therefore, as described above, when the U-phase is energized, the magnetic pole 7 of the U-phase magnetic pole pair 11 of the magnetic pole pair group # 1 is excited to the S pole and the magnetic pole 8 is excited to the N pole, and the U-phase magnetic pole of the magnetic pole pair group # 2 The magnetic pole 7 of the pair 11 is excited to the N pole, the magnetic pole 8 is excited to the S pole, the magnetic pole 7 of the U-phase magnetic pole pair 11 of the magnetic pole pair group # 3 is excited to the S pole, and the magnetic pole 8 is excited to the N pole. The magnetic pole 7 of the 4 U-phase magnetic pole pair 11 is excited to the N pole and the magnetic pole 8 is excited to the S pole.

本実施形態のアキシャルギャップモータ1bが第1、第2の実施形態のアキシャルギャップモータ1aと異なる第2の点は、第2の実施形態の界磁コイル22a、22bに代えて、ステータ4の表裏の両面の各磁極対11に界磁を与える2個の環状の界磁コイル22c、22dを備え、界磁コイル22c、22dが、磁極対群#1〜#4の磁極対11毎に交差して相互に逆にステータコア5の表面から裏面、その逆に入れ替わるように配設される点である。なお、界磁コイル22c、22dの通電方向も界磁コイル22a、22bと同様に逆向きである。   A second difference of the axial gap motor 1b of the present embodiment from the axial gap motor 1a of the first and second embodiments is that the front and back surfaces of the stator 4 are replaced with the field coils 22a and 22b of the second embodiment. Are provided with two annular field coils 22c and 22d for applying a field to each of the magnetic pole pairs 11 on both sides of the magnetic field pairs, and the field coils 22c and 22d intersect each magnetic pole pair 11 of the magnetic pole pair groups # 1 to # 4. In other words, the stator core 5 is disposed so as to be reversed from the front surface to the back surface and vice versa. In addition, the energizing directions of the field coils 22c and 22d are also opposite to those of the field coils 22a and 22b.

図10は界磁コイル22c、22dの交差した組付け状態を示し、環状の界磁コイル22c、22dは、磁極対群#1〜#4の境目で交差して相互に逆にステータ(図示せず)の表面から裏面、その逆に入れ替わるようにしてステータに配設される。   FIG. 10 shows the assembled state in which the field coils 22c and 22d intersect, and the annular field coils 22c and 22d intersect at the boundary between the magnetic pole pair groups # 1 to # 4 and are opposite to each other (not shown). 3) is arranged on the stator so as to be switched from the front surface to the back surface and vice versa.

したがって、界磁コイル22c、22dは、ステータ4の表裏の両面の各磁極対11に磁極7、8の励磁を強める界磁を与え、トルクアップを図ってモータ出力を向上できる。また、U、V、Wの一組の磁極対の単位(磁極対群#1〜#4の単位)で磁極対の極性方向が逆になるので、界磁コイル22c、22dが交差して表裏を往復する個所(回数)は4個所(4回)と少なく、界磁コイル22c、22dによる質量増加を最小電に抑えることができる。   Therefore, the field coils 22c and 22d give a magnetic field that enhances the excitation of the magnetic poles 7 and 8 to the magnetic pole pairs 11 on both the front and back surfaces of the stator 4, thereby increasing the torque and improving the motor output. Further, since the polarity direction of the magnetic pole pair is reversed in units of a pair of magnetic pole pairs (units of magnetic pole pair groups # 1 to # 4), the field coils 22c and 22d intersect each other. The number of times (number of times) of reciprocating is as small as four (four times), and an increase in mass due to the field coils 22c and 22d can be suppressed to the minimum electric power.

そのため、各カセットコイル10を共通の同じカセットコイルで形成し、さらにそれらの繋ぎを簡単にしてトルクアップした高性能のアキシャルギャップモータ1bを提供できる。   Therefore, it is possible to provide a high-performance axial gap motor 1b in which each cassette coil 10 is formed by the same common cassette coil and the connection between them is simplified to increase the torque.

(第4の実施形態)
第4の実施形態について、図11〜図13を参照して説明する。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIGS.

図11(a)は前記アキシャルギャップモータ1a、1bのロータ3b、3bに置き換えられる本実施形態のロータ3cを示し、ロータ3cは例えば図1のステータ4の表裏の両面に対向して配置される。ロータ3cは、外周部材23と内周部材24とで構成される。   FIG. 11A shows the rotor 3c of the present embodiment that is replaced by the rotors 3b and 3b of the axial gap motors 1a and 1b, and the rotor 3c is disposed to face both the front and back surfaces of the stator 4 of FIG. . The rotor 3 c includes an outer peripheral member 23 and an inner peripheral member 24.

図12はロータ3cの組み付けを示し、外側部材23は、周方向に配設されて外径部の突出した磁極25およびそれより内径側のヨーク部26を形成する圧粉磁心の楔形の外径側ロータコア27を、外周側に非磁性の外周リング28を嵌め付けて保持した構造であり、内側部材24は、周方向に配設されて内径側の磁極29を形成する圧粉磁心の楔形の内径側ロータコア30を、外周側に非磁性の外周リング31を嵌め付けて保持した構造である。さらに、外側部材23と内側部材24は、外側部材23の磁極面側に内側部材24を重ねて軸方向に重ね合わせ、その重ね合せの内周側に例えば金属の共通リング32を嵌めて組み付けられ、ロータ3cが形成される。   12 shows the assembly of the rotor 3c, and the outer member 23 has a wedge-shaped outer diameter of a dust core disposed in the circumferential direction and forming a magnetic pole 25 protruding from the outer diameter portion and a yoke portion 26 on the inner diameter side thereof. The side rotor core 27 has a structure in which a nonmagnetic outer peripheral ring 28 is fitted and held on the outer peripheral side, and the inner member 24 is a wedge-shaped dust core disposed in the circumferential direction to form a magnetic pole 29 on the inner diameter side. In this structure, the inner diameter side rotor core 30 is held by fitting a nonmagnetic outer ring 31 on the outer periphery side. Further, the outer member 23 and the inner member 24 are assembled by superimposing the inner member 24 on the magnetic pole surface side of the outer member 23 in the axial direction and fitting a common ring 32 of metal, for example, on the inner peripheral side of the overlapping. The rotor 3c is formed.

図13は外径側ロータコア27と内径側ロータコア30の重なりを示し、内径側ロータコア30の磁極29は外径側ロータコア27のヨーク部26の内周寄りの部分に重なり、磁極25、29間がヨーク部26で繋がっている。   FIG. 13 shows the overlap between the outer diameter side rotor core 27 and the inner diameter side rotor core 30, and the magnetic pole 29 of the inner diameter side rotor core 30 overlaps with the inner peripheral portion of the yoke portion 26 of the outer diameter side rotor core 27. They are connected by a yoke part 26.

このように構成されたロー3cは、少なくとも内径側の磁極29が外径側の磁極25およびヨーク部26とは分離された別体構造であり、しかも、内周側の金属の共通リング32の圧入等により、容易に一体化されて形成される。   The row 3c configured as described above has a separate structure in which at least the inner diameter side magnetic pole 29 is separated from the outer diameter side magnetic pole 25 and the yoke portion 26, and the inner ring side metal common ring 32 has a separate structure. It is easily integrated and formed by press fitting or the like.

そして、ロー3cをこのような構成にするのは、(1)ロータ3cには回転による遠心力が作用するが、突極状の磁極25、29と凹部のヨーク部27とでは作用する遠心力の大きさが違い、しかも、圧粉磁心はヤング率が低く、遠心力による変形量もロータ3cの外側と内側では異なる。そして、とくに軸方向に長くなる内径側の磁極29については、外径側ロータコア27と内径側ロータコア30とを別個に形成して重ね、ヨーク部27と別体とすることで、前記した変形量の相違による引張り応力を低減し、さらに、圧縮密度も均一にして機械的に強くすることができ、その結果、ロータ3cが遠心力に強くできるからである。また、圧粉磁心の金型による圧縮成形時に高さのある磁極29の側面の金型が側面から横方向の力を受けたパンチと擦れることにより損傷するの防ぎ、ロータの磁極25、26を圧粉磁心で一体成形する場合より金型を損傷しにくくして生産性を向上できる。(2)また、内径側ロータコア30を、非磁性体の外周リング31で保持するのは、まず、遠心力に対して内径側ロータコア30を圧縮方向の力で確実に保持するためである。また、ロータ3cに対向するステータは第3の実施形態のステータ4のように、磁極対群#1〜#4の単位で磁極対の極性方向が逆になるものとし、この場合、ロータ3cを通る磁束は図11(a)の波線矢印のように、前記した磁極対群#1〜#4の励磁磁極対11に対向する個所の磁極25、29の磁極対毎に向きが異なる。しかも、ステータの各相の磁極対数11は偶数(具体的には4個)である。そのため、図11(b)に示すように内側ロータコア30を保持する外周リング31(磁束に対してループコイルとみなすことができる)では、矢印線で示した鎖交磁束が相殺され、内側ロータコア30を保持する外周リング31に誘導電流が生じず、電磁誘導を防止できるからである。   The row 3c is configured in this way. (1) Centrifugal force due to rotation acts on the rotor 3c, but centrifugal force acts between the salient pole-like magnetic poles 25 and 29 and the concave yoke portion 27. Further, the powder magnetic core has a low Young's modulus, and the amount of deformation due to centrifugal force differs between the outside and the inside of the rotor 3c. In particular, for the inner diameter side magnetic pole 29 that is elongated in the axial direction, the outer diameter side rotor core 27 and the inner diameter side rotor core 30 are separately formed and overlapped to be separated from the yoke portion 27, whereby the amount of deformation described above is achieved. This is because the tensile stress due to the difference between the two can be reduced, and the compression density can be made uniform and mechanically strong. As a result, the rotor 3c can be strong against centrifugal force. In addition, the mold on the side surface of the magnetic pole 29 having a height during the compression molding by the mold of the dust core prevents the rotor magnetic poles 25 and 26 from being damaged by rubbing against a punch that has received a lateral force from the side surface. Productivity can be improved by making the mold less likely to be damaged than when integrally molded with a dust core. (2) The reason why the inner diameter side rotor core 30 is held by the outer ring 31 made of a non-magnetic material is to first reliably hold the inner diameter side rotor core 30 with the force in the compression direction against the centrifugal force. Further, the stator facing the rotor 3c is assumed to have the polarity direction of the magnetic pole pair reversed in units of the magnetic pole pair groups # 1 to # 4 as in the stator 4 of the third embodiment. The direction of the passing magnetic flux differs depending on the magnetic pole pairs of the magnetic poles 25 and 29 at the locations facing the exciting magnetic pole pairs 11 of the magnetic pole pair groups # 1 to # 4 as indicated by the wavy arrows in FIG. Moreover, the number of magnetic pole pairs 11 of each phase of the stator is an even number (specifically, four). For this reason, as shown in FIG. 11B, in the outer ring 31 that holds the inner rotor core 30 (which can be regarded as a loop coil with respect to the magnetic flux), the interlinkage magnetic flux indicated by the arrow line is canceled, and the inner rotor core 30 This is because no induction current is generated in the outer peripheral ring 31 that holds the electromagnetic wave and electromagnetic induction can be prevented.

したがって、本実施形態のロータ3cを、第3の実施形態の構成のアキシャルギャップモータ1bのような構造のアキシャルギャップモータのロータの代わりに用いることにより、遠心力を受けるロータを精度よく形成してモータ性能を一層向上することができでき、しかも、内周側の共通リング32が金属等であるので、圧入等によって簡単に共通リング32を嵌めて両ロータコア27、30を一体化して保持することができる。   Therefore, by using the rotor 3c of this embodiment instead of the rotor of an axial gap motor having a structure like the axial gap motor 1b having the configuration of the third embodiment, a rotor that receives centrifugal force can be accurately formed. The motor performance can be further improved, and the inner ring-side common ring 32 is made of metal or the like, so that the common ring 32 can be easily fitted by press-fitting or the like to hold both the rotor cores 27 and 30 together. Can do.

そして、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行なうことが可能であり、例えば、ロータ3a、3b、3cの磁極対やステータ4の磁極対11の個数は、8個、12個に限るものではない。また、駆動相の相数も3相に限るものではない。さらに、各コア5、27、30、51、52や磁極7、8、25、29の形状等も各実施形態の形状等に限るものではない。また、各カセットコイル10の構造や形状もどのようであってもよい。   The present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit thereof. For example, the rotors 3a, 3b, 3c The number of the magnetic pole pairs and the magnetic pole pairs 11 of the stator 4 is not limited to eight or twelve. Also, the number of drive phases is not limited to three. Furthermore, the shape of each of the cores 5, 27, 30, 51, 52 and the magnetic poles 7, 8, 25, 29 is not limited to the shape of each embodiment. Further, the structure and shape of each cassette coil 10 may be any.

つぎに、第1〜第3の実施形態において、ロータは圧粉磁心で構成されていなくてもよい。また、第4の実施形態において、ステータは圧粉磁心で形成されていなくてもよい。   Next, in the first to third embodiments, the rotor does not have to be formed of a dust core. In the fourth embodiment, the stator may not be formed of a dust core.

つぎに、例えば第1の実施形態のロータ3a、ステータ4、ロータ3bの構成を、複数組み合わせていわゆる多段構成にすることも可能であり、他の実施形態についても同様である。そして、これらの場合も、前記各実施形態と同様の効果を得ることができる。   Next, for example, a plurality of configurations of the rotor 3a, the stator 4, and the rotor 3b of the first embodiment can be combined to form a so-called multistage configuration, and the same applies to other embodiments. In these cases, the same effects as in the above embodiments can be obtained.

そして、本発明は、電気自動車の駆動モータ等の種々の用途のアキシャルギャップモータに適用することができる。   The present invention can be applied to an axial gap motor for various uses such as a drive motor for an electric vehicle.

1a、1b アキシャルギャップモータ
3a、3b、3c ロータ
4 ステータ
5 ステータコア
10 カセットコイル
11 磁極対
12 調節プレート
22a〜22d 界磁コイル
26 外径側ロータコア
28 外周リング
30 内径側ロータコア
31 内側ロータコアを保持する外周リング
32 共通リング
51、52 片面コア
DESCRIPTION OF SYMBOLS 1a, 1b Axial gap motor 3a, 3b, 3c Rotor 4 Stator 5 Stator core 10 Cassette coil 11 Magnetic pole pair 12 Adjustment plate 22a-22d Field coil 26 Outer diameter side rotor core 28 Outer ring 30 Inner diameter side rotor core 31 Outer circumference which holds inner rotor core Ring 32 Common ring 51, 52 Single-sided core

Claims (6)

軸方向の表裏の両面それぞれに外径側の磁極と内径側の磁極とが形成する複数の磁極対を周方向に配列したステータと、前記ステータの表裏の両面に対向して配置されたロータとを備えたアキシャルギャップモータであって、
前記ステータは、
圧粉磁心で形成された楔形の複数のステータコアを、隙間を設けて磁気的に独立した状態で周方向に配設して形成され、
前記各ステータコアの表裏の両面それぞれの半径方向外径側部分が前記外径側の磁極を形成し、
前記各ステータコアの表裏の両面それぞれの半径方向内径側部分が前記内径側の磁極を形成し、
前記各ステータコアの前記外径側の磁極と前記内径側の磁極との間のヨーク部に、表裏の両面の前記磁極対を一括して励磁するカセットコイルが装着されていることを特徴とするアキシャルギャップモータ。
A stator in which a plurality of magnetic pole pairs formed by an outer diameter side magnetic pole and an inner diameter side magnetic pole are arranged in the circumferential direction on both the front and back surfaces in the axial direction, and a rotor disposed to face both the front and back surfaces of the stator, An axial gap motor with
The stator is
A plurality of wedge-shaped stator cores formed of powder magnetic cores are formed by being arranged in the circumferential direction in a magnetically independent state with gaps,
The radially outer diameter side portions of the front and back surfaces of each stator core form the outer diameter side magnetic pole,
The radially inner diameter side portions of the front and back surfaces of each stator core form the inner diameter side magnetic pole,
Axial coil characterized in that a cassette coil for energizing the pair of magnetic poles on both the front and back surfaces together is mounted on a yoke portion between the outer diameter side magnetic pole and the inner diameter side magnetic pole of each stator core. Gap motor.
請求項1に記載のアキシャルギャップモータにおいて、
前記各ステータコアは、前記外径側の磁極が前記内径側の磁極より軸方向に長く形成されていることを特徴とするアキシャルギャップモータ。
The axial gap motor according to claim 1,
In each of the stator cores, the outer diameter side magnetic pole is formed longer in the axial direction than the inner diameter side magnetic pole.
請求項1または2に記載のアキシャルギャップモータにおいて、
前記各ステータコアは、一方の片面コアと他方の片面コアとを、磁極間隔の調節プレートを挟んで背中合せに接合して形成されていること特徴とするアキシャルギャップモータ。
The axial gap motor according to claim 1 or 2,
Each stator core is formed by joining one single-sided core and the other single-sided core back to back with an adjustment plate for the magnetic pole interval interposed therebetween.
請求項1〜3のいずれかに記載のアキシャルギャップモータにおいて、
前記ステータの表裏の両面それぞれに環状の界磁コイルが配置されていることを特徴とするアキシャルギャップモータ。
In the axial gap motor in any one of Claims 1-3,
An axial gap motor, wherein annular field coils are arranged on both the front and back surfaces of the stator.
請求項1〜3のいずれかに記載のアキシャルギャップモータにおいて、
前記各ステータコアの表裏の両面それぞれの各磁極対は、周方向に順に各駆動相の磁極対を形成し、
前記外径側の磁極と前記内径側の磁極の極性は、周方向に順次に配置された駆動相の相数の磁極対群毎に逆になり、
前記ステータの表裏の両面の前記各磁極対に界磁を与える複数の環状の界磁コイルを備え、
前記両面の界磁コイルは、前記磁極対群毎に交差して相互に逆に前記ステータの表面から裏面、その逆に入れ替わるように前記ステータに配設されることを特徴とするアキシャルギャップモータ。
In the axial gap motor in any one of Claims 1-3,
Each pair of magnetic poles on both the front and back sides of each stator core forms a pair of magnetic poles for each driving phase in the circumferential direction in order,
The polarity of the magnetic pole on the outer diameter side and the magnetic pole on the inner diameter side is reversed for each magnetic pole pair group of the number of phases of the driving phase sequentially arranged in the circumferential direction,
A plurality of annular field coils for applying a field to each of the magnetic pole pairs on both sides of the stator;
The axial gap motor according to claim 1, wherein the field coils on both sides are arranged on the stator so as to cross each magnetic pole pair group and to be reversed from each other to reverse from the front surface to the back surface of the stator.
請求項1〜5のいずれかに記載のアキシャルギャップモータにおいて、
前記ステータの表裏の両面に対向して配置された前記ロータは、
周方向に配設されて外径側の磁極を形成する圧粉磁心の楔形の外径側ロータコアと、周方向に配設されて内径側の磁極を形成する圧粉磁心の楔形の内周部側ロータコアを、それぞれの外周側に非磁性の外周リングを嵌め付けて個別に保持し、
前記両ロータコアを、軸方向に重ね合わせ、前記両ロータコアの内周側に共通リングを嵌めて組み付けた構成であることを特徴とするアキシャルギャップモータ。
In the axial gap motor according to any one of claims 1 to 5,
The rotor arranged to face both the front and back surfaces of the stator,
A wedge-shaped outer-diameter-side rotor core of a dust core that is arranged in the circumferential direction and forms a magnetic pole on the outer diameter side, and a wedge-shaped inner peripheral portion of a dust core that is arranged in the circumferential direction and forms a magnetic pole on the inner diameter side The side rotor core is individually held by fitting a non-magnetic outer ring on each outer peripheral side,
An axial gap motor characterized in that the two rotor cores are overlapped in the axial direction and assembled by fitting a common ring on the inner peripheral side of the two rotor cores.
JP2010030817A 2010-02-16 2010-02-16 Axial gap motor Expired - Fee Related JP5483340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010030817A JP5483340B2 (en) 2010-02-16 2010-02-16 Axial gap motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010030817A JP5483340B2 (en) 2010-02-16 2010-02-16 Axial gap motor

Publications (2)

Publication Number Publication Date
JP2011172302A true JP2011172302A (en) 2011-09-01
JP5483340B2 JP5483340B2 (en) 2014-05-07

Family

ID=44685850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030817A Expired - Fee Related JP5483340B2 (en) 2010-02-16 2010-02-16 Axial gap motor

Country Status (1)

Country Link
JP (1) JP5483340B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142434A (en) * 2014-01-28 2015-08-03 日本ピストンリング株式会社 Axial solid gap type rotary electric machine
JP2020103025A (en) * 2018-12-24 2020-07-02 日本電産株式会社 Flux motor and electric product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129542A (en) * 1980-03-17 1981-10-09 Toshiba Corp Core for rotary electric machine and its manufacture
JP2003235221A (en) * 2002-02-12 2003-08-22 Nissan Motor Co Ltd Stator supporting structure of dynamo-electric machine
JP2005245162A (en) * 2004-02-27 2005-09-08 Hitachi Ltd Hybrid type stepping motor
JP2006320090A (en) * 2005-05-11 2006-11-24 Sumitomo Electric Ind Ltd Motor
JP2007202363A (en) * 2006-01-30 2007-08-09 Nissan Motor Co Ltd Rotary-electric machine
JP2007236130A (en) * 2006-03-02 2007-09-13 Nissan Motor Co Ltd Rotary electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129542A (en) * 1980-03-17 1981-10-09 Toshiba Corp Core for rotary electric machine and its manufacture
JP2003235221A (en) * 2002-02-12 2003-08-22 Nissan Motor Co Ltd Stator supporting structure of dynamo-electric machine
JP2005245162A (en) * 2004-02-27 2005-09-08 Hitachi Ltd Hybrid type stepping motor
JP2006320090A (en) * 2005-05-11 2006-11-24 Sumitomo Electric Ind Ltd Motor
JP2007202363A (en) * 2006-01-30 2007-08-09 Nissan Motor Co Ltd Rotary-electric machine
JP2007236130A (en) * 2006-03-02 2007-09-13 Nissan Motor Co Ltd Rotary electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142434A (en) * 2014-01-28 2015-08-03 日本ピストンリング株式会社 Axial solid gap type rotary electric machine
JP2020103025A (en) * 2018-12-24 2020-07-02 日本電産株式会社 Flux motor and electric product

Also Published As

Publication number Publication date
JP5483340B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
EP3082236B1 (en) Axial gap type rotating machine
US10566866B2 (en) Asymmetric axial permanent magnet machines having axial rotors with irregular magnets
US10110076B2 (en) Single-phase brushless motor
JP2019022449A (en) Motor and manufacturing method therefor
JP2019140893A (en) Dynamo-electric machine and dynamo-electric machine drive system
JP5478136B2 (en) Permanent magnet synchronous motor
JP2005151725A (en) Axial gap rotary electric machine
US20180123434A1 (en) Rotor, stator and motor
JP2000253635A (en) Axial gap motor
JP5610989B2 (en) Rotating motor
US20220255386A1 (en) Coil, stator, and motor
JPH0767272A (en) Stator structure for synchronous machine, manufacture thereof and its tooth piece
JP4687687B2 (en) Axial gap type rotating electric machine and field element
JPWO2018037529A1 (en) Rotating electric machine
JP2011250651A (en) Axial gap motor
US20220263356A1 (en) Motor
JP2005151785A (en) Synchronous generator having annular armature coil
JP2004015998A (en) Permanent magnet version rotating machine with three-phase stator winding divided in axial direction
JP5483340B2 (en) Axial gap motor
JP2015154555A (en) motor
JP2002058184A (en) Rotor construction and motor
JP6332094B2 (en) Rotor, electric motor
JP2005506820A5 (en)
JP2014073011A (en) Stator for rotary electric machine and rotary electric machine
JP2008187863A (en) Axial gap rotary electric machine and compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R150 Certificate of patent or registration of utility model

Ref document number: 5483340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees