JP2011168480A - High-temperature glass solder and its use - Google Patents
High-temperature glass solder and its use Download PDFInfo
- Publication number
- JP2011168480A JP2011168480A JP2011030172A JP2011030172A JP2011168480A JP 2011168480 A JP2011168480 A JP 2011168480A JP 2011030172 A JP2011030172 A JP 2011030172A JP 2011030172 A JP2011030172 A JP 2011030172A JP 2011168480 A JP2011168480 A JP 2011168480A
- Authority
- JP
- Japan
- Prior art keywords
- glass solder
- glass
- temperature
- oxide
- solder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000679 solder Inorganic materials 0.000 title claims abstract description 108
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims abstract description 6
- 239000011521 glass Substances 0.000 claims description 46
- 238000005219 brazing Methods 0.000 claims description 39
- 239000000446 fuel Substances 0.000 claims description 16
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 10
- 239000000919 ceramic Substances 0.000 claims description 8
- 239000002241 glass-ceramic Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 229910052905 tridymite Inorganic materials 0.000 claims description 4
- 229910016066 BaSi Inorganic materials 0.000 claims description 3
- 229910000599 Cr alloy Inorganic materials 0.000 claims description 3
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 3
- 229910017639 MgSi Inorganic materials 0.000 claims description 3
- 229910004283 SiO 4 Inorganic materials 0.000 claims description 3
- 239000000788 chromium alloy Substances 0.000 claims description 3
- 239000002178 crystalline material Substances 0.000 claims description 3
- 238000005304 joining Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 5
- 238000005476 soldering Methods 0.000 abstract 2
- 238000002425 crystallisation Methods 0.000 description 19
- 230000008025 crystallization Effects 0.000 description 19
- 230000008018 melting Effects 0.000 description 13
- 238000002844 melting Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 11
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000009736 wetting Methods 0.000 description 4
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000011712 cell development Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000006219 crystal-free glass Substances 0.000 description 2
- 238000004455 differential thermal analysis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000007496 glass forming Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000005337 ground glass Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229910052574 oxide ceramic Inorganic materials 0.000 description 2
- 239000011224 oxide ceramic Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
- H01M8/0282—Inorganic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3606—Borates or B-oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3607—Silica or silicates
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0009—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C27/00—Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/24—Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electrochemistry (AREA)
- Glass Compositions (AREA)
- Fuel Cell (AREA)
- Ceramic Products (AREA)
- Spark Plugs (AREA)
Abstract
Description
本発明は、高温用途に特に適した、ガラスソルダー、特に非晶質の及び部分結晶化のガラスソルダー並びにその使用に関する。 The present invention relates to glass solders, in particular amorphous and partially crystallized glass solders and their use, which are particularly suitable for high temperature applications.
ガラスソルダーは、通常は、特にガラス及び/又はセラミックの部品を互いに接合するか、もしくは該部品を金属製の部品と電気絶縁的に接合するための接合部を作成するために使用される。ガラスソルダーの開発において、その組成は、しばしば、長期安定な接合部を得るために、ガラスソルダーの熱膨張係数が互いに接合される部品の熱膨張係数にほぼ相当するように選択される。他の接合部、例えばプラスチック製の接合部と比較して、ガラスソルダーを基礎とする接合部は、それらがハーメチックシールを生成でき、かつ比較的高温に耐えうるという利点を有する。 Glass solders are usually used to bond particularly glass and / or ceramic parts to each other or to create a joint for electrically insulating the parts to metal parts. In the development of glass solder, its composition is often selected so that the thermal expansion coefficient of the glass solder approximately corresponds to the thermal expansion coefficient of the parts to be joined together in order to obtain a long-term stable joint. Compared to other joints, for example plastic joints, glass solder based joints have the advantage that they can produce a hermetic seal and can withstand relatively high temperatures.
ガラスソルダーは、一般にしばしば、ろう付け作業の間に溶解され、接合される部品と一緒に熱の作用下に接合部を形成するガラス粉末から製造される。ろう付け温度は、一般に、ガラスの半球温度(hemisphere temperature)にほぼ相当するように選択されるか、又は前記温度から通常は±20Kだけずれてよい。半球温度は、高温顕微鏡を用いた顕微鏡法において測定できる。それは、当初は円柱状であった試験体が一緒に溶融して半球形の塊を形成する温度を特徴付けるものである。半球温度は、関連技術文献から理解できるように、ほぼlog η=4.6の粘度を割り当てることができる。結晶フリーのガラスがガラス粉末の形で溶融され、再び冷却されて、固化する場合に、通常は、同じ融点で再溶融できる。結晶フリーのガラスソルダーを含む接合部の場合に、これは、該接合部が長期にわたり供されうる作動温度が、ろう付け温度以下でなければならないことを意味する。事実として、多くの用途における作動温度は、ろう付け温度を大きく下回る必要がある。それというのも、ガラスソルダーの粘度は、温度の上昇とともに低下し、かつ一定の流動性を有するガラスは、高温及び/又は高圧で接合部から絞り出されて、接合が衰えることがあるからである。この理由のため、高温用途のためのガラスソルダーは、通常は、後の作動温度を大きく上回るろう付け温度もしくは半球温度を有する必要がある。 Glass solders are generally manufactured from glass powder that is often melted during the brazing operation and forms a joint under the action of heat with the parts to be joined. The brazing temperature is generally selected to correspond approximately to the hemisphere temperature of the glass, or may deviate from that temperature, usually by ± 20K. The hemispheric temperature can be measured by microscopy using a high temperature microscope. It characterizes the temperature at which specimens, which were initially cylindrical, melt together to form a hemispherical mass. The hemisphere temperature can be assigned a viscosity of approximately log η = 4.6, as can be understood from the relevant technical literature. When crystal-free glass is melted in the form of glass powder, cooled again and solidified, it can usually be remelted at the same melting point. In the case of a joint comprising a crystal free glass solder, this means that the operating temperature at which the joint can be provided for a long period of time must be below the brazing temperature. In fact, the operating temperature in many applications needs to be well below the brazing temperature. This is because the viscosity of the glass solder decreases with increasing temperature, and glass with a certain fluidity can be squeezed out of the joint at high temperature and / or high pressure, which can cause the bond to deteriorate. is there. For this reason, glass solders for high temperature applications usually need to have a brazing or hemispheric temperature that is well above the later operating temperature.
かかるガラスソルダーの一つの利用分野は、例えば自動車のエネルギー源としてもしくは分散化エネルギー供給のために使用できる高温燃料電池における接合部である。燃料電池の一つの重要な種類は、例えば約1100℃までの非常に高い作動温度を有しうるSOFC(固体酸化物形燃料電池)である。ガラスソルダーを含む接合部は、通常は、燃料電池スタックの製造のために、すなわち複数の個々の燃料電池を1つのスタックが形成されるように接合するために使用される。かかる燃料電池は、既に知られており、絶え間なく改良されている。特に、今日の燃料電池開発のトレンドは、一般に、より低い作動温度の方向に向かっている。幾つかの燃料電池は、目下、800℃未満の作動温度に到達しうるので、ろう付け温度の低下は可能であり、また、ろう付け工程の間のSOFC部品へと低い熱応力が生じるため望ましい。 One field of application of such glass solders is junctions in high temperature fuel cells that can be used, for example, as an energy source for automobiles or for supplying distributed energy. One important type of fuel cell is the SOFC (Solid Oxide Fuel Cell), which can have a very high operating temperature, for example up to about 1100 ° C. Junctions comprising glass solder are typically used for the manufacture of fuel cell stacks, i.e., joining a plurality of individual fuel cells so that one stack is formed. Such fuel cells are already known and continually improved. In particular, today's fuel cell development trends are generally towards lower operating temperatures. Some fuel cells can currently reach operating temperatures of less than 800 ° C., so brazing temperatures can be lowered and are desirable because of the low thermal stress on the SOFC components during the brazing process .
燃料電池開発における重要な役割は、以下の開示の対象であるガラスソルダーによって担われている。 An important role in fuel cell development is played by the glass solder, which is the subject of the following disclosure.
DE19857057号C1は、10.0×10-6K-1〜12.4×10-6K-1の熱膨張係数α(20-950)を有するアルカリフリーなガラスセラミックソルダーを記載している。そこに記載されるソルダーは、20〜50モル%のMgOを含有する。高い含量のMgOを有するガラスは、実際に、迅速にかつ高い程度に結晶化する化合物をもたらす結晶化を大いに受けやすい。かかる迅速かつ充実の結晶化の場合に、ガラスソルダーによって接合される材料の良好な濡れを保証することは困難である。しかしながら、これは、各々の必要条件を最適に満たす接合部を提供しうるためには必要である。更に、この文献に記載されるガラスソルダーは、40〜50モル%のSiO2を含有する。しかしながら、SiO2の含量が高まると、融点の上昇が、そしてまたろう付け温度の上昇が引き起こされる。 DE 19857057 C1 describes an alkali-free glass-ceramic solder having a thermal expansion coefficient α (20-950) of 10.0 × 10 −6 K −1 to 12.4 × 10 −6 K −1 . The solder described therein contains 20-50 mol% MgO. Glasses with a high content of MgO are in fact highly susceptible to crystallization resulting in compounds that crystallize rapidly and to a high degree. In the case of such rapid and solid crystallization, it is difficult to ensure good wetting of the material joined by the glass solder. However, this is necessary in order to be able to provide a joint that optimally meets each requirement. Furthermore, the glass solder described in this document contains 40 to 50 mol% of SiO 2 . However, increasing the content of SiO 2 causes an increase in melting point and also an increase in brazing temperature.
同様に、ガラスセラミックソルダーは、US6,532,769号B1及びUS6,430,966号B1に記載されている。これらは、約1150℃のろう付け温度のためにデザインされており、5〜15モル%のAl2O3を含有する。かかる高いろう付け温度は、現代の燃料電池のためには望ましくない。それというのも、それは、金属製の基板材料及び他の熱感受性材料を過剰な程度でさらすからである。 Similarly, glass ceramic solders are described in US Pat. No. 6,532,769 B1 and US Pat. No. 6,430,966 B1. These are designed for a brazing temperature of about 1150 ° C. and contain 5-15 mol% Al 2 O 3 . Such high brazing temperatures are undesirable for modern fuel cells. This is because it exposes metallic substrate materials and other heat sensitive materials to an excessive extent.
DE102005002435号A1は、非晶質のガラスマトリクスと結晶相から成る複合ソルダー(composite solder)を記載している。そのガラスマトリクスは、20質量%を上回る高い含有率のCaO及びMgOを有するが、これは、比較的高い粘度及び高い誘電損失をもたらす。更に、Al2O3の含有率は、少なくとも10質量%である。Al2O3は、通常は、ガラスソルダー中で結晶化の制御のために使用されるが、またソルダーの熱膨張を減らすためにも使用され、従ってしばしば、該ガラスソルダーが高い熱膨張を有する材料の接合に使用される場合には逆効果である。 DE 102005002435 A1 describes a composite solder consisting of an amorphous glass matrix and a crystalline phase. The glass matrix has a high content of CaO and MgO above 20% by weight, which results in a relatively high viscosity and high dielectric loss. Furthermore, the content of Al 2 O 3 is at least 10% by mass. Al 2 O 3 is usually used in glass solders for crystallization control, but it is also used to reduce the thermal expansion of the solder, so often the glass solder has a high thermal expansion. It is counterproductive when used to join materials.
DE10122327号A1は、11×10-6K-1を上回る熱膨張係数α(20-300)を有するBaO−CaO−SiO2系から構成されるガラスソルダーであって、高温範囲でセラミックと金属も接合させるためのものを記載している。特に、12×10-6K-1未満の膨張係数αを有する材料、例えば10×10-6K-1の熱膨張を有するZrO2セラミックを接合させる場合に、適合の悪さの結果として熱応力が生じ、そしてこられは強度を下げるか、又は接合部の完全な破壊をもたらすことさえもある。それらのガラスは、45〜55質量%までのBaO含有率を有する。高いBaO含有率は、高められた結晶化を引き起こすことがある。更に、SiO2の割合は、35〜45質量%の範囲にある。SiO2の含有率が高まると、熱膨張の低下がもたらされ、そして必要とされる接合温度の上昇がもたらされる。 DE 10122327 A1 is a glass solder composed of a BaO—CaO—SiO 2 system having a thermal expansion coefficient α (20-300) exceeding 11 × 10 −6 K −1 , and ceramics and metals are also used in a high temperature range. It describes what is to be joined. In particular, when joining materials having an expansion coefficient α of less than 12 × 10 −6 K −1 , for example ZrO 2 ceramics having a thermal expansion of 10 × 10 −6 K −1 , thermal stress as a result of poor conformity And this may reduce strength or even cause complete destruction of the joint. These glasses have a BaO content of up to 45-55% by weight. High BaO content may cause increased crystallization. Furthermore, the proportion of SiO 2 is in the range of 35 to 45 wt%. Increasing the SiO 2 content results in a decrease in thermal expansion and an increase in the required bonding temperature.
従って、本発明の課題は、約1100℃以下のろう付け温度で加工でき、かつろう付け工程の終了後に約900℃までの作動温度で、接合部から絞り出されず及び/又は接合部から流出しないほど十分に高い粘度を有し、かつ20℃〜300℃の温度範囲での線熱膨張α(20-300)を8×10-6K-1〜11×10-6K-1の範囲で有し、従って燃料電池で使用される鋼にも、酸化物セラミック、特にZrO2及び/又はAl2O3セラミックにも適合されるろう付けガラスを提供することである。 The object of the present invention is therefore to be able to work at a brazing temperature of about 1100 ° C. or less and not to be squeezed from the joint and / or to flow out of the joint at an operating temperature of up to about 900 ° C. after the brazing process. The linear thermal expansion α (20-300) in the temperature range of 20 ° C. to 300 ° C. is in the range of 8 × 10 −6 K −1 to 11 × 10 −6 K −1 . Therefore, it is to provide a brazing glass which is compatible with both steel used in fuel cells and oxide ceramics, in particular ZrO 2 and / or Al 2 O 3 ceramics.
前記課題は、8×10-6K-1〜11×10-6K-1の熱膨張係数α(20-300)を有する高温用途のためのガラスソルダーであって、酸化物を基礎とする質量%で、
好ましい態様は、以下の通りである:
前記ガラスソルダーにおいて、酸化物を基礎とする質量%で、
In the glass solder, in mass% based on oxide,
前記ガラスソルダーにおいて、更に、それぞれの場合に、酸化物を基礎とする質量%で、2%までの、CrO及び/又はPbO及び/又はV2O5及び/又はWO及び/又はSnO及び/又はCuO及び/又はMnO及び/又はCoO及び/又はSb2O3を含有する。 In said glass solder, furthermore in each case up to 2% by weight on the basis of oxides of CrO and / or PbO and / or V 2 O 5 and / or WO and / or SnO and / or CuO and / or MnO and / or CoO and / or Sb 2 O 3 are contained.
前記ガラスソルダーにおいて、ろう付け作業の後に、非晶質のガラスとして存在する。 In the glass solder, it exists as an amorphous glass after the brazing operation.
前記ガラスソルダーにおいて、ろう付け作業後に、結晶質の材料の割合が、酸化物を基礎として質量%で、50%以下である、部分結晶化ガラスセラミックとして存在する。 In the glass solder, after the brazing operation, the proportion of crystalline material is present as partially crystallized glass ceramic, which is 50% or less by mass based on oxide.
前記ガラスソルダーにおいて、結晶相が、SrBa2Si3O9及び/又はBa0.8Sr3.2SiO3及び/又はBa0.8Sr0.2SiO3及び/又はBaSi2O5及び/又はBaSiO3、Ba2SiO4及び/又はBa4Si6O16及び/又はBa2Si3O8及び/又はSr2MgSi2O7を含有し、好ましくはトリディマイトを含有しない。 In the glass solder, the crystal phase is SrBa 2 Si 3 O 9 and / or Ba 0.8 Sr 3.2 SiO 3 and / or Ba 0.8 Sr 0.2 SiO 3 and / or BaSi 2 O 5 and / or BaSiO 3 , Ba 2 SiO 4. And / or Ba 4 Si 6 O 16 and / or Ba 2 Si 3 O 8 and / or Sr 2 MgSi 2 O 7 , preferably no tridymite.
前記ガラスソルダーにおいて、820℃〜1100℃の半球温度を有する。 The glass solder has a hemispheric temperature of 820 ° C to 1100 ° C.
前記ガラスソルダーを、高温接合部、特に燃料電池、排ガスセンサ及び/又はスパークプラグのための高温接合部の製造のために用いる。 The glass solder is used for the production of hot joints, in particular hot joints for fuel cells, exhaust gas sensors and / or spark plugs.
前記ガラスソルダーを、高い耐熱性を有する焼結体及び/又はシートを製造するために用いる。 The glass solder is used for producing a sintered body and / or a sheet having high heat resistance.
前記ガラスソルダーを、高膨張鋼及び/又は高クロム合金及び/又はAl2O3及び/又はZrO2セラミックを接合するために用いる。 The glass solder is used to join high expansion steel and / or high chromium alloy and / or Al 2 O 3 and / or ZrO 2 ceramic.
特に記載がない限り、以下に示される全てのパーセンテージは、酸化物を基礎とする質量に対するものである。 Unless otherwise noted, all percentages shown below are based on oxide based mass.
本発明によれば、ガラスソルダーは、8×10-6K-1〜11×10-6K-1の線熱膨張係数α(20-300)を有する。本発明のガラスソルダーは、10%から45%未満のBaOと、10%から31%までのSiO2と、場合により25%までのSrOと、2%未満のAl2O3を含有する。しかしながら、BaO及びSrOの割合は、BaO及びSrOの合計が20%から65%までであるように選択される。これらの2種の成分の含有率がより高いと、ろう付け作業の間のガラスソルダーの結晶化傾向が、不所望に高まりうることが判明した。他方で、BaO及びSrOの含有率の合計が20%未満であると、熱膨張は8×10-6K-1未満にまで低下し、必要な範囲の範囲外となる。更に、本発明者は、ガラスソルダーの高いAl2O3含有率が特にその特性に悪影響を及ぼしうること、特に比較的高い含有率が、溶融温度及び/又はろう付け温度の増加をもたらし、かつ熱膨張の低下をもたらすことを確認した。従って、Al2O3含有率は、本発明によれば、2%未満のAl2O3に制限される。 According to the invention, the glass solder has a linear thermal expansion coefficient α (20-300) of 8 × 10 −6 K −1 to 11 × 10 −6 K −1 . Glass solder of the present invention contains a less than 45% from 10% BaO, and SiO 2 from 10% to 31%, and SrO of 25% Optionally, the Al 2 O 3 less than 2%. However, the proportion of BaO and SrO is selected such that the sum of BaO and SrO is from 20% to 65%. It has been found that the higher the content of these two components, the undesirably increased tendency of the glass solder to crystallize during the brazing operation. On the other hand, if the total content of BaO and SrO is less than 20%, the thermal expansion decreases to less than 8 × 10 −6 K −1 , which is outside the required range. Furthermore, the inventor has found that the high Al 2 O 3 content of the glass solder can adversely affect its properties, in particular, the relatively high content leads to an increase in the melting and / or brazing temperature, and It was confirmed that the thermal expansion was reduced. Therefore, the Al 2 O 3 content is limited to less than 2% Al 2 O 3 according to the present invention.
更に、本発明によるガラスソルダーは、場合により、MgO、CaO、ZnO及びBeOからなる群から選択される少なくとも1種のアルカリ土類金属酸化物ROを30%までの量で含有する。アルカリ土類金属酸化物ROの含有率は、また、ガラスソルダーの結晶化特性を制御しうる。更なる好ましい効果は、誘電損失をRO含有ガラスによって低減できることである。更に、融点及びガラス転移温度は、ネットワークを変形させる(network−transforming)アルカリ土類金属酸化物によって低減されうる。ROの含有率は、また、熱膨張係数の増加をもたらすので、それは融合される部品にガラスソルダーを適合させる簡単な方法である。 Furthermore, the glass solder according to the invention optionally contains at least one alkaline earth metal oxide RO selected from the group consisting of MgO, CaO, ZnO and BeO in an amount of up to 30%. The content of alkaline earth metal oxide RO can also control the crystallization characteristics of the glass solder. A further favorable effect is that the dielectric loss can be reduced by RO-containing glass. Furthermore, the melting point and glass transition temperature can be reduced by alkaline-earth metal oxides that network-transform. Since the RO content also leads to an increase in the coefficient of thermal expansion, it is a simple way to adapt the glass solder to the parts to be fused.
更に、B2O3、Ga2O3、In2O3、Y2O3、La2O3及びDy2O3からなる群から選択される酸化物R2O3は、場合により、本発明のガラスソルダー中に30%までの量で存在する。これらの成分R2O3もまた、ろう付け作業の間のガラスソルダーの結晶化挙動を制御できる。同時に、それらは、ガラス形成温度を高めうる。ガラス形成温度Tgが高まると、ガラスソルダーの使用温度は高まる。 Furthermore, the oxide R 2 O 3 selected from the group consisting of B 2 O 3 , Ga 2 O 3 , In 2 O 3 , Y 2 O 3 , La 2 O 3 and Dy 2 O 3 may optionally be present. Present in the glass solder of the invention in an amount of up to 30%. These components R 2 O 3 can also control the crystallization behavior of the glass solder during the brazing operation. At the same time, they can increase the glass forming temperature. When the glass forming temperature T g increases, the temperature use of the glass solder is enhanced.
更なる任意の成分は、20%までの量の、TiO2、ZrO2及びHfO2からなる群から選択される酸化物RO2である。これらの酸化物は、特に、特定の実施態様で所望される部分結晶化のための核としてはたらきうる。 A further optional component is an oxide RO 2 selected from the group consisting of TiO 2 , ZrO 2 and HfO 2 in an amount up to 20%. These oxides can serve in particular as nuclei for partial crystallization as desired in certain embodiments.
本発明のガラスソルダーは、(不純物を除き)好ましくはTeO2を含まない。それというのも、とりわけその原材料は人の健康を害するものだからである。これは、本発明のガラスソルダーのTeO2含有率が、好ましくは0.3質量%未満、特に好ましくは0.2質量%未満であることを意味する。 The glass solder of the present invention preferably does not contain TeO 2 (except impurities). That is because the raw materials are particularly harmful to human health. This means that the TeO 2 content of the glass solder according to the invention is preferably less than 0.3% by weight, particularly preferably less than 0.2% by weight.
しかしながら、酸化物RO、R2O3及びRO2は、本発明のガラスソルダー中に、全体で2%を上回り35%までの範囲の量で存在せねばならない。 However, the oxides RO, R 2 O 3 and RO 2 must be present in the glass solder according to the invention in an amount in the range of more than 2% and up to 35%.
本発明によれば、ガラスソルダーは、アルカリ金属もしくはアルカリ金属酸化物Li2O、Na2O、K2Oが少ない。本発明によれば、全体で1質量%未満のこれらの示したアルカリ金属酸化物がガラスソルダー中に存在する。本発明のガラスソルダーは、特に好ましくは(不純物を除き)、これらの示したアルカリ金属酸化物もRb2O及びFr2Oも含まない。アルカリ金属は、一般に、電気絶縁特性に悪影響を及ぼすと言われている。耐化学薬品性もアルカリ金属の含有率の増加とともに低下する。しかしながら、本発明者は、比較的高い含有率のCs2Oであっても、本発明のガラスソルダーの絶縁特性に悪影響を及ぼさないことを見出した。この理由のため、10質量%までのCs2Oは、本発明のガラスソルダー中に存在してよい。本発明のガラスソルダーにおいて、Cs2Oは、好ましくは更に、ガラスソルダーの耐化学薬品性を受け入れられないほど悪化することなく、少なくとも一定割合のB2O3に置き換わる。これは、好ましい一実施態様において、Cs2O及びB2O3の含有率の合計が30質量%以下であることを意味する。しかしながら、当然のようにまた、ガラスソルダーは、不純物を除き、Cs2Oを含まなくてもよい。 According to the present invention, the glass solder is low in alkali metal or alkali metal oxides Li 2 O, Na 2 O, K 2 O. According to the invention, a total of less than 1% by weight of these indicated alkali metal oxides are present in the glass solder. The glass solder of the present invention particularly preferably (except for impurities) does not contain these indicated alkali metal oxides or Rb 2 O and Fr 2 O. Alkali metals are generally said to have an adverse effect on electrical insulation properties. Chemical resistance also decreases with increasing alkali metal content. However, the present inventors have found that even a relatively high content of Cs 2 O does not adversely affect the insulating properties of the glass solder of the present invention. For this reason, up to 10% by weight of Cs 2 O may be present in the glass solder of the present invention. In the glass solder of the present invention, Cs 2 O preferably further replaces at least a certain proportion of B 2 O 3 without unacceptably degrading the chemical resistance of the glass solder. In a preferred embodiment, this means that the total content of Cs 2 O and B 2 O 3 is 30% by mass or less. However, as a matter of course, the glass solder may not contain Cs 2 O except for impurities.
更なる添加剤も当然のように可能であり、同様に本発明によって包含される。本発明の目的のために、ガラスソルダーという用語は、ろう付け作業の前にろう付けガラスとして使用される非晶質の粉砕ガラス(ground glass)と、ろう付け作業の間に該粉砕ガラスから形成される材料であって、とりわけガラス質の、部分結晶化された、ガラスセラミックもしくは他の形態で存在しうる材料の両方を含む。 Additional additives are naturally possible and are also encompassed by the present invention. For the purposes of the present invention, the term glass solder is formed from an amorphous ground glass that is used as a brazing glass before the brazing operation and from the ground glass during the brazing operation. Including both materials that are glassy, partially crystallized, glass-ceramics or other forms that may exist.
好ましい一実施態様においては、本発明によるガラスソルダーは、15%までのB2O3を含有する。B2O3含有率は、結晶化挙動に好ましい影響を有するだけでなく、溶融挙動にも、ひいてはガラス溶融にも好ましい影響を及ぼす。極めて高いB2O3含有率は、他方では、耐化学薬品性に悪影響を及ぼしうる。更に、15%を上回るB2O3含有率は、ガラスソルダーからの酸化ホウ素の蒸発をもたらすことがあり、それは同様に望ましくない。SiO2の含有率と共に、B2O3の含有率も、安定なガラスの形成を大きな程度で促しうる。 In a preferred embodiment, the glass solder according to the invention contains up to 15% B 2 O 3 . The B 2 O 3 content not only has a positive influence on the crystallization behavior but also has a positive influence on the melting behavior and thus on the glass melting. The very high B 2 O 3 content, on the other hand, can adversely affect the chemical resistance. Furthermore, a B 2 O 3 content of more than 15% can lead to the evaporation of boron oxide from the glass solder, which is likewise undesirable. Together with the SiO 2 content, the B 2 O 3 content can also promote the formation of stable glass to a large extent.
本発明によるガラスソルダーは、好ましくは5%までのCaOを含有する。CaO含有率は、同様に、ろう付け作業の間にガラスソルダーの結晶化に影響を及ぼすことがあるが、同様に、CaOの添加による不所望な結晶相トリディマイトの形成を抑えることも可能である。 The glass solder according to the invention preferably contains up to 5% CaO. The CaO content can likewise affect the crystallization of the glass solder during the brazing operation, but it is also possible to suppress the formation of unwanted crystalline phase tridymite due to the addition of CaO. .
6%までの含有率のMgOは同様に好ましい。より高い含有率のMgOは、ろう付け作業の間に高められた結晶化をもたらすことがあり、それは、溶融温度の上昇をもたらすことがある。このMgOの含有率は、焼結と流動との間の間隔を>300℃の値まで高める。 MgO with a content of up to 6% is likewise preferred. Higher content of MgO can lead to increased crystallization during the brazing operation, which can lead to increased melting temperature. This MgO content increases the spacing between sintering and flow to a value of> 300 ° C.
10%未満までの含有率のTiO2は同様に好ましい。より高い含有率のTiO2は、高められた結晶化をもたらすことができ、こうして流動をより高い温度にずらすことができる。 TiO 2 with a content of less than 10% is likewise preferred. A higher content of TiO 2 can lead to increased crystallization, thus shifting the flow to higher temperatures.
更なる好ましい一実施態様において、本発明のガラスソルダーは、それぞれの場合に、2%までのCrO及び/又はPbO及び/又はV2O5及び/又はWO及び/又はSnO及び/又はCuO及び/又はMnO及び/又はCoO及び/又はSb2O3を含有する。これらの成分は、例えば、様々な基体に対する濡れ特性の改善に寄与しうる。しかしながら、本発明のガラスソルダーは、特に好ましくは、少なくとも大部分はPbOを含まない。すなわちPbOは、1質量%以下の量で存在し、本発明のガラスソルダーは、(不純物を除き)、非常に特に好ましくはPbOを含まない。 In a further preferred embodiment, the glass solder of the invention is in each case up to 2% CrO and / or PbO and / or V 2 O 5 and / or WO and / or SnO and / or CuO and / or Or it contains MnO and / or CoO and / or Sb 2 O 3 . These components can contribute, for example, to improved wetting properties for various substrates. However, the glass solder of the invention is particularly preferably at least mostly free of PbO. That is, PbO is present in an amount of 1% by weight or less, and the glass solder of the present invention (except for impurities) very particularly preferably does not contain PbO.
更に、原材料もしくは純化剤(refining agent)、例えばAs2O3及び/又はBaClによる不純物は、本発明のガラスソルダー中に、それぞれの場合に0.2%までの量で存在してよい。 Furthermore, impurities due to raw materials or refining agents such as As 2 O 3 and / or BaCl may be present in the glass solder according to the invention in an amount of up to 0.2% in each case.
ろう付け作業の後に、本発明のガラスソルダーは、好ましくは非晶質のガラスとして存在する。これは、前記ガラスソルダーが実質的に結晶質領域を有さないことを意味する。 After the brazing operation, the glass solder of the present invention is preferably present as an amorphous glass. This means that the glass solder has substantially no crystalline region.
しかしながら、代替的な好ましい一実施態様においては、本発明のガラスソルダーは、部分結晶化されたガラスセラミックであって、結晶性材料の割合が全質量に対して50%以下であるガラスセラミックとして存在する。 However, in an alternative preferred embodiment, the glass solder of the present invention is a partially crystallized glass ceramic present as a glass ceramic in which the proportion of crystalline material is 50% or less of the total mass To do.
これらの部分結晶性ガラスにおいては、不所望な結晶相の過剰な結晶化もしくは析出は、R2O3及びROの添加によって回避することができる。接合作業の間の過剰な結晶化は、粘度上昇をもたらし、そしてろう付け温度を約1100℃より高い値にシフトさせる。 In these partially crystalline glasses, excessive crystallization or precipitation of unwanted crystal phases can be avoided by the addition of R 2 O 3 and RO. Excess crystallization during the joining operation results in an increase in viscosity and shifts the brazing temperature to a value above about 1100 ° C.
SrBa2Si3O9及び/又はBa0.8Sr3.2SiO3及び/又はBa0.8Sr0.2SiO3及び/又はBaSi2O5及び/又はBaSiO3及び/又はBa2SiO4及び/又はBa4Si6O16及び/又はBa2Si3O8及び/又はSr2MgSi2O7は、好ましくは結晶相として形成される。トリディマイトの形成は、CaOの添加によって回避できる。 SrBa 2 Si 3 O 9 and / or Ba 0.8 Sr 3.2 SiO 3 and / or Ba 0.8 Sr 0.2 SiO 3 and / or BaSi 2 O 5 and / or BaSiO 3 and / or Ba 2 SiO 4 and / or Ba 4 Si 6 O 16 and / or Ba 2 Si 3 O 8 and / or Sr 2 MgSi 2 O 7 are preferably formed as a crystalline phase. The formation of tridymite can be avoided by the addition of CaO.
部分結晶質の実施態様においては、本発明のガラスソルダーの組成は、好ましくは、該ガラスソルダーがゆっくりと結晶化するように設定される。それが非常に強力に結晶化した場合には、しばしば、十分な濡れは得られないこととなる。特に、ろう付けガラスは、接合部を生成させる場合には、一般に、非結晶化形もしくは部分結晶化形でろう付けすべき位置に導入すべきである。それというのも、融合すべき部品の濡れに必要な温度がその際にはより低いからである。 In the partially crystalline embodiment, the composition of the glass solder of the present invention is preferably set so that the glass solder crystallizes slowly. If it crystallizes very strongly, often sufficient wetting cannot be obtained. In particular, the brazing glass should generally be introduced at the location where it is to be brazed in an uncrystallized or partially crystallized form when producing a joint. This is because the temperature required to wet the parts to be fused is lower.
本発明者は、特にこの実施態様においては、結晶相SrBa2Si3O9が析出する三元系BaO−SrO−SiO2において共晶となることを見出した。酸化物のBaO、SrO及びSiO2の質量比は、これらの3種の酸化物の点での組成が、記載した共晶の範囲であるように選択される。こうして、焼結と流動との間に、300℃未満の狭い温度間隔を有するガラスを得ることが可能である。 The present inventor has found that, in this embodiment in particular, the ternary BaO—SrO—SiO 2 in which the crystalline phase SrBa 2 Si 3 O 9 is precipitated becomes a eutectic. The mass ratio of the oxides BaO, SrO and SiO 2 is selected such that the composition in terms of these three oxides is in the eutectic range described. It is thus possible to obtain a glass having a narrow temperature interval of less than 300 ° C. between sintering and flow.
本発明によるガラスソルダーは、好ましくは、820℃〜1100℃の半球温度を有し、従ってほぼこの温度で接合のために使用できる。この可能な温度範囲により、該ガラスソルダーは、またレーザボンディング法での加工のためにも適している。 The glass solder according to the invention preferably has a hemispheric temperature of 820 ° C. to 1100 ° C. and can therefore be used for bonding at about this temperature. Due to this possible temperature range, the glass solder is also suitable for processing in the laser bonding method.
本発明のガラスソルダーは、一般に、その構成成分を慣用のガラス溶融装置中で溶融してガラスを形成させ、引き続きこれをミル粉砕(milling)してガラス粉末を形成させることによって製造される。該ガラス粉末は、例えば接合部中に、分配可能なペーストの形でもしくは予備焼結された成形体の形で導入することができる。 The glass solder of the present invention is generally produced by melting its constituents in a conventional glass melting apparatus to form glass and subsequently milling it to form glass powder. The glass powder can be introduced into the joint, for example, in the form of a dispensable paste or in the form of a pre-sintered compact.
接合部の最適な強度は、ソルダーの熱膨張が融合すべき材料と最適に適合されている場合に達成される。更に、結晶化プロセスによる熱膨張係数の変化の結果としてソルダー中に過剰な応力は生じない。本発明によるガラスソルダーは、とりわけ不所望な結晶相の回避によってこれを保証する。 Optimal strength of the joint is achieved when the thermal expansion of the solder is optimally matched with the material to be fused. Furthermore, no excessive stress is produced in the solder as a result of the change in the coefficient of thermal expansion due to the crystallization process. The glass solder according to the invention ensures this by inter alia avoiding unwanted crystal phases.
本発明のガラスソルダーは、その物理特性のため、高温耐久性接合部に特に適している。本発明の目的のために、高温耐久性とは、約650℃より高い温度範囲を意味する。かかる接合部は、特に好ましくは、燃料電池、特にSOFC(固体酸化物形燃料電池)で使用できる。燃料電池での使用の一例は、個々の複数のSOFCを接合して、1つのSOFCスタックを形成することである。更なる利用分野は、燃焼装置、例えば自動車用途、船舶のエンジン、発電所、航空機もしくは宇宙航行におけるセンサである。好ましい一用途は、本発明のガラスソルダーを、内燃機関を有する自動車の排気系統におけるセンサのために用いる使用である。 The glass solder of the present invention is particularly suitable for high temperature durability joints due to its physical properties. For the purposes of the present invention, high temperature durability means a temperature range above about 650 ° C. Such a joint can be used particularly preferably in fuel cells, in particular in SOFCs (solid oxide fuel cells). One example of use in a fuel cell is to join individual SOFCs to form a single SOFC stack. Further fields of application are sensors in combustion devices such as automotive applications, marine engines, power plants, aircraft or space navigation. One preferred application is the use of the glass solder of the present invention for sensors in the exhaust system of a motor vehicle having an internal combustion engine.
しかしながら、本発明のガラスソルダーは、高い耐熱性を有する焼結体を製造するためにも使用できる。 However, the glass solder of the present invention can also be used to produce a sintered body having high heat resistance.
焼結体の製造方法は、十分に知られている。一般に、本発明のガラスソルダーの出発材料は、互いに粉末形で混合され、一般に有機バインダーと混合され、そして所望の形状に圧縮される。出発材料の粉末の代わりに、事前に溶融された本発明によるガラスをミル粉砕し、それとバインダーとを混合することも可能である。次いで、圧縮されたガラス・バインダー体を、焼結温度にもたらす。その際に、バインダーは焼失し、ガラス成分は焼結温度で一緒に焼結されうる。次いで、得られた焼結体を、接合される部品と接触させ、ろう付け作業によってこれらを接合させる及び/又はこれらに接合させることができる。 The manufacturing method of a sintered compact is fully known. In general, the starting materials of the glass solder of the present invention are mixed together in powder form, generally mixed with an organic binder, and compressed into the desired shape. Instead of the starting powder, it is also possible to mill the glass according to the invention previously melted and to mix it with the binder. The compressed glass binder body is then brought to the sintering temperature. In doing so, the binder burns out and the glass components can be sintered together at the sintering temperature. The resulting sintered bodies can then be brought into contact with the parts to be joined and joined and / or joined to them by a brazing operation.
ろう付けにおける焼結体の使用は、焼結体が成形部材であり、事実上任意の形状で製造できるという利点を有している。例えばしばしば使用される形状は、中空の円柱形であり、それは、電気接続ピンと一緒に金属部品の貫通開口部中に導入して、ろう付け後に電気絶縁された接続ピンを有する好ましくはハーメチックシールされたガラス・金属リードスルー(lead−through)を得ることができる。かかるガラス・金属リードスルーは、多くの電機部品で使用され、当業者に公知である。 The use of a sintered body in brazing has the advantage that the sintered body is a molded member and can be manufactured in virtually any shape. For example, a frequently used shape is a hollow cylindrical shape, which is preferably hermetically sealed with a connection pin that is electrically insulated after brazing, introduced into the through opening of the metal part together with the electrical connection pin. Glass-metal lead-through can be obtained. Such glass / metal leadthroughs are used in many electrical components and are known to those skilled in the art.
本発明の結晶化ガラスソルダー及び/又は複合材料の更なる好ましい一用途は、該ガラスソルダー及び/又は該複合材料を含むシートの製造である。かかるシートは、前記の焼結体に類似しているが、十分にフレキシブルに製造することもできる。形状物は、これらから抜き出すことができ、かつ好ましくは平坦な部品を互いに接合させるために使用できる。 A further preferred use of the crystallized glass solder and / or composite material according to the invention is the production of sheets comprising the glass solder and / or the composite material. Such a sheet is similar to the sintered body described above, but can also be made sufficiently flexible. Shapes can be extracted from these and preferably used to join flat parts together.
本発明を、以下に、本発明によるガラスソルダーの特性により、また比較例を補助的に用いて説明する。 The invention will now be described by the properties of the glass solder according to the invention and with the aid of comparative examples.
まず、ろう付けガラスは、ガラス溶融装置中で溶融させた。以下の特性は、1つのブロック、少なくとも1つの大型の破片で一般に存在するろう付けガラスについて測定したものである。 First, the brazing glass was melted in a glass melting apparatus. The following properties were measured for brazing glass commonly present in one block, at least one large piece.
定義:
α(20-300) 20℃〜300℃の範囲の線熱膨張係数
Tg ガラス転移温度、又は略して転移温度
ST 軟化温度;この温度で、粘度の対数は、7.6である。
Definition:
α (20-300) Coefficient of linear thermal expansion in the range of 20 ° C. to 300 ° C. T g glass transition temperature, or abbreviated transition temperature ST softening temperature; at this temperature, the logarithm of viscosity is 7.6.
ろう付けガラスの組成及びそれらの物理特性を、第1表にまとめる。 The composition of the brazing glass and their physical properties are summarized in Table 1.
ろう付けガラスの特性決定の後に、一般に粉末状のガラスソルダーは、該ろう付けガラスからミル粉砕法によって製造される。本実施例において、約10μmのD(50)及び63μm未満のD(99)を有する粒度分布を有する粉末が、融合されたろう付けガラスから提供され、バインダーと一緒に加工することで、配量可能なペーストが得られた。粉末とバインダーは、三本ロールミルによって均質化した。該バインダーは、一般にニトロセルロース、エチルセルロースもしくはアクリレート系バインダーなどの有機物質である。一般に、結晶化ガラスソルダーの特性には更なる影響はないが、それが加熱の間に完全に焼失できるように選択すべきである。 After characterization of the brazing glass, generally a powdery glass solder is produced from the brazing glass by a milling process. In this example, a powder with a particle size distribution having a D (50) of about 10 μm and a D (99) of less than 63 μm is provided from a fused brazing glass and can be dispensed by processing together with a binder Paste was obtained. The powder and binder were homogenized by a three roll mill. The binder is generally an organic substance such as nitrocellulose, ethylcellulose, or an acrylate binder. In general, there is no further effect on the properties of the crystallized glass solder, but it should be chosen so that it can be completely burned off during heating.
ガラスソルダーの熱的特性決定は、引き続き高温顕微鏡によって実施される。この目的のために、円柱形の試験体を、ろう付けガラスもしくは複合材料から、特性決定されるべき粉末形に圧縮し、そしてこの試験体をセラミック台上で10K/分で加熱する。試験体の形状の変化が観察され、その際、特定の粘度を割り当てることができる以下の特徴点は、一般に非結晶化サンプルの場合に温度上昇とともに生ずる:
焼結の開始:この温度で、粉末粒は融合を始める。試験体の高さは結果的に低下する。粘度の対数は、約10±0.3である。
The thermal characterization of the glass solder is subsequently carried out with a high temperature microscope. For this purpose, cylindrical specimens are compressed from brazing glass or composite material into the powder form to be characterized and the specimens are heated on a ceramic table at 10 K / min. Changes in the shape of the specimen are observed, and the following features that can be assigned a specific viscosity generally occur with increasing temperature in the case of non-crystallized samples:
Start of sintering: At this temperature, the powder particles begin to fuse. As a result, the height of the specimen decreases. The logarithm of viscosity is about 10 ± 0.3.
軟化温度:この温度STKは、試験円柱の縁部丸まりの開始によって特徴付けられる。粘度の対数は、約8.2である。 Softening temperature: This temperature ST K is characterized by the onset of the edge rounding of the test cylinder. The logarithm of viscosity is about 8.2.
球形温度(Spherical temperature):粘度の対数は、約6.1である。 Spherical temperature: the logarithm of viscosity is about 6.1.
半球温度:試験体は、この温度でほぼ半球の形状を有する。粘度の対数は、約4.6±0.1である。 Hemispheric temperature: The specimen has an approximately hemispherical shape at this temperature. The logarithm of viscosity is about 4.6 ± 0.1.
流動温度:この温度で、試験体の高さは、初期高さの約1/3である。粘度の対数は、約4.1±0.1である。 Flow temperature: At this temperature, the height of the specimen is about 1/3 of the initial height. The logarithm of viscosity is about 4.1 ± 0.1.
結晶化温度Tc:示差熱分析(DTA)によって測定されたピーク結晶化温度、発熱反応。 Crystallization temperature Tc : peak crystallization temperature measured by differential thermal analysis (DTA), exothermic reaction.
高温顕微鏡を用いて測定されたガラスソルダーの熱的特性も、結晶化後のそれらの特性も、同様に第1表にまとめている。 The thermal properties of the glass solder measured using a high temperature microscope and their properties after crystallization are also summarized in Table 1.
他方で、全ての実施例E1〜E6は、本発明により望ましい挙動を有する。これらは、1100℃を大きく下回る半球温度を達成する。半球温度は、しばしばまた、封止温度(sealing temperature)とも呼ばれる。これにより、本発明のガラスソルダーは、レーザボンディング法に特に適したものとなる。それというのも、比較的高いプロセス温度において、ガラスソルダーによって接合されるべき及び/又は封止されるべきセラミックは、光学特性の変化(吸収係数の増加)のためレーザによって励起されることとなり、こうして温度の不所望な突然の上昇が生じうるからである。 On the other hand, all Examples E1-E6 have the desired behavior according to the invention. These achieve hemispheric temperatures well below 1100 ° C. The hemispheric temperature is often also referred to as the sealing temperature. Thereby, the glass solder of the present invention is particularly suitable for the laser bonding method. This is because at relatively high process temperatures, the ceramic to be joined and / or sealed by the glass solder will be excited by the laser due to a change in optical properties (increased absorption coefficient), This is because an undesired sudden increase in temperature can occur.
接合のためにレーザ照射が使用される場合に、接合されるべき領域は、一般に非常に迅速に加熱され、その際、結晶化は十分に抑制される。安定的な結合は、数秒ないし数分の範囲の期間内に得ることができる。ポジティブな接合実験は、ダイオードレーザ(出力:3kW)を用いて808nmと940nmの発光波長を用いて実施した。出発ガラスを、粉末として液体と一緒に撹拌して、懸濁液を形成し、接合されるべき部分に塗布し、引き続きレーザを照射した。 When laser irradiation is used for bonding, the areas to be bonded are generally heated very quickly, in which case crystallization is sufficiently suppressed. Stable binding can be obtained within a period ranging from seconds to minutes. Positive junction experiments were performed using a diode laser (output: 3 kW) with emission wavelengths of 808 nm and 940 nm. The starting glass was stirred as a powder with the liquid to form a suspension, applied to the parts to be joined and subsequently irradiated with a laser.
本発明のガラスソルダーは、本発明の課題に応じた全ての好ましい特性を互いに兼ね備える。中間物質としてのろう付けガラスは、慣用の溶融方法によって、良好な溶融特性と高すぎない溶融温度で製造することができる。それは、所望の範囲で熱膨張を有し、また特に必要に応じて制御可能な結晶化傾向をも有する。その組成は、不所望な結晶相の形成を効果的に抑制し、それにより長期間安定な低応力接合部を可能にする。それらがアルカリ金属を含まないため、本発明のガラスソルダーは、高い温度でさえも優れた電気絶縁特性を有する。 The glass solder of the present invention has all the preferable characteristics according to the problems of the present invention. Brazing glass as an intermediate material can be produced by conventional melting methods with good melting properties and a melting temperature that is not too high. It has a thermal expansion in the desired range and also has a tendency to crystallize, which can be controlled as required. Its composition effectively suppresses the formation of undesired crystalline phases, thereby enabling long-term stable low stress joints. Since they do not contain alkali metals, the glass solders of the present invention have excellent electrical insulation properties even at high temperatures.
本発明のガラスソルダーは、900℃を上回る高い作動温度を可能にする接合部を、約820℃から最大で1100℃の低い加工温度で得ることを可能にする。更に、インターコネクタ材料の良好な濡れは、部分結晶化が存在しない又はゆっくりであるため、ソルダーの導入後にのみ、長期安定な接合部を可能にする。本発明によるガラスソルダーは、8×10-6K-1〜11×10-6K-1の熱膨張を有する材料間での気密の高温安定な電気絶縁的な接合部を製造するために使用できる。かかる材料は、例えば高膨張鋼、高クロム合金、また酸化物セラミック、特にZrO2である。 The glass solder of the present invention makes it possible to obtain joints that allow high operating temperatures above 900 ° C. at low processing temperatures from about 820 ° C. up to 1100 ° C. Furthermore, good wetting of the interconnector material allows long-term stable joints only after the introduction of solder, since there is no or slow partial crystallization. The glass solder according to the present invention is used to produce an airtight, high temperature stable electrically insulating joint between materials having a thermal expansion of 8 × 10 −6 K −1 to 11 × 10 −6 K −1. it can. Such materials are, for example, high expansion steels, high chromium alloys, and oxide ceramics, in particular ZrO 2 .
特に、ZrO2とZrO2との間の接合、またZrO2と高い熱膨張を有する他の材料、つまりCFY、デュルコロイ(Durcolloy)、インコネル(Inconel)もしくはCrofer22APUなどの高膨張合金との間の接合を、達成することができる。 In particular, bonding between ZrO 2 and ZrO 2, and bonding between ZrO 2 and other materials with high thermal expansion, ie high expansion alloys such as CFY, Durcolloy, Inconel or Crofer22APU Can be achieved.
Claims (10)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10001512 | 2010-02-15 | ||
EP10001512.2 | 2010-02-15 | ||
DE102010035251A DE102010035251B4 (en) | 2010-02-15 | 2010-08-24 | High-temperature glass solder and its use |
DE102010035251.9 | 2010-08-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011168480A true JP2011168480A (en) | 2011-09-01 |
JP5818454B2 JP5818454B2 (en) | 2015-11-18 |
Family
ID=44503065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011030172A Active JP5818454B2 (en) | 2010-02-15 | 2011-02-15 | High temperature glass solder and its use |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5818454B2 (en) |
CN (1) | CN102190440B (en) |
DE (1) | DE102010035251B4 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012519149A (en) * | 2009-03-04 | 2012-08-23 | ショット アクチエンゲゼルシャフト | Crystallized glass solder and use thereof |
JP2013203627A (en) * | 2012-03-29 | 2013-10-07 | Asahi Glass Co Ltd | Glass composition |
JP2013241323A (en) * | 2012-04-24 | 2013-12-05 | Nippon Electric Glass Co Ltd | Crystalline glass composition |
US8664134B2 (en) | 2009-03-04 | 2014-03-04 | Schott Ag | Crystallizing glass solders and uses thereof |
JP2014231469A (en) * | 2013-05-28 | 2014-12-11 | ショット アクチエンゲゼルシャフトSchott AG | Vitreous or at least partially crystalline joining material and uses of the same |
JP2015063456A (en) * | 2013-09-20 | 2015-04-09 | ショット アクチエンゲゼルシャフトSchott AG | Feed-through element for harsh environments |
US9708212B2 (en) | 2013-11-26 | 2017-07-18 | Schott Ag | Sodium-resistant joining glass and the use thereof |
WO2017191787A1 (en) * | 2016-05-06 | 2017-11-09 | 住友精密工業株式会社 | Method for manufacturing fuel cell, and fuel cell |
JP2018512692A (en) * | 2014-12-22 | 2018-05-17 | ショット アクチエンゲゼルシャフトSchott AG | Feed-through or connection element with improved thermal load durability |
CN115304283A (en) * | 2022-01-24 | 2022-11-08 | 苏州东辉光学有限公司 | C-Lens glass, blank preparation method, wire drawing furnace and wire drawing machine |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3002531B1 (en) * | 2013-02-26 | 2015-04-03 | Electricite De France | PROCESS FOR THE SYNTHESIS OF A SEALING GLASS BY SOL-GEL PATH |
DE102013009001A1 (en) | 2013-05-24 | 2014-11-27 | Friedrich-Schiller-Universität Jena | Crystallizing, cristobalite-free and electrically well-insulating glass solders with high thermal expansion coefficients for joining metals and / or ceramics |
CN103708728B (en) * | 2013-11-26 | 2015-10-28 | 清华大学 | A kind of Glass-metal seal material for high temperature gas cooled reactor electrical penetration and preparation method thereof |
JP6286565B2 (en) * | 2014-09-19 | 2018-02-28 | 株式会社日立製作所 | Heat dissipation structure and semiconductor module using the same |
CN106882922B (en) * | 2015-12-16 | 2019-09-27 | 辽宁省轻工科学研究院有限公司 | A kind of seal glass and preparation method thereof of resistance to 550 DEG C of high temperature |
CN106882923B (en) * | 2015-12-16 | 2019-09-27 | 辽宁省轻工科学研究院有限公司 | A kind of devitrified glass and preparation method thereof of resistance to 650 DEG C of high temperature |
CN105620725B (en) * | 2016-01-29 | 2017-12-26 | 山东工业陶瓷研究设计院有限公司 | Nonmetallic control flaps ceramic joining exemplar and preparation method thereof |
DE102018127748A1 (en) | 2018-11-07 | 2020-05-07 | Schott Ag | Joining compound comprising a crystallized glass, its use and crystallizable and at least partially crystallized glass and its use |
EP3650415B1 (en) | 2018-11-07 | 2024-02-07 | Schott Ag | Joint connection comprising a crystallised glass, its use, crystallisable and at least partially crystallised glass and its use |
CN109231813B (en) * | 2018-11-14 | 2021-12-21 | 盐城工学院 | Method for self-heating welding of glass pieces by induction glass solder |
KR102185975B1 (en) * | 2018-11-29 | 2020-12-02 | 엘지전자 주식회사 | Sealing glass composition and solid oxide fuel cell using the same |
CN110373113A (en) * | 2019-05-27 | 2019-10-25 | 苏州潜寻新能源科技有限公司 | A kind of preparation method of fusing point adjustable high-efficiency sealant |
CN111018351B (en) * | 2019-12-06 | 2022-03-01 | 西安赛尔电子材料科技有限公司 | Titanium and kovar alloy sealing glass material for thermal battery and preparation method and application thereof |
DE102020108867A1 (en) | 2020-03-31 | 2021-09-30 | Schott Ag | Melting jar and its use |
CN113121116B (en) * | 2021-05-11 | 2022-11-22 | 景德镇陶瓷大学 | Microcrystalline glass solder, preparation method thereof and method for connecting alumina ceramics |
CN114873913B (en) * | 2022-03-02 | 2024-02-13 | 北京天力创玻璃科技开发有限公司 | Glass solder for sealing titanium alloy and kovar alloy, preparation method and application thereof |
CN115073004A (en) * | 2022-06-09 | 2022-09-20 | 深圳通微新能源科技有限公司 | High-temperature sealant |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE292901C (en) * | ||||
JPS6036350A (en) * | 1983-07-25 | 1985-02-25 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | Borosilicate glass composition |
JPS61247638A (en) * | 1985-04-23 | 1986-11-04 | Seiko Epson Corp | Glass for binding ferrite |
JPH03131546A (en) * | 1989-07-14 | 1991-06-05 | Asahi Glass Co Ltd | Resistor paste and ceramic substrate |
JPH0482294A (en) * | 1990-07-24 | 1992-03-16 | Matsushita Electric Ind Co Ltd | Manufacture of circuit board |
JPH06191885A (en) * | 1992-12-22 | 1994-07-12 | Asahi Glass Co Ltd | Sealing glass and circuit parts |
JPH07302678A (en) * | 1994-05-10 | 1995-11-14 | Matsushita Electric Ind Co Ltd | Heating element and its manufacture |
JP2006073716A (en) * | 2004-09-01 | 2006-03-16 | Tdk Corp | Glass composition for thick film resistor and thick film resistor paste using the same, thick film resistor and electronic part |
JP2008513346A (en) * | 2004-09-22 | 2008-05-01 | バッテル メモリアル インスティチュート | High strength insulating joints for solid oxide fuel cells and other high temperature applications and methods of making the same |
JP2012519149A (en) * | 2009-03-04 | 2012-08-23 | ショット アクチエンゲゼルシャフト | Crystallized glass solder and use thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3975175A (en) * | 1975-06-26 | 1976-08-17 | International Business Machines Corporation | Process for increasing the strength of sealing glass |
JPS61191539A (en) * | 1985-02-19 | 1986-08-26 | Tohoku Metal Ind Ltd | Glass composition for binding ferrite |
CN86101451A (en) * | 1986-03-13 | 1987-10-28 | 电子工业部第十二研究所 | High temperature resistant corrosion resistant to sodium glass solder and manufacture method thereof |
DE19857057C1 (en) * | 1998-12-10 | 2000-04-13 | Fraunhofer Ges Forschung | Use of an alkali-free silicon, magnesium and heavy alkaline earth metal oxide mixture as a high thermal expansion coefficient glass-ceramic joint material, especially for high temperature fuel cells |
US6362119B1 (en) * | 1999-06-09 | 2002-03-26 | Asahi Glass Company, Limited | Barium borosilicate glass and glass ceramic composition |
US6430966B1 (en) * | 1999-07-30 | 2002-08-13 | Battelle Memorial Institute | Glass-ceramic material and method of making |
DE10122327A1 (en) * | 2001-05-08 | 2002-11-28 | Forschungszentrum Juelich Gmbh | Glass solder used as a joining material for high temperature fuel cells comprises a barium oxide-calcium oxide-silicon dioxide mixture with an addition of aluminum oxide |
DE102005002435A1 (en) * | 2005-01-19 | 2006-07-27 | Forschungszentrum Jülich GmbH | Composite material for producing high temperature joint connections, e.g. in fuel cells, comprising amorphous glass matrix and crystalline phase of precrystallized glass and/or ceramic powder |
EP2053026B1 (en) * | 2007-10-26 | 2014-04-02 | Institute of Nuclear Energy Research, Atomic Energy Council | Sealing material for solid oxide fuel cells |
US7964523B2 (en) * | 2008-06-19 | 2011-06-21 | Nihon Yamamura Glass Co., Ltd. | Composition for sealing glass |
-
2010
- 2010-08-24 DE DE102010035251A patent/DE102010035251B4/en active Active
-
2011
- 2011-02-11 CN CN201110043668.0A patent/CN102190440B/en active Active
- 2011-02-15 JP JP2011030172A patent/JP5818454B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE292901C (en) * | ||||
JPS6036350A (en) * | 1983-07-25 | 1985-02-25 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | Borosilicate glass composition |
JPS61247638A (en) * | 1985-04-23 | 1986-11-04 | Seiko Epson Corp | Glass for binding ferrite |
JPH03131546A (en) * | 1989-07-14 | 1991-06-05 | Asahi Glass Co Ltd | Resistor paste and ceramic substrate |
JPH0482294A (en) * | 1990-07-24 | 1992-03-16 | Matsushita Electric Ind Co Ltd | Manufacture of circuit board |
JPH06191885A (en) * | 1992-12-22 | 1994-07-12 | Asahi Glass Co Ltd | Sealing glass and circuit parts |
JPH07302678A (en) * | 1994-05-10 | 1995-11-14 | Matsushita Electric Ind Co Ltd | Heating element and its manufacture |
JP2006073716A (en) * | 2004-09-01 | 2006-03-16 | Tdk Corp | Glass composition for thick film resistor and thick film resistor paste using the same, thick film resistor and electronic part |
JP2008513346A (en) * | 2004-09-22 | 2008-05-01 | バッテル メモリアル インスティチュート | High strength insulating joints for solid oxide fuel cells and other high temperature applications and methods of making the same |
JP2012519149A (en) * | 2009-03-04 | 2012-08-23 | ショット アクチエンゲゼルシャフト | Crystallized glass solder and use thereof |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8658549B2 (en) | 2009-03-04 | 2014-02-25 | Schott Ag | Crystallizing glass solder and use thereof |
US8664134B2 (en) | 2009-03-04 | 2014-03-04 | Schott Ag | Crystallizing glass solders and uses thereof |
JP2012519149A (en) * | 2009-03-04 | 2012-08-23 | ショット アクチエンゲゼルシャフト | Crystallized glass solder and use thereof |
JP2013203627A (en) * | 2012-03-29 | 2013-10-07 | Asahi Glass Co Ltd | Glass composition |
JP2013241323A (en) * | 2012-04-24 | 2013-12-05 | Nippon Electric Glass Co Ltd | Crystalline glass composition |
US9206076B2 (en) | 2013-05-28 | 2015-12-08 | Schott Ag | Vitreous or partially crystalline joining material and uses of same |
JP2014231469A (en) * | 2013-05-28 | 2014-12-11 | ショット アクチエンゲゼルシャフトSchott AG | Vitreous or at least partially crystalline joining material and uses of the same |
US9741463B2 (en) | 2013-09-20 | 2017-08-22 | Schott Corporation | GTMS connector for oil and gas market |
US9627109B2 (en) | 2013-09-20 | 2017-04-18 | Schott Corporation | Feed-through element for harsh environments |
JP2015063456A (en) * | 2013-09-20 | 2015-04-09 | ショット アクチエンゲゼルシャフトSchott AG | Feed-through element for harsh environments |
US9818500B2 (en) | 2013-09-20 | 2017-11-14 | Schott Corporation | Feed-through element for harsh environments |
JP2018027886A (en) * | 2013-09-20 | 2018-02-22 | ショット アクチエンゲゼルシャフトSchott AG | Feed-through element for harsh environments |
JP7250419B2 (en) | 2013-09-20 | 2023-04-03 | ショット アクチエンゲゼルシャフト | Feedthrough components for harsh environments |
US9708212B2 (en) | 2013-11-26 | 2017-07-18 | Schott Ag | Sodium-resistant joining glass and the use thereof |
JP2018512692A (en) * | 2014-12-22 | 2018-05-17 | ショット アクチエンゲゼルシャフトSchott AG | Feed-through or connection element with improved thermal load durability |
US10138157B2 (en) | 2014-12-22 | 2018-11-27 | Schott Ag | Lead-through or connecting element with improved thermal loading capability |
US10457588B2 (en) | 2014-12-22 | 2019-10-29 | Schott Ag | Lead-through or connecting element with improved thermal loading capability |
WO2017191787A1 (en) * | 2016-05-06 | 2017-11-09 | 住友精密工業株式会社 | Method for manufacturing fuel cell, and fuel cell |
CN115304283A (en) * | 2022-01-24 | 2022-11-08 | 苏州东辉光学有限公司 | C-Lens glass, blank preparation method, wire drawing furnace and wire drawing machine |
CN115304283B (en) * | 2022-01-24 | 2023-05-16 | 苏州东辉光学有限公司 | C-Lens glass, blank preparation method and wire drawing machine |
Also Published As
Publication number | Publication date |
---|---|
CN102190440B (en) | 2015-09-30 |
DE102010035251A1 (en) | 2011-09-08 |
JP5818454B2 (en) | 2015-11-18 |
DE102010035251A9 (en) | 2012-11-29 |
DE102010035251B4 (en) | 2013-09-26 |
CN102190440A (en) | 2011-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5818454B2 (en) | High temperature glass solder and its use | |
JP6005098B2 (en) | Glassy or at least partially crystalline bonding material and use thereof | |
US8999870B2 (en) | Barium- and strontium-free vitreous or glass-ceramic jointing material and its use | |
JP5486612B2 (en) | Crystallized glass solder and use thereof | |
JP6456458B2 (en) | Glassy or at least partially crystallized fusing material, joint joint, barrier layer and layer system comprising this fusing material and incorporation into this component | |
JP5542992B2 (en) | Glass-ceramic bonding material and use thereof | |
US9296644B2 (en) | High-temperature glass solder and its uses | |
US8664134B2 (en) | Crystallizing glass solders and uses thereof | |
DE102011080352B4 (en) | High-temperature glass solder and its use | |
DE102010050867A1 (en) | Crystallizable solder glass used for e.g. fuel cell, comprises sintered ceramic containing strontium oxide, barium oxide, silica, alumina, boron oxide, cesium oxide, specific metallic oxide, lithium oxide, sodium oxide and potassium oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140320 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140407 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150119 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20150415 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20150514 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150618 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150914 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150929 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5818454 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |