JPH07302678A - Heating element and its manufacture - Google Patents

Heating element and its manufacture

Info

Publication number
JPH07302678A
JPH07302678A JP6096301A JP9630194A JPH07302678A JP H07302678 A JPH07302678 A JP H07302678A JP 6096301 A JP6096301 A JP 6096301A JP 9630194 A JP9630194 A JP 9630194A JP H07302678 A JPH07302678 A JP H07302678A
Authority
JP
Japan
Prior art keywords
heating element
weight
crystallized glass
catalyst layer
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6096301A
Other languages
Japanese (ja)
Inventor
Masaki Ikeda
正樹 池田
Haruhiko Handa
晴彦 半田
Yasuo Mizuno
康男 水野
Akihiko Yoshida
昭彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6096301A priority Critical patent/JPH07302678A/en
Publication of JPH07302678A publication Critical patent/JPH07302678A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a heat generation body for purification of harmful gas and deodorization requiring short rise time and achieving compact device size. CONSTITUTION:Crystallized glass grain is applied on the surface of an electric resistance heat generation body 1 in an electrophoresis deposition method, it is baked to form a crystallized glass layer 2, and a catalyst layer 3 is formed on its surface. The catalyst layer 3 desirably includes zeolite. The catalyst layer 3 is activated by energization to the heat generation body 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気エネルギーを熱源
として、触媒を効率的に作用させて、各種暖房器、給湯
器、乾燥器、調理器、冷蔵庫、空調用機器などの排ガス
浄化や脱臭に用いられる発熱体およびその製造方法に関
するものである。
BACKGROUND OF THE INVENTION The present invention relates to exhaust gas purification and deodorization of various heaters, water heaters, dryers, cookers, refrigerators, air conditioners, etc. by efficiently operating a catalyst using electric energy as a heat source. The present invention relates to a heating element used in the above and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、脱臭を目的とした触媒体として、
(1)コージライト、アルミナなどの材料でハニカム状
に成型したバルクタイプ、(2)基材に触媒スラリーを
塗布し、焼成したコーティングタイプがある。そして、
それらの触媒を効率的に作用させるためには、触媒体を
300℃以上の温度に加熱する必要がある。(1)のタ
イプは、触媒の加熱源として、触媒体に直接ヒータを装
着して加熱する方法、または機器からの排熱を利用して
触媒体を加熱する方法が用いられている。また、最近で
は、図3に示すように、石英管5にコイル状発熱体4を
内蔵させた石英管ヒータの表面に、触媒層6をコーティ
ングする(2)のタイプが提案されている。
2. Description of the Related Art Conventionally, as a catalyst body for deodorization,
There are (1) a bulk type in which a material such as cordierite and alumina is molded into a honeycomb shape, and (2) a coating type in which a catalyst slurry is applied to a base material and fired. And
In order for these catalysts to act efficiently, it is necessary to heat the catalyst body to a temperature of 300 ° C. or higher. The type (1) uses a method in which a heater is directly attached to the catalyst body to heat the catalyst body as a heat source for the catalyst, or a method in which the catalyst body is heated by utilizing exhaust heat from the device. Further, recently, as shown in FIG. 3, there has been proposed a type (2) in which the surface of a quartz tube heater in which a coil-shaped heating element 4 is built in a quartz tube 5 is coated with a catalyst layer 6.

【0003】[0003]

【発明が解決しようとする課題】上記(1)のタイプの
触媒体は、触媒体の熱容量が大きいため、触媒体が効果
的に作用する温度に到達するのに時間がかかり、機器立
ち上がり時には、有害ガス、悪臭などの除去が困難であ
った。また、(2)のタイプの触媒体は、(1)のバル
クタイプに比べ、速熱性に優れるため、機器の立ち上が
り時における有害ガス、悪臭などの除去に効果的であ
る。しかしながら、このタイプはヒータの電気絶縁性の
観点から、限られた形状のものしかなく、触媒素子を搭
載した機器の軽薄短小化に対して限界があった。本発明
は、上記従来技術の課題を解決し、触媒を効率的に作用
させるために速熱性があり、しかも機器のコンパクト化
を達成させる発熱体およびその製造方法を提供すること
を目的とする。
In the catalyst body of the above type (1), since the heat capacity of the catalyst body is large, it takes time to reach the temperature at which the catalyst body effectively works, and when the equipment starts up, It was difficult to remove harmful gases and odors. Further, the type (2) type catalyst body is superior in rapid heating property to the type (1) bulk type catalyst body, and is therefore effective in removing harmful gases and odors when the equipment is started up. However, this type has only a limited shape from the viewpoint of the electric insulation of the heater, and there is a limit to the reduction of the weight, thinness and shortness of the device in which the catalyst element is mounted. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art, and to provide a heating element which has fast heating property for allowing the catalyst to act efficiently, and which achieves downsizing of the device, and a manufacturing method thereof.

【0004】[0004]

【課題を解決するための手段】本発明の発熱体は、電気
抵抗発熱体表面に結晶化ガラス層を形成し、この結晶化
ガラス層の上に触媒層を形成したものである。ここで、
前記結晶化ガラスは、MgOが16−50重量%、Si
2が7−30重量%、B23が5−34重量%、Ba
Oが0−50重量%、La23が0−40重量%、Ca
Oが0−20重量%、P25が0−5重量%、MO2
0−5重量%(ただし、MはZr、TiおよびSnより
なる群から選択される少なくとも一種の元素)の組成で
あることが好ましい。また、前記触媒層は、ゼオライ
ト、無機バインダー、および貴金属を担持したアルミナ
からなるものが好ましい。本発明の発熱体の製造方法
は、電気抵抗発熱体表面に電気泳動電着法により結晶化
ガラス粒子を被着し、焼成して結晶化ガラス層を形成す
る工程と、前記結晶化ガラス層上に触媒層を形成する工
程を有する。
The heating element of the present invention comprises a crystallized glass layer formed on the surface of an electric resistance heating element, and a catalyst layer formed on the crystallized glass layer. here,
The crystallized glass contains MgO in an amount of 16-50 wt%, Si
7-30% by weight of O 2, 5-34% by weight of B 2 O 3 , Ba
O is 0-50% by weight, La 2 O 3 is 0-40% by weight, Ca
O is 0-20% by weight, P 2 O 5 is 0-5% by weight, MO 2 is 0-5% by weight (where M is at least one element selected from the group consisting of Zr, Ti and Sn). It is preferably a composition. Further, the catalyst layer is preferably composed of zeolite, an inorganic binder, and alumina carrying a noble metal. The method for producing a heating element according to the present invention comprises a step of depositing crystallized glass particles on the surface of an electric resistance heating element by an electrophoretic electrodeposition method and firing to form a crystallized glass layer; And a step of forming a catalyst layer.

【0005】[0005]

【作用】結晶化ガラスは、電気絶縁性および密着性に優
れているところから、発熱体自体を小型に構成すること
ができるとともに、結晶化ガラス層に接して触媒層が設
けられているので、触媒層は電気抵抗発熱体により短時
間に触媒の活性化温度まで加熱される。こうして触媒が
その活性化温度に加熱された発熱体に接触する空気中の
臭気成分、例えばアンモニアや脂肪酸は、触媒作用によ
り容易に酸化、浄化される。また、触媒層がゼオライト
を含むときには、その吸着特性により、発熱体に通電し
ないとき臭気物質を吸着することができる。そして、発
熱体への通電により、吸着した臭気物質を脱着し、元の
状態へ再生できる。結晶化ガラスが、上記組成に示した
ように、アルカリ成分(Li2O、Na2O、K2O)を
全く含まない無アルカリ結晶化ガラスであるときは、電
気絶縁性が飛躍的に向上する。また、このガラスは焼き
付けるときに無数の微結晶が析出するので、セラミック
スに近く、900℃程度の耐熱性を有する。さらに、析
出した針状結晶によって、この上に形成される触媒層と
の密着性が大幅に向上し、熱サイクル寿命特性に優れた
発熱体を提供することができる。
Since the crystallized glass is excellent in electrical insulation and adhesion, the heating element itself can be made compact, and the catalyst layer is provided in contact with the crystallized glass layer. The catalyst layer is heated to the activation temperature of the catalyst in a short time by the electric resistance heating element. Thus, the odorous components in the air, such as ammonia and fatty acids, which come into contact with the heating element heated by the catalyst to its activation temperature are easily oxidized and purified by the catalytic action. In addition, when the catalyst layer contains zeolite, the odor substance can be adsorbed when the heating element is not energized due to its adsorption property. Then, by energizing the heating element, the adsorbed odorous substance can be desorbed and regenerated to the original state. As shown in the above composition, when the crystallized glass is an alkali-free crystallized glass that does not contain any alkali component (Li 2 O, Na 2 O, K 2 O), the electrical insulating property is remarkably improved. To do. In addition, since this glass deposits innumerable fine crystals during baking, it has a heat resistance of about 900 ° C., which is close to that of ceramics. Furthermore, the deposited needle-like crystals significantly improve the adhesion to the catalyst layer formed thereon, and can provide a heating element having excellent thermal cycle life characteristics.

【0006】[0006]

【実施例】以下、本発明の好ましい発熱体およびその製
造方法について説明する。 (1)電気抵抗発熱体 電気抵抗発熱体は、基本的には薄帯状、ラス網状、コイ
ル状のFe−Ni合金、Fe−Ni−Cr合金、ステン
レス鋼などの各種電気抵抗発熱材が好ましい。
The preferred heating element of the present invention and its manufacturing method will be described below. (1) Electric resistance heating element As the electric resistance heating element, various electric resistance heating materials such as a ribbon-shaped, lath mesh-shaped, coil-shaped Fe-Ni alloy, Fe-Ni-Cr alloy, and stainless steel are basically preferable.

【0007】(2)結晶化ガラス層 結晶化ガラス層は、電気絶縁性、耐熱性の観点から、焼
成によって、たとえばMgO系の結晶相を析出する無ア
ルカリ結晶化ガラスで構成されるのが好ましい。そのガ
ラス組成は、特に、MgOが16−50重量%、SiO
2が7−30重量%、B23が5−34重量%、BaO
が0−50重量%、La23が0−40重量%、CaO
が0−20重量%、P25が0−5重量%、MO2が0
−5重量%(ただし、MはZr、TiおよびSnよりな
る群から選択される少なくとも一種の元素)であること
がより好ましい。このように結晶化ガラス材料が選択さ
れる理由の1つは、ガラス層の耐熱温度が高くなるため
である。すなわち、触媒層をガラス層を介して電気抵抗
発熱体により加熱するため、電気抵抗発熱体を被覆する
ガラス層は、少なくとも900℃程度の高温度に耐える
必要がある。
(2) Crystallized Glass Layer From the viewpoint of electrical insulation and heat resistance, the crystallized glass layer is preferably made of alkali-free crystallized glass that precipitates, for example, a MgO-based crystal phase by firing. . The glass composition is, in particular, 16-50 wt% MgO, SiO 2.
2 is 7-30% by weight, B 2 O 3 is 5-34% by weight, BaO
Is 0-50% by weight, La 2 O 3 is 0-40% by weight, CaO
Is 0-20% by weight, P 2 O 5 is 0-5% by weight, and MO 2 is 0.
More preferably, it is -5% by weight (where M is at least one element selected from the group consisting of Zr, Ti and Sn). One of the reasons why the crystallized glass material is selected is that the glass layer has a high heat resistant temperature. That is, since the catalyst layer is heated by the electric resistance heating element via the glass layer, the glass layer covering the electric resistance heating element must withstand a high temperature of at least about 900 ° C.

【0008】本発明に用いるガラス材料は、結晶化させ
ることにより耐熱温度が900℃以上になる。900℃
でもガラスが流動しないので、電気発熱体に通電加熱し
ても、ガラス層内の泡が大きく成長しない。その結果、
絶縁耐力は劣化しない。それに対して、一般の非晶質ガ
ラスは、再加熱しても結晶化しないので、耐熱性は工場
しない。非晶質ガラスは、約600℃以上でガラスが流
動するので、800℃以上で焼成すると、ガラス層内の
泡が大きく成長して絶縁耐力の低下を招く。結晶化ガラ
ス材料が選択されるもう1つの理由は、電気抵抗発熱体
とガラス層との密着性を強固にするためである。特に、
上記の組成のガラスは、非常に強固な密着性が得られ
る。
The glass material used in the present invention has a heat resistant temperature of 900 ° C. or higher when crystallized. 900 ° C
However, since the glass does not flow, the bubbles in the glass layer do not grow large even when the electric heating element is electrically heated. as a result,
Dielectric strength does not deteriorate. On the other hand, general amorphous glass does not crystallize even if it is reheated, and therefore has no heat resistance. Since amorphous glass flows at a temperature of about 600 ° C. or higher, when it is fired at 800 ° C. or higher, bubbles in the glass layer grow large and the dielectric strength is reduced. Another reason for selecting the crystallized glass material is to strengthen the adhesion between the electric resistance heating element and the glass layer. In particular,
The glass having the above composition provides very strong adhesion.

【0009】(3)結晶化ガラス層の形成法 結晶化ガラス層を電気抵抗発熱体上に被覆する方法とし
て、通常のスプレー法、粉末静電塗装法、電気泳動電着
法等がある。このなかで、被膜の緻密性、電気絶縁性等
の観点から、電気泳動電着法が最も好ましい。この方法
に用いられるスラリーは、ガラスとアルコールおよび少
量の水をボールミル中で約20時間粉砕、混合して調製
される。こうして得られるスラリー中のガラスの平均粒
径は1〜5μm程度である。得られたスラリーを電解槽
に入れて液を循環する。そして、電気抵抗発熱体をスラ
リー中に浸漬し、100〜400Vで陰分極させること
により、電気抵抗発熱体表面にガラス粒子を析出させ
る。これを乾燥後、850〜900℃で10分〜1時間
焼成する。これによって、ガラスの微粒子が溶融すると
ともに、ガラス成分と金属材料が相互拡散するため、結
晶化ガラス層と電気抵抗発熱体との強固な密着が得られ
る。なお、焼成は常温から徐々に昇温して上記温度に到
達させる方法をとると、微細針状結晶が無数に析出し、
耐熱性および触媒被覆層との密着性がより向上するので
好ましい。
(3) Method for forming crystallized glass layer As a method for coating the crystallized glass layer on the electric resistance heating element, there are a usual spray method, a powder electrostatic coating method, an electrophoretic electrodeposition method and the like. Among them, the electrophoretic electrodeposition method is the most preferable from the viewpoint of the denseness of the coating film, the electric insulation property, and the like. The slurry used in this method is prepared by grinding and mixing glass, alcohol and a small amount of water in a ball mill for about 20 hours. The average particle size of the glass in the slurry thus obtained is about 1 to 5 μm. The obtained slurry is put in an electrolytic cell and the liquid is circulated. Then, the electric resistance heating element is dipped in the slurry and negatively polarized at 100 to 400 V to deposit glass particles on the surface of the electric resistance heating element. After this is dried, it is baked at 850 to 900 ° C. for 10 minutes to 1 hour. As a result, the glass fine particles are melted and the glass component and the metal material are mutually diffused, so that the crystallized glass layer and the electric resistance heating element can be firmly adhered to each other. Incidentally, when firing is performed by gradually increasing the temperature from room temperature to reach the above temperature, innumerable fine needle-like crystals are precipitated,
It is preferable because the heat resistance and the adhesion to the catalyst coating layer are further improved.

【0010】(4)触媒層 触媒層は、ゼオライト、無機バインダー、および表面に
貴金属を担持したアルミナから構成されのが好ましい。
触媒層に、吸着特性に優れるゼオライトを含有させるこ
とにより、発熱体に通電しないときには、臭気物質を吸
着することが可能である。この場合、ゼオライトの吸着
能力が飽和に達した時点で、電気抵抗発熱体に通電する
ことにより、吸着された臭気成分の触媒による酸化分解
とゼオライトの再生を行うことができる。触媒層中に含
有するアルミナは、βー、γー、δー、θー、ρー、χ
ー、ηーアルミナなどの準安定アルミナである。なお、
アルミナ表面に希土類酸化物などの助触媒を担持させる
ことにより、さらに活性の向上が期待できる。アルミナ
の触媒層における含有量は、20〜60重量%が好まし
い。アルミナ含有量が20重量%未満の場合、触媒貴金
属が分散しにくくなるため充分な触媒活性が得られな
い。また、60重量%を越えると触媒の臭気吸着能力が
減少し好ましくない。
(4) Catalyst Layer The catalyst layer is preferably composed of zeolite, an inorganic binder, and alumina having a noble metal supported on the surface thereof.
By containing zeolite having excellent adsorption properties in the catalyst layer, it is possible to adsorb odorous substances when the heating element is not energized. In this case, when the adsorption capacity of the zeolite reaches saturation, the oxidative decomposition of the adsorbed odorous component and the regeneration of the zeolite can be performed by energizing the electric resistance heating element. Alumina contained in the catalyst layer is β-, γ-, δ-, θ-, ρ-, χ
And metastable alumina such as η-alumina. In addition,
Further improvement in activity can be expected by supporting a promoter such as a rare earth oxide on the surface of alumina. The content of alumina in the catalyst layer is preferably 20 to 60% by weight. If the alumina content is less than 20% by weight, the catalytic noble metal becomes difficult to disperse, and sufficient catalytic activity cannot be obtained. On the other hand, if it exceeds 60% by weight, the odor adsorbing ability of the catalyst decreases, which is not preferable.

【0011】さらに、無機バインダーとしては、シリカ
が最も優れており、触媒特性を低下させることなく、ガ
ラス層との優れた高密着性が得られる。シリカの含有量
は10〜40重量%が好ましい。40重量%を越える
と、触媒層中に亀裂が入りやすくなる。また、10重量
%未満では十分な密着性が得られない。貴金属として
は、白金またはパラジウムを用いるのが望ましく、白金
とパラジウムの両方を用いた場合さらに好ましい。触媒
層中に酸化セリウムを含有することが好ましい。酸化セ
リウムは炭化水素化合物に対する触媒酸化分解活性を向
上することができる。その含有量は2〜15重量%が好
ましい。含有量が15重量%を越えると酸化分解特性が
低下する。また、2重量%未満では、添加効果が得られ
ない。触媒層の形成方法は、スプレー、ディップ、静電
塗装、電着、ロールコート、スクリーン印刷法などがあ
る。次に、具体的な実施例について説明する。
Further, silica is the most excellent inorganic binder, and excellent adhesion to the glass layer can be obtained without deteriorating the catalytic properties. The content of silica is preferably 10 to 40% by weight. If it exceeds 40% by weight, cracks are likely to occur in the catalyst layer. If it is less than 10% by weight, sufficient adhesion cannot be obtained. It is desirable to use platinum or palladium as the noble metal, and it is more preferable to use both platinum and palladium. It is preferable to contain cerium oxide in the catalyst layer. Cerium oxide can improve the catalytic oxidative decomposition activity for hydrocarbon compounds. The content is preferably 2 to 15% by weight. If the content exceeds 15% by weight, the oxidative decomposition characteristics deteriorate. If it is less than 2% by weight, the effect of addition cannot be obtained. Examples of the method for forming the catalyst layer include spraying, dipping, electrostatic coating, electrodeposition, roll coating and screen printing. Next, specific examples will be described.

【0012】[実施例1]表2のNo.7に示す組成の
結晶化ガラスにアルコールおよび少量の水を加え、ボー
ルミル中で約20時間粉砕、混合し、電着用スラリーを
調製した。このスラリー中に、図1に示した形状のステ
ンレス鋼SUS430製電気抵抗発熱体1を浸漬し、そ
の表面を150V/cmの電圧勾配で陰分極する電気泳
動電着法により、表面にガラス粒子を厚さ100μm被
着し、さらに880℃で10分間焼成して、結晶化ガラ
ス層2を形成して発熱素子サンプルとした。一方、Pt
を担持したアルミナ160g、無水珪酸を20重量%相
当含む無水珪酸コロイド溶液400g、水200g、お
よび銅イオン交換A型ゼオライト160gを、ボールミ
ルを用いて十分に混合して平均粒径4.5μmの触媒用
スラリーを調製した。このスラリーを上記発熱素子サン
プル表面にスプレーで塗装した後、100℃で2時間乾
燥し、次に500℃で1時間焼成して触媒層3を形成し
た。
[Example 1] No. 1 in Table 2 Alcohol and a small amount of water were added to the crystallized glass having the composition shown in 7, and the mixture was ground in a ball mill for about 20 hours and mixed to prepare a slurry for electrodeposition. An electric resistance heating element 1 made of stainless steel SUS430 having the shape shown in FIG. 1 was immersed in this slurry, and glass particles were formed on the surface by an electrophoretic electrodeposition method in which the surface was negatively polarized with a voltage gradient of 150 V / cm. A 100 μm-thick coating was applied and further baked at 880 ° C. for 10 minutes to form a crystallized glass layer 2 to obtain a heating element sample. On the other hand, Pt
160 g of alumina supporting silica, 400 g of a silicic acid colloidal solution containing 20% by weight of silicic acid anhydride, 200 g of water, and 160 g of copper ion-exchanged A-type zeolite were thoroughly mixed using a ball mill to obtain a catalyst having an average particle size of 4.5 μm. A slurry was prepared. The slurry was applied on the surface of the heating element sample by spraying, dried at 100 ° C. for 2 hours, and then baked at 500 ° C. for 1 hour to form a catalyst layer 3.

【0013】[比較例1]No.7の組成のガラス10
0重量部に粘土4重量部、亜硝酸ソーダ0.1重量部お
よび水35重量部を添加し、1時間ボールミル粉砕し、
ホーロスリップとした。これを電気抵抗発熱体表面にス
プレーガンで約100μm形成し、880℃で10分間
焼成しガラス層を形成して発熱素子サンプルとした。次
いで、この発熱素子サンプルに実施例1と同様にして触
媒層を形成した。
Comparative Example 1 No. Glass 10 of composition 7
4 parts by weight of clay, 0.1 parts by weight of sodium nitrite and 35 parts by weight of water were added to 0 parts by weight, and ball-milled for 1 hour,
It was a horo slip. This was formed on the surface of the electric resistance heating element with a spray gun to a thickness of about 100 μm and baked at 880 ° C. for 10 minutes to form a glass layer, which was used as a heating element sample. Then, a catalyst layer was formed on this heating element sample in the same manner as in Example 1.

【0014】[比較例2]比較例1で作製したホーロス
リップ中に電気抵抗発熱体を浸漬した後、880℃で1
0分間焼成してガラス層を形成して発熱素子サンプルと
した。次いで、この発熱素子サンプルに実施例1と同様
にして触媒層を形成した。
[Comparative Example 2] An electric resistance heating element was dipped in the holo-slip prepared in Comparative Example 1 and then subjected to 1 at 880 ° C.
A glass layer was formed by firing for 0 minutes to obtain a heating element sample. Then, a catalyst layer was formed on this heating element sample in the same manner as in Example 1.

【0015】以上の各発熱素子サンプルについて絶縁性
を評価した結果を説明する。絶縁評価は、発熱素子サン
プルおよび対極を水中に浸漬し、対極と発熱素子間の絶
縁抵抗と絶縁耐力を測定した。なお、絶縁抵抗は、サン
プルと対極間に500Vの電圧を印加した時の抵抗を測
定した。絶縁耐力は、国洋電機(株)製耐圧絶縁自動試
験器を用い、遮断電流を10mAに設定し、サンプルと
対極間に1000Vの電圧を1分間印加した時のリーク
の有無を×、○で表した。評価結果を表1に示す。表1
から明らかなように、電着法でガラス層を形成した発熱
素子は、電気絶縁性に著しく優れている。スプレー法、
ディップ法は、ホーロを均一に被膜化することは難しい
ため、ホーロ欠陥部が電気絶縁性不良部となる。それに
対し、電着法は、電気化学的にガラス層を均一に形成す
ることができるため、ホーロ欠陥部がなく、電気絶縁性
に優れている。
The results of evaluating the insulation of each of the above heating element samples will be described. In the insulation evaluation, the heating element sample and the counter electrode were immersed in water, and the insulation resistance and the dielectric strength between the counter electrode and the heating element were measured. The insulation resistance was measured when a voltage of 500 V was applied between the sample and the counter electrode. With respect to the dielectric strength, a voltage withstanding automatic tester manufactured by Kuniyo Denki Co., Ltd. was used, the breaking current was set to 10 mA, and the presence or absence of leakage when a voltage of 1000 V was applied between the sample and the counter electrode for 1 minute was marked with × and ○ expressed. The evaluation results are shown in Table 1. Table 1
As is clear from the above, the heating element having the glass layer formed by the electrodeposition method is remarkably excellent in electrical insulation. Spray method,
In the dipping method, it is difficult to coat the holo uniformly, so that the holo defect part becomes a poor electrical insulation part. On the other hand, the electrodeposition method is capable of electrochemically forming a uniform glass layer, and therefore has no hollow defects and is excellent in electrical insulation.

【0016】[0016]

【表1】 [Table 1]

【0017】[実施例2]図1に示した形状のステンレ
ス鋼SUS430製電気抵抗発熱体の表面に、電気泳動
電着法により各種組成の結晶化ガラスを100μmの厚
さに被着し、880℃で10分間焼成して結晶化ガラス
層を形成した。これらのサンプルについて、結晶化ガラ
ス層の表面粗度、うねり性、耐熱性等の諸特性を調べ
た。その結果をガラスの組成とともに表2〜表7に示し
ている。
[Embodiment 2] Crystallized glass of various compositions is deposited to a thickness of 100 μm on the surface of an electric resistance heating element made of stainless steel SUS430 having the shape shown in FIG. The glass was fired at 10 ° C. for 10 minutes to form a crystallized glass layer. With respect to these samples, various properties such as surface roughness, waviness and heat resistance of the crystallized glass layer were examined. The results are shown in Tables 2 to 7 together with the glass compositions.

【0018】表面粗度は、タリサーフ表面粗さ計で測定
し、表面中心線平均粗さRaで示し、絶縁耐圧は実施例
1の絶縁耐力評価と同じ方法で行った。また、耐熱性
は、サンプルを850℃の電気炉中に10分間入れ、次
に炉から取り出して30分間自然放冷する操作を繰り返
すスポーリングテストを行って、サンプルのクラックや
剥離の状態を調べた。なお、クラックの有無は、サンプ
ルを赤インク中に浸漬した後、表面を拭き取った際、目
視観察による残存インクの有無で判定した。そして、上
記の操作を10サイクル以上行ってもクラックが認めら
れないものを○印、5〜9サイクルでクラックが発生し
たものを△印、4サイクル以下でクラックが発生したも
のを×印で表した。密着性は、サンプルの曲げ試験を行
い、ガラス層が電気抵抗発熱体から剥離して金属部が露
出したものを×印、金属部が一部だけ露出したものを△
印、金属部が露出していないものを○印で表した。
The surface roughness was measured with a Talysurf surface roughness meter and indicated by the surface center line average roughness Ra, and the withstand voltage was measured by the same method as the dielectric strength evaluation of Example 1. For heat resistance, the sample was placed in an electric furnace at 850 ° C for 10 minutes, then taken out of the furnace and allowed to cool naturally for 30 minutes. A spalling test was repeated to examine the state of cracks and peeling of the sample. It was The presence / absence of cracks was judged by the presence / absence of residual ink by visual observation when the surface was wiped after the sample was immersed in red ink. And, the cracks are not recognized even after 10 cycles or more of the above-mentioned operations, the cracks are shown in 5 to 9 cycles, and the cracks are shown in 4 cycles or less. did. The adhesion was evaluated by conducting a bending test on the sample, and the glass layer was peeled from the electric resistance heating element to expose the metal part, and the metal part was exposed.
The mark and the part where the metal part is not exposed are indicated by a circle.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【表5】 [Table 5]

【0023】[0023]

【表6】 [Table 6]

【0024】[0024]

【表7】 [Table 7]

【0025】以上の評価にもとずき総合評価を行い、そ
の結果を優(○)、良(△)、可(×)で示した。N
o.1〜8は他の成分を一定として、SiO2とB23
を変化させたもの、No.9〜15は、SiO2/B2
3をほぼ一定にし、MgO量を変化させたもの、No.
16〜19は同じくCaO量を変化させたもの。No.
20〜24は、同じくBaO量を変化させたもの、N
o.25〜29は、同じくLa23量を変化させたも
の、No.30〜42はそれぞれ、ZrO2、TiO2
SnO2、P25、ZnOの影響を示す。表から明らか
なように、いずれの組成でも電着法で形成すれば、絶縁
耐圧は問題なかったが、その他の特性は組成によって変
化した。SiO2を増加させれば、耐熱性は向上する
が、表面性および密着性が悪くなる。逆に、B23量を
増加させれば、表面性、密着性は向上するが、耐熱性は
低下する。したがって、SiO27〜30重量%、B2
35〜34重量%の範囲内が好ましい。
Based on the above evaluations, a comprehensive evaluation was performed, and the results are shown as excellent (◯), good (Δ), and acceptable (x). N
o. 1 to 8 are SiO 2 and B 2 O 3 with other components being constant.
No. 9 to 15 are SiO 2 / B 2 O
No. 3 in which the MgO amount was changed while keeping 3 almost constant.
16 to 19 are the ones with the same CaO content. No.
Nos. 20 to 24 have the same amount of BaO, N
o. Nos. 25 to 29 have the same La 2 O 3 content, No. 30 to 42 are ZrO 2 , TiO 2 , and
The influence of SnO 2 , P 2 O 5 , and ZnO is shown. As is clear from the table, when any composition was formed by the electrodeposition method, there was no problem with the dielectric strength, but other characteristics varied depending on the composition. If the amount of SiO 2 is increased, the heat resistance is improved, but the surface property and the adhesion are deteriorated. On the contrary, when the amount of B 2 O 3 is increased, the surface property and the adhesion are improved, but the heat resistance is decreased. Therefore, SiO 2 7 to 30 wt%, B 2 O
It is preferably within the range of 35 to 34% by weight.

【0026】MgO量は結晶性と相関があり、16重量
%未満では結晶析出が不十分で、耐熱性に劣る。また、
50重量%を越えると、結晶が析出しやすく、ガラス溶
融時に簡単に結晶化し、均質なガラスを得ることが難し
く、また表面粗度が大きくなる。CaO量は、20重量
%を越えると、表面性が悪くなり好ましくない。BaO
量は、50重量%を越えると、耐熱性および密着性が劣
化し好ましくない。La23は、40重量%を越える
と、耐熱性が劣化し好ましくない。その他の添加可能な
成分はZrO2、TiO2、SnO2、P25、ZnOな
どが挙げられるが、5重量%maでなら添加可能であ
る。
The amount of MgO has a correlation with the crystallinity, and if it is less than 16% by weight, the precipitation of crystals is insufficient and the heat resistance is poor. Also,
If it exceeds 50% by weight, crystals tend to precipitate, it is difficult to crystallize when the glass melts, it is difficult to obtain a homogeneous glass, and the surface roughness increases. When the amount of CaO exceeds 20% by weight, the surface property is deteriorated, which is not preferable. BaO
If the amount exceeds 50% by weight, heat resistance and adhesion are deteriorated, which is not preferable. When La 2 O 3 exceeds 40% by weight, the heat resistance deteriorates, which is not preferable. Other additives can be component of ZrO 2, TiO 2, SnO 2 , P 2 O 5, but including ZnO and the like, can be added if a 5 wt% ma.

【0027】[実施例3]実施例1の発熱体および図3
に示した従来例の発熱体を用いて、イソ吉草酸浄化試験
および耐熱衝撃試験を行った。イソ吉草酸浄化試験は、
250リットルの立方体のフッ素樹脂製容器の中に上記
発熱体を置き、濃度が40ppmになるようにイソ吉草
酸を容器内に注入し、所定時間発熱体に通電後、イソ吉
草酸の濃度を調べた。表8に、発熱体への通電時間とイ
ソ吉草酸の残存率の関係を示した。
[Embodiment 3] The heating element of Embodiment 1 and FIG.
An isovaleric acid purification test and a thermal shock test were conducted using the heating element of the conventional example shown in FIG. Isovaleric acid purification test
The above heating element is placed in a 250 liter cubic container made of fluororesin, and isovaleric acid is injected into the container so that the concentration becomes 40 ppm. After the heating element is energized for a predetermined time, the concentration of isovaleric acid is examined. It was Table 8 shows the relationship between the energization time to the heating element and the residual ratio of isovaleric acid.

【0028】[0028]

【表8】 [Table 8]

【0029】表8から明らかなように、本発明による発
熱体では、触媒による浄化作用が効果的に行われる活性
温度に到達するのが早く、浄化性能に優れる。熱衝撃試
験は、発熱体への印加電圧を変化させて、触媒層温度を
25℃きざみに変化させて、その温度で10分間保持し
た後、水中に投下し、触媒層の剥離の有無を調べ、剥離
を起こさない最高温度を耐熱衝撃温度とした。表9に発
熱体の熱衝撃試験結果を示す。表9から明らかなよう
に、本発明の発熱体は、従来例より耐熱衝撃性に優れて
いる。
As is clear from Table 8, the heating element according to the present invention quickly reaches the activation temperature at which the catalytic purifying action is effectively performed, and the purifying performance is excellent. In the thermal shock test, the applied voltage to the heating element is changed to change the temperature of the catalyst layer in steps of 25 ° C., the temperature is held for 10 minutes, and then the temperature is dropped into water to check whether the catalyst layer is peeled. The maximum temperature at which peeling did not occur was defined as the thermal shock resistance temperature. Table 9 shows the thermal shock test results of the heating element. As is clear from Table 9, the heating element of the present invention is superior in thermal shock resistance to the conventional example.

【0030】[0030]

【表9】 [Table 9]

【0031】[0031]

【発明の効果】以上のように本発明によれば、触媒を効
率的に作用させるための速熱性を有し、機器のコンパク
ト化を可能にする発熱体を得ることができる。
As described above, according to the present invention, it is possible to obtain a heating element which has a rapid heating property for allowing the catalyst to act efficiently, and which enables the equipment to be made compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた電気抵抗発熱体を示す
平面図である。
FIG. 1 is a plan view showing an electric resistance heating element used in an example of the present invention.

【図2】本発明の実施例における発熱体の要部の拡大断
面図である。
FIG. 2 is an enlarged cross-sectional view of a main part of the heating element according to the embodiment of the present invention.

【図3】従来の発熱体の断面図である。FIG. 3 is a cross-sectional view of a conventional heating element.

【符号の説明】[Explanation of symbols]

1 電気抵抗発熱体 2 結晶化ガラス層 3 触媒層 1 Electric resistance heating element 2 Crystallized glass layer 3 Catalyst layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C03C 3/064 10/00 H05B 3/10 Z 7512−3K (72)発明者 吉田 昭彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C03C 3/064 10/00 H05B 3/10 Z 7512-3K (72) Inventor Akihiko Yoshida Kadoma Osaka Prefecture 1006 Kadoma, Oita-shi Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電気抵抗発熱体表面に結晶化ガラス層を
形成するとともに前記結晶化ガラス層の上に触媒層を形
成したことを特徴とする発熱体。
1. A heating element comprising a crystallized glass layer formed on the surface of an electric resistance heating element and a catalyst layer formed on the crystallized glass layer.
【請求項2】 前記結晶化ガラスの組成が、MgOが1
6−50重量%、SiO2が7−30重量%、B23
5−34重量%、BaOが0−50重量%、La23
0−40重量%、CaOが0−20重量%、P25が0
−5重量%、MO2が0−5重量%(ただし、MはZ
r、TiおよびSnよりなる群から選択される少なくと
も一種の元素)である請求項1記載の発熱体。
2. The composition of the crystallized glass is such that MgO is 1
6-50% by weight, SiO 2 7-30% by weight, B 2 O 3 5-34% by weight, BaO 0-50% by weight, La 2 O 3 0-40% by weight, CaO 0-20. % By weight, P 2 O 5 is 0
-5 wt%, MO 2 0-5 wt% (where M is Z
The heating element according to claim 1, which is at least one element selected from the group consisting of r, Ti, and Sn.
【請求項3】 前記触媒層が、ゼオライト、無機バイン
ダー、および貴金属を担持したアルミナからなる請求項
1または2記載の発熱体。
3. The heating element according to claim 1, wherein the catalyst layer is made of zeolite, an inorganic binder, and alumina carrying a noble metal.
【請求項4】 電気抵抗発熱体表面に電気泳動電着法に
より結晶化ガラス粒子を被着し、焼成して結晶化ガラス
層を形成する工程と、前記結晶化ガラス層上に触媒層を
形成する工程を有する発熱体の製造方法。
4. A step of depositing crystallized glass particles on the surface of an electric resistance heating element by an electrophoretic electrodeposition method and firing to form a crystallized glass layer, and forming a catalyst layer on the crystallized glass layer. The manufacturing method of the heat generating body which has the process to do.
JP6096301A 1994-05-10 1994-05-10 Heating element and its manufacture Pending JPH07302678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6096301A JPH07302678A (en) 1994-05-10 1994-05-10 Heating element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6096301A JPH07302678A (en) 1994-05-10 1994-05-10 Heating element and its manufacture

Publications (1)

Publication Number Publication Date
JPH07302678A true JPH07302678A (en) 1995-11-14

Family

ID=14161216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6096301A Pending JPH07302678A (en) 1994-05-10 1994-05-10 Heating element and its manufacture

Country Status (1)

Country Link
JP (1) JPH07302678A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132643A (en) * 2003-10-28 2005-05-26 Denso Corp Hydrogen storage feed system
JP2011168480A (en) * 2010-02-15 2011-09-01 Schott Ag High-temperature glass solder and its use
US9296644B2 (en) 2010-02-15 2016-03-29 Schott Ag High-temperature glass solder and its uses

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132643A (en) * 2003-10-28 2005-05-26 Denso Corp Hydrogen storage feed system
JP2011168480A (en) * 2010-02-15 2011-09-01 Schott Ag High-temperature glass solder and its use
US9296644B2 (en) 2010-02-15 2016-03-29 Schott Ag High-temperature glass solder and its uses

Similar Documents

Publication Publication Date Title
US5393499A (en) Heated cellular substrates
JP5303131B2 (en) Carbon-based material combustion catalyst and method for producing the same, catalyst carrier and method for producing the same
KR0130128B1 (en) Heating element for deodorization
US3978315A (en) Electrical heating units
MXPA02003038A (en) Ceramic body and ceramic catalyst.
AU665679B2 (en) Heated cellular substrates
JP2016084776A (en) Electrical heating type catalyst converter
JP2008100216A (en) Catalyst for burning carbon-containing substance, process for production of the catalyst, material having catalyst carried thereon, and process for production of the material
US20040237646A1 (en) Humidity sensor and method of using the humidity sensor
JPH07302678A (en) Heating element and its manufacture
JPH0696847A (en) Surface heating unit and manufacture thereof
JP3009507B2 (en) Resistance adjustment type heater and heater unit
JPH11503806A (en) Catalytic converter
RU2146174C1 (en) Method of catalyst preparation and catalyst for cleaning of exhaust gases of internal combustion engines
JPH03164404A (en) Ozone generating device
JPH02119939A (en) Exhaust gas purification catalyst
US11661875B2 (en) Tubular member for exhaust gas treatment device and exhaust gas treatment device using the tubular member, and method of manufacturing tubular member for exhaust gas treatment device
US11536180B2 (en) Tubular member for exhaust gas treatment device and exhaust gas treatment device using the tubular member, and method of manufacturing tubular member for exhaust gas treatment device
US20220288624A1 (en) Method of manufacturing tubular member for exhaust gas treatment device, and coating film forming device
JP2022131301A (en) Manufacturing method of cylindrical member for exhaust gas treatment device
JP2022141162A (en) Method of manufacturing tubular member for exhaust gas treatment device, and coating film forming device
JPS63206303A (en) Ozonizer
JP2002174617A (en) Gas sensor
JPH0598184A (en) Coating material
JPH09303940A (en) Refrigerator