JP2011163082A - Foundation structure using soil improvement element - Google Patents

Foundation structure using soil improvement element Download PDF

Info

Publication number
JP2011163082A
JP2011163082A JP2010030103A JP2010030103A JP2011163082A JP 2011163082 A JP2011163082 A JP 2011163082A JP 2010030103 A JP2010030103 A JP 2010030103A JP 2010030103 A JP2010030103 A JP 2010030103A JP 2011163082 A JP2011163082 A JP 2011163082A
Authority
JP
Japan
Prior art keywords
ground improvement
improvement body
foundation
ground
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010030103A
Other languages
Japanese (ja)
Other versions
JP5551943B2 (en
Inventor
Yuji Taya
裕司 田屋
Kiyoshi Yamashita
清 山下
Junji Hamada
純次 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2010030103A priority Critical patent/JP5551943B2/en
Publication of JP2011163082A publication Critical patent/JP2011163082A/en
Application granted granted Critical
Publication of JP5551943B2 publication Critical patent/JP5551943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foundation structure using a soil improvement element which can securely transmit a load in a horizontal direction imposed on a structure when an earthquake occurs to a soil improvement element and which can make the soil improvement element bear the load. <P>SOLUTION: The foundation structure 10 using the soil improvement element 14 is provided with the wall-shaped soil improvement element 14 which is formed by continuously providing soil improvement piles 16 in the ground 12, a connection means 18 embedded over a plurality of soil improvement piles 16, and a foundation part 24 constructed at the top of the soil improvement element 14 and connected integrally with the soil improvement element 14 by the connection means 18. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、地盤改良体を用いた基礎構造に関する。   The present invention relates to a foundation structure using a ground improvement body.

軟弱地盤や液状化の発生が予想される地盤における構造物の基礎は、セメント固化剤等の地盤改良によって軟弱地盤の改良や液状化防止を図った直接基礎や、杭により構造物を支持する杭基礎が一般的に用いられている。   The foundations of structures in soft ground and ground where liquefaction is expected are either direct foundations designed to improve soft ground or prevent liquefaction by improving the ground with cement solidifying agents, or piles that support the structure with piles. The foundation is commonly used.

近年、合理的な基礎形式として、直接基礎と杭基礎とを併用したパイルド・ラフト基礎の適用が増えて来ているが、液状化のおそれのある地盤においては、液状化防止のために、地盤改良体とパイルド・ラフト基礎とを併用する場合も見られるようになって来ている。   In recent years, as a rational foundation type, the application of piled raft foundations using both direct foundations and pile foundations has been increasing. However, in the ground where there is a risk of liquefaction, It has also come to be seen when the improved body and piled raft foundation are used together.

しかしながら、杭がある場合には、構造物の基礎底面と地盤改良体との接地圧が小さくなるため、地震時に構造物に作用する水平方向の荷重(以下「水平荷重」という場合がある)に対して、両者の摩擦抵抗を期待できず、基礎底面が地盤改良体に対して滑動してしまうおそれがある。   However, when there is a pile, the ground contact pressure between the foundation bottom of the structure and the ground improvement body becomes small, so the load in the horizontal direction acting on the structure during an earthquake (hereinafter sometimes referred to as “horizontal load”) On the other hand, the frictional resistance between the two cannot be expected, and the base bottom surface may slide with respect to the ground improvement body.

特に、地下水位がある場合、構造物の基礎底面での接地圧が浮力分だけ減少するため、浮力が大きい場合には、水平荷重を杭が負担する必要が生じる。つまり、例えば構造物の荷重が浮力よりも小さい場合には、基礎底面での接地圧が0(ゼロ)となるため、水平荷重は全て杭で負担することになる。したがって、地盤改良体の水平方向の抵抗力を活かすことができず、杭の断面積が鉛直方向の荷重よりも水平方向の荷重で決定されることになり、不経済となる。   In particular, when there is a groundwater level, the ground pressure at the bottom of the foundation of the structure is reduced by the amount of buoyancy. Therefore, when the buoyancy is large, the pile needs to bear the horizontal load. That is, for example, when the load on the structure is smaller than the buoyancy, the ground pressure on the bottom surface of the foundation is 0 (zero), so all horizontal loads are borne by the piles. Accordingly, the horizontal resistance force of the ground improvement body cannot be utilized, and the cross-sectional area of the pile is determined by the horizontal load rather than the vertical load, which is uneconomical.

この問題点を解決するため、基礎底面と地盤改良体との間を接合する接合方法が提案されている(例えば、特許文献1及び特許文献2参照)。特許文献1に記載の接合方法では、構造物の基礎底面に設けた突起部が地盤改良体の上面の凹部に差し込まれ、地震時に構造物に作用する水平荷重は突起部と凹部の接合部を介して地盤改良体に伝達されるようになっている。そして、杭は、構造物の基礎底面と接合されないようになっている。   In order to solve this problem, a joining method for joining the bottom of the foundation and the ground improvement body has been proposed (see, for example, Patent Document 1 and Patent Document 2). In the joining method described in Patent Document 1, the protrusion provided on the bottom surface of the structure is inserted into the recess on the upper surface of the ground improvement body, and the horizontal load acting on the structure at the time of an earthquake is the joint between the protrusion and the recess. It is transmitted to the ground improvement body via. And a pile is not joined with the foundation bottom face of a structure.

これにより、杭は構造物の鉛直方向の荷重(以下「鉛直荷重」という)のみを負担し、地震時に構造物に作用する水平荷重は地盤改良体が全て負担するようになっている。しかし、特許文献1に記載の接合方法では、地盤改良体の上面に穴を空けて突起部を差し込むため、地盤改良体に断面欠損が生じ易く、地盤改良体が破損するおそれがある。このため、地震時に構造物に作用する水平荷重を地盤改良体が適切に負担できないことがある。   As a result, the pile bears only the load in the vertical direction of the structure (hereinafter referred to as “vertical load”), and the horizontal load acting on the structure during an earthquake is entirely borne by the ground improvement body. However, in the joining method described in Patent Document 1, since a hole is made in the upper surface of the ground improvement body and the protrusion is inserted, a cross-sectional defect is likely to occur in the ground improvement body, and the ground improvement body may be damaged. For this reason, the ground improvement body may not be able to properly bear the horizontal load acting on the structure during an earthquake.

また、特許文献2に記載の接合方法では、構造物の基礎底面と地盤改良体の上面とを接合部材で接合している。すなわち、接合部材である、かご筋やスタッド付H鋼で、地盤改良体と基礎とを接合している。そして、杭は、杭頭接合鉄筋により構造物の基礎底面と接合されている。   Moreover, in the joining method of patent document 2, the base bottom face of a structure and the upper surface of a ground improvement body are joined by the joining member. That is, the ground improvement body and the foundation are joined to each other by a car reinforcement or H steel with a stud, which is a joining member. And the pile is joined with the foundation bottom face of the structure by the pile head joint reinforcement.

しかしながら、特許文献2に記載の接合方法では、地盤改良体を構成する複数の地盤改良杭の1つに対し、かご筋又はスタッド付H鋼が1つ設けられる構成であるため、地震時に構造物に作用する水平荷重が、かご筋又はスタッド付H鋼を介して、1つの地盤改良杭に集中してしまうおそれがある。このため、地震時に構造物に作用する水平荷重を地盤改良体が適切に負担できないことがある。   However, in the joining method described in Patent Document 2, since one of the plurality of ground improvement piles constituting the ground improvement body is provided with one H-steel with a cage bar or stud, the structure during an earthquake There is a risk that the horizontal load that acts on the ground will be concentrated on one ground improvement pile through the cage bars or the H steel with studs. For this reason, the ground improvement body may not be able to properly bear the horizontal load acting on the structure during an earthquake.

特開2005−307594号公報JP 2005-307594 A 特開平11−200381号公報JP-A-11-200381

そこで、本発明は、上記事情に鑑み、地震時に構造物に作用する水平方向の荷重を地盤改良体へ確実に伝達でき、その荷重を地盤改良体に負担させられる地盤改良体を用いた基礎構造を得ることを目的とする。   Therefore, in view of the above circumstances, the present invention is capable of reliably transmitting a horizontal load acting on a structure during an earthquake to a ground improvement body, and using the ground improvement body that allows the ground improvement body to bear the load. The purpose is to obtain.

上記の目的を達成するために、本発明に係る請求項1に記載の地盤改良体を用いた基礎構造は、地中に地盤改良杭を連続して設けて形成された壁状の地盤改良体と、複数の前記地盤改良杭に亘って根入れされた接合手段と、前記地盤改良体の上部に構築され、前記接合手段により該地盤改良体と一体的に接合された基礎部と、を備えたことを特徴としている。   In order to achieve the above object, the foundation structure using the ground improvement body according to claim 1 according to the present invention is a wall-like ground improvement body formed by continuously providing ground improvement piles in the ground. And a joining means rooted over a plurality of the ground improvement piles, and a foundation part built on the ground improvement body and integrally joined to the ground improvement body by the joining means. It is characterized by that.

請求項1に記載の発明によれば、複数の地盤改良杭に亘って根入れされた接合手段により、基礎部と地盤改良体とが一体的に接合される。したがって、地震時に構造物に作用する水平方向の荷重を、その基礎部から地盤改良体へ確実に伝達することができ、その水平方向の荷重を地盤改良体に適切に負担させることができる。   According to invention of Claim 1, a base part and a ground improvement body are integrally joined by the joining means rooted over the several ground improvement pile. Therefore, the horizontal load acting on the structure during the earthquake can be reliably transmitted from the foundation to the ground improvement body, and the horizontal load can be appropriately borne by the ground improvement body.

また、請求項2に記載の地盤改良体を用いた基礎構造は、請求項1に記載の地盤改良体を用いた基礎構造において、前記接合手段が、鋼矢板で構成されていることを特徴としている。   Moreover, the foundation structure using the ground improvement body of Claim 2 is a foundation structure using the ground improvement body of Claim 1, The said joining means is comprised by the steel sheet pile, It is characterized by the above-mentioned. Yes.

請求項2に記載の発明によれば、鋼矢板を連結するだけで、複数の地盤改良杭に亘って根入れさせることができる。   According to invention of Claim 2, it can be made to penetrate over several ground improvement piles only by connecting a steel sheet pile.

また、請求項3に記載の地盤改良体を用いた基礎構造は、請求項1に記載の地盤改良体を用いた基礎構造において、前記接合手段が、スタッド付き脚板が前記地盤改良体に根入れされ、スタッド付き頂板が前記地盤改良体の上面に略面一となるように配置されたT形鋼で構成されていることを特徴としている。   The foundation structure using the ground improvement body according to claim 3 is the foundation structure using the ground improvement body according to claim 1, wherein the joining means includes a leg plate with studs embedded in the ground improvement body. The top plate with the stud is made of T-shaped steel arranged so as to be substantially flush with the upper surface of the ground improvement body.

請求項3に記載の発明によれば、スタッドによって基礎部と地盤改良体とを強固に接合することができる。   According to invention of Claim 3, a base part and a ground improvement body can be firmly joined by a stud.

以上のように、本発明によれば、地震時に構造物に作用する水平方向の荷重を地盤改良体へ確実に伝達でき、その荷重を地盤改良体に負担させられる地盤改良体を用いた基礎構造を提供することができる。   As described above, according to the present invention, the horizontal structure acting on the structure during an earthquake can be reliably transmitted to the ground improvement body, and the foundation structure using the ground improvement body that allows the ground improvement body to bear the load. Can be provided.

本実施形態に係る地盤改良体を用いた基礎構造を示す説明図Explanatory drawing which shows the foundation structure using the ground improvement object which concerns on this embodiment 第1実施形態に係る地盤改良体を用いた基礎構造を示す説明図Explanatory drawing which shows the basic structure using the ground improvement body which concerns on 1st Embodiment. 第1実施形態に係る地盤改良体を示す概略斜視図The schematic perspective view which shows the ground improvement body which concerns on 1st Embodiment. 第1実施形態に係る地盤改良体を用いた基礎構造を示す概略平面図Schematic plan view showing the foundation structure using the ground improvement body according to the first embodiment 第2実施形態に係る地盤改良体を用いた基礎構造を示す説明図Explanatory drawing which shows the foundation structure using the ground improvement body which concerns on 2nd Embodiment. 第2実施形態に係る地盤改良体を示す概略斜視図The schematic perspective view which shows the ground improvement body which concerns on 2nd Embodiment. 第2実施形態に係る地盤改良体を用いた基礎構造を示す概略平面図Schematic plan view showing the foundation structure using the ground improvement body according to the second embodiment

以下、本発明に係る実施の形態について、図面に示す実施例を基に詳細に説明する。なお、各図において、鉛直上方向を矢印UPで示す。また、矢印UPと直交する方向を水平方向とし、矢印HRx、矢印HRyで示す場合がある。まず、第1実施形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments according to the present invention will be described in detail based on examples shown in the drawings. In each figure, the vertical upward direction is indicated by an arrow UP. In addition, the direction orthogonal to the arrow UP may be the horizontal direction, and may be indicated by the arrows HRx and HRy. First, the first embodiment will be described.

図1、図2で示すように、本実施形態に係る基礎構造10は、軟弱な地盤12に対して施工される基礎構造であり、その地盤(地中)12には、鉛直支持力の補強及び液状化対策のための地盤改良体14が構築されている。すなわち、地盤改良体14が構築される地盤12は、地震時に液状化の発生が予想される液状化層Lであり、地盤改良体14の深さは、その液状化層Lの底面までとされている。   As shown in FIGS. 1 and 2, the foundation structure 10 according to the present embodiment is a foundation structure constructed on a soft ground 12, and the ground (underground) 12 is reinforced with vertical support force. And the ground improvement body 14 for a liquefaction countermeasure is constructed | assembled. That is, the ground 12 on which the ground improvement body 14 is constructed is a liquefied layer L in which liquefaction is expected to occur during an earthquake, and the depth of the ground improvement body 14 is set to the bottom surface of the liquefied layer L. ing.

地盤改良体14は、スラリー状とされたセメント系固化材による安定剤と、現地の地盤12の中の土とを、図示しない撹拌装置で撹拌して固化させることで、図3で示すように、円柱状の地盤改良杭16を連続して並べたような壁状に形成されている。つまり、この地盤改良体14は、隣接する地盤改良杭16の周壁16Aの一部を共有化させて連続的に一体化させた側壁14Aを有しており、全体的には平面視で格子状に構築されている。   As shown in FIG. 3, the ground improvement body 14 stirs and solidifies the stabilizer by the cement-type solidification material made into the slurry form, and the soil in the local ground 12 with the stirring apparatus which is not shown in figure. The cylindrical ground improvement piles 16 are formed in a wall shape that is continuously arranged. That is, the ground improvement body 14 has a side wall 14A in which a part of the peripheral wall 16A of the adjacent ground improvement pile 16 is shared and continuously integrated, and is generally lattice-like in a plan view. Has been built.

そして、その地盤改良体14の壁部としての側壁14Aには、地盤改良杭16の周壁16Aを連続的に一体化させたことにより、凹凸部15が形成されている。すなわち、地盤改良体14の側壁14Aには、平面視円弧状の凸部15Aが形成されるとともに、その凸部15A間に、凹部15Bが形成されるようになっている。   And the uneven | corrugated | grooved part 15 is formed in the side wall 14A as a wall part of the ground improvement body 14 by integrating the surrounding wall 16A of the ground improvement pile 16 continuously. That is, the side wall 14A of the ground improvement body 14 is formed with a convex portion 15A having a circular arc shape in plan view, and a concave portion 15B is formed between the convex portions 15A.

また、図3、図4で示すように、地盤改良体14の頭部には、複数本(例えば4本)の地盤改良杭16に跨って(亘って)、接合手段18としての鋼矢板20が根入れされている。すなわち、この鋼矢板20は、地盤改良体14の全体に亘って、複数本の地盤改良杭16毎に所定の間隔を隔てて複数枚連結されて根入れされており、各鋼矢板20は、その上部20Aが地盤改良体14の上端面14Bから所定高さ突出するように根入れされ、地盤改良体14に根入れされる下部20Bの長さが、上端面14Bから突出する上部20Aの長さよりも長くされている。   Further, as shown in FIGS. 3 and 4, a steel sheet pile 20 as a joining means 18 is straddled across the plurality of (for example, four) ground improvement piles 16 on the head of the ground improvement body 14. Is rooted. That is, the steel sheet piles 20 are connected and rooted at predetermined intervals for each of the plurality of ground improvement piles 16 over the entire ground improvement body 14. The upper part 20A is rooted so as to protrude a predetermined height from the upper end surface 14B of the ground improvement body 14, and the length of the lower part 20B rooted in the ground improvement body 14 is the length of the upper part 20A protruding from the upper end face 14B. It has been longer than that.

また、図1、図2で示すように、地盤改良体14(地盤12)の上部にはコンクリートが打設され、建物26の基礎部24が構築されるようになっている。そして、このとき、地盤改良体14の上端面14Bから突出している各鋼矢板20の上部20Aが、その基礎部24内に呑み込まれるようになっている。これにより、建物26の基礎部24が、各鋼矢板20を介して地盤改良体14に一体的に接合される構造になっている。   As shown in FIGS. 1 and 2, concrete is cast on the upper portion of the ground improvement body 14 (the ground 12), and the foundation portion 24 of the building 26 is constructed. At this time, the upper part 20 </ b> A of each steel sheet pile 20 protruding from the upper end surface 14 </ b> B of the ground improvement body 14 is swallowed into the foundation part 24. Thereby, the foundation part 24 of the building 26 is structured to be integrally joined to the ground improvement body 14 via each steel sheet pile 20.

したがって、構造物としての建物26による鉛直荷重が、その建物26の基礎部24から地盤改良体14に直接伝達されることは当然ながら、地震時において、建物26に作用する水平荷重が、その建物26の基礎部24から各鋼矢板20を介して地盤改良体14へ伝達可能となる。   Therefore, it is natural that the vertical load by the building 26 as a structure is directly transmitted from the foundation portion 24 of the building 26 to the ground improvement body 14, and the horizontal load acting on the building 26 during the earthquake is the building. It becomes possible to transmit to the ground improvement body 14 via each steel sheet pile 20 from 26 foundation parts 24.

すなわち、各鋼矢板20は、平面視で波形状に形成されているため、地盤改良体14の側壁14Aの面内方向(地盤改良杭16の並び方向)に向かう水平荷重に対して抵抗を有する。また、各鋼矢板20は、複数本の地盤改良杭16に跨って根入れされているため、1本の地盤改良杭16に対して荷重を集中させることがない。よって、地震時に建物26に作用する水平荷重を地盤改良体14に適切に負担させることができる。   That is, since each steel sheet pile 20 is formed in a wave shape in a plan view, it has resistance to a horizontal load directed in the in-plane direction of the side wall 14A of the ground improvement body 14 (the direction in which the ground improvement piles 16 are arranged). . In addition, since each steel sheet pile 20 is embedded across a plurality of ground improvement piles 16, the load is not concentrated on one ground improvement pile 16. Therefore, the horizontal load acting on the building 26 during the earthquake can be appropriately borne by the ground improvement body 14.

なお、地盤改良杭16は、1度に複数本(例えば4本)ずつ施工され、その施工が連続されることで壁状に形成されている。そして、鋼矢板20は、その地盤改良杭16の施工毎に根入れされるようになっている。したがって、鋼矢板20を根入れさせる地盤改良杭16の本数は、1度に施工できる地盤改良杭16の本数によって決まる。   In addition, the ground improvement pile 16 is constructed in a wall shape by constructing a plurality (for example, four) of soil at a time and continuing the construction. And the steel sheet pile 20 is inserted every time construction of the ground improvement pile 16 is carried out. Therefore, the number of ground improvement piles 16 into which the steel sheet pile 20 is embedded is determined by the number of ground improvement piles 16 that can be constructed at a time.

また、上記したように、鋼矢板20は、地盤改良体14に根入れされる下部20Bの長さが、基礎部24に呑み込まれる上部20Aの長さより長くされている。これは、地盤改良体14の強度が、基礎部24の強度に比べて低いためである。つまり、鋼矢板20は、基礎部24よりも強度の低い地盤改良体14に対してより多く根入れされることで、その地盤改良体14の補強を兼ねる構造になっている。   Further, as described above, in the steel sheet pile 20, the length of the lower portion 20 </ b> B that is embedded in the ground improvement body 14 is longer than the length of the upper portion 20 </ b> A that is swallowed into the foundation portion 24. This is because the strength of the ground improvement body 14 is lower than the strength of the base portion 24. That is, the steel sheet pile 20 has a structure that also serves as reinforcement of the ground improvement body 14 by being deeply embedded in the ground improvement body 14 having a lower strength than the foundation portion 24.

以上のような基礎構造10において、次にその作用について説明する。まず、地盤(地中)12に、複数本(例えば4本)ずつ地盤改良杭16を連続して施工し、壁状の地盤改良体14を格子状に構築する。そして、地盤改良杭16を複数本ずつ施工する毎に、接合手段18としての鋼矢板20を根入れする。これにより、複数本の地盤改良杭16に跨って根入れされた鋼矢板20が、地盤改良体14の頭部に所定の間隔を隔てて複数枚設けられる。   Next, the operation of the basic structure 10 as described above will be described. First, a plurality of (for example, four) ground improvement piles 16 are successively constructed on the ground (underground) 12, and the wall-shaped ground improvement body 14 is constructed in a lattice shape. And whenever the ground improvement pile 16 is constructed several by one, the steel sheet pile 20 as the joining means 18 is incorporated. As a result, a plurality of steel sheet piles 20 rooted across the plurality of ground improvement piles 16 are provided at a predetermined interval on the head of the ground improvement body 14.

なお、このとき、各鋼矢板20の上部20Aを地盤改良体14の上端面14Bから突出させる。そして、各鋼矢板20の下部20Bは、その上端面14Bから突出させる上部20Aの長さよりも長く根入れさせる。これにより、地盤改良体14は、複数枚の鋼矢板20によって補強されるため、建物26の慣性力(地震力)に対して、より抵抗可能な構造となる。   In addition, the upper part 20A of each steel sheet pile 20 is made to protrude from the upper end surface 14B of the ground improvement body 14 at this time. And the lower part 20B of each steel sheet pile 20 is made to root longer than the length of 20 A of upper parts made to protrude from the upper end surface 14B. Thereby, since the ground improvement body 14 is reinforced with the several steel sheet pile 20, it becomes a structure which can resist more with respect to the inertial force (earthquake force) of the building 26. FIG.

こうして、複数枚の鋼矢板20が頭部に根入れされた地盤改良体14が構築されたら、地盤改良体14の上部に基礎部24を構築する。すなわち、地盤改良体14の上端面14Bから突出している各鋼矢板20の上部20Aを呑み込むように、地盤12の上部にコンクリートを打設する。すると、各鋼矢板20の上部20Aは基礎部24に呑み込まれ、各鋼矢板20を介して基礎部24と地盤改良体14とが一体的に接合される。   Thus, when the ground improvement body 14 in which the plurality of steel sheet piles 20 are rooted in the head is constructed, the base portion 24 is constructed on the top of the ground improvement body 14. That is, the concrete is placed on the upper part of the ground 12 so as to swallow the upper part 20A of each steel sheet pile 20 protruding from the upper end surface 14B of the ground improvement body 14. Then, the upper portion 20 </ b> A of each steel sheet pile 20 is swallowed into the foundation portion 24, and the foundation portion 24 and the ground improvement body 14 are integrally joined via each steel sheet pile 20.

したがって、地震時に建物26に作用する水平荷重は、その建物26の基礎部24から各鋼矢板20を介して地盤改良体14へ伝達される。ここで、各鋼矢板20は、地盤改良体14の側壁14Aの面内方向に向かう水平荷重に対して抵抗を有するとともに、複数本の地盤改良杭16に跨って根入れされ、1本の地盤改良杭16に対して荷重を集中させない構造になっている。   Accordingly, the horizontal load acting on the building 26 during the earthquake is transmitted from the foundation 24 of the building 26 to the ground improvement body 14 through the steel sheet piles 20. Here, each steel sheet pile 20 has resistance against a horizontal load directed in the in-plane direction of the side wall 14A of the ground improvement body 14, and is rooted over a plurality of ground improvement piles 16, and is one ground. The load is not concentrated on the improved pile 16.

そのため、地震時に建物26に作用する水平荷重は、基礎部24から地盤改良体14の側壁14Aの面内方向(図4で示す矢印HRx方向又は矢印HRy方向)へ効率よく確実に伝達される。よって、その水平荷重を地盤改良体14に適切に負担させることができ、建物26の耐震を図ることができる。   Therefore, the horizontal load acting on the building 26 during the earthquake is efficiently and reliably transmitted from the base portion 24 to the in-plane direction of the side wall 14A of the ground improvement body 14 (the arrow HRx direction or the arrow HRy direction shown in FIG. 4). Therefore, the horizontal load can be appropriately borne by the ground improvement body 14, and the building 26 can be seismic resistant.

また、このような基礎構造10であると、図1で示すように、パイルド・ラフト基礎構造を併用した場合において、即ち地盤改良体14と杭28とを併用した場合において、地盤改良体14に対する基礎部24の滑動を抑制又は防止することができる。   Further, in the case of such a foundation structure 10, as shown in FIG. 1, when the piled raft foundation structure is used in combination, that is, when the ground improvement body 14 and the pile 28 are used together, The sliding of the base part 24 can be suppressed or prevented.

すなわち、格子状とされた地盤改良体14の複数の区画内のうち、少なくとも一部の区画内には、円柱状の杭28が設けられることがある。この杭28の上端面28A(図4参照)は、基礎部24の底面24Aに当接する構造になっており、建物26による鉛直荷重は、その杭28によって殆ど受け止められるようになっている。   That is, the columnar pile 28 may be provided in at least some of the plurality of sections of the ground improvement body 14 in a lattice shape. The upper end surface 28A (see FIG. 4) of the pile 28 is configured to abut against the bottom surface 24A of the base portion 24, and the vertical load from the building 26 is almost received by the pile 28.

したがって、従来では、基礎部24と地盤改良体14との接地圧が低減され、地震時において、地盤改良体14に対する基礎部24の摩擦抵抗を期待できない場合があった。つまり、地震時に建物26に作用する水平荷重が、基礎部24から地盤改良体14へ伝達され難く、その水平荷重を地盤改良体14が適切に負担できない場合があった。   Therefore, conventionally, the contact pressure between the foundation portion 24 and the ground improvement body 14 is reduced, and in some cases, the frictional resistance of the foundation portion 24 against the ground improvement body 14 cannot be expected during an earthquake. That is, the horizontal load acting on the building 26 at the time of the earthquake is not easily transmitted from the foundation portion 24 to the ground improvement body 14, and the ground improvement body 14 may not be able to properly bear the horizontal load.

しかしながら、本実施形態に係る基礎構造10では、基礎部24と地盤改良体14とが一体化(鋼矢板20を介して一体的に接合)される構造であるため、地震時に建物26に作用する水平荷重を、その建物26の基礎部24から地盤改良体14の側壁14Aの面内方向へ確実に伝達することができる。よって、杭28が設けられる構造であっても、上記した水平荷重を地盤改良体14に適切に負担させることができ、建物26の耐震を図ることができる。   However, in the foundation structure 10 according to the present embodiment, the foundation portion 24 and the ground improvement body 14 are integrated (integrated jointly via the steel sheet pile 20), and thus act on the building 26 during an earthquake. The horizontal load can be reliably transmitted from the foundation portion 24 of the building 26 to the in-plane direction of the side wall 14A of the ground improvement body 14. Therefore, even if it is a structure provided with the pile 28, the above-mentioned horizontal load can be appropriately borne by the ground improvement body 14, and the earthquake resistance of the building 26 can be aimed at.

また、このように、地盤改良体14と杭28とを併用した場合には、その杭28にも、地震時に建物26に作用する水平荷重が伝達されるが、上記したように、その水平荷重の殆どは地盤改良体14に伝達される構造になっているので、杭28へ伝達される水平荷重を小さく抑えることができる。よって、杭28の杭断面を小さくすることができる。   In addition, when the ground improvement body 14 and the pile 28 are used in combination as described above, the horizontal load acting on the building 26 at the time of the earthquake is transmitted to the pile 28 as well. Since most of the structure is transmitted to the ground improvement body 14, the horizontal load transmitted to the pile 28 can be kept small. Therefore, the pile cross section of the pile 28 can be made small.

次に、第2実施形態について説明する。なお、第1実施形態と同等の部位には、同じ符号を付して詳細な説明(作用も含む)は省略する。図5〜図7で示すように、この第2実施形態では、地盤改良体14の頭部に、複数本(例えば4本)の地盤改良杭16に跨って(亘って)根入れされる接合手段18が、所定長さのT形鋼22とされている。   Next, a second embodiment will be described. In addition, the same code | symbol is attached | subjected to the site | part equivalent to 1st Embodiment, and detailed description (an effect | action is also included) is abbreviate | omitted. As shown in FIG. 5 to FIG. 7, in the second embodiment, a joint that is rooted over a plurality of (for example, four) ground improvement piles 16 in the head of the ground improvement body 14. The means 18 is a T-shaped steel 22 having a predetermined length.

図6で示すように、このT形鋼22は、上面(水平面)を有する頂板22Aと、側面(鉛直面)を有する脚板22Bとで構成されており、断面視略「T」字状とされている。そして、頂板22Aの上面には、その長手方向に沿ってスタッド23が直線状に複数本並設され、脚板22Bの両側面には、それぞれその長手方向に沿ってスタッド23が直線状に複数本並設されている。   As shown in FIG. 6, the T-shaped steel 22 includes a top plate 22 </ b> A having an upper surface (horizontal plane) and a leg plate 22 </ b> B having a side surface (vertical surface), and has a substantially “T” shape in sectional view. ing. A plurality of studs 23 are linearly arranged along the longitudinal direction on the top surface of the top plate 22A, and a plurality of studs 23 are linearly arranged along the longitudinal direction on both side surfaces of the leg plate 22B. It is installed side by side.

このT形鋼22は、上記第1実施形態と同様に、複数本(例えば4本)の地盤改良杭16を施工しながら根入れされるようになっており、図7で示すように、地盤改良体14の全体に亘って、複数本の地盤改良杭16毎に所定の間隔を隔てて複数個根入れされている。すなわち、各T形鋼22は、脚板22Bが、その両側面に設けられている複数本のスタッド23と共に地盤改良体14に根入れされ、頂板22Aが、地盤改良体14の上端面14B上に略面一となるように配置される構造になっている。   As in the first embodiment, the T-shaped steel 22 is inserted while constructing a plurality of (for example, four) ground improvement piles 16, and as shown in FIG. A plurality of ground improvement piles 16 are embedded at a predetermined interval over the entire improved body 14. That is, each T-shaped steel 22 has a leg plate 22 </ b> B rooted in the ground improvement body 14 together with a plurality of studs 23 provided on both side surfaces thereof, and a top plate 22 </ b> A on the upper end surface 14 </ b> B of the ground improvement body 14. It is the structure arrange | positioned so that it may become substantially flush.

また、脚板22Bに設けられているスタッド23の本数は、頂板22Aに設けられているスタッド23の本数よりも多くされている。これは、脚板22Bの両側面に設けられている複数本のスタッド23が、地盤改良体14の面内方向に向かってT形鋼22に掛かる水平荷重に対する抵抗となるためである。また、このT形鋼22も、複数本の地盤改良杭16に跨って根入れされており、1本の地盤改良杭16に対して荷重を集中させることがないようになっている。   Further, the number of studs 23 provided on the leg plate 22B is larger than the number of studs 23 provided on the top plate 22A. This is because the plurality of studs 23 provided on both side surfaces of the leg plate 22 </ b> B provide resistance to a horizontal load applied to the T-section steel 22 toward the in-plane direction of the ground improvement body 14. The T-shaped steel 22 is also embedded across the plurality of ground improvement piles 16 so that the load is not concentrated on one ground improvement pile 16.

また、頂板22Aの上面に設けられている複数本のスタッド23は、上方に向かって突出されている。そのため、図5で示すように、地盤改良体14の上部にコンクリートが打設され、上記第1実施形態と同様に基礎部24が構築されると、そのスタッド23と共に頂板22Aが基礎部24に呑み込まれ、そのスタッド23を備えた各T形鋼22を介して、基礎部24と地盤改良体14とが一体的に強固に接合される。   The plurality of studs 23 provided on the upper surface of the top plate 22A protrude upward. Therefore, as shown in FIG. 5, when concrete is cast on the upper portion of the ground improvement body 14 and the foundation portion 24 is constructed in the same manner as in the first embodiment, the top plate 22 </ b> A and the stud 23 are formed on the foundation portion 24. The foundation 24 and the ground improvement body 14 are firmly and integrally joined via the T-shaped steel 22 provided with the stud 23.

したがって、構造物としての建物26による鉛直荷重が、その建物26の基礎部24から地盤改良体14に直接伝達されることは当然ながら、地震時において、建物26に作用する水平荷重が、その建物26の基礎部24から各T形鋼22を介して地盤改良体14へ伝達可能となる。   Therefore, it is natural that the vertical load by the building 26 as a structure is directly transmitted from the foundation portion 24 of the building 26 to the ground improvement body 14, and the horizontal load acting on the building 26 during the earthquake is the building. It becomes possible to transmit from the foundation part 24 of 26 to the ground improvement body 14 via each T-shaped steel 22.

つまり、地震時に建物26に作用する水平荷重は、基礎部24から地盤改良体14の側壁14Aの面内方向(図7で示す矢印HRx方向又は矢印HRy方向)へ効率よく確実に伝達される。よって、その水平荷重を地盤改良体14に適切に負担させることができ、上記第1実施形態と同様に、建物26の耐震を図ることができる。   That is, the horizontal load acting on the building 26 at the time of the earthquake is efficiently and reliably transmitted from the base portion 24 to the in-plane direction of the side wall 14A of the ground improvement body 14 (the arrow HRx direction or the arrow HRy direction shown in FIG. 7). Therefore, the horizontal load can be appropriately borne by the ground improvement body 14, and the earthquake resistance of the building 26 can be achieved as in the first embodiment.

以上、本実施形態に係る基礎構造10について、図面に示す実施例を基に説明したが、本実施形態に係る基礎構造10は、図示の実施例に限定されるものではない。例えば、接合手段18は、図示の鋼矢板20やT形鋼22に限定されるものではない。しかしながら、鋼矢板20は、T形鋼22等に比べて安価なため、コストを低減できるメリットがある。   The basic structure 10 according to the present embodiment has been described based on the examples shown in the drawings. However, the basic structure 10 according to the present embodiment is not limited to the illustrated examples. For example, the joining means 18 is not limited to the illustrated steel sheet pile 20 or T-section steel 22. However, since the steel sheet pile 20 is less expensive than the T-section steel 22 or the like, there is an advantage that the cost can be reduced.

10 基礎構造
12 地盤(地中)
14 地盤改良体
16 地盤改良杭
18 接合手段
20 鋼矢板
22 T形鋼
23 スタッド
24 基礎部
26 建物(構造物)
28 杭
10 Foundation structure 12 Ground (underground)
DESCRIPTION OF SYMBOLS 14 Ground improvement body 16 Ground improvement pile 18 Joining means 20 Steel sheet pile 22 T-shape steel 23 Stud 24 Foundation part 26 Building (structure)
28 piles

Claims (3)

地中に地盤改良杭を連続して設けて形成された壁状の地盤改良体と、
複数の前記地盤改良杭に亘って根入れされた接合手段と、
前記地盤改良体の上部に構築され、前記接合手段により該地盤改良体と一体的に接合された基礎部と、
を備えた地盤改良体を用いた基礎構造。
A wall-shaped ground improvement body formed by continuously providing ground improvement piles in the ground,
A joining means rooted over the plurality of ground improvement piles;
A base portion constructed on the ground improvement body and integrally joined to the ground improvement body by the joining means;
The foundation structure using the ground improvement body equipped with.
前記接合手段は、鋼矢板で構成されている請求項1に記載の地盤改良体を用いた基礎構造。   The said joining means is the foundation structure using the ground improvement body of Claim 1 comprised by the steel sheet pile. 前記接合手段は、スタッド付き脚板が前記地盤改良体に根入れされ、スタッド付き頂板が前記地盤改良体の上面に略面一となるように配置されたT形鋼で構成されている請求項1に記載の地盤改良体を用いた基礎構造。   The said joining means is comprised with the T-shaped steel arrange | positioned so that the leg plate with a stud may be rooted in the said ground improvement body, and the top plate with a stud may become substantially flush | planar with the upper surface of the said ground improvement body. Basic structure using the ground improvement body described in 1.
JP2010030103A 2010-02-15 2010-02-15 Foundation structure using ground improvement body Active JP5551943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010030103A JP5551943B2 (en) 2010-02-15 2010-02-15 Foundation structure using ground improvement body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010030103A JP5551943B2 (en) 2010-02-15 2010-02-15 Foundation structure using ground improvement body

Publications (2)

Publication Number Publication Date
JP2011163082A true JP2011163082A (en) 2011-08-25
JP5551943B2 JP5551943B2 (en) 2014-07-16

Family

ID=44594097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030103A Active JP5551943B2 (en) 2010-02-15 2010-02-15 Foundation structure using ground improvement body

Country Status (1)

Country Link
JP (1) JP5551943B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065481A (en) * 2017-09-28 2019-04-25 積水ハウス株式会社 Soil improvement body and soil improvement body construction method
JP2020204177A (en) * 2019-06-17 2020-12-24 株式会社竹中工務店 Foundation structure and foundation construction method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326739B2 (en) * 1984-06-18 1991-04-11 Kajima Corp
JPH078673Y2 (en) * 1987-02-27 1995-03-06 川鉄建材工業株式会社 Composite beam structure
JPH11200381A (en) * 1998-01-07 1999-07-27 Kajima Corp Foundation structure
JP2000144721A (en) * 1998-11-05 2000-05-26 Takenaka Doboku Co Ltd Cutoff wall and its execution method
JP2001159131A (en) * 1999-12-01 2001-06-12 Tenox Corp Impervious soil improved structure and land-formatin method therefor
JP2004270215A (en) * 2003-03-06 2004-09-30 Tenotsukusu Kyushu:Kk Construction method of foundation structure
JP2005307594A (en) * 2004-04-22 2005-11-04 Shimizu Corp Basic structure of construction
JP2006265976A (en) * 2005-03-25 2006-10-05 Oriental Construction Co Ltd Corrugated steel-plate web u component bridge and its construction method
JP2007039937A (en) * 2005-08-02 2007-02-15 Toda Constr Co Ltd Foundation structure of building
JP2007051486A (en) * 2005-08-19 2007-03-01 Railway Technical Res Inst Sheet pile-combined spread foundation and its construction method
JP2007070807A (en) * 2005-09-05 2007-03-22 Takenaka Komuten Co Ltd Vibration-proof composite underground wall using soil-cement continuous underground wall, and its construction method
JP2008303584A (en) * 2007-06-06 2008-12-18 Public Works Research Institute Structure of artificial ground and its construction method
JP2009293222A (en) * 2008-06-03 2009-12-17 Ohbayashi Corp Construction joint portion forming implement, and construction method for construction joint portion of underground wall

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326739B2 (en) * 1984-06-18 1991-04-11 Kajima Corp
JPH078673Y2 (en) * 1987-02-27 1995-03-06 川鉄建材工業株式会社 Composite beam structure
JPH11200381A (en) * 1998-01-07 1999-07-27 Kajima Corp Foundation structure
JP2000144721A (en) * 1998-11-05 2000-05-26 Takenaka Doboku Co Ltd Cutoff wall and its execution method
JP2001159131A (en) * 1999-12-01 2001-06-12 Tenox Corp Impervious soil improved structure and land-formatin method therefor
JP2004270215A (en) * 2003-03-06 2004-09-30 Tenotsukusu Kyushu:Kk Construction method of foundation structure
JP2005307594A (en) * 2004-04-22 2005-11-04 Shimizu Corp Basic structure of construction
JP2006265976A (en) * 2005-03-25 2006-10-05 Oriental Construction Co Ltd Corrugated steel-plate web u component bridge and its construction method
JP2007039937A (en) * 2005-08-02 2007-02-15 Toda Constr Co Ltd Foundation structure of building
JP2007051486A (en) * 2005-08-19 2007-03-01 Railway Technical Res Inst Sheet pile-combined spread foundation and its construction method
JP2007070807A (en) * 2005-09-05 2007-03-22 Takenaka Komuten Co Ltd Vibration-proof composite underground wall using soil-cement continuous underground wall, and its construction method
JP2008303584A (en) * 2007-06-06 2008-12-18 Public Works Research Institute Structure of artificial ground and its construction method
JP2009293222A (en) * 2008-06-03 2009-12-17 Ohbayashi Corp Construction joint portion forming implement, and construction method for construction joint portion of underground wall

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065481A (en) * 2017-09-28 2019-04-25 積水ハウス株式会社 Soil improvement body and soil improvement body construction method
JP7009889B2 (en) 2017-09-28 2022-01-26 積水ハウス株式会社 Ground improvement body and construction method of ground improvement body
JP2020204177A (en) * 2019-06-17 2020-12-24 株式会社竹中工務店 Foundation structure and foundation construction method
JP7275457B2 (en) 2019-06-17 2023-05-18 株式会社竹中工務店 Foundation structure and foundation construction method

Also Published As

Publication number Publication date
JP5551943B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP6613358B2 (en) Ground improvement foundation structure
JP6033139B2 (en) Joint structure of pile and footing
JP2008231799A (en) Base isolation structure
JP2013002078A (en) Foundation structure
JP5296585B2 (en) Soil cement improved structure and piled raft foundation
JP5551943B2 (en) Foundation structure using ground improvement body
JP2008223390A (en) Waling material for steel pipe sheet pile, wale, steel pipe sheet pile using wale, and its construction method
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP5728300B2 (en) Ground improvement body and piled raft foundation equipped with the same
JP3899094B2 (en) Foundation reinforcement method for existing structures by press-fitting steel pipe piles
JP2008240356A (en) Reinforcing structure and method for pile foundation
JP5557549B2 (en) Foundation structure using ground improvement body and its construction method
KR20120073623A (en) Connecting structure of steel pipe sheet pile
JP2007277830A (en) Core material, continuous underground wall, soil cement wall, continuous underground wall pile, soil cement wall pile, cast-in-place concrete pile, underground structure, and foundation structure of building
JP2011163081A (en) Foundation structure using soil improvement body, and method for constructing the same
JP4466418B2 (en) Soil cement wall pile, soil cement structure
JP2010043439A (en) Method of reinforcing foundation of existing wooden house
JP4529631B2 (en) Underground structure and construction method of underground structure
JP7359515B2 (en) Liquefaction countermeasure structure for underground structures
JP5267242B2 (en) Pier foundation structure and bridge pier foundation construction method
JP2010222818A (en) Construction method for rationally arranging sheet pile
JP2006257744A (en) Soil cement column wall, and foundation structure
JP2019190103A (en) Joint structure of building
JP2016089449A (en) Shear force transmission structure and construction method of the same
JP5501921B2 (en) Basic structure for structure and construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20121220

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20130917

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20131105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20131220

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140523

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5551943

Free format text: JAPANESE INTERMEDIATE CODE: R150

Country of ref document: JP