JP2011156637A - Surface-coated cutting tool having hard coated layer that exhibits excellent chipping resistance - Google Patents

Surface-coated cutting tool having hard coated layer that exhibits excellent chipping resistance Download PDF

Info

Publication number
JP2011156637A
JP2011156637A JP2010022053A JP2010022053A JP2011156637A JP 2011156637 A JP2011156637 A JP 2011156637A JP 2010022053 A JP2010022053 A JP 2010022053A JP 2010022053 A JP2010022053 A JP 2010022053A JP 2011156637 A JP2011156637 A JP 2011156637A
Authority
JP
Japan
Prior art keywords
craln
layer
crystal grains
tool
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010022053A
Other languages
Japanese (ja)
Other versions
JP5515806B2 (en
Inventor
Koichi Tanaka
耕一 田中
Hidemitsu Takaoka
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010022053A priority Critical patent/JP5515806B2/en
Publication of JP2011156637A publication Critical patent/JP2011156637A/en
Application granted granted Critical
Publication of JP5515806B2 publication Critical patent/JP5515806B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool having a hard coated layer that exhibits excellent chipping resistance in interrupted heavy-duty cutting. <P>SOLUTION: In the surface-coated cutting tool, a hard coated layer including a CrAIN layer having an average layer thickness of 0.2-2 &mu;m (when its composition formula is represented by (Cr<SB>1-X</SB>Al<SB>X</SB>)N, X is preferably 0.10-0.70 by atomic ratio.) is formed on a tool base surface of WC-based cemented carbide by vapor deposition. In the surface-coated cutting tool, the CrAIN layer has a height equal to the average layer thickness, and comprises oblong flat plate-shaped CrAIN crystal grains grown perpendicularly to the tool base surface. When a crystal grain structure in a horizontal cross-section at the depth of 0.1 &mu;m from the surface of the CrAIN layer is observed, the area ratio of the oblong flat plate-shaped CrAIN crystal grains each having a short side of 5-100 nm and an aspect ratio of 3 or more is 30% or more of the total horizontal cross-sectional area. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、硬質被覆層が、工具基体表面に対して直立方向に成長した縦長平板状のCrAlN結晶粒で構成されることにより、断続重切削加工という厳しい切削条件下で用いられた場合にも、すぐれた耐欠損性を発揮し、切削工具の長寿命化が可能となる炭化タングステン(以下、WCで示す)基超硬合金製表面被覆切削工具(以下、被覆工具という)に関するものである。   Even when the hard coating layer is used under severe cutting conditions such as intermittent heavy cutting because the hard coating layer is composed of vertically long CrAlN crystal grains grown in an upright direction with respect to the tool base surface. The present invention relates to a tungsten carbide (hereinafter referred to as WC) -based cemented carbide surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and can extend the life of the cutting tool.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。   In general, for coated tools, inserts that are detachably attached to the tip of a cutting tool for turning of work materials such as various types of steel and cast iron, and the inserts are detachably attached to be used for chamfering and grooving. An insert type end mill that performs cutting processing in the same manner as a solid type end mill used for processing and shoulder processing is known.

また、例えば、特許文献1に示されるように、炭化タングステン(以下、WCで示す)基超硬合金焼結体で構成された工具本体の表面に、CrとAlの複合窒化物(以下、CrAlNで示す)層からなる硬質被覆層を物理蒸着してなる被覆工具が知られており、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられている。
また、例えば、特許文献2に示されるように、工具本体の表面に、CrAlN層からなる硬質層を1層以上物理蒸着してなる被覆工具において、硬質層の少なくとも1層はSiを含有する固溶体相であり、結晶構造がfccである被覆工具も知られている。
Further, for example, as shown in Patent Document 1, a composite nitride of Cr and Al (hereinafter referred to as CrAlN) is formed on the surface of a tool body composed of a tungsten carbide (hereinafter referred to as WC) based cemented carbide sintered body. A coating tool formed by physically vapor-depositing a hard coating layer composed of a layer is known, and is used for continuous cutting and intermittent cutting of various steels and cast iron.
Also, for example, as shown in Patent Document 2, in a coated tool formed by physical vapor deposition of one or more hard layers made of a CrAlN layer on the surface of a tool body, at least one of the hard layers is a solid solution containing Si. Coated tools that are phase and have a crystal structure of fcc are also known.

特許第3969230号明細書Japanese Patent No. 3969230 特許第3781374号明細書Japanese Patent No. 3781374

近年の切削加工装置のFA化はめざましく、加えて切削加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、これに伴い、高送り、高切り込みなどより高効率の重切削加工が要求される傾向にあるが、前記従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、切刃に対して大きな断続的・衝撃的負荷がかかる断続重切削加工に用いた場合には、切刃部に欠損を生じやすく、これが原因で、比較的短時間で使用寿命に至るのが現状である。   In recent years, the FA of cutting devices has been remarkable, and in addition, there are strong demands for labor saving, energy saving, cost reduction and efficiency for cutting, and with this, high-efficiency heavy cutting such as high feed and high cutting However, in the above-mentioned conventional coated tools, there is no particular problem when various steels and cast irons are machined under normal conditions. When used for intermittent heavy cutting with a load applied, the cutting edge is likely to be damaged, and this causes the service life to be reached in a relatively short time.

そこで、本発明者等は、前述のような観点から、断続重切削加工に用いられた場合にも優れた耐欠損性を示し被覆工具の長寿命化を図るべく、硬質被覆層をCrAlN層で構成するとともに、該CrAlN層の結晶粒組織に着目し鋭意研究を行った結果、次のような知見を得た。   In view of the above, the inventors of the present invention have made the hard coating layer a CrAlN layer in order to show excellent fracture resistance even when used in intermittent heavy cutting and to extend the life of the coated tool. As a result of intensive studies focusing on the crystal grain structure of the CrAlN layer, the following knowledge was obtained.

(a)従来、WC超硬合金からなる工具基体表面に、硬質被覆層としてのCrAlN層を成膜する場合、物理蒸着装置の1種であるアークイオンプレーティング(AIP)装置に前記工具基体を装着し、例えば、
装置内加熱温度:390〜450℃、
工具基体に印加する直流バイアス電圧:−20〜−50V、
カソード電極:Cr−Al合金、
アーク放電電流:90〜120A、
装置内ガス流量:窒素(N)ガス+アルゴン(Ar)ガス、
装置内窒素ガス圧力:1〜5Pa、
の条件の条件で、CrAlN層(以下、従来CrAlN層という)が成膜される。
(A) Conventionally, when forming a CrAlN layer as a hard coating layer on the surface of a tool base made of a WC cemented carbide, the tool base is attached to an arc ion plating (AIP) apparatus which is a kind of physical vapor deposition apparatus. Wearing, for example,
In-apparatus heating temperature: 390 to 450 ° C.,
DC bias voltage applied to the tool base: -20 to -50V,
Cathode electrode: Cr-Al alloy,
Arc discharge current: 90-120A
Gas flow in the apparatus: nitrogen (N 2 ) gas + argon (Ar) gas,
Nitrogen gas pressure in the apparatus: 1 to 5 Pa,
Under these conditions, a CrAlN layer (hereinafter referred to as a conventional CrAlN layer) is formed.

(b)しかるに、前記CrAlN層の形成を、例えば、図1の概略説明図に示される物理蒸着装置の1種である圧力勾配型Arプラズマガスを利用したイオンプレーティング装置に上記の工具基体を装着し、
工具基体温度:360〜450 ℃、
蒸発源:金属Crおよび金属Al、
プラズマガン放電電力:11〜15 kW(金属Crに対して)、
プラズマガン放電電力:8〜10 kW(金属Alに対して)、
反応ガス流量:窒素(N)ガス 100〜120 sccm、
放電ガス:アルゴン(Ar)ガス 30〜60 sccm、
工具基体に印加する直流バイアス電圧:+3〜+5 V、
ハースと工具基体間の距離:950〜1050 mm、
という特定の条件でCrAlN層を蒸着形成した場合、この結果形成されたCrAlN層(以下、改質CrAlN層という)を硬質被覆層とする被覆工具は、前記従来CrAlN層を形成した被覆工具に比して、高切り込み、高送りの断続重切削加工条件において、すぐれた耐欠損性を示すことを見出した。
(B) However, the CrAlN layer is formed by, for example, applying the above-mentioned tool base to an ion plating apparatus using a pressure gradient type Ar plasma gas, which is one type of physical vapor deposition apparatus shown in the schematic explanatory view of FIG. Wearing,
Tool substrate temperature: 360 to 450 ° C.
Evaporation source: metal Cr and metal Al,
Plasma gun discharge power: 11-15 kW (relative to metal Cr),
Plasma gun discharge power: 8 to 10 kW (relative to metal Al),
Reaction gas flow rate: nitrogen (N 2) gas 100 to 120 sccm,
Discharge gas: Argon (Ar) gas 30-60 sccm,
DC bias voltage applied to the tool base: +3 to +5 V,
Distance between Hearth and tool substrate: 950-1050 mm,
When the CrAlN layer is vapor-deposited under the specific conditions of the above, the coated tool using the resulting CrAlN layer (hereinafter referred to as a modified CrAlN layer) as a hard coating layer is compared with the conventional coated tool having the CrAlN layer formed thereon. The present inventors have found that excellent fracture resistance is exhibited under high cutting and high feed intermittent cutting conditions.

(c)前記改質CrAlN層の断面組織を透過型電子顕微鏡で観察したところ、図2の断面斜視図に示すように、層厚方向の縦断面においては、工具基体表面に対して直立方向に成長した縦長平板状のCrAlN結晶粒が形成され、また、改質CrAlN層の表面から0.1μmの深さの水平断面においては、短辺が5〜100nmであって、アスペクト比が3以上である前記縦長平板状のCrAlN結晶粒が所定の面積割合で形成されていることを確認した。 (C) When the cross-sectional structure of the modified CrAlN layer was observed with a transmission electron microscope, as shown in the cross-sectional perspective view of FIG. 2, the vertical cross-section in the layer thickness direction was in an upright direction with respect to the tool base surface. In the horizontal cross section having a depth of 0.1 μm from the surface of the modified CrAlN layer, the short side is 5 to 100 nm and the aspect ratio is 3 or more. It was confirmed that certain vertical plate-like CrAlN crystal grains were formed in a predetermined area ratio.

(d)そして、表面被覆切削工具の硬質被覆層を、前記結晶粒組織の改質CrAlN層で構成すると、層の曲げ抵抗が大になり耐塑性変形性が向上するとともに、結晶粒界が複雑に入り組んで形成されていることから、硬質被覆層にクラックが発生した場合でも、クラックの進展に対する抵抗性が増し、その結果、切刃に対して大きな断続的・衝撃的負荷がかかる高送り、高切り込みの断続重切削加工に用いた場合であっても、チッピング、欠損の発生が抑制され、長期の使用に亘ってすぐれた切削性能を発揮することを見出したのである。 (D) When the hard coating layer of the surface-coated cutting tool is composed of the modified CrAlN layer of the crystal grain structure, the bending resistance of the layer is increased, the plastic deformation resistance is improved, and the crystal grain boundary is complicated. Because it is formed in an intricate manner, even when cracks occur in the hard coating layer, the resistance to crack growth increases, and as a result, high feed that places a large intermittent and impact load on the cutting edge, It has been found that even when used for high-cut intermittent heavy cutting, chipping and chipping are suppressed, and excellent cutting performance is exhibited over a long period of use.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金製工具基体の表面に、0.2〜2μmの平均層厚のCrAlN層からなる硬質被覆層を物理蒸着した表面被覆切削工具において、
前記CrAlN層が、前記平均層厚と等しい高さを有し、かつ、前記工具基体表面に対して直立方向に成長した縦長平板状のCrAlN結晶粒からなり、
さらに、前記CrAlN層の表面から0.1μmの深さの水平断面における結晶粒組織を透過型電子顕微鏡で観察した場合、短辺が5〜100nmであって、アスペクト比が3以上である前記縦長平板状のCrAlN結晶粒が存在し、かつ、前記水平断面において縦長平板状のCrAlN結晶粒が占める面積の合計は、全断面積の30%以上であることを特徴とする表面被覆切削工具。
(2) 前記CrAlN層を、
組成式:(Cr1−XAl)N
で表わした場合、Cr成分との合量に占めるAl成分の含有割合Xが、原子比で0.10≦X≦0.70を満足する前記(1)に記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer composed of a CrAlN layer having an average layer thickness of 0.2 to 2 μm is physically vapor-deposited on the surface of a tungsten carbide-based cemented carbide tool base,
The CrAlN layer has a height equal to the average layer thickness, and is composed of vertically elongated CrAlN crystal grains grown in an upright direction with respect to the tool base surface,
Further, when the crystal grain structure in a horizontal cross section having a depth of 0.1 μm from the surface of the CrAlN layer is observed with a transmission electron microscope, the longitudinal side having a short side of 5 to 100 nm and an aspect ratio of 3 or more. A surface-coated cutting tool characterized in that flat CrAlN crystal grains are present, and the total area occupied by the vertically long flat CrAlN crystal grains in the horizontal section is 30% or more of the total cross-sectional area.
(2) The CrAlN layer is
Composition formula: (Cr 1-X Al X ) N
The surface-coated cutting tool according to (1), wherein the content ratio X of the Al component in the total amount with the Cr component satisfies 0.10 ≦ X ≦ 0.70 in atomic ratio. "
It has the characteristics.

本発明について、以下に説明する。   The present invention will be described below.

本発明の被覆工具の硬質被覆層を構成する改質CrAlN層において、Cr成分は高温強度を向上させ、Al成分は耐熱性を向上させ、また、N成分には層の強度を向上させる作用があるため、改質CrAlN層は、高い硬さとすぐれた耐熱性、強度を具備するようになり、被覆工具の耐摩耗性向上と工具の長寿命化に寄与する。
そして、本発明者等は、CrAlN層を蒸着形成するための数多くの試験を行った結果、図1に示される圧力勾配型Arプラズマガンを利用したイオンプレーティングにより、工具基体上にCrAlN層を形成する条件を、例えば、
工具基体温度:390〜450 ℃、
蒸発源:金属Crおよび金属Al、
プラズマガン放電電力:11〜15 kW(金属Crに対して)、
プラズマガン放電電力:8〜10 kW(金属Alに対して)、
反応ガス流量:窒素(N)ガス 100〜120 sccm、
放電ガス:アルゴン(Ar)ガス 30〜60 sccm、
工具基体に印加する直流バイアス電圧:+3〜+5 V、
ハースと工具基体間の距離:950〜1050 mm、
蒸着時間: 30〜150 min、
という特定の条件に調整して蒸着すると、工具基体表面に対して直立方向に成長した縦長平板状のCrAlN結晶粒からなる改質CrAlN層が形成されることを見出した。
In the modified CrAlN layer constituting the hard coating layer of the coated tool of the present invention, the Cr component improves the high temperature strength, the Al component improves the heat resistance, and the N component has the effect of improving the layer strength. Therefore, the modified CrAlN layer comes to have high hardness, excellent heat resistance and strength, and contributes to improvement of wear resistance of the coated tool and long tool life.
As a result of performing numerous tests for forming a CrAlN layer by vapor deposition, the present inventors have formed a CrAlN layer on a tool base by ion plating using a pressure gradient type Ar plasma gun shown in FIG. The conditions for forming are, for example,
Tool substrate temperature: 390 to 450 ° C.
Evaporation source: metal Cr and metal Al,
Plasma gun discharge power: 11-15 kW (relative to metal Cr),
Plasma gun discharge power: 8 to 10 kW (relative to metal Al),
Reaction gas flow rate: nitrogen (N 2) gas 100 to 120 sccm,
Discharge gas: Argon (Ar) gas 30-60 sccm,
DC bias voltage applied to the tool base: +3 to +5 V,
Distance between Hearth and tool substrate: 950-1050 mm,
Deposition time: 30-150 min,
It was found that a modified CrAlN layer composed of vertically long plate-like CrAlN crystal grains grown in an upright direction with respect to the tool base surface was formed when the deposition was adjusted to the specific conditions.

この発明の改質CrAlN層を、
組成式:(Cr1−XAl)N
で表わした場合、Cr成分との合量に占めるAl成分の含有割合Xが原子比で0.10未満(即ち、0.10>Al/(Cr+Al))では所望の高温硬さと耐熱性を期待することはできず、一方その含有割合Xが0.70を越える(即ち、Al/(Cr+Al)>0.70)と、層自体の強度低下が生じ、耐欠損性を得ることができなくなることから、Al成分の含有割合Xは、原子比で0.10〜0.70とすることが望ましい。
The modified CrAlN layer of this invention
Composition formula: (Cr 1-X Al X ) N
When the content ratio X of the Al component in the total amount with the Cr component is less than 0.10 in atomic ratio (that is, 0.10> Al / (Cr + Al)), desired high temperature hardness and heat resistance are expected. On the other hand, if the content ratio X exceeds 0.70 (that is, Al / (Cr + Al)> 0.70), the strength of the layer itself is reduced, and the fracture resistance cannot be obtained. Therefore, the content ratio X of the Al component is desirably 0.10 to 0.70 in terms of atomic ratio.

改質CrAlN層の組織をより詳細に透過型電子顕微鏡で観察すると、図2の断面斜視図に示すように、改質CrAlN層の層厚方向の縦断面においては、前記縦長平板状のCrAlN結晶粒の高さが、改質CrAlN層の層厚を構成している。
また、工具基体表面に平行で、改質CrAlN層の表面から0.1μmの深さにある水平断面(即ち、改質CrAlN層表面から0.1μmの深さにあり、層厚方向に直交する平面)においては、短辺が5〜100nmであって、アスペクト比が3以上である矩形状のCrAlN結晶粒が存在する。
しかも、前記水平断面において、前記矩形状のCrAlN結晶粒の面積の合計が占める面積割合は、水平断面の全面積の30%以上となっている。
When the structure of the modified CrAlN layer is observed in more detail with a transmission electron microscope, as shown in the cross-sectional perspective view of FIG. 2, in the longitudinal section in the layer thickness direction of the modified CrAlN layer, the vertically long plate-like CrAlN crystal The height of the grains constitutes the layer thickness of the modified CrAlN layer.
Further, a horizontal cross section parallel to the tool base surface and at a depth of 0.1 μm from the surface of the modified CrAlN layer (that is, at a depth of 0.1 μm from the surface of the modified CrAlN layer and orthogonal to the layer thickness direction). In the plane), there are rectangular CrAlN crystal grains having a short side of 5 to 100 nm and an aspect ratio of 3 or more.
Moreover, in the horizontal section, the area ratio occupied by the total area of the rectangular CrAlN crystal grains is 30% or more of the total area of the horizontal section.

この改質CrAlN層の平均層厚(前記縦長平板状のCrAlN結晶粒の高さと同じ)は成膜時間によって大きく影響され、成膜時間が短いため(例えば、30分未満)に前記CrAlN結晶粒の高さが0.2μmに満たないような場合は、耐摩耗性に劣り長期の使用に亘ってすぐれた切削性能を発揮することはできず、一方、成膜時間が長くなり(例えば、150分を超える)、前記CrAlN結晶粒の高さが2μmを超えるような場合は、CrAlN結晶粒が粗大化し、表面平滑性が失われ、チッピングが生じ易くなる。
したがって、改質CrAlN層の平均層厚(=前記縦長平板状のCrAlN結晶粒の高さ)は、0.2〜2μmと定める。
The average layer thickness of the modified CrAlN layer (same as the height of the vertically long plate-like CrAlN crystal grains) is greatly influenced by the film formation time, and because the film formation time is short (for example, less than 30 minutes), the CrAlN crystal grains Is less than 0.2 μm, it is inferior in wear resistance and cannot exhibit excellent cutting performance over a long period of use, while the film formation time becomes long (for example, 150 When the height of the CrAlN crystal grains exceeds 2 μm, the CrAlN crystal grains become coarse, surface smoothness is lost, and chipping is likely to occur.
Therefore, the average layer thickness of the modified CrAlN layer (= the height of the vertically long plate-like CrAlN crystal grains) is set to 0.2 to 2 μm.

また、この改質CrAlN層の表面から0.1μmの深さにある水平断面に存在する矩形状のCrAlN結晶粒の短辺が5nm未満では、結晶粒自体の靭性を発揮できず、一方、短辺が100nmを超えると、結晶粒が粗大になり複雑に入り組んだ結晶粒界を導入できなくなることから、前記矩形状のCrAlN結晶粒の短辺は5〜100nmと定める。
なお、この発明でいう「短辺」とは、改質CrAlN層の表面から0.1μmの深さにある水平断面に存在する個々のCrAlN結晶粒について、そのサイズを透過型電子顕微鏡により測定し、個々の結晶粒の測定された最大径を示す線分を長辺とした場合に、長辺方向に対して垂直な方向における最大幅をいう。
Further, if the short side of the rectangular CrAlN crystal grains present in the horizontal cross section at a depth of 0.1 μm from the surface of the modified CrAlN layer is less than 5 nm, the toughness of the crystal grains themselves cannot be exhibited, If the side exceeds 100 nm, the crystal grain becomes coarse and complicated crystal grain boundaries cannot be introduced. Therefore, the short side of the rectangular CrAlN crystal grain is set to 5 to 100 nm.
The “short side” in the present invention refers to the size of individual CrAlN crystal grains present in a horizontal section at a depth of 0.1 μm from the surface of the modified CrAlN layer, measured by a transmission electron microscope. The maximum width in the direction perpendicular to the long-side direction when the line segment indicating the measured maximum diameter of each crystal grain is the long side.

また、この改質CrAlN層の表面から0.1μmの深さにある水平断面に存在する矩形状のCrAlN結晶粒のアスペクト比が3未満では、水平断面内での結晶粒の形が等方的になり、複雑に入り組んだ結晶粒界を導入できなくなることから、前記矩形状のCrAlN結晶粒のアスペクト比は3以上と定める。
なお、ここでいう「アスペクト比」とは、前記個々の結晶粒の測定された最大径を示す線分である長辺の値を、前記短辺の値で除した値である。
In addition, when the aspect ratio of the rectangular CrAlN crystal grains present in the horizontal section at a depth of 0.1 μm from the surface of the modified CrAlN layer is less than 3, the shape of the crystal grains in the horizontal section is isotropic. Therefore, it becomes impossible to introduce complicated grain boundaries, so the aspect ratio of the rectangular CrAlN crystal grains is determined to be 3 or more.
Here, the “aspect ratio” is a value obtained by dividing the value of the long side, which is a line segment indicating the measured maximum diameter of each crystal grain, by the value of the short side.

また、この改質CrAlN層の表面から0.1μmの深さにある水平断面に存在する矩形状のCrAlN結晶粒の面積割合が、測定した水平断面の全面積の30%未満であるような場合は、クラックの進展経路が複雑でなくなりクラックの進展に対する抵抗力が十分に得られずチッピングを生じやすくなることから、前記矩形状のCrAlN結晶粒面積割合は30%以上とする。   Also, when the area ratio of the rectangular CrAlN crystal grains present in the horizontal cross section at a depth of 0.1 μm from the surface of the modified CrAlN layer is less than 30% of the total area of the measured horizontal cross section Since the crack propagation path is not complicated and sufficient resistance to crack propagation is not obtained and chipping is likely to occur, the rectangular CrAlN crystal grain area ratio is set to 30% or more.

改質CrAlN層の表面から0.1μmの深さにある水平断面に存在する矩形状のCrAlN結晶粒の短辺の値、アスペクト比の値および面積割合は、改質CrAlN層の蒸着条件の内のそれぞれ、成膜時間、成膜温度および印加する直流バイアス電圧、成膜温度および印加する直流バイアス電圧によって影響を受けるので、矩形状のCrAlN結晶粒の短辺の値、アスペクト比の値および面積割合を所定の数値範囲に維持するためには、前記蒸着条件のうち、特に、成膜時間、成膜温度、印加する直流バイアス電圧については厳密に調整しなければならない。   The short side value, aspect ratio value, and area ratio of the rectangular CrAlN crystal grains present in the horizontal cross section at a depth of 0.1 μm from the surface of the modified CrAlN layer are included in the deposition conditions of the modified CrAlN layer. Are affected by the film formation time, the film formation temperature and the applied DC bias voltage, the film formation temperature and the applied DC bias voltage, respectively, so that the short side value, aspect ratio value and area of the rectangular CrAlN crystal grains are affected. In order to maintain the ratio within a predetermined numerical range, it is necessary to strictly adjust the deposition time, the deposition temperature, and the applied DC bias voltage among the deposition conditions.

この発明の被覆工具は、硬質被覆層を構成する改質CrAlN層が、工具基体表面に対して直立方向に成長した縦長平板状のCrAlN結晶粒からなり、さらに、前記改質CrAlN層の表面から0.1μmの深さの水平断面において、短辺が5〜100nmであって、アスペクト比が3以上である前記縦長平板状のCrAlN結晶粒が存在し、かつ、該縦長平板状のCrAlN結晶粒が占める面積の合計は、全断面積の30%以上である結晶粒組織を備えることから、改質CrAlN層の曲げ抵抗が大になり耐塑性変形性が向上するとともに、切刃に対して断続的・衝撃的負荷が作用する高送り、高切り込みの断続重切削加工において硬質被覆層にクラックが発生した場合でも、結晶粒界が複雑に入り組み形成されていることから、クラックの進展に対する抵抗性が増し、その結果、すぐれた高温硬さ、耐熱性、高温強度に加えて耐欠損性が改善され、長期の使用に亘ってすぐれた切削性能を発揮し、工具寿命の延命化が図られるのである。   In the coated tool of the present invention, the modified CrAlN layer constituting the hard coating layer is composed of vertically long plate-like CrAlN crystal grains grown in an upright direction with respect to the tool base surface, and further from the surface of the modified CrAlN layer. In the horizontal cross section having a depth of 0.1 μm, the vertically long plate-like CrAlN crystal grains having a short side of 5 to 100 nm and an aspect ratio of 3 or more exist, and the vertically long plate-like CrAlN crystal grains Since the total area occupied by the crystallized structure is 30% or more of the total cross-sectional area, the bending resistance of the modified CrAlN layer is increased, the plastic deformation resistance is improved, and the cutting edge is interrupted. Even when cracks occur in the hard coating layer during intermittent feed cutting with high feed and high depth of cut that are subject to mechanical and impact loads, the As a result, in addition to excellent high-temperature hardness, heat resistance, and high-temperature strength, chipping resistance is improved, and excellent cutting performance is demonstrated over long-term use, extending tool life. Is achieved.

この発明の表面被覆切削工具の硬質被覆層(改質CrAlN層)を蒸着形成するため圧力勾配型Arプラズマガンを利用したイオンプレーティング装置の概略図を示し、(a)は概略正面図、(b)は概略平面図を示す。The schematic diagram of the ion plating apparatus using the pressure gradient type Ar plasma gun in order to vapor-deposit and form the hard coating layer (modified CrAlN layer) of the surface coating cutting tool of this invention is shown, (a) is a schematic front view, b) shows a schematic plan view. この発明の表面被覆切削工具の改質CrAlN層からなる硬質被覆層の断面斜視図を示す。The cross-sectional perspective view of the hard coating layer which consists of a modified CrAlN layer of the surface coating cutting tool of this invention is shown. 本発明インサート1の改質CrAlN層の表面から0.1μmの深さの水平断面におけるCrAlN結晶粒の組織の模式図を示す。The schematic diagram of the structure | tissue of the CrAlN crystal grain in the horizontal cross section of a 0.1 micrometer depth from the surface of the modified CrAlN layer of this invention insert 1 is shown.

つぎに、この発明の被覆工具を実施例により具体的に説明する。
なお、ここでは被覆インサートを中心にして説明するが、被覆インサートに限らず、被覆エンドミル、被覆ドリル等の各種の被覆工具に適用できるものである。
Next, the coated tool of the present invention will be specifically described with reference to examples.
In addition, although demonstrated centering on a covering insert here, it is applicable not only to a covering insert but to various covering tools, such as a covering end mill and a covering drill.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・SEEN1203のインサート形状をもったWC基超硬合金製の工具基体1〜10を形成した。 As raw material powders, WC powder, TiC powder, VC powder, Cr 3 C 2 powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are mixed in the composition shown in Table 1. Compounded, wet mixed in a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact was sintered in a 6 Pa vacuum at a temperature of 1400 ° C. for 1 hour. After sintering, honing of R: 0.03 was applied to the cutting edge portion to form tool bases 1 to 10 made of WC-base cemented carbide having an ISO standard / SEEN 1203 insert shape.

Figure 2011156637
Figure 2011156637

ついで、前記工具基体1〜10を、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される圧力勾配型Arプラズマガンを利用したイオンプレーティング装置に装着し、蒸発源として、金属Crおよび金属Alを装着し、まず、装置内を排気して1.0×10−3Pa以下の真空に保持しながらヒーターで装置内を390〜450℃に加熱した後、Arガスを導入して2.3×10−2Paとしたのち、圧力勾配型プラズマガンの放電電力を2kWとし、装置内にArイオンを発生させて、工具基体に−200Vのバイアス電圧を印加することによって、前記工具基体を10分間Arボンバード処理し、ついで、装置内を一旦1×10−3Pa程度の真空にした後、圧力勾配型Arプラズマガンの放電電力を12kWとし、Arガスを45sccm,窒素ガスを100sccm流しながら、炉内の圧力を3×10−2〜6×10−2Paに保ち、蒸発源にプラズマビームを入射し金属Crおよび金属Alの蒸気を発生させるとともにプラズマビームでイオン化して、蒸発源の上部1000mmに固定された工具基体表面に、表3に示される目標層厚の改質CrAlN層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆インサート(以下、本発明インサートという)1〜10を製造した。
なお、表2に、本発明インサート1〜10の改質CrAlN層の形成条件である圧力勾配型Arプラズマガンを利用したイオンプレーティングの各種条件を一覧で示す。
Next, the tool bases 1 to 10 are ultrasonically cleaned in acetone and dried, and then attached to the ion plating apparatus using the pressure gradient type Ar plasma gun shown in FIG. Attach Cr and metal Al, and first heat the interior of the apparatus to 390-450 ° C. with a heater while maintaining a vacuum of 1.0 × 10 −3 Pa or less, and then introduce Ar gas. 2.3 × 10 −2 Pa, the discharge power of the pressure gradient plasma gun is set to 2 kW, Ar ions are generated in the apparatus, and a bias voltage of −200 V is applied to the tool base, thereby the tool substrate to Ar bombardment for 10 minutes, then, after once 1 × 10 -3 Pa vacuum of about in the apparatus, the discharge power of the pressure gradient type Ar plasma gun and 12 kW, Ar gas 45 sccm, while passing 100sccm of nitrogen gas, maintaining the pressure in the furnace to 3 × 10 -2 ~6 × 10 -2 Pa, the plasma beam with to generate steam of incident plasma beam metals Cr and Al metal to the evaporation source The modified CrAlN layer having the target layer thickness shown in Table 3 is vapor-deposited as a hard coating layer on the surface of the tool base fixed to the upper 1000 mm of the evaporation source. Invention surface covering inserts (hereinafter referred to as the present invention inserts) 1 to 10 were produced.
Table 2 shows a list of various conditions for ion plating using a pressure gradient type Ar plasma gun, which are conditions for forming the modified CrAlN layer of the inserts 1 to 10 of the present invention.

比較のため、前記工具基体A1〜A10について、通常のアークイオンプレーティング(AIP)法によって、以下の条件で、表5に示される目標層厚の従来CrAlN層を蒸着形成することにより、比較例表面被覆インサート(以下、比較例インサートという)1〜10を製造した。
装置内加熱温度:390〜450℃、
工具基体に印加する直流バイアス電圧:−20〜−50V、
カソード電極:Cr−Al合金、
アーク放電電流:100〜120A、
装置内ガス:窒素(N)ガス、
装置内窒素ガス圧力:1〜5Pa、
なお、表4に、比較例インサート1〜10の従来CrAlN層の形成条件であるアークイオンプレーティング(AIP)の各種条件を一覧で示す。
For comparison, a comparative CrAlN layer having a target layer thickness shown in Table 5 is formed by vapor deposition on the tool bases A1 to A10 under the following conditions by a normal arc ion plating (AIP) method. Surface-coated inserts (hereinafter referred to as comparative example inserts) 1 to 10 were produced.
In-apparatus heating temperature: 390 to 450 ° C.,
DC bias voltage applied to the tool base: -20 to -50V,
Cathode electrode: Cr-Al alloy,
Arc discharge current: 100-120A
In-apparatus gas: Nitrogen (N 2 ) gas,
Nitrogen gas pressure in the apparatus: 1 to 5 Pa,
Table 4 shows a list of various conditions of arc ion plating (AIP), which is a condition for forming the conventional CrAlN layer of Comparative Example Inserts 1 to 10.

ついで、本発明インサート1〜10および比較例インサート1〜10の各硬質被覆層について、透過型電子顕微鏡を用いて結晶粒組織の状態を観察した。
表3,5に、その観察結果を示す。
表3によれば、本発明インサート1〜10では、改質CrAlN層の平均層厚と等しい高さの縦長平板状のCrAlN結晶粒が、工具基体表面に対して直立方向に成長しており、CrAlN層の表面から0.1μmの深さの水平断面について透過型電子顕微鏡を用いて観察・測定したところ、短辺が5〜100nm、アスペクト比が3以上であり、かつ、該水平断面における合計面積が、全断面積の30%以上である縦長平板状のCrAlN結晶粒が存在することが確認された。
図3に、一例として、本発明インサート1の改質CrAlN層の表面から0.1μmの深さの水平断面におけるCrAlN結晶粒の組織模式図を示す。
Subsequently, the state of the crystal grain structure was observed using the transmission electron microscope about each hard coating layer of this invention insert 1-10 and comparative example insert 1-10.
Tables 3 and 5 show the observation results.
According to Table 3, in the inserts 1 to 10 of the present invention, vertically long plate-like CrAlN crystal grains having a height equal to the average layer thickness of the modified CrAlN layer are grown in an upright direction with respect to the tool base surface. Observation and measurement of a horizontal cross section having a depth of 0.1 μm from the surface of the CrAlN layer using a transmission electron microscope has a short side of 5 to 100 nm, an aspect ratio of 3 or more, and a total in the horizontal cross section. It was confirmed that vertically flat CrAlN crystal grains having an area of 30% or more of the total cross-sectional area were present.
FIG. 3 shows, as an example, a schematic structure diagram of CrAlN crystal grains in a horizontal cross section having a depth of 0.1 μm from the surface of the modified CrAlN layer of the insert 1 of the present invention.

これに対して、表5から、CrAlN層を通常のアークイオンプレーティング法により成膜した比較例インサート1〜10においては、従来CrAlN層の平均層厚と等しい高さの柱状のCrAlN結晶粒が工具基体表面に対して直立方向に成長しており、CrAlN層の表面から0.1μmの高さの水平断面につて透過型電子顕微鏡を用いて観察・測定したところ、観測面の大部分をアスペクト比が2未満の粒により構成されており、アスペクト比が3以上の粒子の存在は確認されないことが分かる。   On the other hand, from Table 5, in Comparative Example Inserts 1 to 10 in which the CrAlN layer was formed by a normal arc ion plating method, columnar CrAlN crystal grains having a height equal to the average layer thickness of the conventional CrAlN layer are Growing in the upright direction with respect to the surface of the tool base, a horizontal cross section 0.1 μm high from the surface of the CrAlN layer was observed and measured using a transmission electron microscope. It is understood that the presence of particles having an aspect ratio of 3 or more is not confirmed because the particles are composed of particles having a ratio of less than 2.

Figure 2011156637
Figure 2011156637

Figure 2011156637
Figure 2011156637

Figure 2011156637
Figure 2011156637

Figure 2011156637
Figure 2011156637

つぎに、本発明インサート1〜10および比較例インサート1〜10について、これを工具鋼製カッタの先端部に固定治具にてネジ止めした状態で、
被削材:平面寸法 100mm×250mm 厚さ50mmのJIS・S35Cの板材、
切削速度: 300m/min.、
一刃あたりの送り: 0.40mm/刃、
切削時間: 2分、
の条件(切削条件1という)での炭素鋼の乾式高速高送り切削加工試験(通常の切削速度及びテーブル送りは、それぞれ、200m/min.、0.25mm/刃.)、
被削材:平面寸法 100mm×250mm 厚さ50mmのJIS・SCM440の板材、
切削速度: 250m/min.、
一刃あたりの送り: 0.35mm/刃、
切削時間: 2分、
の条件(切削条件2という)での合金鋼の乾式高速高送り切削加工試験(通常の切り込み及び送りは、それぞれ、170m/min.、0.25mm/刃.)、
被削材:平面寸法 100mm×250mm 厚さ50mmのJIS・SS400の板材、
切削速度: 300m/min.、
一刃あたりの送り: 0.40mm/刃、
切削時間: 2分、
の条件(切削条件3という)での軟鋼の乾式高速高送り切削加工試験(通常の切り込み及び送りは、それぞれ、250m/min.、0.30mm/刃.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表6に示した。
Next, for the present invention inserts 1 to 10 and comparative example inserts 1 to 10, in a state where this is screwed to the tip of the tool steel cutter with a fixing jig,
Work material: Plane dimensions 100mm x 250mm JIS S35C plate material with a thickness of 50mm,
Cutting speed: 300 m / min. ,
Feed per tooth: 0.40 mm / tooth,
Cutting time: 2 minutes
Carbon steel dry high-speed high-feed cutting test under normal conditions (referred to as cutting condition 1) (normal cutting speed and table feed are 200 m / min. And 0.25 mm / tooth, respectively),
Work material: Plane dimensions 100 mm x 250 mm JIS / SCM440 plate material with a thickness of 50 mm,
Cutting speed: 250 m / min. ,
Feed per tooth: 0.35 mm / tooth,
Cutting time: 2 minutes
Dry high-speed high-feed cutting test of alloy steel under the following conditions (referred to as cutting condition 2) (normal cutting and feeding are 170 m / min. And 0.25 mm / blade, respectively),
Work material: Plane dimensions 100 mm x 250 mm JIS / SS400 plate material with a thickness of 50 mm,
Cutting speed: 300 m / min. ,
Feed per tooth: 0.40 mm / tooth,
Cutting time: 2 minutes
Dry high-speed high-feed cutting test of mild steel under the following conditions (referred to as cutting condition 3) (normal cutting and feeding are 250 m / min. And 0.30 mm / tooth, respectively),
In each cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 6.

Figure 2011156637
Figure 2011156637

表3,5,6に示される結果から、本発明インサート1〜10は、いずれも硬質被覆層を構成する改質CrAlN層が0.2〜2μmの平均層厚を有するとともに、工具基体表面に対して直立方向に平均層厚と同じ高さの縦長平板状のCrAlN結晶粒組織が形成されており、さらに、前記改質CrAlN層の表面から0.1μmの深さの水平断面において、短辺が5〜100nmであって、アスペクト比が3以上である前記縦長平板状のCrAlN結晶粒が存在し、かつ、該縦長平板状のCrAlN結晶粒が占める面積の合計は、全断面積の30%以上である結晶粒組織を備えることから、改質CrAlN層の曲げ抵抗性が増し、耐塑性変形性が向上するとともに、切刃に対して断続的・衝撃的負荷が作用する高送り、高切り込みの断続重切削加工において硬質被覆層にクラックが発生した場合でも、結晶粒界が複雑に入り組み形成されていることから、クラックの進展に対する抵抗性が増し、その結果、すぐれた高温硬さ、耐熱性、高温強度に加えて耐欠損性が改善され、長期の使用に亘ってすぐれた切削性能を発揮し、工具寿命の延命化が図られているのである。   From the results shown in Tables 3, 5 and 6, in the inserts 1 to 10 of the present invention, the modified CrAlN layer constituting the hard coating layer has an average layer thickness of 0.2 to 2 μm, and on the tool base surface. On the other hand, a vertically long plate-like CrAlN crystal grain structure having the same height as the average layer thickness is formed in the upright direction, and in the horizontal cross section having a depth of 0.1 μm from the surface of the modified CrAlN layer, the short side 5-100 nm, the aspect ratio is 3 or more, the above-mentioned vertically long plate-like CrAlN crystal grains exist, and the total area occupied by the vertically long plate-like CrAlN crystal grains is 30% of the total cross-sectional area. With the crystal grain structure as described above, the bending resistance of the modified CrAlN layer is increased, the plastic deformation resistance is improved, and the cutting blade is subjected to intermittent and impact loads. Intermittent Even when cracks occur in the hard coating layer during machining, the grain boundaries are complex and formed, so the resistance to crack growth increases, and as a result, excellent high-temperature hardness, heat resistance, In addition to the high-temperature strength, the fracture resistance is improved, the cutting performance is excellent over a long period of use, and the tool life is extended.

これに対して、比較例インサート1〜10においては、従来CrAlN層における結晶粒はアスペクト比が低く、結晶粒界が複雑に入り組んで形成されておらず、クラックの進展に対する抵抗力が弱いため、断続切削加工においては、欠損等により比較的短時間で使用寿命に至ることが明らかである。   On the other hand, in Comparative Example Inserts 1-10, the crystal grains in the conventional CrAlN layer have a low aspect ratio, the crystal grain boundaries are not formed in a complicated manner, and the resistance to the progress of cracks is weak, In intermittent cutting, it is clear that the service life is reached in a relatively short time due to defects or the like.

上述のように、この発明の被覆工具は、硬質被覆層(改質CrAlN層)が、特定の短径、アスペクト比、面積割合を有する縦長平板状のCrAlN結晶粒組織として形成されていることから、優れた耐欠損性を備えており、そして、この優れた切削性能は、実施例において示した被覆インサートばかりでなく、被覆エンドミル、被覆ドリル等の各種被覆工具においても、長期の使用に亘って発揮されるものである。   As described above, in the coated tool of the present invention, the hard coating layer (modified CrAlN layer) is formed as a vertically long plate-like CrAlN grain structure having a specific short diameter, aspect ratio, and area ratio. In addition to the coated inserts shown in the examples, this excellent cutting performance is not only applied to various coated tools such as coated end mills and coated drills over a long period of use. It is demonstrated.

Claims (2)

炭化タングステン基超硬合金製工具基体の表面に、0.2〜2μmの平均層厚のCrAlN層からなる硬質被覆層を物理蒸着した表面被覆切削工具において、
前記CrAlN層が、前記平均層厚と等しい高さを有し、かつ、前記工具基体表面に対して直立方向に成長した縦長平板状のCrAlN結晶粒からなり、
さらに、前記CrAlN層の表面から0.1μmの深さの水平断面における結晶粒組織を透過型電子顕微鏡で観察した場合、短辺が5〜100nmであって、アスペクト比が3以上である前記縦長平板状のCrAlN結晶粒が存在し、かつ、前記水平断面において縦長平板状のCrAlN結晶粒が占める面積の合計は、全断面積の30%以上であることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of a CrAlN layer having an average layer thickness of 0.2 to 2 μm is physically vapor-deposited on the surface of a tungsten carbide-based cemented carbide tool base,
The CrAlN layer has a height equal to the average layer thickness, and is composed of vertically elongated CrAlN crystal grains grown in an upright direction with respect to the tool base surface,
Further, when the crystal grain structure in a horizontal cross section having a depth of 0.1 μm from the surface of the CrAlN layer is observed with a transmission electron microscope, the longitudinal side having a short side of 5 to 100 nm and an aspect ratio of 3 or more. A surface-coated cutting tool characterized in that flat CrAlN crystal grains are present, and the total area occupied by the vertically long flat CrAlN crystal grains in the horizontal section is 30% or more of the total cross-sectional area.
前記CrAlN層を、
組成式:(Cr1−XAl)N
で表わした場合、Cr成分との合量に占めるAl成分の含有割合Xが、原子比で0.10≦X≦0.70を満足する請求項1に記載の表面被覆切削工具。
The CrAlN layer,
Composition formula: (Cr 1-X Al X ) N
2. The surface-coated cutting tool according to claim 1, wherein the content ratio X of the Al component in the total amount with the Cr component satisfies 0.10 ≦ X ≦ 0.70 in atomic ratio.
JP2010022053A 2010-02-03 2010-02-03 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer Expired - Fee Related JP5515806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010022053A JP5515806B2 (en) 2010-02-03 2010-02-03 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010022053A JP5515806B2 (en) 2010-02-03 2010-02-03 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2011156637A true JP2011156637A (en) 2011-08-18
JP5515806B2 JP5515806B2 (en) 2014-06-11

Family

ID=44589069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022053A Expired - Fee Related JP5515806B2 (en) 2010-02-03 2010-02-03 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP5515806B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194535A (en) * 2010-03-23 2011-10-06 Mitsubishi Materials Corp Surface-coat cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2011218542A (en) * 2010-03-23 2011-11-04 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance
CN103121238A (en) * 2013-02-25 2013-05-29 潮州三环(集团)股份有限公司 Tape casting aluminum nitride green body manufacturing method
JP2013188834A (en) * 2012-03-14 2013-09-26 Mitsubishi Materials Corp Surface coated cutting tool
CN103373013A (en) * 2012-04-16 2013-10-30 财团法人工业技术研究院 Composite cutter
JP5962846B2 (en) * 2013-03-04 2016-08-03 株式会社タンガロイ Coated cutting tool
CN113564551A (en) * 2021-07-27 2021-10-29 上海工具厂有限公司 Multiphase BN-Y/CrAlN composite coating and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092608A1 (en) * 2004-03-29 2005-10-06 Kyocera Corporation Surface coating member and cutting tool
JP2008284639A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP2010207921A (en) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chip dischargeability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092608A1 (en) * 2004-03-29 2005-10-06 Kyocera Corporation Surface coating member and cutting tool
JP2008284639A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP2010207921A (en) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chip dischargeability

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194535A (en) * 2010-03-23 2011-10-06 Mitsubishi Materials Corp Surface-coat cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2011218542A (en) * 2010-03-23 2011-11-04 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2013188834A (en) * 2012-03-14 2013-09-26 Mitsubishi Materials Corp Surface coated cutting tool
CN103373013A (en) * 2012-04-16 2013-10-30 财团法人工业技术研究院 Composite cutter
CN103373013B (en) * 2012-04-16 2015-10-28 财团法人工业技术研究院 composite cutter
CN103121238A (en) * 2013-02-25 2013-05-29 潮州三环(集团)股份有限公司 Tape casting aluminum nitride green body manufacturing method
JP5962846B2 (en) * 2013-03-04 2016-08-03 株式会社タンガロイ Coated cutting tool
US9725811B2 (en) 2013-03-04 2017-08-08 Tungaloy Corporation Coated cutting tool
CN113564551A (en) * 2021-07-27 2021-10-29 上海工具厂有限公司 Multiphase BN-Y/CrAlN composite coating and preparation method thereof

Also Published As

Publication number Publication date
JP5515806B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5515806B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5099586B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5796778B2 (en) Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance
JP2011152602A (en) Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance
JP2008188734A (en) Surface coated cutting tool with hard coating layer exercising superior chipping resistance
JP5585935B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009056540A (en) Surface-coated cutting tool, of which hard coating layer achieves excellent chipping resistance
JP5182501B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011088250A (en) Surface-coated cutting tool with hard coating layer that exhibits superior chipping resistance
JP6296295B2 (en) Surface coated cutting tool with excellent wear resistance
JP5560513B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5397690B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5995091B2 (en) Surface coated cutting tool with excellent adhesion strength and chipping resistance
JP5464494B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
JP5309733B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239292B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011156639A (en) Surface-coated cutting tool having hard coated layer that exhibits excellent chipping resistance
JP5850393B2 (en) Surface coated cutting tool
JP5327534B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
JP5239296B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5099587B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011194536A (en) Surface-coat cutting tool with hard coating layer exhibiting excellent chipping resistance
JP5287019B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011224767A (en) Surface-coated cutting tool having hard coating layer showing excellent chipping resistance
JP2009202246A (en) Surface-coated cutting tool having hard coated layer having excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5515806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees