JP2011155119A - 検査装置及び検査方法 - Google Patents

検査装置及び検査方法 Download PDF

Info

Publication number
JP2011155119A
JP2011155119A JP2010015368A JP2010015368A JP2011155119A JP 2011155119 A JP2011155119 A JP 2011155119A JP 2010015368 A JP2010015368 A JP 2010015368A JP 2010015368 A JP2010015368 A JP 2010015368A JP 2011155119 A JP2011155119 A JP 2011155119A
Authority
JP
Japan
Prior art keywords
image
sample
inspection apparatus
pattern
electron beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010015368A
Other languages
English (en)
Inventor
Hiroshi Makino
浩士 牧野
Koichi Hamada
宏一 浜田
Kenichi Yoneshi
健一 米司
Naomasa Suzuki
直正 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010015368A priority Critical patent/JP2011155119A/ja
Publication of JP2011155119A publication Critical patent/JP2011155119A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】リソグラフィーの工程で必要とされるホットスポット検査において、広い観察面積を短時間で観察できる高解像度の検査装置及び検査方法を提供する。
【解決手段】複数本の電子線118で試料119上を走査し、それぞれの電子線から放出される2次電子120を同一の検出器112で取り込むことで、SEM画像は複数本の電子線間の相対距離に依存した、位置がずれた画像(ゴースト画像)となる。前記相対距離を調整し、画像処理部104で位置ずれを復元することで、画素サイズが大きくても高感度なホットスポット検査装置を実現することができ、広い面積を短時間で観察できる。
【選択図】図1

Description

本発明は、半導体装置又は液晶等の微細な回路パターンを製造の途中で検査し、回路パターンの形状不良を抽出する電子線式の検査装置及び検査方法に関する。
半導体装置のリソグラフィー工程では、プロセスの変動に対し尤度のない箇所(ホットスポット)の寸法管理が重要とされている。ホットスポットの管理は、CD−SEMによる寸法計測が主流であり、ウェーハに転写された回路パターンの中で決められた箇所のみ計測する定点計測が一般的である。従来の電子線式の検査装置や検査方法については、例えば、特許文献1〜3に開示されている。
特開2002‐33365号公報 特開平10‐135288号公報 特開平11‐31472号公報
近年、半導体装置の更なる高集積化を実現するため、リソグラフィーの分野では露光装置の制御パラメータまで考慮した転写パターンのシミュレーションが検討され始めている。しかし、上記シミュレーションは膨大な計算が必要であり、かつ予測不能な露光誤差が懸念されるため、尤度の高い設計を効率的に探索するには、CD−SEMによる寸法計測の結果をフィードバックすることが必要とされる。
これを実現する手法の一つとして、例えば特許文献1には、ホットスポットをSEM(Scanning Electron Microscope)で観察し、CAD(Computer Aided Design)データとの比較から露光時の誤差を測定する技術が開示されている。しかしながら、ホットスポットを計測する本技術では、計測する点が微細化に伴い爆発的に増大するため、全点を計測するには膨大な検査時間を必要とする。このため計測点数を間引き、最小のサンプリングで最大の効果を得る手法が検討されているが、効率的にサンプリングをする手法は確立されていない。
特許文献2には、事前にウェーハ全面、あるいはその一部を部分的に検査し、事前に検出された欠陥(露光の誤差)をSEM等の分解能の高いレビュー装置で観察する方法が開示されている。しかしながら、検査装置で事前に検出できる欠陥しか観察できないため、露光時の誤差を観察できるか否かは、検査装置の性能で決まる。露光時の誤差の管理は、転写したパターンのハーフピッチの10分の1以下が要求され、既存の検査装置でこの性能を満たすものはない。
半導体装置の更なる高集積化には、高速かつ高感度な検査(計測)技術が不可欠である。リソグラフィーの分野に要求される検査(計測)装置には、CD−SEM並みの解像度と検査装置並みのスループット(従来のSEMの100倍以上)が要求される。
高速化を実現するブレークスルーとしてマルチビーム技術があげられる。この技術は、1つの電子源から放出された電子線を複数の開口をもつ絞り板を通過させることで複数の電子線を形成し、試料から放出された2次電子をそれぞれ個別の検出器で取り込むことで、独立した複数の画像を同時に取得する技術である。この技術では、それぞれの電子線が放出させる2次電子を、独立して個別の検出器に取り込むため、ExBによる2次電子の大角度偏向と2次電子結像光学系が不可欠である。マルチビーム方式では電子線の本数に応じてスループットの向上が実現できるが、2次電子の大角度偏向はExBの収差の増大を伴うため、2次電子の分離検出を実現できても解像度の劣化が問題となる。特許文献3には、マルチビーム方式でも複数の電子線が放出させる2次電子を1つの検出器で取り込み、得られた位置ずれ画像(ゴースト画像)を画像処理デコンボリューションすることで1枚の画像を形成する技術が開示されている。しかしながら、ビームの本数分(現実的には10倍程度)の高速化しか期待ができない。
SEM等電子式の検査装置では、従来に対しプローブ電流を大幅に増加させ、1000〜10000倍のスループットの向上を実現することが可能である。しかしながら、大幅なプローブ電流の増加は、電子間のクーロン反発による解像度の劣化を伴うため、露光時の誤差を検出するには解像度が不十分である。
リソグラフィーの分野では、従来のCD−SEM並みの解像度で、かつ検査装置並みのスループットを実現する検査(計測)装置が不可欠であり、解像度とスループットを両立する技術が切望されている。しかしながら、前述のようにプローブ電流の増大は、物理的な限界による解像度の劣化を伴う。また、100本の電子線でマルチビーム方式を実現するには、複雑な装置構成が不可欠で困難といえる。
本発明の目的は、広い観察面積を短時間で観察できる高解像度の検査装置及び検査方法を提供することにある。
上記目的を達成するための一実施形態として、パターンが形成された試料の第1の領域に収束した複数本の電子線を走査させ、発生した2次電子を第1パターン画像として記憶し、該試料の該第2の領域に収束した複数本の電子線を走査させ、発生した2次電子を第2パターン画像として記憶し、該第1の領域の該第1パターン画像と該第2の領域の該第2パターン画像とを比較し、その比較結果から試料内の欠陥部を抽出する検査装置において、該複数本の電子線の相対距離を該第2パターン画像の1画素以下の精度で調整できる機能を具備していることを特徴とした検査装置とする。
また、パターンが形成された試料の第1の領域に収束した複数本の電子線を走査させ、発生した2次電子を第1パターン画像として記憶する工程と、該試料の第2の領域に収束した複数本の電子線を走査させ、発生した2次電子を第2パターン画像として記憶する工程と、該第1の領域の該第1パターン画像と該第2の領域の該第2パターン画像とを比較し、その比較結果から試料内の欠陥部を抽出する工程を含む検査方法において、該複数本の電子線の相対距離を該第2パターン画像の1画素以下の精度で調整できる工程と、得られた互いに欠落部を有する複数の該第2パターン画像を処理し、互いに補完することにより高精細化する工程と、高精細化した画像を用いて欠陥を検出する工程とを含むことを特徴とする検査方法とする。
上記構成とすることにより、広い観察面積を短時間で観察できる高解像度の検査装置及び検査方法を提供することができる。
第1の実施例に係る検査装置の概略構成図(一部断面図)である。 画素サイズと検出感度、並びに検査時間の関係を示す図である。 位置ずれ画像の加算による高精細化を説明するための図であり、(a)は標準の撮像条件で得られる画像、(b)は画素サイズを2倍化したときの画像、(c)は画素サイズは2倍化すると共に位相を1/2画素分ずらしたときの画像、(d)は(b)と(c)の画像を足し合わせた画像である。 第1の実施例に係る検査装置の高精細処理部で行われる画像処理を説明するための図であり、試料上のパターンに対する電子線A及びBの走査領域を示す。 第1の実施例に係る検査装置の高精細処理部で行われる画像処理を説明するための図であり、電子線A及びBに対応するパターン走査像を示す。 第1の実施例に係る検査装置の高精細処理部で行われる画像処理を説明するための図であり、高精細処理部への入力画像(デジタル)を示す。 第1の実施例に係る検査装置の高精細処理部で行われる画像処理を説明するための図であり、入力画像を元に高精細化した画像(デジタル)を示す。 第1の実施例に係る検査装置の欠陥判定部における差画像による欠陥判定手順を説明するための図である。 標準試料の概略構成図であり、(a)は上面図、(b)は側面図である。 標準試料片の概略構成を示す平面図である。 標準試料片の領域aのパターン概略平面図(上)及び側面図(下)である。 標準試料片の領域eのパターン概略平面図(上)及び側面図(下)である。 第1の実施例に係る検査装置における主要部の概略構成図(部分断面図)である。 第1の実施例に係る検査装置におけるマルチビーム形成部の概略構成斜視図である。 第1の実施例に係る検査装置におけるプローブ電流計測部の概略構成斜視図である。 第1の実施例に係る検査装置におけるマルチビームの調整手順を説明するためのフロー図である。 第1の実施例に係る検査装置において、マルチビームを形成する際の絞りの調整及びプローブ電流の測定を行うためのGUI画面を示す図である。 第1の実施例に係る検査装置において、マルチビームを形成する電子線間の相対距離を調整するためのGUI画面を示す図である。 第1の実施例に係る検査装置において、高低差の補正関数を導出するためのGUI画面を示す図である。 第1の実施例に係る検査装置におけるレシピ作成の手順を説明するためのフロー図である。 第1の実施例に係る検査装置における自動測長の手順を説明するためのフロー図である。
本実施の形態では、検査時間を短縮するため、マルチビーム方式の電子光学系を採用し、かつ画素サイズを従来よりも大きくする。複数本の電子線から放出される2次電子を同一の検出器で取り込むことで、SEM画像は複数本の電子線間の相対距離に依存した、位置がずれた画像(ゴースト画像)となる。画素サイズが大きくなることによるサンプリングの誤差(情報の欠落)が発生するが、それぞれの電子線の相対距離が取り込む画素に対し1画素以下で位相がずれるよう電子線間の相対距離を調整することで、画素サイズが大きくても高精細な画像を実現できることを見出した。
画像処理で復元した画像の精細さは、前記位相のずらし方で決まり、計測するパターンに応じて画素サイズが大きいことによる情報欠落がないよう前記電子線間の相対距離を調整する必要がある。本実施の形態では、画素が大きくなることによるサンプリングのムラ(情報の欠落)が最も顕著に発生するパターンのエッジ部に対して画質を改善できることが特徴であり、エッジ部の画質改善はパターン外観形状を計測するホットスポット検査で大きな効果をもたらす。
図2は画素サイズと検出感度の関係で、1本ビームの場合と10本のマルチビームの場合、及び本発明の期待値を示している。なお、横軸(画素サイズ)の下は、スループットとして10,000点計測する場合の検査時間の概算を示している。20nmノードのパターンを検査するためには、2nmの解像度が要求される。
従来の1本ビームのSEMでは186.4時間を要する(図中の(a))。マルチビーム(10本)を用いた場合、本数分スループットは向上するが検査時間は18.6時間と半日以上を要する(図中の(b))。本実施の形態のマルチビーム方式では、従来よりも大きな画素サイズでも高精細な画像を実現できるため、2nmの解像度を保証するのに従来の4倍の画素サイズで検査ができる。その結果、検査時間は1.2時間と大幅に短縮することができる。なお、画素サイズは4倍でなくてもよい。但し、画素サイズを大きくするにはビーム数を増やすことが必要である。
図3は位相をずらした画像を足し合わせることで高精細化できる効果を示した図で、(a)を標準の撮像条件とした場合、画素サイズを2倍化することで、黒い輪郭線に欠落が発生する(図3(b))。図3(b)に対し、1/2画素位相がずれるよう(a)の画素サイズを2倍化すると図3(c)となり、図3の(b)に対し図3(c)を、位置を合わせて足し合わせることで、輪郭線に欠落のない図3(d)を実現することができる。
本実施の形態では、計測するパターンに応じて画素サイズが大きいことによる情報の欠落がないよう前記電子線間の相対距離を調整する必要がある。上記技術を用いることで画素サイズが大きくても高感度なホットスポット検査装置を実現することができる。
以下に、実施例により詳細に説明する。
本実施例では、ホットスポット検査に適したSEM式半導体検査装置の1構成例について説明する。なお、実施の形態に記載され、本実施例に未記載の事項は本実施例にも適用することができる。本実施例で説明するSEM式半導体検査装置は、電子線の相対距離が取り込む画素に対し1画素以下で位相がずれるよう電子線間の相対距離を調整することで、画素サイズが大きくても高精細な画像を実現できることを特徴とする。
図1は本実施例に係るホットスポット検査装置の構成を示したものである。以下、本実施例のホットスポット検査装置の基本的な構成について説明する。検査装置は、大きく分けて、SEM筐体101、試料室102、筐体制御部103、画像処理部104、ステージ制御部105で構成され、これら全てをコンソール106で制御できるよう構成されている。コンソール106はレシピや検査結果、検出した欠陥画像を記憶できる大容量のストレージ媒体107を持ち、このストレージ媒体107に記録されたデータを元に、装置の動作や、データの管理を行う。ここでSEM筐体101、試料室102は図中には示していない排気装置で真空が維持されており、目的に応じてコンソール106から排気装置を制御し、SEM筐体101及び試料室102の排気やリークをすることができる。以下、各部位について構成とその部位が果たす機能について順を追って説明する。
(SEM筐体)
SEM筐体101は、電子源108、コンデンサレンズ109、マルチビーム形成部110、プローブ電流計測部111、倍率調整レンズ117、検出器112、ExB偏向器113、偏向器114、対物レンズ115、制御電極116で構成される。電子源108より放出された電子はコンデンサレンズ109で収束されてから、マルチビーム形成部110に照射される。
マルチビーム形成部110は複数の電子線が形成できるよう複数の孔が作り込まれており、マルチビーム形成部110から下方で、孔の数に応じた電子線118を作ることができる。電子線118は倍率調整レンズ117、ExB偏向器113、偏向器114、対物レンズ115、制御電極116を通過し、試料室102に設置された試料119に照射される。ここで倍率調整レンズ117は試料119上で複数の電子線118の相対距離が所望の値となるよう調整され、対物レンズ115は試料119上で電子線118が収束するよう調整される。
また、ExB偏向器113は静電偏向器に電磁偏向器が重畳する構成となっており、電子源108から試料119の方向に進行する電子線118は偏向せず、試料119から電子源108の方向に進行する2次電子120を検出器112の方向へ偏向するよう調整されている。なお、制御電極116は図には示されていない定電圧源から電圧が印加できる構造になっており、試料119が絶縁体の場合、電子照射で絶縁体が過剰に帯電しないよう、その電圧が調整できる仕組みになっている。
試料室102に設置された試料119には、下記に示す構成で電子線118を減速させる電圧が印加されており、試料119から放出された2次電子120は試料119に印加された電圧に応じたエネルギーまで加速される。加速した2次電子120は制御電極116、偏向器114を通過しExB偏向器113で検出器112の方向に偏向され検出器112で補足される。ここで、複数の電子線118が放出するそれぞれの2次電子120は、軌道が独立した状態で検出器まで導かれ、それぞれの2次電子120は同一の検出器112で捕捉される。
(試料室)
試料室102はステージ121、絶縁体122、試料フォルダ123、ミラー124、標準試料125で構成される。試料フォルダ123と、接地されたステージ121とは、絶縁材122で電気的に絶縁されており、試料119、標準試料125、ミラー124は、試料フォルダ123に対し電気的に接地されている。
ここで、試料フォルダ123には試料室102の外部からフィードスルー(真空隔絶フランジ)を介し高電圧を印加することができる。試料フォルダ123にリターディング電源223から高電圧を印加することで、試料119に高電圧が印加され、試料119に入射する電子線118のエネルギーを任意に調整することができる。また、ステージ121は、SEM筐体101の中心軸に対し垂直方向に2次元的に駆動し、試料フォルダ123全ての領域をSEM筺体101の中心軸の直下に移動させることができる。
なお、ミラー124は試料119の位置を計測するため、試料フォルダ123に取り付けられており、試料室102の外部にあるレーザ測長装置224から真空を隔壁するガラス窓を介してレーザが照射できる構成となっている。なお、レーザ光は、光ファイバ160によりレーザ測長装置からガラス窓まで導かれる。
(筺体制御部)
筐体制御部103は、コンソール106から送られる制御信号に基づき、SEM筐体101に含まれる電子源108や各種レンズを動作させる。筺体制御部103は電子銃電源208、筺体制御電源201、マルチビーム形成装置210、プローブ電流計測装置211、リターディング電源223で構成され、電子銃電源208は電子源108に陰極電圧を印加し、電子が安定して放出されるよう電子源108を動作させる。
また、筺体制御電源201はコンデンサレンズ109、倍率調整レンズ117、対物レンズ115各々に電流を供給し、コンソール106からの制御信号に基づき各レンズに供給する電流を設定することができる。マルチビーム形成装置210はマルチビーム形成部110を移動させるモータ110−2を含んでおり、モータ110−2でSEM筺体101の中心軸に対して垂直方向に2次元的に絞りを移動させることができる。プローブ電流計測装置211はプローブ電流計測部111で検出した複数電子線、各々についてプローブ電流を計測することができる。リターディング電源223は、コンソール106からの制御信号に基づき、前述に従い試料フォルダ123に高電圧を印加することができる。
(検出系及び画像処理部)
画像処理部104は、ビーム制御回路220、高精細化処理部240、欠陥判定部250を含み、コンソール106から送られる制御信号に基づき、試料の走査像を形成する。走査像を形成するために、ビーム制御回路220は偏向回路214に走査信号を送り、検出器112で取り込まれた2次電子信号が走査信号に同期してサンプリングされるようAD変換基板212を制御する。なお、複数本の電子線の走査は、該試料が載置されたステージの移動に対し約垂直方向であり、かつ該2次電子の取り込みは該ステージの移動速度に同期している。また、ステージが停止してから画像を取り込む。
ここでビーム制御回路220から送られる走査信号は、偏向回路214を介してSEM筺体内の偏向器114に送られるが、偏向器114が静電偏向なら偏向回路214は電圧信号として出力され、電磁偏向なら偏向回路214は電流信号として出力される。ビーム制御回路220は偏向回路214から電圧もしくは電流信号を出力することで、偏向器114で複数の電子線を独立でなく一括して走査させることができる。
検出器112は2次電子120を検出する素子と、素子から送られる2次電子120の信号を増幅させる増幅器で構成され、検出器112で捕捉された2次電子120はアナログの電圧信号としてAD変換基板212に送られる。検出器112では、複数の電子線118が試料から放出させる2次電子120を同一の素子で検出するため、各々の2次電子信号は混在した電圧信号としてAD変換基板212に送られる。ここで、検出器112からAD変換基板212までは、2次電子を検出器112まで引き込むための高電圧が印加されているため、ビーム制御回路220、並びに高精細化処理部240とAD変換基板212は、電気的に絶縁させるため光ファイバ160等で接続されている。したがって、制御信号、及び検出した電圧信号は光信号として送受信される。
高精細化処理部240ではAD変換基板212から送られてきた信号を元に走査像を形成し、複数の電子線の相対距離を元に、後に示す手順で画像を高精細化する。高精細化された画像は画像処理部104内の欠陥判定部250に送られ、欠陥判定部250において、後に示す手順によって試料の状態が走査像(画像)から判定される。高精細化された画像並びに画像処理で判定された試料の状態のデータは、コンソール106に送られストレージ媒体107に記録される。
なお、本実施例では2次電子120を検出する素子(検出器112)からAD変換基板212までが、高電圧でフローティングされた検出系を例に示したが、素子にシンチレータを用いた場合、素子から放出された光をライトガイドで伝播する過程で電気的に絶縁することができるので、AD変換基板212自体を高電圧にフローティングする必要はない。この場合、ビーム制御回路220及び高精細化処理部240とAD変換基板212の間は電気信号で通信でき、この形態で検出系を構成しても、本発明の効果は損なわれない。
(高精細化処理部)
高精細化処理部240ではAD変換基板212から送られる2次電子120の信号を元に、高精細画像を形成する。図4A〜図4Dは高精細処理部240で行う入力画像から高精細画像を形成するまでの処理を説明した図で、入力画像はビーム制御回路220から偏向回路214に送られる走査信号に同期してAD変換基板212が検出器112から送られてくるアナログ信号をデジタル信号にサンプリングすることで作り出される走査像を示している。
図4Aは、2本の電子線A,Bの試料上での走査領域を示した図で、図4Bは図4Aに示した2本の電子線が走査することで作られる走査像に対応している。また、図4Cは、高精細処理部240に入力される画像(デジタル)で、図4Dは入力画像を元に位置ずれを考慮した高精細処理画像(デジタル)を示している。図4Bの走査像は、前述の複数の電子線の相対距離に応じた位相がずれた絵が重なるゴースト画像として取得され、計測する試料に応じて画素サイズが大きいことによる情報欠落がないよう前記電子線間の相対距離が調整されている。この相対距離は、後に示す電子光学系の調整手順で調整され、高精細処理部240で取り込む画素寸法よりも高い精度で、その相対距離は設定されている。また、この相対距離は本実施例で示した検査の事前に標準試料で測定されており、その情報はストレージ媒体107に記録され、コンソール106からの指示のもと必要に応じてビーム制御回路220及び高精細処理部240にその情報は伝達される。
高精細処理部240ではその相対距離の情報を元に図4Cの入力画像の位置ずれを補正する。ここで用いられる補正のアルゴリズムは、入力画像に対して相対距離の情報をデコンボリューションする非反復処理でも良いが、相対距離の情報を元にパターン境界部の情報が損失しないよう、繰り返し探索しながら画像を補正する反復処理でも良い。この補正処理で得られた高精細画像図4Dは、入力画像の画素寸法を細分化した画素で形成されていることが特徴であり、入力画像に対し画像1枚あたりのデータ量は増大し、処理の演算時間の増大は免れない。しかしながら高精細処理部240、及び画像処理部104が複数のチャンネルを持ち図4Cから図4Dの処理を並列に行うことで高速化を実現できる。
(欠陥判定部)
欠陥判定部250では高精細処理部240から送られてきた画像を元に撮像した領域のパターンを診断する。図5は欠陥判定部250で行う画像診断の手順を示したもので、本実施例では差画像による欠陥判定を例として挙げた。なお、差画像による判定処理の場合、撮像した領域を診断するため、参照となるパターンの画像も必要となるが、参照パターンの画像は本実施例の検査を行う前に取得され、ストレージ媒体107に記録されている。検査中、ストレージ媒体107に記録された参照パターンの画像は、コンソール106からの指示のもと欠陥判定部に転送され、検査で撮像した領域のパターンの診断に用いられる。ここで、参照パターンの画像は、上述の高精細処理部240で形成された高精細画像と同じ画素寸法であることとし、その撮像方法は本実施例と同じ、複数の電子線を用いた手法でも良いが、従来通り1本の電子線で画像を取得しても良い。
欠陥判定は、高精細処理部240から送られる検査画像と事前に同一パターンで取得した参照画像とを比較し、参照画像に対し検査画像が異なる領域を抽出し、その領域の大きさで欠陥か否かを判定する。欠陥判定部250では、コンソール106から送られてくる参照画像と、高精細処理部240から送られてくる検査画像とで差画像を形成し、差画像全体の平均明度が最小になるよう、参照画像、検査画像それぞれに対して独立に明度を補正する(明度補正処理)。明度補正処理後、差画像内の明度がある一定値より大きくなる領域を欠陥の候補として抽出し、ある一定面積に対して大きいか否かで欠陥が判定される(画像比較処理)。つまり、本実施例の検査装置を使うユーザは、差画像に対し一定の明度と一定の面積を指定することで、欠陥を抽出する感度を調整することができる。ここで示した欠陥は、参照画像に対する検査画像のパターン形状の乖離であり、乖離する面積を管理することで、試料上に形成されたパターンの状態を管理することができる。
なお、上記では参照パターンの情報をあらかじめ画像として取得する例を示したが、参照パターンの情報には試料のパターンのCADデータを用いることも可能である。この場合、高精細画像とそれに相当するパターンのCADデータとの比較から欠陥を抽出することができる。
(標準試料)
十分な効果を得るためには、複数の電子線の相対距離を高い精度で調整することが望ましく、その相対距離は試料の高低差によらず常に一定であることが望ましい。図6(a)、(b)は、電子線の相対距離を調整するために用いる標準試料について説明したもので、標準試料は高さの異なる複数の標準試料片で構成されている。以下、図6(a)、(b)を例に標準試料の構成について順を追って説明する。図6(a)、(b)は試料フォルダ123上の標準試料片の配置を示したもので、(a)は上面図で、(b)は側面図である。
標準試料片125−A、B、Cはそれぞれ高さが異なるよう試料フォルダ上に配置されており、試料フォルダ23内の基準点から標準試料片の上面までの高さは、試料フォルダの組立て時に高精度に測定されている。これら複数の標準試料片125−A、B、Cの高さは、被検査試料の巨視的な高さ変動分を包括するよう試料フォルダに取り付けられており、これら複数の標準試料片を用いて複数電子線の相対距離を調整することで、試料の高低差によらず常に一定の相対距離を維持することができる。なお、図6(a)、(b)では説明の便宜上、3つの標準試料片を1列に配列させたが、この配列でなくても各々の高さが正確に測定されており、且つ3つ以上の標準試料片があれば、標準試料125として用いることができる。
図7A〜図7Cは標準試料片125−A(B、C)の構成を示したもので、図7Aは標準試料片の構成を、図7B及び図7Cは標準試料片内に形成されたパターンの構造を示している。図7Aに示した標準試料片には、面内にaからiまでの寸法が異なるパターン125−1がそれぞれ形成されており、形成されたパターン125−1は測長SEMまたはAFM(原子間力顕微鏡)等で寸法が高精度に計測されている。ここで、1つの標準試料片の中に寸法の異なる複数のパターンを形成する理由は、検査で必要とされる精度に応じて、複数電子線間の相対距離の調整精度が変えるためである。例えば、検査対象の試料に形成されたパターンの寸法が100nmで、検出したい寸法の精度を10nmとした場合、相対距離の調整は標準試料片上のaからiの領域の中で、100nmに近い寸法のパターンを用いる必要がある。
図7B及び図7Cは標準試料片内の領域a、領域eのパターン125−1の構造を示したもので、パターン125−1は半導体製造プロセスでSi基板上にW(タングステン)のドットを形成したものである。図7B及び図7Cの上図は平面図、下図は側面図を示す。なお、ドットの材料として本実施例ではWを用いたが、他のメタル、例えばCu(銅)、Al(アルミニウム)等を用いることもできる。このドット125−1は標準試料125上に同一寸法のものが複数形成されているが、調整では孤立した1つのドットを使用するため、ドット間の距離は調整時の撮像の視野に入らない程度に間隔が開いている。同一寸法のドットが複数形成されている理由は、1つのドットを繰り返し使うと電子線照射による汚染でドットの寸法が変わり、調整に誤差が出るためである。一定の回数を使用したドットを使わないことで、繰り返し使用による測定精度の低下を抑えることができる。なお、標準試料は電子線の入射する方向に対し垂直方向の面内で、2次元的に寸法が補償されているものならドット以外の形状でも良い。
(マルチビーム形成)
本実施例では、電子線間の相対距離を高精度に調整し、複数の電子線の位置ずれに起因したゴーストを画像処理で補正することで、画素が大きくても高感度な検査を実現することができる。本実施例で高感度かつ高速な検査を実現するためには、上記の大きな画素で検査することの他に、複数の電子線(以下、マルチビームとする)の本数を増やすことも効果的である。マルチビームの本数を増やす効果は画像積算の効果に相当し、ビームの本数に相当する積算の効果を1回の撮像で実現することができる。以下、マルチビーム形成方法の1例を図8A〜図8Cで説明する。
図8A〜図8Cはマルチビーム形成装置210の構成を示した図で、図8AはSEM筺体101内でマルチビームを形成する部位(マルチビーム形成部)110と、それを動作させる筺体制御部103を示している。マルチビームは、SEM筺体101内の電子源108から放出された電子線118をマルチビーム形成部110で複数本にし、プローブ電流計測部111で各々のプローブ電流を計測することで、ビームの本数及びプローブ電流を管理することができる。ここでマルチビーム形成部110及びプローブ電流計測部111は、SEM筺体101の中心軸に対し平行に配置された回転軸に取り付けられており、回転軸に取り付けられたモータ110−2で回転及び回転軸に対し垂直面内を水平移動させることができる。
マルチビーム形成部110は軸方向に複数枚の絞りを備えており、回転軸に取り付けられた切替器110−1で複数枚の絞りを独立に回転させることができる。上記に示したモータ110−2による回転及び水平移動及び切替器110−1の動作は、マルチビーム形成装置210内のモータ駆動電源210−2及び切替装置210−1でそれぞれ制御される。モータ駆動電源210−2及び切替装置210−1は、図には示されていないコンソールからの指示で制御されるため、本実施例のユーザはコンソールを介してマルチビーム形成装置210を動作させることができる。またプローブ電流計測部111は、マルチビーム形成部110と同様に軸方向に絞りと回転板を備えており、回転軸に取り付けられて切替器110−1で絞りと回転板を独立に回転させることができる。
図8B及び図8Cは図8A内のマルチビーム形成部110、及びプローブ電流計測部111の構造の1例を模式的に示したもので、いずれも回転軸を中心とした複数の円形の板で構成されている。図8Bに示したマルチビーム形成部110は、円形の絞り板(110−3、110−4、110−5)3枚を備えており、各々の絞り板(A、B、C)にはマルチビームを形成する開口群110−7と、電子源から放出された電子線を全く遮らない大開口110−6がある。
マルチビームを形成する開口群110−7は、電子線の本数に応じた小さな開口の集まりを1つの群とし、同じ板状には小さな開口の大きさ及び配列や距離が少しずつ異なる複数の開口群が設けられている。同じ板状に複数の開口群を設け、かつ回転軸方向に複数枚の絞り板を備えることで、様々な本数や配列、及び相対距離のマルチビームを形成することができる。なお、絞り板にある大開口110−6は電子線をそのまま透過させるためにあり、複数枚の絞り板のどれかでマルチビームを形成した場合、その他の絞り板は全て大開口がSEM筺体の中心軸に来るよう調整する。
図8Cに示したプローブ電流計測部111は、円形の絞り板111−3と回転板111−4を備えており、絞り板111−3には小開口と大開口が、回転板111−4にはファラデーカップ111−5と大開口111−6が設けられている。ここでファラデーカップ111−5はSEM筺体101に対し電気的に絶縁されており、フィードスルーを介してプローブ電流計測装置211内の電流計211−1に繋がっている。
プローブ電流を計測する場合は、絞り板111−3の小開口と回転板111−4のファラデーカップ111−5が、計測しない場合は絞り板、回転板ともに大開口がSEM筺体の中心軸にくるよう調整される。なお、プローブ電流を計測する際は、マルチビームを構成する各々の電子線についてプローブ電流が計測できるよう、走査回路211−2とプローブ電流計測部111の上方に取り付けられた走査電極111−2とを用いて、絞り板111−3上の小開口をマルチビームが2次元的に走査する。走査に同期してプローブ電流を計測することで、マルチビーム各々のプローブ電流を計測することができる。
本実施例ではマルチビームの本数とその電子線間の相対距離が性能を大きく左右するが、前記(SEM筺体)に示した倍率調整レンズによる相対距離の微調整に、複数の絞り板を選択する粗調整を組み合わせることで、様々なバリエーションのマルチビームを形成できる。その結果、本実施例に係る検査装置は、多種様々な回路パターンの検査に適用することができる。
(マルチビームの調整手順)
本実施例で示した構成を用いてマルチビームの電子線の本数及び相対距離を調整する手順を説明する。この電子線の本数、及びそれらの相対距離は、検査対象のパターンに応じてその都度調整される必要があるため、この操作は検査の際作成するレシピの中に組み込まれている。図9は調整をフローで示した図で、記載した各工程は本実施例の検査装置のユーザがコンソール106に備え付けられたマウスやキーボード等の操作装置から動作させることができる。以下、図を用いてマルチビームの調整手順を説明する。
まず、工程1(S901)ではウェーハの品種及び工程を入力し、検査対象の基本データをコンソール106に繋げられたストレージ媒体107から読み出す。ここで基本データとは、品種や工程の名称だけでなく、ウェーハ上に転写されたショットの配列や寸法や、それに基づく検査領域の情報を含み、これらの情報は後に示す工程9(S909)でマルチビーム形成絞りを選択する際、検査時間の推定に用いられる。
次に、ユーザは工程2(S902)でマルチビームの調整に、実際のパターンで撮像した参照画像を用いるか、検査対象となるパターンの設計データ(CADデータ)を用いるかを選択する。ここで調整の元となるデータをユーザが選択する理由は、それぞれメリット、デメリットがあるためであり、ユーザは用途に応じていずれかを選択することで、検査に適したマルチビームを形成することができる。参照画像を用いるメリットは、実際に転写されるパターンはCADデータに対し乖離するため、実際の画像を用いることで検査に適したマルチビームを形成することができ、高感度な検査が実現できることである。一方、デメリットは莫大な参照画像を事前に取得し、そのほぼ全ての画像に対し周期性解析をするため、調整に時間が掛かるということである。
また、CADデータを用いるメリットは設計データを使って周期性を判定するため、参照画像の取得や、画像からの周期性解析といった時間が掛かる処理をしないですみ、高速簡便にマルチビームを形成することができる。一方、デメリットは実際に転写されるパターンとCADデータの乖離が検査結果にそのまま影響するため、参照画像を用いる場合に比べ検査の精度が不足することである。例えば、ユーザは本発明の検査装置を、量産におけるプロセス管理に用いる場合は、参照画像を用いた高精度な検査に、開発段階におけるプロセスの条件出しにはCADデータを用いた簡便な検査に使い分けることができる。
ユーザが参照画像を用いる方式を選択した場合、工程3(S903)ではストレージ媒体107に保存された参照画像を読み出し、工程4(S904)で読み出された画像に対して周期性を解析する。この工程3及び4(S903、S904)は莫大な画像を処理するため、基本的にはコンソール106が自動で行う。しかし、ユーザは必要に応じて手動でこれらの処理を行うこともでき、その場合は工程3及び4(S903、S904)の動作をユーザがコンソール106のGUI画面から実施することができる。自動と手動の2種類を設ける理由は、参照画像が大量にあっても検査する領域がそれよりはるかに少ない場合は手動で行うことで、無駄な処理時間を削減できるためである。なお、ここで画像を用いたパターンの周期性解析には、高速フーリエ変換等の画像演算ツールを用いればよい。
ユーザがCADデータを用いる方式を選択した場合、工程5(S905)でCADデータを読み込み、工程6(S906)でデータを元に検査領域の周期性を解析する。これらの処理はコンソール106が自動で行うが、画像データを用いないため、検査領域が大きくても処理に時間は掛からない。
工程7(S907)では上記の周期性データを元に、画素サイズが大きいことによる情報の欠落がないようマルチビームの基本配列を決める。ここで基本配列とはXYの2次元的な格子を意味し、格子は2から4の格子点で構成される。この基本配列をXまたはY軸に対し反転投影、または基本周期分だけ並行移動させることで電子線の本数を増やすことができる。
工程8(S908)では、上記の基本配列を元に最も類似したマルチビーム形成絞りを選択する。ここで、類似するか否かの判定は電子線間の相対距離が倍率調整レンズでも調整ができるため、配列を最優先とし、工程7(S907)で算出された基本配列とマルチビーム形成絞りの相対距離の乖離を後に示す工程12(S912)で補正する。なお、マルチビーム形成絞りを選択する処理は絞りの設計データをストレージ媒体107に記憶しておき、コンソール106が絞りの設計データと先の基本配列を照合することで自動化できる。
工程9(S909)では検査に用いる電子光学条件を読み出す。ここで電子光学条件には入射エネルギー、プローブ電流、制御電極印加電圧等が含まれ、この読み出した条件で標準試料を用いて相対距離の調整(工程12(S912))及び高低差補正関数を導出する(工程13(S913))。
工程10(S910)ではSEM筺体の中心軸に対して対称にマルチビームを形成する小開口が来るよう絞り板を調整し、工程11(S911)で各々のプローブ電流が規定値になるよう調整する。ここで絞り板の調整とプローブ電流の調整は、後に示す(マルチビーム形成のGUI画面)に従いユーザが手動で実施する。なお、ユーザが手動で実施する調整は最初のレシピ作成時のみで、ここでの調整値は初期設定として保存され、初期値を元に装置の長時間稼動による変動を装置が自動で補正することができる。
工程12(S912)ではマルチビームを形成する電子線間の距離が先の基本配列と同じになるよう、標準試料を用いて調整する。ここで、図7Aに示した標準試料片には様々な寸法のW(タングステン)ドットパターン125−1が含まれるが、検査対象のパターン寸法に応じて、標準試料片内で近い寸法のパターンを用いて調整する。そして、工程13(S913)で高さの異なる標準試料片を用いて試料の高低差を補正する補正関数を導出する。これら工程12及び13(S912、S913)の調整は、後に示す(相対距離、高低差補正関数導出のGUI画面)に従い、ユーザが手動で実施する。なお、先と同様ユーザが手動で実施する調整は最初のレシピ作成時のみで、ここでの調整値は初期設定として保存され、初期値を元に装置の長時間稼動による変動を装置が自動で補正することができる。
上記の調整結果を工程14(S914)ではストレージ媒体107に保存する。データを保存することで検査や装置状態のセルフチェックの際、データを読み出すことができる。
(マルチビーム形成のGUI画面)
マルチビームを形成するGUI画面の構成とそこに含まれる最低限の機能について図10を用いて説明する。図10はマルチビームを形成する際の絞りの調整及びプローブ電流の測定を行うGUI画面で、図9に示したフローチャートにおいて、工程9(S909)の終了後にコンソール106のモニタに表示される。GUI画面は、走査像や光学顕微鏡画像を表示する画像表示画面1000、SEM筺体を制御する電子光学系調整画面1010、絞りの選択および位置を調整する絞り調整画面1020、プローブ電流の計測結果を表示するプローブ電流表示画面1030等で構成される。ユーザが操作する項目は、画像表示画面1000では選択カーソルボタン1003と画像切換えボタン1002、電子光学系調整画面1010ではレンズの強度を調整するスライドバー1011とキーボードからレンズの強度を直接入力する入力欄1012、絞り調整画面1020では絞りを選択する選択欄1021と絞りを移動させるスライドバー1023及び入力欄1022、そしてプローブ電流の計測や測定結果の保存等、動作を指示する動作指示ボタン1031等で構成される。なお、図10では各種画面を一画面で表示しているが、別々の画面としてもよい。
マルチビームを形成する絞りの調整は、画像表示画面1000を画像切替えボタン1002で電流画像に切替え、絞りの画像を観察しながら調整する。ここで電流画像は、図8Aに示した走査電極111−2に走査信号を入力し、ファラデーカップ111−5に流れる電流を走査信号に同期させて画面に表示させることで電流画像を可視化できる。ユーザはこの電流画像を見ながら複数絞りの明度がほぼ均一になるよう、絞り調整画面の回転、XY移動を調整する。
プローブ電流の計測は、画像表示画面1000の選択カーソルボタン1003を選択し、プローブ電流を形成したい箇所をGUI画面上でクリックする。画像表示画面1000では、クリックした箇所を中心にある一定の大きさの破線円1001が表示され、プローブ電流は破線円の中の平均プローブ電流を計測する仕組みとなっている。ユーザは電流画像に表示された開口に相当する箇所をクリックし、動作指示ボタン1031の計測ボタンを押すことで各開口のプローブ電流を計測することができる。
ユーザは各開口のプローブ電流が所望の値になるよう、電子光学系調整画面、絞り調整画面の両方を調整する。そして所望の値が得られたら、それらの設定を動作指示ボタンの保存ボタンをクリックし、調整値をストレージ媒体に記憶させる。なお、調整の途中で設定をクリアし、この画面の最初から調整を行う場合は、動作指示ボタンのクリアボタンをクリックすることで、調整値は初期状態に復帰できる。このように絞りの調整からプローブ電流の調整までを電流画面で確認しながら行うことで、マルチビームにおいても各電子線のプローブ電流を簡便に調整することができる。
(相対距離調整のGUI画面)
相対距離を調整するGUI画面の構成とそこに含まれる最低限の機能について図11を用いて説明する。図11はマルチビームを形成する電子線間の相対距離を調整するGUI画面で、図9に示したフローチャートにおいて、工程11(S911)の終了後にコンソール106のモニタに表示される。GUI画面は、走査像や光学顕微鏡画像を表示する画像表示画面1100、試料の情報を表示する試料情報表示画面1140、電子線間の相対距離を調整するマルチビーム調整画面1150、図9の工程7(S907)で算出した基本配列を表示する基本配列表示画面1160、相対距離の計測結果を表示する計測結果表示画面1170等で構成される。
ユーザが操作する項目は、画像表示画面1100では選択カーソルボタン1103と画像切換えボタン1102、マルチビーム調整画面1150ではレンズの強度を調整するスライドバー1153とキーボードからレンズの強度を直接入力する入力欄1152、基本配列表示画面1160では基本配列の相対距離に掛ける整数倍の係数を指定する倍数入力欄1161、そして相対距離の計測や測定結果の保存等、動作を指示する動作指示ボタン1171等で構成される。なお、図11では各種画面を一画面で表示しているが、別々の画面としてもよい。
相対距離の調整は、基本配列と同じになるよう図7Aの標準試料を用いて調整する。標準試料片には様々な寸法のパターンが含まれるが、調整は検査対象のパターン寸法に応じて、標準試料片内で近い寸法のパターン(Wドット)125−1を用いる。この操作は画像表示画面1100の画像切替えボタン1102で光学画像(光学顕微鏡画像)に切替え、ステージ121を動かしながら標準試料片の所望の領域を探索する。ここでステージ121は、図には示していないがコンソール106の操作卓に備え付けられたジョイスティック、またはトラックボールで移動させることができる。ステージを移動させ光学顕微鏡画像で所望の領域を見つけたら、画像切替えボタン1102で標準試料片の走査像に切替える。
図7Aの標準試料片を用いた場合、走査像にはマルチビームの電子線間距離に相当するWドット125−1のゴースト画像1105が見られる(図11では4本のマルチビームの例)。走査像はマルチビーム調整画面1150で対物レンズを調整することでフォーカスを合わせることができ、フォーカスを合わせてから、動作指示ボタン1171の計測ボタンをクリックすることで、Wドットのゴースト画像1105の相対距離を計測することができる。ここで相対距離の計測は、Wドットの重心位置を画像から自動で計測し、重心間の距離で相対距離を導出する。各々のWドットの重心は、計測ボタンを押すことで画像表示画面に重心マーカ1104が重畳して表示され、ユーザは重心の位置が適切に判定されているか判断することができる。
相対距離の調整は、図9の工程7(S907)で求めた基本配列の整数倍の距離になるよう調整する。ユーザは基本配列表示画面の倍数入力欄1161に任意の整数を入力し、マルチビーム調整画面1150の倍率調整レンズ及び対物レンズを調整し、動作指示ボタン1171の計測ボタンをクリックする。計測結果は、計測結果表示画面1170に相対距離と基本配列に対する相対距離の残差が表示され、ユーザは残渣が小さくなるよう上記調整を繰り返す。そして残差が所望の値以下になったら、それらの設定を動作指示ボタン1171の保存ボタンをクリックし、調整値をストレージ媒体107に記憶させる。なお、調整の途中で設定をクリアし、この画面の最初から調整を行う場合は、動作指示ボタン1171のクリアボタンをクリックすることで、調整値は初期状態に復帰できる。このように走査像で確認しながら相対距離を調整することで、高精度にマルチビームの相対距離を調整することができる。
(高低差補正関数導出のGUI画面)
高低差の補正関数を導出するGUI画面の構成とそこに含まれる最低限の機能について図12を用いて説明する。この高低差の補正は、試料の高さに応じて対物レンズのフォーカスを変えた場合、上記で求めた相対距離が変わるため必要となる。図12は高低差の補正関数を導出するGUI画面で、図9に示したフローチャートにおいて、工程12(S912)の終了後にコンソール106のモニタに表示される。
GUI画面は、走査像や光学顕微鏡画像を表示する画像表示画面1200、試料の情報を表示する試料情報表示画面1240、電子線間の相対距離を調整するマルチビーム調整画面1250、相対距離の計測結果を表示する計測結果表示画面1270等で構成される。ユーザが操作する項目は、画像表示画面1200では選択カーソルボタン1203と画像切換えボタン1202、マルチビーム調整画面1250ではレンズの強度を調整するスライドバー1253とキーボードからレンズの強度を直接入力する入力欄1252、そして相対距離の計測や測定結果の保存等、動作を指示する動作指示ボタン1271等で構成される。なお、図12では各種画面を一画面で表示しているが、別々の画面としてもよい。
ユーザは先の図11の調整で用いた標準試料片と異なる高さの標準試料片を用いて、以下の手順で高低差の補正関数を導出する。標準試料片には様々な寸法のパターンが含まれるが、先の図11での説明同様、検査対象のパターン寸法に応じて、標準試料片内で近い寸法のパターン(Wドット)125−1を用いる。この操作は先と同様、画像表示画面1200の画像切替えボタン1202で光学画像(光学顕微鏡画像)に切替え、ステージ121を動かしながら標準試料片の所望の領域を探索する。ステージ121を移動させ光学顕微鏡画像で所望の領域を見つけたら、画像切替えボタン1202で標準試料片の走査像に切替える。
走査像はマルチビーム調整画面で対物レンズを調整することでフォーカスを合わせることができ、フォーカスを合わせてから、動作指示ボタン1271の計測ボタンをクリックすることで、Wドットのゴースト画像1205の相対距離を計測することができる。このとき高低差を補正するGUI画面ではWドットの重心位置を示す重心マーカ1204の他、(相対距離調整のGUI画面)で求めた相対距離の結果(標準値)1206が画像表示画面1200に重畳して表示される。ユーザは動作指示ボタン1271の計測ボタンを押すことで、高さが異なる標準試料片での相対距離と(相対距離調整のGUI画面)で求めた相対距離の乖離を目視で確認でき、計測結果が高低差誤差として計測結果表示画面1270に表示される。ユーザは、(相対距離調整のGUI画面)同様の手順で、標準値1206に相対距離が近くなるようマルチビーム調整画面1250の倍率調整レンズ、及び対物レンズを調整する。調整が完了したら動作指示ボタン1271の登録ボタンをクリックすることで計測結果が登録される。
登録後ユーザは、もう1つの異なる高さの標準試料片で上記手順に従い相対距離を調整し、結果を登録する。図7Aの標準試料を用いた場合、上記に従い高さの異なる標準資料片2種類で補正関数を導出する。この補正関数は線形になるとは限らないので、標準値を含めた最低3種類で導出する必要がある。この高低差補正関数を導出し、検査中試料の高さに応じて倍率調整レンズ、対物レンズを追従させることで、試料の高低差によらず常に一定の相対距離を実現することができる。なお、試料の高さの計測は、本実施例には記載していないが、光学式の高さセンサを用いても良いし、検査の前に試料の高さを画像の合焦点で計測しても良い。
(レシピ作成)
図13を用いてレシピの作成手順を示す。試料の測長を行うユーザは、工程1(S1301)で測長する試料の情報を入力する。試料が例えば半導体ウェーハの場合は、ウェーハの品種、製造工程の名称が前述の情報に相当し、これらの情報は複数存在するレシピを分類し管理するために用いられる。次にユーザは、工程2(S1302)で測長に用いる光学条件を選定する。光学条件のパラメータは、試料に入射するプローブ電流、撮像時の視野、入射エネルギー、試料上に形成される電界強度であり、走査像の取得で、「フレーム加算等の複数回の画像取得で画質が劣化」「測長時の弊害となる明るさムラ等の異常コントラスト」が発生しないよう決められる。この作業は、ユーザが光学条件を任意に選んでも良いし、装置出荷時に製造元が帯電制御処理と同様に推奨条件を決め、それを用いても良い。
半導体ウェーハ等のパターンが形成された試料では、試料を動かすステージの座標と試料上に形成されたパターンの座標との位置関係を正確に計測する必要がある。本実施例では、この位置関係を計測する工程をアライメント工程(工程5(S1305))とする。ここでは、光学画像上及び走査像上で認識可能な試料上のパターンの画像を、テンプレートとしてコンソール106に登録する。このテンプレートには、光学画像と走査像の2種類を登録することができ、光学画像のテンプレートは第1のアライメント工程、SEM画像のテンプレートは第2のアライメント工程に用いられる。通常、精度の低い第1のアライメント工程を経てから高精度な第2のアライメント工程を行う手順となる。登録作業は、例えばコンソール106のモニタ上に表示される光学画像と走査像とを、ユーザがストレージ媒体107に記憶させることで実行される。(工程3(S1303))
ステージの座標と試料上に形成されたパターンの座標との位置関係を正確に補正するためには最低2つの場所でアライメント工程を行う必要がある。工程4(S1304)では、アライメントを行う場所を登録する。登録は、例えば、モニタに表示される走査像上で適当な位置を、ユーザがコンソール106を介して指定することにより実行される。工程5(S1305)では、テンプレートと上記で登録した場所で撮像した光学画像及び走査像の画像比較からステージの座標と試料のパターンの座標の位置関係を計測する(アライメント)。そして、工程6(S1306)では、図9で説明したマルチビームの調整が行われる。
マルチビームの調整後、測長するパターンの近傍に測定する場所を探すための位置検索用テンプレートを登録する。テンプレートとして登録する情報は、低倍の走査像とステージ座標である。測定する箇所を探す処理は、登録したステージ座標に移動した後、低倍の走査像を撮像し、先に登録した画像とパターンマッチングを行うことで位置を決定する(工程7(S1307))。前記の測定位置検索用のテンプレートを登録後、測長する箇所のテンプレートをコンソール106に登録する。ここで、テンプレートとして登録される画像は本実施例のマルチビームを使った検査画像で登録される(工程8(S1308))。登録時に実行する作業は、アライメント用のテンプレート及び測定位置検索用のテンプレートの登録作業と同じである。ウェーハ内に複数の測定位置がある場合、工程7(S1307)から8(S1308)を繰り返し全ての測定点を登録したらレシピをストレージ媒体に保存し終了する。
(検査)
次に図14を用いてレシピを用いた自動測長の手順を示す。自動測長の開始に当たって、まず、ユーザは測長する試料の基本情報を入力する(工程1(S1401))。コンソール106は入力された基本情報を元に、ストレージ媒体107より適切なレシピを読み出し、自動測長を開始する。基本情報の入力以降の処理は、本実施例に係る検査装置がレシピを元に自動的に実行するため、ユーザの手を煩わせることはない。
工程2(S1402)では、レシピに記録されているアライメント点の情報を元にアライメントを行い、ステージ座標と試料のパターンの座標との位置関係を補正する。次に、測定位置検索用テンプレートとして記録される座標と低倍画像を元に測長する場所を探す。測長箇所の位置座標が判明すると、コンソール106はステージ駆動装置221を動作させ、試料上の測長箇所がマルチビームの照射領域に合致するようステージ121を移動させる(工程3(S1403))。
工程4(S1404)ではレシピに記録された測定点のテンプレートを元に測長を実施する。結果は測長した寸法のみ記憶しても良いが、画像を添付して保存しても良い。ここで、欠陥検査の場合はテンプレートを参照画像にしても良いので、テンプレートのパターンと撮像したパターンとの乖離を欠陥として、欠陥の座標とサイズが保存される。工程3から4(S1403〜S1404)を繰り返すことでウェーハ全面の測長または検査を行うことができる。
本実施例で示した技術を用いることで画素サイズが大きくても高感度なホットスポット検査装置を実現でき、高速高感度な検査装置を提供することができる。なお、本実施例は検出器が1つの場合について示したが、複数電子線が試料から発生させる2次電子及び反射電子を同一の検出器で補足するなら検出器が複数ある場合も同様の効果が得られる。例えば複数電子線が作り出す2次電子を1つの検出器で捕捉し、複数電子線が作り出す反射電子をもう1つの検出器で補足する場合は、十分な効果が得られる。
101…SEM筐体、102…試料室、103…筐体制御部、104…画像処理部、105…ステージ制御部、106…コンソール、107…ストレージ媒体、108…電子源、109…コンデンサレンズ、110…マルチビーム形成部、110−1…切替器、110−2…モータ、110−3…絞り板A、110−4…絞り板B,110−5…絞り板C、110−6…大開口、110−7…開口群、111…プローブ電流計測部、111−2…走査電極、111−3…絞り板、111−4…回転板、111−5…ファラデーカップ、111−6…大開口、112…検出器、113…ExB偏向器、114…偏向器、115…対物レンズ、116…制御電極、117…倍率調整レンズ、118…電子線、119…試料、120…2次電子、121…ステージ、122…絶縁体、123…試料フォルダ、124…ミラー、125…標準試料、125−A、B、C…標準試料片、125−1…Wドットパターン、160…光ファイバ、201…筐体制御電源、208…電子銃電源、210…マルチビーム形成装置、210−1…切替装置、210−2…モータ駆動電源、211…プローブ電流計測装置、211−1…電流計、211−2走査回路、212…AD変換基板、214…偏向回路、220…ビーム制御回路、221…ステージ駆動装置、223…リターディング電源、224…レーザ測長装置、240…高精細化処理部、250…欠陥判定部、1000…画像表示画面、1001…破線円、1002…画像切替えボタン、1003…選択カーソルボタン、1010…電子光学調整画面、1011…スライドバー、1012…入力欄、1020…絞り調整画面、1021…選択欄、1022…入力欄、1023…スライドバー、1030…プローブ電流表示画面、1031…動作指示ボタン、1100…画像表示画面、1102…画像切替えボタン、1103…選択カーソルボタン、1104…重心マーカ、1105…Wドットのゴースト像、1140…試料情報表示画面、1150…マルチビーム調整画面、1152…入力欄、1153…スライドバー、1160…基本配列表示画面、1161…倍数入力欄、1170…計測結果表示画面、1171…動作指示ボタン、1200…画像表示画面、1202…画像切替えボタン、1203…選択カーソルボタン、1204…重心マーカ、1205…Wドットのゴースト像、1206…標準値、1240…試料情報表示画面、1250…マルチビーム調整画面、1252…入力欄、1253…スライドバー、1270…計測結果表示画面、1271…動作指示ボタン。

Claims (11)

  1. パターンが形成された試料の第1の領域に収束した複数本の電子線を走査させ、発生した2次電子を第1パターン画像として記憶し、該試料の該第2の領域に収束した複数本の電子線を走査させ、発生した2次電子を第2パターン画像として記憶し、該第1の領域の該第1パターン画像と該第2の領域の該第2パターン画像とを比較し、その比較結果から試料内の欠陥部を抽出する検査装置において、
    該複数本の電子線の相対距離を該第2パターン画像の1画素以下の精度で調整できる機能を具備していることを特徴とした検査装置。
  2. 請求項1記載の検査装置において、
    該複数本の電子線の走査で得られた互いに欠落部を有する複数の該第2パターン画像を、画像処理で互いに補完することにより高精細化する機能を具備したことを特徴とする検査装置。
  3. 請求項1記載の検査装置において、
    該2次電子を取り込む検出器が最低1つ以上であることを特徴とする検査装置。
  4. 請求項1記載の検査装置において、
    該複数本の電子線の走査が、該試料が載置されたステージの移動に対し約垂直方向であり、かつ該2次電子の取り込みが該ステージの移動速度に同期していることを特徴とした検査装置。
  5. 請求項4記載の検査装置において、
    該ステージが停止してから該画像を取り込むことを特徴とした検査装置。
  6. パターンが形成された試料の第1の領域に収束した複数本の電子線を走査させ、発生した2次電子を第1パターン画像として記憶する工程と、該試料の第2の領域に収束した複数本の電子線を走査させ、発生した2次電子を第2パターン画像として記憶する工程と、該第1の領域の該第1パターン画像と該第2の領域の該第2パターン画像とを比較し、その比較結果から試料内の欠陥部を抽出する工程を含む検査方法において、
    該複数本の電子線の相対距離を該第2パターン画像の1画素以下の精度で調整できる工程と、
    得られた互いに欠落部を有する複数の該第2パターン画像を処理し、互いに補完することにより高精細化する工程と、
    高精細化した画像を用いて欠陥を検出する工程とを含むことを特徴とする検査方法。
  7. 電子源と前記電子源から放出された電子線を複数の電子線に分離するマルチビーム形成部と複数の前記電子線の電流を計測するプローブ電流計測部と複数の前記電子線を試料に照射したことに起因する前記試料からの2次電子を検出する検出器とを含む筐体部と、前記筐体部を制御する筐体制御部と、前記試料が載置される試料フォルダと前記試料フォルダを移動するステージとを含む試料室と、前記ステージ移動を制御するステージ制御部と、検出された前記2次電子を用いて画像処理する画像処理部と、前記筐体制御部と前記画像処理部、ステージ制御部とを制御するコンソールとを有する検査装置において、
    前記試料フォルダは、寸法が既知のパターンが形成された標準試料が搭載されるものであり、
    前記コンソールは、複数の前記電子線間の相対距離に依存した前記パターンの位置ずれ画像を表示するための信号を出力するものであることを特徴とする検査装置。
  8. 請求項7記載の検査装置において、
    前記コンソールはモニタを含み、
    前記モニタは、前記パターンの位置ずれ画像を表示するものであることを特徴とする検査装置。
  9. 請求項7記載の検査装置において、
    前記コンソールはモニタを含み、
    前記モニタは、前記パターンの位置ずれ画像の重心マーカを表示するものであることを特徴とする検査装置。
  10. 請求項7記載の検査装置において、
    前記コンソールはモニタを含み、
    前記モニタは、複数の前記電子線の基本配列を表示するものであることを特徴とする検査装置。
  11. 請求項7記載の検査装置において、
    前記コンソールはモニタを含み、
    前記モニタは、複数の前記電子線間の相対距離の計測結果を表示するものであることを特徴とする検査装置。
JP2010015368A 2010-01-27 2010-01-27 検査装置及び検査方法 Pending JP2011155119A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015368A JP2011155119A (ja) 2010-01-27 2010-01-27 検査装置及び検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015368A JP2011155119A (ja) 2010-01-27 2010-01-27 検査装置及び検査方法

Publications (1)

Publication Number Publication Date
JP2011155119A true JP2011155119A (ja) 2011-08-11

Family

ID=44540882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015368A Pending JP2011155119A (ja) 2010-01-27 2010-01-27 検査装置及び検査方法

Country Status (1)

Country Link
JP (1) JP2011155119A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563825B1 (ko) 2014-12-23 2015-10-27 주식회사 아이엠티 레이저 세정 기능을 포함한 웨이퍼 검사 장비
JP2015534289A (ja) * 2012-11-12 2015-11-26 ケーエルエー−テンカー コーポレイション 混合モードのウェハ検査のための方法およびシステム
JP2017126498A (ja) * 2016-01-14 2017-07-20 株式会社荏原製作所 検査装置及び検査方法
US9728373B2 (en) 2015-11-02 2017-08-08 Nuflare Technology, Inc. Pattern inspection apparatus and pattern inspection method
TWI657242B (zh) * 2015-10-28 2019-04-21 紐富來科技股份有限公司 圖案檢查方法及圖案檢查裝置
US10290094B2 (en) 2016-06-01 2019-05-14 Nuflare Technology, Inc. Pattern inspection apparatus and pattern inspection method
US10655956B2 (en) 2017-12-21 2020-05-19 Nuflare Technology, Inc. Displacement measuring apparatus, electron beam inspection apparatus, and displacement measuring method
WO2020167331A1 (en) * 2019-02-15 2020-08-20 Kla-Tencor Corporation Misregistration measurements using combined optical and electron beam technology
JP2020535631A (ja) * 2017-09-29 2020-12-03 エーエスエムエル ネザーランズ ビー.ブイ. 複数の荷電粒子ビームを用いてサンプルを検査する方法
US11075126B2 (en) 2019-02-15 2021-07-27 Kla-Tencor Corporation Misregistration measurements using combined optical and electron beam technology
CN115428139A (zh) * 2020-04-15 2022-12-02 科磊股份有限公司 可用于测量半导体装置偏移的具有装置级特征的偏移目标

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131472A (ja) * 1997-07-11 1999-02-02 Hitachi Ltd 電子ビーム検査装置
JP2003077413A (ja) * 2001-09-06 2003-03-14 Toshiba Corp 電子線装置及び該装置を用いた半導体デバイス製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131472A (ja) * 1997-07-11 1999-02-02 Hitachi Ltd 電子ビーム検査装置
JP2003077413A (ja) * 2001-09-06 2003-03-14 Toshiba Corp 電子線装置及び該装置を用いた半導体デバイス製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534289A (ja) * 2012-11-12 2015-11-26 ケーエルエー−テンカー コーポレイション 混合モードのウェハ検査のための方法およびシステム
KR101563825B1 (ko) 2014-12-23 2015-10-27 주식회사 아이엠티 레이저 세정 기능을 포함한 웨이퍼 검사 장비
TWI657242B (zh) * 2015-10-28 2019-04-21 紐富來科技股份有限公司 圖案檢查方法及圖案檢查裝置
US10281415B2 (en) 2015-10-28 2019-05-07 Nuflare Technology, Inc. Pattern inspection method and pattern inspection apparatus
US9728373B2 (en) 2015-11-02 2017-08-08 Nuflare Technology, Inc. Pattern inspection apparatus and pattern inspection method
JP2017126498A (ja) * 2016-01-14 2017-07-20 株式会社荏原製作所 検査装置及び検査方法
US10290094B2 (en) 2016-06-01 2019-05-14 Nuflare Technology, Inc. Pattern inspection apparatus and pattern inspection method
JP2020535631A (ja) * 2017-09-29 2020-12-03 エーエスエムエル ネザーランズ ビー.ブイ. 複数の荷電粒子ビームを用いてサンプルを検査する方法
JP7053805B2 (ja) 2017-09-29 2022-04-12 エーエスエムエル ネザーランズ ビー.ブイ. 複数の荷電粒子ビームを用いてサンプルを検査する方法
US10655956B2 (en) 2017-12-21 2020-05-19 Nuflare Technology, Inc. Displacement measuring apparatus, electron beam inspection apparatus, and displacement measuring method
WO2020167331A1 (en) * 2019-02-15 2020-08-20 Kla-Tencor Corporation Misregistration measurements using combined optical and electron beam technology
US11075126B2 (en) 2019-02-15 2021-07-27 Kla-Tencor Corporation Misregistration measurements using combined optical and electron beam technology
CN115428139A (zh) * 2020-04-15 2022-12-02 科磊股份有限公司 可用于测量半导体装置偏移的具有装置级特征的偏移目标
CN115428139B (zh) * 2020-04-15 2024-04-12 科磊股份有限公司 可用于测量半导体装置偏移的具有装置级特征的偏移目标

Similar Documents

Publication Publication Date Title
JP2011155119A (ja) 検査装置及び検査方法
US7276693B2 (en) Inspection method and apparatus using charged particle beam
US7385198B2 (en) Method and apparatus for measuring the physical properties of micro region
JP3996774B2 (ja) パターン欠陥検査方法及びパターン欠陥検査装置
JP4922962B2 (ja) 回路パターンの検査方法及び検査装置
US20110133066A1 (en) Pattern inspection device and method
US6548811B1 (en) Transmission electron microscope apparatus with equipment for inspecting defects in specimen and method of inspecting defects in specimen using transmission electron microscope
TW201734462A (zh) 電子裝置的奈米探測系統及其奈米探針
KR20050103266A (ko) 패턴결함 검사방법 및 검사장치
JP2006234789A (ja) 帯電制御装置及び帯電制御装置を備えた計測装置
CN109298001B (zh) 电子束成像模块、电子束检测设备及其图像采集方法
JP2008014850A (ja) 荷電粒子線顕微方法および荷電粒子線装置
KR20150064168A (ko) 화상 처리 장치, 자기 조직화 리소그래피 기술에 의한 패턴 생성 방법 및 컴퓨터 프로그램
JP2004014485A (ja) ウェハ欠陥検査方法及びウェハ欠陥検査装置
JP2007299768A (ja) 試料像形成方法及び荷電粒子線装置
US11378532B2 (en) Inspection system and inspection method to qualify semiconductor structures
JP3836735B2 (ja) 回路パターンの検査装置
EP2293319A1 (en) Transmission electron microscope apparatus comprising electron spectroscope, sample holder, sample stage, and method for acquiring spectral image
JP2010101907A (ja) 試料像形成方法及び荷電粒子線装置
JP2018170166A (ja) 荷電粒子線装置
JP3950891B2 (ja) パターン欠陥検査方法及びパターン欠陥検査装置
JP4028864B2 (ja) パターン欠陥検査方法および検査装置
JP3911407B2 (ja) 荷電粒子線走査式装置
CN108231513A (zh) 用于操作显微镜的方法
JP2007234778A (ja) 電子線式パターン検査装置、その検査条件設定方法、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415