JP2011153352A - Method for producing surface-modified steel sheet having excellent coating film adhesion - Google Patents

Method for producing surface-modified steel sheet having excellent coating film adhesion Download PDF

Info

Publication number
JP2011153352A
JP2011153352A JP2010015818A JP2010015818A JP2011153352A JP 2011153352 A JP2011153352 A JP 2011153352A JP 2010015818 A JP2010015818 A JP 2010015818A JP 2010015818 A JP2010015818 A JP 2010015818A JP 2011153352 A JP2011153352 A JP 2011153352A
Authority
JP
Japan
Prior art keywords
steel sheet
coating film
modified
surface modification
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010015818A
Other languages
Japanese (ja)
Other versions
JP5324488B2 (en
Inventor
Hiroshige Nakamura
浩茂 中村
Kazumi Matsubara
和美 松原
Koichiro Ueda
耕一郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2010015818A priority Critical patent/JP5324488B2/en
Publication of JP2011153352A publication Critical patent/JP2011153352A/en
Application granted granted Critical
Publication of JP5324488B2 publication Critical patent/JP5324488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a surface-modified steel sheet which can impart sufficient coating film adhesion to a steel sheet to be a base material without generating sludge. <P>SOLUTION: A surface modification liquid obtained by incorporating dissolved ozone of ≥0.1 mg/L into ultrapure water whose electric resistance at 25°C is ≥10 MΩ cm is brought into contact with a surface of a steel sheet to be a base material, and surface modification treatment is performed. By the above process, contaminants in the surface of the steel sheet can be removed, and simultaneously, the wettability of the surface of the steel sheet can be improved. Further, since many OH groups capable bonding with polar groups in the coating film can be introduced into the surface of the steel sheet, the adhesion of the coating film to the surface of the steel sheet can be improved as well. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、塗膜密着性に優れた表面改質鋼板の製造方法に関する。   The present invention relates to a method for producing a surface-modified steel sheet having excellent coating film adhesion.

従来、溶融Znめっき鋼板や溶融Zn−Alめっき鋼板、溶融Zn−Al−Mgめっき鋼板などの溶融めっき鋼板を樹脂塗装する場合、塗装前処理として塗布型クロメート処理が採用されてきた。しかし、近年になって、環境負荷の軽減が重視される傾向から、Cr系処理液を含まない化成処理液や非クロム系下塗り塗料などを用いた塗装原板が求められるようになり、塗布型非クロメート処理が実施されるようになってきた。塗布型の化成処理では、脱脂処理をしていない溶融めっき鋼板または脱脂処理のみをした溶融めっき鋼板に化成処理液を塗布しても、化成処理皮膜を均一に形成するのは困難であった。このように化成処理皮膜が不均一に形成されてしまうと、皮膜密着性の低下および塗膜剥離の原因となる。したがって、化成処理皮膜を均一に形成することを目的として、化成処理液を塗布する前に、溶融めっき鋼板を薬液によって表面調整する工程が採用されている(例えば、特許文献1,2参照)。   Conventionally, when a hot-dip plated steel sheet such as a hot-dip Zn-plated steel sheet, hot-dip Zn-Al-plated steel sheet, hot-dip Zn-Al-Mg-plated steel sheet is resin-coated, a coating-type chromate treatment has been employed as a pretreatment for coating. However, in recent years, due to the tendency to reduce the environmental burden, a coating original plate using a chemical conversion treatment liquid not containing a Cr-based treatment liquid or a non-chromic undercoat paint has been required. Chromate treatment has been implemented. In the coating type chemical conversion treatment, it is difficult to uniformly form a chemical conversion treatment film even when a chemical conversion treatment liquid is applied to a hot-dip plated steel sheet that has not been degreased or a hot-dip plated steel sheet that has only been degreased. If the chemical conversion treatment film is formed non-uniformly in this way, it causes a decrease in film adhesion and peeling of the coating film. Therefore, for the purpose of uniformly forming the chemical conversion treatment film, a step of adjusting the surface of the hot-dip plated steel sheet with a chemical solution is applied before applying the chemical conversion treatment solution (see, for example, Patent Documents 1 and 2).

特許文献1,2には、溶融めっき鋼板の表面をNiイオンを含む水溶液で処理し、めっき層表面に金属Niを置換析出させる方法が開示されている。特許文献1,2の発明では、Niイオンを含む表面調整液として、エッチング作用を有するpH2.5〜5.6の酸性水溶液が使用される。したがって、溶融Znめっき鋼板または溶融Zn−Alめっき鋼板に表面調整液を塗布すると、めっき層の表層に濃化したAl系酸化物が除去されてしまう。同様に、溶融Zn−Al−Mgめっき鋼板に表面調整液を塗布すると、めっき層の表層に濃化したAl系酸化物およびMg系酸化物が除去されてしまう。Al系酸化物およびMg系酸化物は耐食性の発揮に有効であるため、これらの酸化物を除去してしまうと、めっき層表面と下塗り塗膜との界面において腐食が発生しやすくなる。また、表面調整液がエッチング作用を有するため、表面調整液槽内にはめっき層から溶け込んだ金属酸化物などのスラッジが蓄積される。したがって、特許文献1,2の方法では、定期的にスラッジを回収しなければならず、メンテナンスが必要となる。   Patent Documents 1 and 2 disclose a method in which the surface of a hot-dip plated steel sheet is treated with an aqueous solution containing Ni ions to displace metal Ni on the plated layer surface. In the inventions of Patent Documents 1 and 2, an acidic aqueous solution having a pH of 2.5 to 5.6 having an etching action is used as the surface conditioning liquid containing Ni ions. Therefore, when the surface conditioning liquid is applied to the hot-dip Zn-plated steel plate or hot-dip Zn-Al-plated steel plate, the Al-based oxide concentrated on the surface layer of the plating layer is removed. Similarly, when the surface conditioning liquid is applied to the molten Zn—Al—Mg plated steel sheet, concentrated Al-based oxide and Mg-based oxide are removed on the surface layer of the plating layer. Since Al-based oxides and Mg-based oxides are effective for exerting corrosion resistance, if these oxides are removed, corrosion tends to occur at the interface between the plating layer surface and the undercoat coating film. Further, since the surface adjustment liquid has an etching action, sludge such as metal oxides dissolved from the plating layer is accumulated in the surface adjustment liquid tank. Therefore, in the methods of Patent Documents 1 and 2, sludge must be collected periodically, and maintenance is required.

これに対し、ステンレス鋼板では、化成処理液を塗布する前に、塗装原板を薬液によって表面調整することはほとんど行われていないが、アルカリ洗浄や界面活性剤洗浄などの脱脂処理は行われている。しかしながら、脱脂処理のみでは、ステンレス鋼板表面の化成処理液に対する濡れ性を十分に高めることはできず、いわゆるハジキが発生し、化成処理皮膜を均一に形成するのは困難であった。その結果、最終製品である塗装ステンレス鋼板における塗膜密着性が不十分となり、所望の性能が発揮されない場合があった。このような問題を解決するために、ステンレス鋼板表面の塗料に対する濡れ性を向上させる技術が提案されている(例えば、特許文献3参照)。特許文献3には、酸性水溶液を用いてステンレス鋼板表面の不動態皮膜をエッチングし、金属を一定比率で露出させて塗料に対する濡れ性を向上させる方法が開示されている。   On the other hand, in stainless steel sheets, the surface of the coating original plate is hardly adjusted with a chemical before applying the chemical conversion treatment solution, but degreasing treatment such as alkali cleaning and surfactant cleaning is performed. . However, only the degreasing treatment cannot sufficiently improve the wettability of the stainless steel plate surface to the chemical conversion solution, so-called repellency occurs, and it is difficult to uniformly form the chemical conversion treatment film. As a result, the coating film adhesion in the coated stainless steel sheet as the final product becomes insufficient, and the desired performance may not be exhibited. In order to solve such a problem, a technique for improving the wettability of the stainless steel plate surface to the paint has been proposed (for example, see Patent Document 3). Patent Document 3 discloses a method of improving the wettability with respect to a paint by etching a passive film on the surface of a stainless steel plate using an acidic aqueous solution to expose a metal at a certain ratio.

また、特許文献4には、アルミニウム箔表面の有機塗料に対する濡れ性を改善するために、コロナ放電でアルミニウム箔表面を処理する方法が開示されている。   Patent Document 4 discloses a method of treating the surface of the aluminum foil with corona discharge in order to improve the wettability of the surface of the aluminum foil to the organic paint.

一方、電子材料分野では、シリコンウェーハ表面への微粒子の付着を防止するためにオゾンを含有する純水でシリコンウェーハの表面を洗浄する技術が提案されている(例えば、特許文献5参照)。特許文献5には、界面活性剤を添加したフッ酸水溶液を用いてシリコンウェーハの表面を洗浄した後、オゾンを含有する純水を用いてシリコンウェーハの表面を洗浄する方法が開示されている。   On the other hand, in the field of electronic materials, a technique for cleaning the surface of a silicon wafer with pure water containing ozone has been proposed in order to prevent fine particles from adhering to the surface of the silicon wafer (see, for example, Patent Document 5). Patent Document 5 discloses a method of cleaning the surface of a silicon wafer using pure water containing ozone after cleaning the surface of the silicon wafer using a hydrofluoric acid aqueous solution to which a surfactant is added.

また、特許文献6には、ステンレス鋼製容器の耐腐食性を改善するために、オゾンを含有するpH1〜2の酸性水溶液でステンレス鋼製容器の表面を処理する方法が開示されている。特許文献6の方法では、酸性水溶液に含まれる硝酸によりステンレス鋼の不動態皮膜中のFeを溶解除去し、次いでオゾンの酸化作用により不動態皮膜中のCrを濃化することで、ステンレス鋼製容器の耐腐食性を向上させている。   Patent Document 6 discloses a method of treating the surface of a stainless steel container with an acidic aqueous solution having a pH of 1-2 containing ozone in order to improve the corrosion resistance of the stainless steel container. In the method of Patent Document 6, Fe in the passive film of stainless steel is dissolved and removed with nitric acid contained in the acidic aqueous solution, and then Cr in the passive film is concentrated by the oxidizing action of ozone. The corrosion resistance of the container is improved.

特開昭53−115624号公報JP-A-53-115624 特開平5−59565号公報JP-A-5-59565 特許第3666626号公報Japanese Patent No. 3666626 特公昭62−10705号公報Japanese Patent Publication No.62-10705 特許第2914555号公報Japanese Patent No. 2914555 特開2002−97579号公報JP 2002-97579 A

上述のように、めっき鋼板の表面を過剰にエッチングする特許文献1,2の方法には、スラッジが発生するという問題があった。また、基材(ステンレス鋼板またはアルミニウム箔)表面の塗料に対する濡れ性を向上させる特許文献3,4の方法には、単に基材表面の塗料に対する濡れ性を向上させるだけでは、高温多湿の過酷な環境下に耐えうる塗膜密着性を付与できないという問題があった。   As described above, the methods of Patent Documents 1 and 2 that excessively etch the surface of the plated steel sheet have a problem that sludge is generated. Further, in the methods of Patent Documents 3 and 4 for improving the wettability of the surface of the base material (stainless steel plate or aluminum foil) to the paint on the surface of the substrate (stainless steel plate or aluminum foil) There was a problem that it was not possible to provide coating adhesion that could withstand the environment.

このように、プレコート鋼板の製造技術において、スラッジ発生の抑制と、十分な塗膜密着性の付与とを両立しうる表面調整方法はなかった。   As described above, in the pre-coated steel sheet manufacturing technology, there has been no surface adjustment method capable of achieving both suppression of sludge generation and sufficient coating film adhesion.

本発明は、かかる点に鑑みてなされたものであり、スラッジを発生させることなく、基材となる鋼板に十分な塗膜密着性を付与することができる、表面改質鋼板の製造方法を提供することを目的とする。   This invention is made in view of this point, and provides the manufacturing method of the surface-modified steel plate which can provide sufficient coating-film adhesiveness to the steel plate used as a base material, without generating sludge. The purpose is to do.

本発明者は、超純水に0.1mg/L以上の溶存オゾンを含有させた水溶液を用いることで上記課題を解決できることを見出し、さらに検討を加えて本発明を完成させた。   The present inventor has found that the above problems can be solved by using an aqueous solution containing ultra-pure water containing 0.1 mg / L or more of dissolved ozone, and has further studied and completed the present invention.

すなわち、本発明の第一は、以下の表面改質鋼板の製造方法に関する。
[1]25℃における電気抵抗率が10MΩ・cm以上の超純水に0.1mg/L以上の溶存オゾンを含有させた表面改質液を準備するステップと、鋼板の表面に前記表面改質液を接触させるステップとを含む、表面改質鋼板の製造方法。
[2]前記鋼板はステンレス鋼板であり、前記表面改質鋼板の表面から5nmの厚み領域における金属水酸化物のO1sピーク強度POHと、金属酸化物のO1sピーク強度Pとの比POH/Pは0.8以上である、[1]に記載の製造方法。
That is, the first of the present invention relates to the following method for producing a surface-modified steel sheet.
[1] A step of preparing a surface modification liquid containing 0.1 mg / L or more of dissolved ozone in ultrapure water having an electrical resistivity of 10 MΩ · cm or more at 25 ° C., and the surface modification on the surface of the steel sheet And a step of contacting the liquid.
[2] The steel sheet is a stainless steel plate, the ratio of the O 1s peak intensity P OH metal hydroxide in the surface modification 5nm thickness regions from the surface of the steel sheet, the O 1s peak intensity P O of metal oxides The production method according to [1], wherein P OH / PO is 0.8 or more.

また、本発明の第二は、以下の表面改質鋼板に関する。
[3][1]または[2]に記載の方法で得られた表面改質鋼板の表面に、さらに塗膜を有する、表面改質鋼板。
[4][2]に記載の方法で得られた表面改質鋼板の表面に、さらにクリア塗膜を有する、表面改質鋼板。
The second aspect of the present invention relates to the following surface-modified steel sheet.
[3] A surface-modified steel sheet further having a coating film on the surface of the surface-modified steel sheet obtained by the method according to [1] or [2].
[4] A surface-modified steel sheet further having a clear coating film on the surface of the surface-modified steel sheet obtained by the method according to [2].

本発明によれば、高温多湿の過酷な環境下においても、塗膜との密着性に優れる表面改質鋼板をスラッジを発生させずに製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the surface modified steel plate which is excellent in adhesiveness with a coating film can be manufactured even in the severe environment of high temperature and humidity, without generating sludge.

1.本発明の表面改質鋼板の製造方法
本発明の表面改質鋼板の製造方法は、1)表面改質液を準備する第1のステップと、2)鋼板の表面に表面改質液を接触させる第2のステップとを有する。
1. Manufacturing method of surface modified steel sheet of the present invention The manufacturing method of the surface modified steel sheet of the present invention includes 1) a first step of preparing a surface modifying liquid, and 2) bringing the surface modifying liquid into contact with the surface of the steel sheet. A second step.

第1のステップでは、超純水に溶存オゾンを含有させた表面改質液を準備する。本明細書において「超純水」とは、25℃における電気抵抗率が10MΩ・cm以上の水をいう。   In the first step, a surface modification liquid in which dissolved ozone is contained in ultrapure water is prepared. In this specification, “ultra pure water” refers to water having an electrical resistivity at 25 ° C. of 10 MΩ · cm or more.

溶存オゾンを含有させる超純水は、前述の通り25℃における電気抵抗率が10MΩ・cm以上の水であるが、好ましくは25℃における電気抵抗率が15MΩ・cm以上の水であり、より好ましくは25℃における電気抵抗率が18MΩ・cm以上の水である。また、表面改質液中の総金属濃度は10μg/L以下であることが好ましく、表面改質液中の微粒子の数は10000個/L以下であることが好ましい。超純水の純度が高いほど、超純水への有機汚染物の溶解度が高まり、第2のステップにおいて有機汚染物をより効率的に除去できるからである。ここで「表面改質液中の総金属濃度」とは、超純水中のNa、Mg、Al、K、CaおよびFeの濃度の合計をいう。   As described above, the ultrapure water containing dissolved ozone is water having an electric resistivity of 10 MΩ · cm or more at 25 ° C., preferably water having an electric resistivity of 15 MΩ · cm or more at 25 ° C., more preferably. Is water having an electrical resistivity at 25 ° C. of 18 MΩ · cm or more. Further, the total metal concentration in the surface modification liquid is preferably 10 μg / L or less, and the number of fine particles in the surface modification liquid is preferably 10,000 particles / L or less. This is because the higher the purity of the ultrapure water, the higher the solubility of the organic contaminants in the ultrapure water, and the organic contaminants can be more efficiently removed in the second step. Here, the “total metal concentration in the surface modifying solution” refers to the total concentration of Na, Mg, Al, K, Ca and Fe in the ultrapure water.

表面改質液中の溶存オゾンの濃度は、0.1mg/L以上が好ましい。オゾンの濃度が高いほど酸化力が強くなり、第2のステップにおいて有機汚染物をより効率的に除去できるが、極端にオゾン濃度を上げると、オゾン発生設備およびオゾンガスの排気設備などの大規模化が必要なため経済的でない上に安全性にも問題を生じるおそれがある。一方、オゾンの濃度が0.1mg/L未満の場合、第2のステップにおいて有機汚染物を十分に除去することができないおそれがある。   The concentration of dissolved ozone in the surface modifying solution is preferably 0.1 mg / L or more. The higher the ozone concentration, the stronger the oxidizing power and the more efficient removal of organic pollutants in the second step. However, if the ozone concentration is extremely increased, the scale of ozone generation equipment and ozone gas exhaust equipment will increase. It is not economical because it is necessary, and there is a risk of causing problems in safety. On the other hand, when the ozone concentration is less than 0.1 mg / L, there is a possibility that organic contaminants cannot be sufficiently removed in the second step.

オゾンを超純水に溶解させる方法は、特に限定されない。たとえば、オゾンを含む気体を超純水に連続して吹き込めばよい。   The method for dissolving ozone in ultrapure water is not particularly limited. For example, a gas containing ozone may be continuously blown into ultrapure water.

表面改質液は、pHを7未満に調整して使用することができる。超純水に二酸化炭素などを添加することによってpHを7未満に調整することにより、表面改質液の酸化還元電位が高くなり、有機汚染物の除去効果を高めることができる。好ましくはpHを4〜6に調整するとよい。pHの調整は、二酸化炭素以外にも高純度の酸によっても可能である。高純度の酸の例には、塩酸、硫酸、フッ化水素酸、炭酸などが含まれる。ただし、pHを4未満に下げると、基材が過剰にエッチングされるおそれがあるため好ましくない。   The surface modifying liquid can be used after adjusting the pH to less than 7. By adjusting the pH to less than 7 by adding carbon dioxide or the like to ultrapure water, the oxidation-reduction potential of the surface modification liquid is increased, and the organic contaminant removal effect can be enhanced. The pH is preferably adjusted to 4-6. The pH can be adjusted with high-purity acid in addition to carbon dioxide. Examples of high purity acids include hydrochloric acid, sulfuric acid, hydrofluoric acid, carbonic acid and the like. However, lowering the pH to less than 4 is not preferable because the substrate may be excessively etched.

第2のステップでは、基材となる鋼板の表面に、第1のステップで準備した表面改質液を接触させる。この工程により、鋼板の表面に付着した有機汚染物および無機汚染物を除去することができ、かつ鋼板表面にOH基を導入して鋼板表面の濡れ性を向上させることができる。また、後述するように、鋼板表面にOH基を導入することで、塗膜に対する密着性を向上させることができる。   In the second step, the surface modification liquid prepared in the first step is brought into contact with the surface of the steel plate serving as the base material. By this step, organic contaminants and inorganic contaminants attached to the surface of the steel sheet can be removed, and OH groups can be introduced into the steel sheet surface to improve the wettability of the steel sheet surface. Moreover, the adhesiveness with respect to a coating film can be improved by introduce | transducing OH group into the steel plate surface so that it may mention later.

基材となる鋼板の種類は、特に限定されない。基材となる鋼板の例には、亜鉛めっき鋼板(電気Znめっき、溶融Znめっき)、合金化亜鉛めっき鋼板(溶融Znめっき後に合金化処理した合金化溶融Znめっき)、亜鉛合金めっき鋼板(溶融Zn−Mgめっき、溶融Zn−Al−Mgめっき、溶融Zn−Alめっき)、溶融Al−Siめっき鋼板、ステンレス鋼板などが含まれる。これらの中でも、不動態皮膜を有するステンレス鋼板を基材とした場合は、特に優れた表面改質効果を期待できる。   The kind of steel plate used as a base material is not specifically limited. Examples of the steel sheet used as the base material include galvanized steel sheets (electrical Zn plating, hot-dip Zn plating), galvannealed steel sheets (alloyed hot-dip Zn plating alloyed after hot-dip Zn plating), and zinc alloy-plated steel sheets (molten) Zn-Mg plating, molten Zn-Al-Mg plating, molten Zn-Al plating), molten Al-Si plated steel plate, stainless steel plate and the like are included. Among these, when a stainless steel plate having a passive film is used as a base material, a particularly excellent surface modification effect can be expected.

鋼板の表面に表面改質液を接触させる方法は、特に限定されない。好ましくは、表面改質液に鋼板を浸漬する方法より、表面改質液を流水として鋼板表面に接触させる方法や、噴射ノズルを用いて圧力を高めた表面改質液を鋼板に噴射する方法などがよい。表面改質液を接触させる際の温度は、特に限定されず、常温でもよいし、薬液処理のように温度を上げてもよい。常温でも表面改質効果を発揮するところが、本発明の表面改質液を使用する利点の一つである。表面改質液を接触させる時間は、特に限定されないが、反応を促進する上で1秒以上接触させることが好ましい。   The method for bringing the surface modifying liquid into contact with the surface of the steel plate is not particularly limited. Preferably, rather than a method of immersing the steel sheet in the surface modification liquid, a method of bringing the surface modification liquid into contact with the steel sheet surface as flowing water, a method of injecting a surface modification liquid whose pressure is increased using an injection nozzle, etc. Is good. The temperature at which the surface modifying liquid is brought into contact is not particularly limited, and may be room temperature or may be increased as in chemical treatment. One of the advantages of using the surface modification liquid of the present invention is that it exhibits a surface modification effect even at room temperature. The time for contacting the surface modifying liquid is not particularly limited, but it is preferable to contact for 1 second or longer in order to promote the reaction.

このように鋼板の表面に表面改質液を接触させることで、超純水の溶解力およびオゾンの酸化作用により鋼板表面に付着した有機汚染物および無機(金属)汚染物を除去することができる。   Thus, by bringing the surface modifying liquid into contact with the surface of the steel sheet, organic contaminants and inorganic (metal) contaminants attached to the steel sheet surface can be removed by the dissolving power of ultrapure water and the oxidizing action of ozone. .

鋼板表面に付着した無機汚染物を効率的に除去する観点からは、鋼板の表面に表面改質液を接触させる前に、超音波を伝達している状態の超純水または水素溶存超純水(超純水に水素を溶存させたもの)に鋼板を浸漬して鋼板表面を洗浄することが好ましい。無機汚染物をより効率的に除去するためには、超音波を伝達している状態のpH調整水素溶存超純水(水素溶存超純水にアンモニアなどを添加して、pHを7以上に調整したもの)に鋼板を浸漬して鋼板表面を洗浄することが好ましい。超音波の周波数は、特に限定されないが、超音波がもたらすキャビテーション効果を考慮すると、汚れのひどい鋼板には20〜50kHz、基板に損傷を与えるおそれがある場合や、微粒子無機汚染物を除去する場合は、1MHz以上が好ましい。   From the viewpoint of efficiently removing inorganic contaminants adhering to the surface of the steel plate, ultra pure water or hydrogen-dissolved ultra pure water in a state where ultrasonic waves are transmitted before bringing the surface modifying liquid into contact with the surface of the steel plate. It is preferable to wash the steel sheet surface by immersing the steel sheet in (hydrogen dissolved in ultrapure water). In order to remove inorganic pollutants more efficiently, pH adjustment hydrogen dissolved ultrapure water in a state where ultrasonic waves are transmitted (adding ammonia etc. to hydrogen dissolved ultrapure water to adjust pH to 7 or more It is preferable to wash the steel sheet surface by immersing the steel sheet in The frequency of the ultrasonic wave is not particularly limited, but considering the cavitation effect brought about by the ultrasonic wave, 20 to 50 kHz for a heavily stained steel plate, there is a possibility of damaging the substrate, or when removing fine inorganic contaminants Is preferably 1 MHz or more.

また、鋼板の表面に表面改質液を接触させることで、表面改質液に含まれる超純水およびオゾンの作用により鋼板表面に金属水酸化物を形成することができる。このように鋼板表面にOH基が導入される結果、鋼板表面の濡れ性が向上する。さらに、鋼板表面のOH基と塗膜中の極性基(OH基やCOOH基など)との間で水素結合や脱水縮合反応が生じるため、塗膜の鋼板表面への密着性が向上する。   Moreover, a metal hydroxide can be formed on the steel sheet surface by the action of ultrapure water and ozone contained in the surface modifying liquid by bringing the surface modifying liquid into contact with the surface of the steel sheet. As a result of the introduction of OH groups on the steel sheet surface in this way, the wettability of the steel sheet surface is improved. Furthermore, since a hydrogen bond and a dehydration condensation reaction occur between the OH group on the steel sheet surface and the polar group (OH group, COOH group, etc.) in the coating film, the adhesion of the coating film to the steel sheet surface is improved.

特に、ステンレス鋼板を基材とする場合は、金属水酸化物の量は、表面改質鋼板の表面から5nmの厚み領域(以下「表層」ともいう)における金属水酸化物のO1sピーク強度をPOH、金属酸化物のO1sピーク強度をPとするとき、O1sピーク強度比「POH/P」で示され、その比率が0.8以上であることが好ましい。この強度比が0.8未満である表面改質ステンレス鋼板は、高温多湿環境下において塗膜密着性が十分でない場合がある。 In particular, when a stainless steel plate is used as the base material, the amount of the metal hydroxide is determined by the O 1s peak intensity of the metal hydroxide in the 5 nm thickness region (hereinafter also referred to as “surface layer”) from the surface of the surface-modified steel plate. When the O 1s peak intensity of P OH and the metal oxide is P 2 O, it is represented by an O 1s peak intensity ratio “P OH / PO ”, and the ratio is preferably 0.8 or more. A surface-modified stainless steel sheet having a strength ratio of less than 0.8 may not have sufficient coating film adhesion in a high-temperature and high-humidity environment.

1sピーク強度比はX線電子分光(XPS)分析を行い、O1sピークにおいて各金属成分の酸化物および水酸化物をピーク分離することで算出できる。XPS分析は、X線源をMg Kα線として行うことが好ましい。前記表層は、XPS分析の際に、光電子が基材から放出される深さが0〜5nmであることから決定される。 The O 1s peak intensity ratio can be calculated by performing X-ray electron spectroscopy (XPS) analysis, and separating the oxide and hydroxide of each metal component from the O 1s peak. The XPS analysis is preferably performed using Mg Kα rays as the X-ray source. The surface layer is determined because the depth at which photoelectrons are emitted from the substrate during XPS analysis is 0 to 5 nm.

以上のように、超純水に0.1mg/L以上の溶存オゾンを含有させた表面改質液を用いて鋼板表面を処理することで、鋼板表面の有機汚染物および無機汚染物を除去することができ、同時に鋼板表面の濡れ性を向上させることができる。また、塗膜中の極性基と結合可能なOH基を鋼板表面に多数導入できるため、鋼板表面に対する塗膜の密着性を向上させることもできる。   As described above, organic contaminants and inorganic contaminants on the surface of the steel sheet are removed by treating the surface of the steel sheet with the surface modification liquid containing 0.1 mg / L or more of dissolved ozone in ultrapure water. At the same time, the wettability of the steel sheet surface can be improved. Moreover, since many OH groups which can be combined with polar groups in the coating film can be introduced on the steel sheet surface, the adhesion of the coating film to the steel sheet surface can be improved.

2.本発明の表面改質鋼板
本発明の表面改質鋼板は、上記本発明の製造方法により得られる。本発明の表面改質鋼板は、鋼板表面に塗膜をさらに有していてもよい。塗膜は、1コート構成でも、下塗り(プライマー)塗膜および上塗り(トップ)塗膜の2コート構成でもよい。さらに、本発明の表面改質鋼板は、鋼板と塗膜との間に塗装前処理皮膜を有していてもよい。
2. Surface-modified steel sheet of the present invention The surface-modified steel sheet of the present invention is obtained by the production method of the present invention. The surface-modified steel sheet of the present invention may further have a coating film on the steel sheet surface. The coating film may have a one-coat structure, or a two-coat structure of an undercoat (primer) film and a topcoat (top) film. Furthermore, the surface-modified steel sheet of the present invention may have a pretreatment coating film between the steel sheet and the coating film.

塗装前処理皮膜は、公知の方法で形成される。そのような処理方法の例には、クロメート処理やクロムを含まない無機系処理、有機系処理などが含まれる。これらの処理は、OH基を多く含むため処理液の成分が表面改質鋼板と脱水縮合しやすく、密着性以外に耐食性も付与することができる。密着性については、有機樹脂成分を含ませることで、より一層向上させることができる。   The coating pretreatment film is formed by a known method. Examples of such treatment methods include chromate treatment, inorganic treatment not containing chromium, and organic treatment. Since these treatments contain a large amount of OH groups, the components of the treatment liquid are easily dehydrated and condensed with the surface-modified steel sheet, and can provide corrosion resistance in addition to adhesion. The adhesiveness can be further improved by including an organic resin component.

塗装前処理皮膜は、バルブメタルの酸化物、バルブメタルの酸素酸塩、バルブメタルの水酸化物、バルブメタルのリン酸塩およびバルブメタルのフッ化物からなる群より選ばれる1種以上の化合物(以下「バルブメタル化合物」ともいう)を含むことが好ましい。環境適合性を有しつつ塗装鋼板の耐食性を向上させうるからである。バルブメタルとは、その酸化物が高い絶縁抵抗を示す金属をいう。バルブメタル元素としては、Ti、Zr、Hf、V、Nb、Ta、Mo、W、SiおよびAlから選ばれる1種以上の元素が好ましい。バルブメタル化合物としては公知のものを用いてよい。   The pre-coating film is one or more compounds selected from the group consisting of valve metal oxides, valve metal oxyacid salts, valve metal hydroxides, valve metal phosphates and valve metal fluorides ( In the following, it is also preferable to include a “valve metal compound”. This is because the corrosion resistance of the coated steel sheet can be improved while having environmental compatibility. Valve metal refers to a metal whose oxide exhibits high insulation resistance. As the valve metal element, one or more elements selected from Ti, Zr, Hf, V, Nb, Ta, Mo, W, Si and Al are preferable. Known valve metal compounds may be used.

塗膜とは、主に有機系の高分子化合物を主成分とする有機系塗膜を意味する。有機系の高分子化合物の種類は、特に限定されないが、フッ素系樹脂、シリコーン系樹脂、ウレタン系樹脂、アクリル系樹脂、エポキシ系樹脂、ポリエチレンやポリプロピレン、エチレン−アクリル酸共重合体などのポリオレフィン系樹脂、ポリスチレンなどのスチレン系樹脂、ポリエステル、またはこれらの共重合物もしくは変性物が好ましい。これらの中でも、ウレタン系樹脂、アクリル系樹脂、エポキシ系樹脂などの分子内にOH基やCOOH基を有する樹脂が好ましい。また、有機系塗膜の代わりに、琺瑯、水ガラス、ゾル−ゲルガラスなどの無機系塗膜を用いることもできる。また、塗膜を着色するために着色顔料を添加してもよい。   The coating film means an organic coating film mainly composed of an organic polymer compound. The type of organic polymer compound is not particularly limited, but is a polyolefin resin such as fluorine resin, silicone resin, urethane resin, acrylic resin, epoxy resin, polyethylene, polypropylene, and ethylene-acrylic acid copolymer. A resin, a styrene resin such as polystyrene, polyester, or a copolymer or modified product thereof is preferable. Among these, resins having OH groups or COOH groups in the molecule such as urethane resins, acrylic resins, and epoxy resins are preferable. Further, instead of the organic coating film, an inorganic coating film such as soot, water glass and sol-gel glass can be used. Moreover, you may add a coloring pigment in order to color a coating film.

塗膜は、さらに潤滑剤を含むことが好ましい。鋼板の耐カジリ性などを向上させて、加工性に優れた塗装鋼板を得られるからである。潤滑剤の種類は、特に限定されず、公知のものから選択すればよい。潤滑剤の例には、フッ素系やポリエチレン系、スチレン系などの有機ワックス、二硫化モリブデンやタルクなどの無機潤滑剤が含まれる。低融点の有機ワックスを潤滑剤として用いる場合、塗膜を乾燥する際に潤滑剤が塗膜の表面にブリードするため、潤滑性を発現させることができる。また、高融点の有機ワックスや無機潤滑剤を潤滑剤として用いる場合、潤滑剤が塗膜の最表層において島状に存在し、かつ塗膜表面に露出して存在するため、潤滑性を発現させることができる。   The coating film preferably further contains a lubricant. This is because a coated steel plate having excellent workability can be obtained by improving the galling resistance of the steel plate. The type of the lubricant is not particularly limited and may be selected from known ones. Examples of the lubricant include organic waxes such as fluorine, polyethylene, and styrene, and inorganic lubricants such as molybdenum disulfide and talc. When an organic wax having a low melting point is used as a lubricant, the lubricant bleeds on the surface of the coating film when the coating film is dried, so that lubricity can be expressed. In addition, when a high melting point organic wax or inorganic lubricant is used as the lubricant, the lubricant is present in an island shape on the outermost layer of the coating film and exposed on the surface of the coating film, so that lubricity is expressed. be able to.

塗膜は、公知の方法で形成されうる。たとえば、塗料を調製して、公知の方法で鋼板表面に塗装すればよい。さらには、有機樹脂組成物からなるフィルムを、鋼板にラミネートしてもよい。   The coating film can be formed by a known method. For example, a paint may be prepared and applied to the steel sheet surface by a known method. Furthermore, a film made of an organic resin composition may be laminated on a steel plate.

塗膜は、クリア塗膜であってもよい。本発明の表面改質方法は、基材となる鋼板の光学特性(特に光反射特性)に過剰な影響を与えることなく、鋼板の表面の濡れ性を高めることができるため、例えばステンレス鋼板を基材とした場合に、ステンレス鋼板の美観を損なうことなく表面を改質することができる。また、ステンレス鋼板を基材とした場合は、緻密な不動態皮膜が得られ、かつ金属鉄を含まない不動態皮膜に改質することができるため、耐食性を向上させることができる。このように、クリア塗膜を形成することで、美観の優れた鋼板材料(プレコート鋼板)を提供することができる。   The coating film may be a clear coating film. The surface modification method of the present invention can improve the wettability of the surface of the steel sheet without excessively affecting the optical properties (particularly the light reflection properties) of the steel plate as a base material. When used as a material, the surface can be modified without impairing the beauty of the stainless steel plate. Moreover, when a stainless steel plate is used as a base material, a dense passive film can be obtained and can be modified to a passive film containing no metallic iron, so that the corrosion resistance can be improved. Thus, by forming a clear coating film, it is possible to provide a steel sheet material (pre-coated steel sheet) having an excellent aesthetic appearance.

以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, this invention is not limited by these Examples.

[実施例1]
実施例1では、塗膜を有する本発明の表面改質鋼板を製造した例を示す。
[Example 1]
Example 1 shows an example in which the surface-modified steel sheet of the present invention having a coating film was produced.

1.表面改質液の調製
(1)実施例1の表面改質液(超純水、高濃度オゾン)
25℃における電気抵抗率が10MΩ・cmの超純水、15MΩ・cmの超純水および18MΩ・cmの超純水を準備した。また、酸素ガスを原料として無声放電により製造したオゾンを含有する気体を準備した。オゾンを含有する気体を超純水に接触させることで、溶存オゾン濃度が0.1〜30mg/Lとなるようにオゾンを超純水に溶解させて、実施例1の表面改質液を調製した。このように調製された表面改質液に含まれる金属(Na、Mg、Al、K、CaおよびFe)の濃度を誘導結合プラズマ発光質量分析(ICP−MS)法で測定した。その結果、表面改質液中の総金属濃度は、いずれの超純水を用いた場合であっても0.1μg/L以下であった。また、表面改質液に含まれる微粒子の数をレーザー散乱法で測定した。その結果、表面改質液中の微粒子の数は、いずれの超純水を用いた場合であっても1万個/L以下であった。
1. Preparation of surface modifying liquid (1) Surface modifying liquid of Example 1 (ultra pure water, high concentration ozone)
An ultrapure water having an electrical resistivity at 25 ° C. of 10 MΩ · cm, an ultrapure water of 15 MΩ · cm, and an ultrapure water of 18 MΩ · cm were prepared. In addition, a gas containing ozone produced by silent discharge using oxygen gas as a raw material was prepared. By contacting ozone-containing gas with ultrapure water, ozone is dissolved in ultrapure water so that the dissolved ozone concentration becomes 0.1 to 30 mg / L, and the surface modification liquid of Example 1 is prepared. did. The concentration of metals (Na, Mg, Al, K, Ca and Fe) contained in the surface modification solution thus prepared was measured by an inductively coupled plasma emission mass spectrometry (ICP-MS) method. As a result, the total metal concentration in the surface modification liquid was 0.1 μg / L or less regardless of which ultrapure water was used. Further, the number of fine particles contained in the surface modification liquid was measured by a laser scattering method. As a result, the number of fine particles in the surface modification liquid was 10,000 / L or less regardless of which ultrapure water was used.

(2)比較例1の表面改質液(超純水、低濃度オゾン)
25℃における電気抵抗率が18MΩ・cmの超純水を準備した。また、酸素ガスを原料として無声放電により製造したオゾンを含有する気体を準備した。オゾンを含有する気体を超純水に接触させることで、溶存オゾン濃度が0.005〜0.08mg/Lとなるようにオゾンを超純水に溶解させて、比較例1の表面改質液を調製した。表面改質液中の総金属濃度は、0.1μg/L以下であった。また、表面改質液中の微粒子の数は、1万個/L以下であった。
(2) Surface modification liquid of comparative example 1 (ultra pure water, low concentration ozone)
Ultrapure water having an electrical resistivity at 25 ° C. of 18 MΩ · cm was prepared. In addition, a gas containing ozone produced by silent discharge using oxygen gas as a raw material was prepared. By bringing the ozone-containing gas into contact with ultrapure water, the ozone is dissolved in ultrapure water so that the dissolved ozone concentration becomes 0.005 to 0.08 mg / L. Was prepared. The total metal concentration in the surface modification solution was 0.1 μg / L or less. Further, the number of fine particles in the surface modifying liquid was 10,000 / L or less.

(3)比較例2の表面改質液(純水、高濃度オゾン)
25℃における電気抵抗率が0.01MΩ・cmの純水、0.1MΩ・cmの純水および1MΩ・cmの純水を準備した。また、酸素ガスを原料として無声放電により製造したオゾンを含有する気体を準備した。オゾンを含有する気体を純水に接触させることで、溶存オゾン濃度が0.1〜30mg/Lとなるようにオゾンを純水に溶解させて、比較例2の表面改質液を調製した。表面改質液中の総金属濃度は、いずれの純水を用いた場合であっても50〜1000μg/Lであった。また、表面改質液中の微粒子の数は、いずれの純水を用いた場合であっても10万個/L程度であった。
(3) Surface modification liquid of Comparative Example 2 (pure water, high concentration ozone)
Pure water having an electrical resistivity at 25 ° C. of 0.01 MΩ · cm, pure water of 0.1 MΩ · cm, and pure water of 1 MΩ · cm were prepared. In addition, a gas containing ozone produced by silent discharge using oxygen gas as a raw material was prepared. By bringing ozone-containing gas into contact with pure water, ozone was dissolved in pure water so that the dissolved ozone concentration was 0.1 to 30 mg / L, and the surface modification liquid of Comparative Example 2 was prepared. The total metal concentration in the surface modification liquid was 50 to 1000 μg / L regardless of which pure water was used. Further, the number of fine particles in the surface modification liquid was about 100,000 / L, regardless of which pure water was used.

表1は、調製した実施例1の表面改質液(12種類)、比較例1の表面改質液(3種類)および比較例2の表面改質液(12種類)についての、超純水または純水の電気抵抗率および溶存オゾン濃度を示す表である。

Figure 2011153352
Table 1 shows ultrapure water for the prepared surface modification liquid of Example 1 (12 types), the surface modification liquid of Comparative Example 1 (3 types), and the surface modification liquid of Comparative Example 2 (12 types). Or it is a table | surface which shows the electrical resistivity and dissolved ozone concentration of a pure water.
Figure 2011153352

2.表面改質処理
塗装原板として、2種類のステンレス鋼板(SUS430、SUS304)、3種類のめっき鋼板(溶融Zn−55質量%Alめっき鋼板、溶融Znめっき鋼板、溶融Zn−6Al−3質量%Mgめっき鋼板)を準備した。各鋼板を実施例1、比較例1または比較例2のいずれかの表面改質液に5秒間浸漬した後、窒素ガスブローにより各鋼板を乾燥させた。
2. Surface modification treatment Two types of stainless steel plates (SUS430, SUS304), three types of plated steel plates (hot Zn-55 mass% Al-plated steel plate, hot-dip Zn-plated steel plate, hot-melt Zn-6Al-3 mass% Mg plating) Steel plate) was prepared. Each steel plate was immersed in the surface modification solution of any of Example 1, Comparative Example 1 or Comparative Example 2 for 5 seconds, and then each steel plate was dried by nitrogen gas blowing.

3.表面分析
ステンレス鋼板(SUS430またはSUS304)を基材とする表面改質ステンレス鋼板について、X線光電子分光分析装置(5500MC;アルバック・ファイ株式会社)を用いてXPS分析を行った(X線源:Mg Kα線)。各表面改質ステンレス鋼板について、10箇所分析した。この分析により、各表面改質ステンレス鋼板の表層(表面から5nm)における金属水酸化物/金属酸化物のO1sピーク強度の比(POH/P)を求めた。
3. Surface analysis A surface modified stainless steel plate based on a stainless steel plate (SUS430 or SUS304) was subjected to XPS analysis using an X-ray photoelectron spectrometer (5500MC; ULVAC-PHI Co., Ltd.) (X-ray source: Mg) Kα radiation). For each surface-modified stainless steel plate, 10 locations were analyzed. By this analysis, the ratio of metal hydroxide / metal oxide O 1s peak intensity (P OH / P O ) in the surface layer (5 nm from the surface) of each surface-modified stainless steel sheet was determined.

XPS分析の結果、実施例1の表面改質液(No.1〜12)を用いて表面改質を行った場合は、POH/P(O1sピーク強度の比)が0.8以上であった。一方、比較例1または比較例2の表面改質液(No.13〜27)を用いて表面改質を行った場合は、POH/Pが0.8未満であった。表2は、各表面改質液を用いて表面改質を行った後のPOH/Pを示す表である。

Figure 2011153352
As a result of XPS analysis, when the surface modification was performed using the surface modification solution (No. 1 to 12) of Example 1, P OH / PO (O 1s peak intensity ratio) was 0.8 or more. Met. On the other hand, when surface modification was performed using the surface modification liquid (No. 13 to 27) of Comparative Example 1 or Comparative Example 2, P OH / PO was less than 0.8. Table 2 is a table showing a P OH / P O after the surface modification using the surface modification liquid.
Figure 2011153352

4.塗膜密着性試験
各表面改質鋼板から試験片を切り出し、塗膜密着性試験を実施した。各試験片の表面にウレタン系塗料(KP1101白色塗料;関西ペイント株式会社)またはポリエステル系塗料(FLC5000クリア塗料;日本ファインコーティングス株式会社)を乾燥膜厚が5μm程度となるように塗布し、到達板温度230℃で焼付け乾燥した。塗装後の各試験片を沸騰水に2時間浸漬した後、180度2T曲げ試験を実施した。すなわち、曲げ部に試験片と同じ厚さの板を2枚挟み込み、手動万力にて180度に締め付けた。このとき、曲げ稜線は、試験片の幅方向と平行にした。曲げ加工部にセロハンテープを貼り付けた後、曲げ稜線に対して垂直にテープを剥がして、塗膜の残存率を測定し、塗膜密着性を評価した。このとき、塗膜の残存率が、90%以上の場合を「○」、50%以上90%未満の場合を「△」、50%未満の場合を「×」と評価した。
4). Coating Film Adhesion Test A test piece was cut out from each surface-modified steel sheet and a coating film adhesion test was performed. Apply urethane paint (KP1101 white paint; Kansai Paint Co., Ltd.) or polyester paint (FLC5000 clear paint; Nihon Fine Coatings Co., Ltd.) to the surface of each test piece so that the dry film thickness is about 5 μm. It was baked and dried at a plate temperature of 230 ° C. Each test piece after painting was immersed in boiling water for 2 hours, and then a 180 ° 2T bending test was performed. That is, two plates having the same thickness as the test piece were sandwiched between the bent portions and clamped at 180 degrees with a manual vise. At this time, the bending ridge line was parallel to the width direction of the test piece. After applying the cellophane tape to the bent portion, the tape was peeled off perpendicularly to the bending ridgeline, the remaining rate of the coating film was measured, and the coating film adhesion was evaluated. At this time, the case where the residual rate of the coating film was 90% or more was evaluated as “◯”, the case where it was 50% or more and less than 90% was evaluated as “Δ”, and the case where it was less than 50% was evaluated as “X”.

表3は、塗膜密着性試験の結果を示す表である。前述の通り、2種類のステンレス鋼板(SUS430、SUS304)および3種類のめっき鋼板(溶融Zn−55質量%Alめっき鋼板、溶融Znめっき鋼板、溶融Zn−6Al−3質量%Mgめっき鋼板)を塗装原板として用いたが、すべての鋼板において表3に示す結果となった。   Table 3 is a table | surface which shows the result of a coating-film adhesiveness test. As described above, two types of stainless steel plates (SUS430, SUS304) and three types of plated steel plates (hot Zn-55 mass% Al-plated steel plate, hot-dip Zn-plated steel plate, molten Zn-6Al-3 mass% Mg-plated steel plate) are coated. Although used as the original plate, the results shown in Table 3 were obtained for all the steel plates.

Figure 2011153352
Figure 2011153352

表3に示されるように、実施例1の表面改質液(No.1〜12)を用いて表面改質を行った場合は、塗膜の残存率が90%以上であった。一方、比較例1または比較例2の表面改質液(No.13〜27)を用いて表面改質を行った場合は、塗膜の残存率が90%未満であった。   As shown in Table 3, when the surface modification was performed using the surface modification liquid (Nos. 1 to 12) of Example 1, the residual ratio of the coating film was 90% or more. On the other hand, when the surface modification was performed using the surface modification liquid (No. 13 to 27) of Comparative Example 1 or Comparative Example 2, the residual ratio of the coating film was less than 90%.

以上の結果から、超純水に0.1mg/L以上の溶存オゾンを含有させた表面改質液を用いて表面改質を行うことで、塗膜の密着性を向上させうること、および鋼板表面にOH基を導入して有機樹脂系塗料に対する濡れ性を向上させうることがわかる。   From the above results, it is possible to improve the adhesion of the coating film by performing surface modification using a surface modification liquid containing 0.1 mg / L or more of dissolved ozone in ultrapure water, and a steel plate It can be seen that OH groups can be introduced on the surface to improve the wettability of the organic resin paint.

[実施例2]
実施例2では、塗装前処理皮膜および塗膜を有する本発明の表面改質鋼板を製造した例を示す。
[Example 2]
Example 2 shows an example in which the surface-modified steel sheet of the present invention having a pre-paint coating and a coating film is produced.

1.表面改質液の調製
(1)実施例2の表面改質液(超純水、高濃度オゾン)
25℃における電気抵抗率が18MΩ・cmの超純水を準備した。また、酸素ガスを原料として無声放電により製造したオゾンを含有する気体を準備した。オゾンを含有する気体を超純水に接触させることで、溶存オゾン濃度が5mg/Lとなるようにオゾンを超純水に溶解させて、実施例2の表面改質液を調製した。
1. Preparation of surface modification liquid (1) Surface modification liquid of Example 2 (ultra pure water, high concentration ozone)
Ultrapure water having an electrical resistivity at 25 ° C. of 18 MΩ · cm was prepared. In addition, a gas containing ozone produced by silent discharge using oxygen gas as a raw material was prepared. By bringing a gas containing ozone into contact with ultrapure water, ozone was dissolved in ultrapure water so that the dissolved ozone concentration was 5 mg / L, and the surface modification liquid of Example 2 was prepared.

(2)比較例3の表面改質液(純水、高濃度オゾン)
25℃における電気抵抗率が0.3MΩ・cmの純水を準備した。また、酸素ガスを原料として無声放電により製造したオゾンを含有する気体を準備した。オゾンを含有する気体を純水に接触させることで、溶存オゾン濃度が5mg/Lとなるようにオゾンを純水に溶解させて、比較例3の表面改質液を調製した。
(2) Surface modification liquid of Comparative Example 3 (pure water, high concentration ozone)
Pure water having an electrical resistivity at 25 ° C. of 0.3 MΩ · cm was prepared. In addition, a gas containing ozone produced by silent discharge using oxygen gas as a raw material was prepared. By bringing a gas containing ozone into contact with pure water, ozone was dissolved in pure water so that the dissolved ozone concentration was 5 mg / L, and the surface modification liquid of Comparative Example 3 was prepared.

2.表面改質処理
塗装原板として、2種類のステンレス鋼板(SUS430、SUS304)、3種類のめっき鋼板(溶融Zn−55質量%Alめっき鋼板、溶融Znめっき鋼板、溶融Zn−6Al−3質量%Mgめっき鋼板)を準備した。各鋼板を実施例2または比較例3の表面改質液に1秒間浸漬した後、窒素ガスブローにより各鋼板を乾燥させた。
2. Surface modification treatment Two types of stainless steel plates (SUS430, SUS304), three types of plated steel plates (hot Zn-55 mass% Al-plated steel plate, hot-dip Zn-plated steel plate, hot-melt Zn-6Al-3 mass% Mg plating) Steel plate) was prepared. Each steel plate was immersed in the surface modification solution of Example 2 or Comparative Example 1 for 1 second, and then each steel plate was dried by nitrogen gas blowing.

3.表面分析
ステンレス鋼板(SUS430またはSUS304)を基材とする表面改質ステンレス鋼板について、XPS分析を行った。各表面改質ステンレス鋼板について、10箇所分析した。この分析により、各表面改質ステンレス鋼板の表層(表面から5nm)におけるPOH/P(O1sピーク強度の比)を求めた。
3. Surface analysis An XPS analysis was performed on a surface-modified stainless steel plate based on a stainless steel plate (SUS430 or SUS304). For each surface-modified stainless steel plate, 10 locations were analyzed. By this analysis, P OH / PO (O 1s peak intensity ratio) in the surface layer (5 nm from the surface) of each surface-modified stainless steel plate was determined.

XPS分析の結果、実施例2の表面改質液を用いて表面改質を行った場合は、POH/P(O1sピーク強度の比)が0.8以上であった。一方、比較例3の表面改質液を用いて表面改質を行った場合は、POH/Pが0.8未満であった。表4は、各表面改質液を用いて表面改質を行った後のPOH/Pを示す表である。

Figure 2011153352
As a result of XPS analysis, when the surface modification was performed using the surface modification solution of Example 2, P OH / PO (O 1s peak intensity ratio) was 0.8 or more. On the other hand, when surface modification was performed using the surface modification liquid of Comparative Example 3, P OH / PO was less than 0.8. Table 4 is a table showing a P OH / P O after the surface modification using the surface modification liquid.
Figure 2011153352

4.塗膜密着性試験
各表面処理鋼板から試験片を切り出し、塗膜密着性試験を実施した。まず、各試験片の表面に表5に示す組成の塗装前処理液のいずれかを塗布し、到達板温度130℃で乾燥した。

Figure 2011153352
4). Coating Film Adhesion Test A test piece was cut out from each surface-treated steel sheet, and a coating film adhesion test was performed. First, one of the coating pretreatment liquids having the composition shown in Table 5 was applied to the surface of each test piece and dried at a reaching plate temperature of 130 ° C.
Figure 2011153352

次いで、塗装前処理後の各試験片の表面にポリエステル系塗料(FLC5000クリア塗料;日本ファインコーティングス株式会社)を乾燥膜厚が5μm程度となるように塗布し、到達板温度230℃で焼付け乾燥した。塗装後の各試験片を沸騰水に2時間浸漬した後、180度2T曲げ試験を実施した。すなわち、曲げ部に試験片と同じ厚さの板を2枚挟み込み、手動万力にて180度に締め付けた。このとき、曲げ稜線は、試験片の幅方向と平行にした。曲げ加工部にセロハンテープを貼り付けた後、曲げ稜線に対して垂直にテープを剥がして、塗膜の残存率を測定し、塗膜密着性を評価した。このとき、塗膜の残存率が、90%以上の場合を「○」、50%以上90%未満の場合を「△」、50%未満の場合を「×」と評価した。   Next, a polyester-based paint (FLC5000 clear paint; Nippon Fine Coatings Co., Ltd.) is applied to the surface of each test piece after the pretreatment for coating so that the dry film thickness is about 5 μm, and baked and dried at a final plate temperature of 230 ° C. did. Each test piece after painting was immersed in boiling water for 2 hours, and then a 180 ° 2T bending test was performed. That is, two plates having the same thickness as the test piece were sandwiched between the bent portions and clamped at 180 degrees with a manual vise. At this time, the bending ridge line was parallel to the width direction of the test piece. After applying the cellophane tape to the bent portion, the tape was peeled off perpendicularly to the bending ridgeline, the remaining rate of the coating film was measured, and the coating film adhesion was evaluated. At this time, the case where the residual rate of the coating film was 90% or more was evaluated as “◯”, the case where it was 50% or more and less than 90% was evaluated as “Δ”, and the case where it was less than 50% was evaluated as “X”.

表6は、塗膜密着性試験の結果を示す表である。前述の通り、2種類のステンレス鋼板(SUS430、SUS304)、3種類のめっき鋼板(溶融Zn−55質量%Alめっき鋼板、溶融Znめっき鋼板、溶融Zn−6Al−3質量%Mgめっき鋼板)を塗装原板として用いたが、すべての鋼板において表6に示す結果となった。   Table 6 is a table | surface which shows the result of a coating-film adhesiveness test. As described above, two types of stainless steel plates (SUS430, SUS304) and three types of plated steel plates (hot Zn-55 mass% Al-plated steel plate, hot-dip Zn-plated steel plate, molten Zn-6Al-3 mass% Mg-plated steel plate) are coated. Although used as an original plate, the results shown in Table 6 were obtained for all the steel plates.

Figure 2011153352
Figure 2011153352

表6に示されるように、実施例2の表面改質液を用いて表面改質を行った場合は、塗膜の残存率が90%以上であった。一方、比較例3の表面改質液を用いて表面改質を行った場合は(比較例3)、塗膜の残存率が90%未満であった。   As shown in Table 6, when the surface modification was performed using the surface modification solution of Example 2, the residual ratio of the coating film was 90% or more. On the other hand, when the surface modification was performed using the surface modification liquid of Comparative Example 3 (Comparative Example 3), the residual ratio of the coating film was less than 90%.

以上の結果から、超純水に0.1mg/L以上の溶存オゾンを含有させた表面改質液を用いて表面改質を行うことで、塗装前処理皮膜の密着性を向上させうること、および鋼板表面にOH基を導入して塗装前処理液に対する濡れ性を向上させうることがわかる。   From the above results, it is possible to improve the adhesion of the coating pretreatment film by performing surface modification using a surface modification liquid containing 0.1 mg / L or more of dissolved ozone in ultrapure water, It can also be seen that OH groups can be introduced into the surface of the steel sheet to improve the wettability with respect to the coating pretreatment liquid.

本発明の製造方法は、塗膜密着性に優れた表面改質鋼板を製造することができる。本発明の製造方法により製造された表面改質鋼板は、例えば高温高湿環境下で使用されるプレコート鋼板などとして有用である。   The production method of the present invention can produce a surface-modified steel sheet having excellent coating film adhesion. The surface-modified steel sheet produced by the production method of the present invention is useful as a precoated steel sheet used in a high temperature and high humidity environment, for example.

Claims (4)

25℃における電気抵抗率が10MΩ・cm以上の超純水に0.1mg/L以上の溶存オゾンを含有させた表面改質液を準備するステップと、
鋼板の表面に前記表面改質液を接触させるステップと、
を含む、表面改質鋼板の製造方法。
Preparing a surface modifying liquid containing 0.1 mg / L or more of dissolved ozone in ultrapure water having an electric resistivity of 10 MΩ · cm or more at 25 ° C .;
Contacting the surface modifying liquid with the surface of the steel sheet;
A method for producing a surface-modified steel sheet, comprising:
前記鋼板は、ステンレス鋼板であり、
前記表面改質鋼板の表面から5nmの厚み領域における金属水酸化物のO1sピーク強度POHと、金属酸化物のO1sピーク強度Pとの比POH/Pは、0.8以上である、
請求項1に記載の製造方法。
The steel plate is a stainless steel plate,
And O 1s peak intensity P OH metal hydroxide in the surface modified surface from 5nm thickness region of the steel sheet, the ratio P OH / P O of the O 1s peak intensity P O of the metal oxide is 0.8 or more Is,
The manufacturing method according to claim 1.
請求項1または請求項2に記載の方法で得られた表面改質鋼板の表面に、さらに塗膜を有する、表面改質鋼板。   A surface-modified steel sheet further having a coating film on the surface of the surface-modified steel sheet obtained by the method according to claim 1 or 2. 請求項2に記載の方法で得られた表面改質鋼板の表面に、さらにクリア塗膜を有する、表面改質鋼板。   A surface-modified steel sheet further having a clear coating film on the surface of the surface-modified steel sheet obtained by the method according to claim 2.
JP2010015818A 2010-01-27 2010-01-27 Method for producing surface-modified steel sheet with excellent coating film adhesion Active JP5324488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015818A JP5324488B2 (en) 2010-01-27 2010-01-27 Method for producing surface-modified steel sheet with excellent coating film adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015818A JP5324488B2 (en) 2010-01-27 2010-01-27 Method for producing surface-modified steel sheet with excellent coating film adhesion

Publications (2)

Publication Number Publication Date
JP2011153352A true JP2011153352A (en) 2011-08-11
JP5324488B2 JP5324488B2 (en) 2013-10-23

Family

ID=44539524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015818A Active JP5324488B2 (en) 2010-01-27 2010-01-27 Method for producing surface-modified steel sheet with excellent coating film adhesion

Country Status (1)

Country Link
JP (1) JP5324488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211015A (en) * 2015-04-30 2016-12-15 シグマテクノロジー有限会社 Method for modifying metal surface utilizing micro-nano-bubble, and adhesion method between metal and resin

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272054A (en) * 1992-05-14 1994-09-27 Sony Corp Substrate for forming organic thin film and its production
JPH1072645A (en) * 1996-05-29 1998-03-17 Sumitomo Metal Ind Ltd Stainless steel material for ozone-containing water and its production
JPH11111908A (en) * 1997-10-03 1999-04-23 Hitachi Cable Ltd Lead-forming material and resin adhesion improved surface treatment
JP2000345316A (en) * 1999-06-01 2000-12-12 Nisshin Steel Co Ltd Method for modifying surface of stainless steel
JP2002097579A (en) * 2000-09-25 2002-04-02 Nisshin Steel Co Ltd Method for manufacturing container and utensil made from stainless steel for food
JP2002285350A (en) * 2001-03-22 2002-10-03 Nisshin Steel Co Ltd Method for producing loom member made of chromium- containing steel having excellent corrosion resistance
JP2004307887A (en) * 2003-04-03 2004-11-04 Nisshin Steel Co Ltd Method of enhancing corrosion resistance of building hardware
JP2008214751A (en) * 2007-02-07 2008-09-18 Nissan Motor Co Ltd Method for modifying surface of metal and surface-modified member
JP2009256786A (en) * 2008-03-25 2009-11-05 Nisshin Steel Co Ltd Heat resistant non-adhesive clear coated stainless steel sheet free from the generation of tamper color
JP2009256785A (en) * 2008-03-25 2009-11-05 Nisshin Steel Co Ltd Coated ba stainless steel sheet having excellent adhesive strength of coating

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272054A (en) * 1992-05-14 1994-09-27 Sony Corp Substrate for forming organic thin film and its production
JPH1072645A (en) * 1996-05-29 1998-03-17 Sumitomo Metal Ind Ltd Stainless steel material for ozone-containing water and its production
JPH11111908A (en) * 1997-10-03 1999-04-23 Hitachi Cable Ltd Lead-forming material and resin adhesion improved surface treatment
JP2000345316A (en) * 1999-06-01 2000-12-12 Nisshin Steel Co Ltd Method for modifying surface of stainless steel
JP2002097579A (en) * 2000-09-25 2002-04-02 Nisshin Steel Co Ltd Method for manufacturing container and utensil made from stainless steel for food
JP2002285350A (en) * 2001-03-22 2002-10-03 Nisshin Steel Co Ltd Method for producing loom member made of chromium- containing steel having excellent corrosion resistance
JP2004307887A (en) * 2003-04-03 2004-11-04 Nisshin Steel Co Ltd Method of enhancing corrosion resistance of building hardware
JP2008214751A (en) * 2007-02-07 2008-09-18 Nissan Motor Co Ltd Method for modifying surface of metal and surface-modified member
JP2009256786A (en) * 2008-03-25 2009-11-05 Nisshin Steel Co Ltd Heat resistant non-adhesive clear coated stainless steel sheet free from the generation of tamper color
JP2009256785A (en) * 2008-03-25 2009-11-05 Nisshin Steel Co Ltd Coated ba stainless steel sheet having excellent adhesive strength of coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211015A (en) * 2015-04-30 2016-12-15 シグマテクノロジー有限会社 Method for modifying metal surface utilizing micro-nano-bubble, and adhesion method between metal and resin

Also Published As

Publication number Publication date
JP5324488B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
TWI447264B (en) Surface-treating agent for metallic material
JP5252925B2 (en) Surface chemical conversion liquid and method for producing chemical conversion metal plate
WO2011118588A1 (en) Steel sheet for container and method for producing same
JP6315750B2 (en) Aqueous metal surface treatment agent
JP5251078B2 (en) Steel plate for containers and manufacturing method thereof
WO2006126560A1 (en) Chemical treating liquid for metal and treating method
JPWO2007100017A1 (en) Metal surface treatment composition, metal surface treatment method, and metal material
JP2005120469A (en) Composition for treating surface of metallic material, and surface treatment method
JP5157487B2 (en) Steel plate for containers and manufacturing method thereof
CN103108991A (en) Manufacturing method for steel plates for containers
AU2012254470B2 (en) Chemical conversion treatment agent for surface treatment of metal substrate, and surface treatment method of metal substrate using same
WO2019087475A1 (en) Pretreatment agent and chemical conversion treatment agent
JP2004218074A (en) Chemical conversion treatment agent and surface-treated metal
WO2005056876A1 (en) Liquid trivalent chromate for aluminum or aluminum alloy and method for forming corrosion-resistant film over surface of aluminum or aluminum alloy by using same
JP4668063B2 (en) Resin-coated aluminum plate and method for producing the same
KR0179687B1 (en) Surface treating composition for aluminum containing metallic material and surface treatment
JP2010111904A (en) Surface-treated galvanized steel sheet
JP2010111898A (en) Chemical conversion-treated metal sheet and method for producing the same
JP5324488B2 (en) Method for producing surface-modified steel sheet with excellent coating film adhesion
JP3903594B2 (en) Manufacturing method of surface-treated steel sheet with excellent corrosion resistance
JP2005325401A (en) Surface treatment method for zinc or zinc alloy coated steel
JP5601806B2 (en) Method for producing stainless steel sheet with excellent coating film adhesion
WO1999050366A1 (en) Metallic material with organic composite coating excellent in corrosion resistance and coatability and reduced in finger mark adhesion and process for producing the same
JP2008163364A (en) Chemical conversion-treated steel sheet having excellent coating film adhesive strength and film adhesion after forming
JP5442346B2 (en) Method for producing chemical conversion treated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Ref document number: 5324488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250