JP2010111904A - Surface-treated galvanized steel sheet - Google Patents

Surface-treated galvanized steel sheet Download PDF

Info

Publication number
JP2010111904A
JP2010111904A JP2008284587A JP2008284587A JP2010111904A JP 2010111904 A JP2010111904 A JP 2010111904A JP 2008284587 A JP2008284587 A JP 2008284587A JP 2008284587 A JP2008284587 A JP 2008284587A JP 2010111904 A JP2010111904 A JP 2010111904A
Authority
JP
Japan
Prior art keywords
group
compound
surface treatment
steel sheet
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008284587A
Other languages
Japanese (ja)
Other versions
JP5661238B2 (en
Inventor
Hidehiro Yamaguchi
英宏 山口
Kenichi Kobayashi
健一 小林
Kensuke Mizuno
賢輔 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2008284587A priority Critical patent/JP5661238B2/en
Publication of JP2010111904A publication Critical patent/JP2010111904A/en
Application granted granted Critical
Publication of JP5661238B2 publication Critical patent/JP5661238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a galvanized steel sheet in which corrosion resistance and fingerprint resistance in a thin film are consistent, and further, which has electroconductivity and adhesion which have not been obtained by the conventional multilayer treatment. <P>SOLUTION: The surface-treated galvanized steel sheet 10 is obtained by providing the surface of a galvanized steel sheet 12 with: a surface treatment layer 14 in which the total amount in element deposition per unit area of at least one metallic element (X) selected from the group consisting of Zr, Ti and Hf is 2 to 50 mg/m<SP>2</SP>, and formed by self-precipitation and/or electrolytic precipitation; and a silicon-containing layer 16 formed by applying a water base metal surface treatment agent comprising an organic silicone compound (Y) to the surface of the surface treatment layer in this order. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車ボディー、自動車部品、建材、家電用部品等の成形加工品、鋳造品、シートコイル等に用いられる表面処理鋼板であって、これまでに得られていない性能バランスを有し、耐食性と耐指紋性を両立するだけでなく、従来の表面処理では得られなかった導電性と密着性とを備える亜鉛系めっき鋼板に関するものである。   The present invention is a surface-treated steel sheet used for molded products such as automobile bodies, automobile parts, building materials, home appliance parts, cast products, sheet coils, etc., and has a performance balance that has not been obtained so far. The present invention relates to a galvanized steel sheet that not only has both corrosion resistance and fingerprint resistance, but also has conductivity and adhesion that cannot be obtained by conventional surface treatment.

亜鉛系めっき鋼板はもちろんのこと、ほとんどすべての金属材料は、大気環境中に放置されると、大気から物理吸着した水分の存在のもと、SO、NO、飛来海塩粒子等の腐食促進付着物質の作用により、その表面に腐食を生じる。この腐食を防止するために、従来から亜鉛系めっき鋼板等の金属材料の防食法として、クロム酸クロメート等のクロムを含有する処理液に金属材料表面を接触させてクロメート皮膜を析出させる、または処理液を金属材料上に塗布後、乾燥させて金属材料表面にクロメート皮膜を形成させる方法がある。 Almost all metallic materials as well as galvanized steel sheets, when left in the atmospheric environment, corrode SO 2 , NO 2 , flying sea salt particles, etc. in the presence of moisture physically adsorbed from the atmosphere. Corrosion occurs on the surface due to the action of the accelerated adhesion substance. In order to prevent this corrosion, as a conventional corrosion prevention method for metallic materials such as galvanized steel sheets, the chromate film is deposited or treated by bringing the surface of the metallic material into contact with a treatment liquid containing chromium such as chromate chromate. There is a method in which a liquid is applied on a metal material and then dried to form a chromate film on the surface of the metal material.

金属材料の表面を処理液と接触させてクロメート皮膜を析出させる代表的なものとしては、クロム酸クロメート化成処理とりん酸クロメート化成処理とがある。前者のクロム酸クロメート化成処理は1950年頃に実用化され、現在も亜鉛系めっき鋼板等に幅広く使用されている。このクロム酸クロメート化成処理に用いられる処理液は、クロム酸(CrO)とフッ化水素酸(HF)とを主成分として含み、さらに促進剤が添加されており、六価クロムを含有する析出皮膜を形成し得る。 Typical examples of depositing a chromate film by bringing the surface of a metal material into contact with a treatment liquid include chromic acid chromate conversion treatment and phosphoric acid chromate chemical conversion treatment. The former chromate chromate conversion treatment was put into practical use around 1950 and is still widely used for galvanized steel sheets. The treatment liquid used for the chromate chromate conversion treatment contains chromic acid (CrO 3 ) and hydrofluoric acid (HF) as main components, and further contains an accelerator, and contains a precipitate containing hexavalent chromium. A film can be formed.

また、後者のりん酸クロメート化成処理は1945年に提案された特許文献1に記載の方法によるものであり、この化成処理液はクロム酸(CrO)、りん酸(HPO)、およびフッ化水素酸(HF)を含み、形成される析出皮膜は水和したりん酸クロム(CrPO・4HO)を主成分として含むものである。 Moreover, the latter phosphoric acid chromate chemical conversion treatment is based on the method described in Patent Document 1 proposed in 1945, and this chemical conversion treatment solution contains chromic acid (CrO 3 ), phosphoric acid (H 3 PO 4 ), and The deposited film formed containing hydrofluoric acid (HF) contains hydrated chromium phosphate (CrPO 4 .4H 2 O) as a main component.

このように多くの場合、これらのクロメートタイプ表面処理液は、有害な六価クロムを含有している。環境面、安全面から問題のある六価クロムはもちろんのこと、三価クロムでさえその使用を規制されていく時代の流れにあって、上述のような六価クロムを含む処理液を用いる表面処理法から、クロムを全く含有しないノンクロメートタイプの表面処理法への転換が望まれている。   As described above, in many cases, these chromate type surface treatment liquids contain harmful hexavalent chromium. Not only hexavalent chromium, which is problematic from the environmental and safety aspects, but also the surface of the era in which the use of even trivalent chromium is regulated, and the surface using a treatment liquid containing hexavalent chromium as described above It is desired to switch from a treatment method to a non-chromate type surface treatment method containing no chromium.

ノンクロメートタイプの表面処理法には析出型および塗布型があるが、析出型は、アルミニウム含有金属材料の表面処理法として既に実績がある。アルミニウム含有金属材料に対し、比較的早期からノンクロメートタイプの処理液が適用されてきた理由は、アルミニウム缶等食品と接する材質としてこの金属材料が多く使われてきたことによる。   Non-chromate type surface treatment methods include a precipitation type and a coating type, and the precipitation type has already been proven as a surface treatment method for aluminum-containing metal materials. The reason why the non-chromate type treatment liquid has been applied to aluminum-containing metal materials from a relatively early stage is that this metal material has been widely used as a material in contact with food such as aluminum cans.

アルミニウム含有金属材料に対するノンクロメートタイプの化成析出型表面処理液の代表的なものとしては、特許文献2に記載の処理液が挙げられる。この処理液はジルコニウムもしくはチタン、またはこれらの混合物、ホスフェートおよびフッ化物を含有し、かつ、pHが約1.0〜4.0の酸性の水系表面処理液である。この化成処理液を用いて処理を行うと、アルミニウム含有金属材料表面上に、ジルコニウムまたはチタンのりん化合物を主成分とする析出皮膜が形成される。   As a typical non-chromate type chemical conversion surface treatment solution for an aluminum-containing metal material, there is a treatment solution described in Patent Document 2. This treatment liquid is an acidic aqueous surface treatment liquid containing zirconium or titanium, or a mixture thereof, phosphate and fluoride, and having a pH of about 1.0 to 4.0. When treatment is performed using this chemical conversion treatment solution, a deposited film mainly containing a phosphorus compound of zirconium or titanium is formed on the surface of the aluminum-containing metal material.

このようなアルミニウム含有金属材料用の化成析出型表面処理液に比べ、亜鉛系めっき鋼板用のノンクロメートタイプの化成析出型表面処理液に関する既存技術はほとんどない。また、亜鉛系めっき鋼板のシートコイルメーカーでは現在、析出型の表面処理よりも塗布型表面処理が主流となりつつある。しかし、シートコイルメーカーのラインによっては、塗布型表面処理の導入が、設備コストや立地上の都合により不可能な場合もあり、析出型の設備によって既存のクロメート処理をノンクロメートタイプの処理に置き換えたいという要望は強い。   Compared to such a chemical precipitation type surface treatment liquid for aluminum-containing metal materials, there is almost no existing technology relating to a non-chromate type chemical precipitation type surface treatment liquid for galvanized steel sheets. In addition, in the sheet coil manufacturers of galvanized steel sheets, the coating type surface treatment is now becoming the mainstream rather than the precipitation type surface treatment. However, depending on the sheet coil manufacturer's line, the introduction of coating-type surface treatment may not be possible due to equipment costs and locational reasons, and the existing chromate treatment is replaced with a non-chromate treatment by the precipitation-type equipment. The desire to want is strong.

ノンクロメートタイプの処理液としては、例えば、特許文献3には、アルミニウム、鉄またはマグネシウムの合金類を被覆するための水性組成物であって、チタン、ジルコニウム、マグネシウムおよびカルシウムと、溶解されたフッ素イオンとを含み、pHが2.0〜5.0であり、エッチングをほとんどまたは全く生じないように皮膜を形成する水性組成物が記載されている。しかし、この水性組成物を亜鉛系めっき鋼板に適用することは記載されていない。   As a non-chromate type treatment liquid, for example, Patent Document 3 discloses an aqueous composition for coating an alloy of aluminum, iron, or magnesium, and includes titanium, zirconium, magnesium, and calcium, and dissolved fluorine. An aqueous composition is described that includes ions and has a pH of 2.0 to 5.0 and forms a film with little or no etching. However, it is not described that this aqueous composition is applied to a zinc-based plated steel sheet.

特許文献4〜13には、ジルコニウム、チタン、ハフニウムなどの金属、フッ素、促進剤などを含有し、その濃度やモル比率などを調整することにより、クロムを含まず、高い耐食性を発揮し、かつ、安定性に優れた化成処理剤、化成処理方法および化成処理材料に関する技術が開示されている。しかしながら、これらの処理においては皮膜析出にかかる時間が長く、シートコイルなどには適用できない。   Patent Documents 4 to 13 contain metals such as zirconium, titanium, and hafnium, fluorine, accelerators, etc., and by adjusting the concentration and molar ratio, do not contain chromium, exhibit high corrosion resistance, and Further, a technique relating to a chemical conversion treatment agent, a chemical conversion treatment method and a chemical conversion treatment material excellent in stability is disclosed. However, in these treatments, it takes a long time to deposit the film, and it cannot be applied to a sheet coil or the like.

また、特許文献14および15には、ジルコニウム、チタンおよびハフニウムからなる群より選ばれる少なくとも一種、フッ素、並びに、水溶性樹脂からなる化成処理剤であって、環境への負荷が少なく、かつ、鉄、亜鉛、アルミニウム等のすべての金属に対して良好な化成処理を行うことができる化成処理剤、およびそれを用いて得られる表面処理金属に関する技術が開示されている。しかしながら、この技術においても処理時間の短縮はできておらず、シートコイルには適用できない。   Patent Documents 14 and 15 are chemical conversion treatment agents composed of at least one selected from the group consisting of zirconium, titanium, and hafnium, fluorine, and a water-soluble resin, and have a low environmental load, and iron. In addition, a chemical conversion treatment agent capable of performing a good chemical conversion treatment on all metals such as zinc and aluminum, and a technique relating to a surface-treated metal obtained by using the chemical conversion treatment agent are disclosed. However, even in this technique, the processing time cannot be shortened and cannot be applied to a sheet coil.

また、特許文献16には、化成処理金属板であって、Zr、Ti、HfおよびSiからなる群から選ばれる少なくとも1つの元素を含む化合物を少なくとも1種含み、自己析出または電解析出した表面化成処理層を金属板の表面に有する化成処理金属板に関する技術が開示されている。この技術は、短時間で耐食性を有するという点ではシートコイルに適用でき、極めて産業的価値が高い。しかしながら、その化成皮膜の性能については、特に加工部耐食性において更なる改善が必要であった。   Patent Document 16 discloses a chemical conversion-treated metal plate that includes at least one compound containing at least one element selected from the group consisting of Zr, Ti, Hf, and Si, and is subjected to self-deposition or electrolytic deposition. A technique relating to a chemical conversion treatment metal plate having a treatment layer on the surface of the metal plate is disclosed. This technique can be applied to a sheet coil in that it has corrosion resistance in a short time, and has extremely high industrial value. However, regarding the performance of the chemical conversion film, further improvement in the corrosion resistance of the processed part was necessary.

一方、塗布型皮膜剤に関しては、金属材料表面への密着性に優れ、金属材料表面に耐食性や耐指紋性などを付与する技術として、金属材料表面に、クロム酸、重クロム酸またはそれらの塩を主成分として含有する処理液により塗布型クロメート処理を施す方法、りん酸塩処理を施す方法、シランカップリング剤単体による処理を施す方法、有機樹脂皮膜処理を施す方法、などが知られており、実用に供されている。   On the other hand, with regard to coating type coating agents, chromic acid, dichromic acid or their salts are applied to the surface of the metal material as a technology that provides excellent adhesion to the surface of the metal material and imparts corrosion resistance and fingerprint resistance to the surface of the metal material. There are known methods such as a coating chromate treatment with a treatment solution containing as a main component, a phosphate treatment method, a silane coupling agent treatment method, an organic resin film treatment method, etc. It is used for practical use.

主としてシランカップリング剤を使用する技術として特許文献17では、一時的な防食効果を得るため、低濃度の有機官能シランおよび架橋剤を含有する水溶液による金属板の処理方法が開示されている。架橋剤が有機官能シランを架橋することによって、稠密なシロキサン・フィルムが得られることが開示されている。   As a technique mainly using a silane coupling agent, Patent Document 17 discloses a method for treating a metal plate with an aqueous solution containing a low concentration of an organofunctional silane and a crosslinking agent in order to obtain a temporary anticorrosive effect. It is disclosed that a crosslinker crosslinks an organofunctional silane to obtain a dense siloxane film.

また、特許文献18には、アルコキシシランを2個以上有する化合物と、有機酸、りん酸および錯弗化物から選ばれる化合物とを含有する表面処理剤を用いて、金属の表面上に耐食性と塗装密着性とに優れた皮膜を形成する方法が開示されている。   Patent Document 18 discloses that a surface treatment agent containing a compound having two or more alkoxysilanes and a compound selected from an organic acid, phosphoric acid and a complex fluoride is used for corrosion resistance and coating on the surface of a metal. A method of forming a film excellent in adhesion is disclosed.

しかしながら、特許文献17〜18に記載のこれらの技術は、得られる皮膜の導電性や耐指紋性などの性能が著しく欠如していること、製品の高品質化(耐食性、塗装密着性)に対しての対応が困難であることなどの問題がある。また、耐食性と塗装密着性とに優れた皮膜を形成することが可能であったとしても、溶剤系であることで環境面および安全面に問題を残すこと、水系で安定的に供給することが困難であることなどの問題を抱えており、実用化に関しては依然として大きな問題を抱えている。   However, these techniques described in Patent Documents 17 to 18 are remarkably lacking in performance such as conductivity and fingerprint resistance of the obtained film, and for improving the quality of products (corrosion resistance, paint adhesion). There are problems such as difficulty in handling all of them. In addition, even if it is possible to form a film with excellent corrosion resistance and paint adhesion, it is possible to leave a problem in the environment and safety due to the solvent system, and to supply it stably in the water system. It has problems such as difficulty, and still has a big problem regarding practical use.

一方、有機樹脂皮膜を用いる技術として、特許文献19には、水性分散樹脂を固形分濃度で5〜30質量%、シリカ粒子を0.1〜20質量%、および有機チタネート化合物を0.01〜20質量%配合したことを特徴とする鋼材用水性被覆剤が開示されている。この被覆剤は、亜鉛系被覆鋼または無被覆鋼等の鋼材を被覆するに好適な1液タイプの鋼材用水性被覆剤であり、得られた鋼材は耐食性、耐溶剤性、耐アルカリ性、塗装密着性、皮膜密着性、浴安定性に優れる。   On the other hand, as a technique using an organic resin film, Patent Document 19 discloses that an aqueous dispersion resin is 5 to 30% by mass in solid concentration, 0.1 to 20% by mass of silica particles, and 0.01 to 20% of an organic titanate compound. An aqueous coating material for steel material characterized by containing 20% by mass is disclosed. This coating is a one-component water-based coating suitable for coating steel such as zinc-based coated steel or uncoated steel. The resulting steel is corrosion-resistant, solvent-resistant, alkali-resistant, and paint adhesion. Excellent in adhesion, film adhesion and bath stability.

また、特許文献20には、特定の樹脂化合物と、第1〜3級アミノ基および第4級アンモニウム塩基から選ばれる少なくとも1種のカチオン性官能基を有するカチオン性ウレタン樹脂と、特定の反応性官能基を有する1種以上のシランカップリング剤と、特定の酸化合物とを含有し、かつ、カチオン性ウレタン樹脂およびシランカップリング剤の含有量が所定の範囲内である表面処理剤が開示されている。さらに、この処理剤を用いて得られる、耐食性、耐指紋性、耐黒変性および塗装密着性に優れたノンクロム系表面処理鋼板およびその製造方法が開示されている。   Patent Document 20 discloses a specific resin compound, a cationic urethane resin having at least one cationic functional group selected from primary to tertiary amino groups and quaternary ammonium bases, and specific reactivity. Disclosed is a surface treatment agent containing at least one silane coupling agent having a functional group and a specific acid compound, and the content of the cationic urethane resin and the silane coupling agent is within a predetermined range. ing. Furthermore, a non-chromium surface-treated steel sheet obtained by using this treating agent and excellent in corrosion resistance, fingerprint resistance, blackening resistance and paint adhesion is disclosed.

しかしながら、特許文献19および20に開示されるこれらの技術は、有機樹脂で金属材料表面を被覆することで耐食性や耐指紋性を発現するため、導電性やスポット溶接性などの性能に劣るという問題がある。また主成分が有機高分子であるため、高温における熱分解、着色、粘性の増加などが生じるため耐熱用途には使用できないのが現状である。   However, since these techniques disclosed in Patent Documents 19 and 20 exhibit corrosion resistance and fingerprint resistance by coating the surface of a metal material with an organic resin, there is a problem that the performance such as conductivity and spot weldability is inferior. There is. In addition, since the main component is an organic polymer, thermal decomposition at high temperatures, coloring, increase in viscosity, etc. occur, so that it cannot be used for heat resistant applications.

また、特許文献9、14、21には、特定の金属元素を含有する表面処理剤により下地皮膜を析出させ、その上層として水溶性高分子もしくは水分散性高分子、または樹脂を接触させ、皮膜を形成する技術が開示されている。しかしながら、これらの技術は皮膜析出にかかる時間が長く、シートコイルには適用できないばかりか、上層として形成させた高分子皮膜による性能向上が認められない。   Further, in Patent Documents 9, 14, and 21, a base film is deposited by a surface treatment agent containing a specific metal element, and a water-soluble polymer or a water-dispersible polymer or resin is contacted as an upper layer to form a film. Techniques for forming the are disclosed. However, these techniques take a long time to deposit the film, and are not applicable to sheet coils. In addition, no performance improvement is observed due to the polymer film formed as the upper layer.

上述のように、いずれの方法でもクロメート皮膜を代替した表面処理鋼板は得られておらず、耐食性、塗装密着性、導電性、耐指紋性などの諸特性を総合的に満足し、かつ短い処理時間で製造可能な表面処理亜鉛系めっき鋼板の開発が強く要求されている。   As described above, no surface-treated steel sheet that replaces the chromate film has been obtained by any of the methods, and comprehensively satisfies various characteristics such as corrosion resistance, paint adhesion, conductivity, and fingerprint resistance, and a short treatment. There is a strong demand for the development of surface-treated galvanized steel sheets that can be manufactured in time.

米国特許第2,438,877号明細書US Pat. No. 2,438,877 特開昭52−131937号公報JP 52-131937 A 特表平9−503823号公報Japanese National Patent Publication No. 9-503823 特開2004−043913号公報JP 2004-043913 A 特開2004−218070号公報Japanese Patent Application Laid-Open No. 2004-218070 特開2004−218072号公報JP 2004-218072 A 特開2004−218073号公報JP 2004-218073 A 特開2004−218074号公報JP 2004-218074 A 特開2005−008982号公報JP 2005008982 A 特開2006−124751号公報JP 2006-124751 A 特開2006−161115号公報JP 2006-161115 A 特開2007−262577号公報JP 2007-262577 A 特開2007−314888号公報JP 2007-314888 A 特開2004−218075号公報JP 2004-218075 A 特開2004−292874号公報JP 2004-292874 A 国際公開第2007/61011号パンフレットInternational Publication No. 2007/61011 Pamphlet 米国特許第5,292,549号明細書US Pat. No. 5,292,549 特開2001−49453号公報JP 2001-49453 A 特開2003−155451号公報JP 2003-155451 A 特開2003−105562号公報JP 2003-105562 A 特開2005−264230号公報JP 2005-264230 A

本発明は、従来技術の有する上記課題を解決し、短時間で製造可能であり、かつ、耐食性と耐指紋性とを両立するだけでなく、従来の表面処理では得られなかった導電性と密着性とを有する、諸特性の性能バランスに優れた亜鉛系めっき鋼板を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, can be manufactured in a short time, and not only achieves both corrosion resistance and fingerprint resistance, but also has conductivity and adhesion that could not be obtained by conventional surface treatment. An object of the present invention is to provide a zinc-based plated steel sheet having excellent performance balance of various properties.

発明者らは、これらの問題を解決すべく鋭意検討を重ねた結果、自己析出および/または電解析出により、特定の金属元素が所定量析出して形成される表面処理層を有する亜鉛系めっき鋼板に、特定の構造および分子量を有する有機ケイ素化合物を含む水系金属表面処理剤を塗布してケイ素含有層を形成させ、表面処理層中の金属元素と有機ケイ素化合物とが特定の質量比を満たすことで、上記問題点を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve these problems, the inventors have made a zinc-based plating having a surface treatment layer formed by depositing a predetermined amount of a specific metal element by autodeposition and / or electrolytic deposition. An aqueous metal surface treatment agent containing an organosilicon compound having a specific structure and molecular weight is applied to a steel sheet to form a silicon-containing layer, and the metal element and the organosilicon compound in the surface treatment layer satisfy a specific mass ratio. Thus, the inventors have found that the above problems can be solved, and have completed the present invention.

即ち、本発明は、以下の(1)〜(7)を提供する。
(1) 亜鉛系めっき鋼板上に、Zr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)の単位面積当りの元素付着合計量が2〜50mg/mであり、自己析出および/または電解析出により形成される表面処理層と、有機ケイ素化合物(Y)を含有する水系金属表面処理剤を前記表面処理層上に塗布して形成されるケイ素含有層とをこの順で備える表面処理亜鉛系めっき鋼板であって、
前記有機ケイ素化合物(Y)が、1分子内に、式−SiR(式中、R、RおよびRは、それぞれ独立して、アルキル基、アルコキシ基または水酸基を表し、R、RおよびRのうち少なくとも1つはアルコキシ基を表す。)で表される官能基(a)を2個以上と、水酸基(官能基(a)に含まれ得るものとは別個のもの)、アミノ基、カルボキシル基、りん酸基、ホスホン酸基、スルホン基、ポリオキシエチレン鎖およびアミド基からなる群から選ばれる少なくとも1種の親水性官能基(b)とを含有し、前記官能基(b)1個当たりの分子量が100〜10000である化合物であり、
前記表面処理層の前記金属元素(X)の元素付着合計量と、前記ケイ素含有層の前記有機ケイ素化合物(Y)に由来するSi付着量との質量比〔Y/X〕が0.1〜100.0であることを特徴とする、表面処理亜鉛系めっき鋼板。
(2) 前記有機ケイ素化合物(Y)が、少なくとも1種の反応性官能基と式−SiR(式中、R、RおよびRは前記と同義である)で表される官能基(a)とを有する、少なくとも1種の有機シラン化合物(A)と、前記反応性官能基と反応可能な官能基を有する少なくとも1種の化合物(B)とを反応させて、得られる化合物である、(1)に記載の表面処理亜鉛系めっき鋼板。
(3) 前記有機シラン化合物(A)の前記反応性官能基、および前記化合物(B)の前記官能基が、それぞれ独立に、水酸基(官能基(a)に含まれ得るものとは別個のもの)、グリシジル基、1級アミノ基、2級アミノ基、メルカプト基、イソシアネート基、カルボキシル基、メチロール基、活性メチレン基、イミド基、アミド基、カルボニル基およびビニル基からなる群から選択される少なくとも1種である、(2)に記載の表面処理亜鉛系めっき鋼板。
(4) 前記有機シラン化合物(A)が、一般式(I)で表される化合物である、(2)または(3)に記載の表面処理亜鉛系めっき鋼板。

Figure 2010111904

(一般式(I)中、Xは、エポキシ基、アミノ基、メルカプト基、ビニル基、およびイソシアネート基からなる群から選択されるいずれかの官能基を表す。Lは、2価の連結基、または単なる結合手を表す。Yは、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン基、水素原子、または水酸基を表す。)
(5) 前記水系金属表面処理剤が、2価以上の金属イオンを含有する金属化合物(C)、および/または、フッ化水素酸、有機酸およびりん酸からなる群から選択される少なくとも1種の酸(D)を含有する、(1)〜(4)のいずれかに記載の表面処理亜鉛系めっき鋼板。
(6) 前記金属化合物(C)に含有される金属イオンが、Ti、Zr、Hf、V、Mg、Mn、Zn、W、Mo、Al、Ni、Co、CeおよびCaイオンからなる群から選択される少なくとも1種である、(5)に記載の表面処理亜鉛系めっき鋼板。
(7) Zr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)を含む化合物(d)を含有する処理液を用いて、自己析出および/または電解析出により、亜鉛系めっき鋼板の表面上に表面処理層を形成する表面処理層形成工程と、
前記表面処理層形成工程後、有機ケイ素化合物(Y)を含有する水系金属表面処理剤を前記表面処理層上に塗布して、ケイ素含有層を形成するケイ素含有層形成工程と、を備える表面処理亜鉛系めっき鋼板の製造方法であって、
前記有機ケイ素化合物(Y)が、1分子内に、式−SiR(式中、R、RおよびRは、それぞれ独立して、アルキル基、アルコキシ基または水酸基を表し、R、RおよびRのうち少なくとも1つはアルコキシ基を表す。)で表される官能基(a)を2個以上と、水酸基(官能基(a)に含まれ得るものとは別個のもの)、アミノ基、カルボキシル基、りん酸基、ホスホン酸基、スルホン基、ポリオキシエチレン鎖およびアミド基からなる群から選ばれる少なくとも1種の親水性官能基(b)とを含有し、前記官能基(b)1個当たりの分子量が100〜10000である化合物である、表面処理亜鉛系めっき鋼板の製造方法。 That is, the present invention provides the following (1) to (7).
(1) On the galvanized steel sheet, the total amount of element adhesion per unit area of at least one metal element (X) selected from the group consisting of Zr, Ti and Hf is 2 to 50 mg / m 2 , and self-precipitation And / or a surface treatment layer formed by electrolytic deposition and a silicon-containing layer formed by applying an aqueous metal surface treatment agent containing an organosilicon compound (Y) on the surface treatment layer in this order. A surface-treated galvanized steel sheet comprising:
In one molecule, the organosilicon compound (Y) has the formula —SiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 each independently represents an alkyl group, an alkoxy group or a hydroxyl group). , R 1 , R 2 and R 3 represent at least one functional group (a) represented by two or more functional groups (a) and a hydroxyl group (which can be contained in the functional group (a)) And at least one hydrophilic functional group (b) selected from the group consisting of amino groups, carboxyl groups, phosphoric acid groups, phosphonic acid groups, sulfone groups, polyoxyethylene chains and amide groups. , A compound having a molecular weight of 100 to 10,000 per functional group (b),
The mass ratio [Y / X] of the total amount of element adhesion of the metal element (X) of the surface treatment layer and the amount of Si adhesion derived from the organosilicon compound (Y) of the silicon-containing layer is 0.1 to A surface-treated galvanized steel sheet, characterized by being 100.0.
(2) The organosilicon compound (Y) is represented by at least one reactive functional group and a formula —SiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 are as defined above). Reacting at least one organosilane compound (A) having a functional group (a) with at least one compound (B) having a functional group capable of reacting with the reactive functional group, The surface-treated zinc-based plated steel sheet according to (1), which is a compound obtained.
(3) The reactive functional group of the organosilane compound (A) and the functional group of the compound (B) are each independently a hydroxyl group (separate from those that can be included in the functional group (a)) ), Glycidyl group, primary amino group, secondary amino group, mercapto group, isocyanate group, carboxyl group, methylol group, active methylene group, imide group, amide group, carbonyl group and vinyl group. The surface-treated zinc-based plated steel sheet according to (2), which is one type.
(4) The surface-treated galvanized steel sheet according to (2) or (3), wherein the organosilane compound (A) is a compound represented by the general formula (I).
Figure 2010111904

(In General Formula (I), X represents any functional group selected from the group consisting of an epoxy group, an amino group, a mercapto group, a vinyl group, and an isocyanate group. L represents a divalent linking group, Or represents a simple bond, each Y independently represents an alkyl group, an alkoxy group, a halogen group, a hydrogen atom, or a hydroxyl group.)
(5) The aqueous metal surface treatment agent is at least one selected from the group consisting of a metal compound (C) containing a divalent or higher-valent metal ion and / or hydrofluoric acid, an organic acid and phosphoric acid. The surface-treated zinc-based plated steel sheet according to any one of (1) to (4), which contains the acid (D).
(6) The metal ion contained in the metal compound (C) is selected from the group consisting of Ti, Zr, Hf, V, Mg, Mn, Zn, W, Mo, Al, Ni, Co, Ce and Ca ions. The surface-treated zinc-based plated steel sheet according to (5), which is at least one kind.
(7) Zinc-based plating by autodeposition and / or electrolytic deposition using a treatment liquid containing a compound (d) containing at least one metal element (X) selected from the group consisting of Zr, Ti and Hf A surface treatment layer forming step of forming a surface treatment layer on the surface of the steel sheet;
After the surface treatment layer formation step, a silicon-containing layer formation step of forming a silicon-containing layer by applying an aqueous metal surface treatment agent containing an organosilicon compound (Y) onto the surface treatment layer A method for producing a galvanized steel sheet,
In one molecule, the organosilicon compound (Y) has the formula —SiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 each independently represents an alkyl group, an alkoxy group or a hydroxyl group). , R 1 , R 2 and R 3 represent at least one functional group (a) represented by two or more functional groups (a) and a hydroxyl group (which can be contained in the functional group (a)) And at least one hydrophilic functional group (b) selected from the group consisting of amino groups, carboxyl groups, phosphoric acid groups, phosphonic acid groups, sulfone groups, polyoxyethylene chains and amide groups. The manufacturing method of the surface treatment zinc-plated steel plate which is a compound whose molecular weight per said functional group (b) is 100-10000.

本発明は、短時間で製造可能であり、かつ、耐食性と耐指紋性とを両立するだけでなく、従来の表面処理では得られなかった導電性と密着性とを有する、諸特性の性能バランスに優れた亜鉛系めっき鋼板を提供する。   The present invention can be manufactured in a short period of time, and not only achieves both corrosion resistance and fingerprint resistance, but also has a performance balance of various properties having conductivity and adhesion that could not be obtained by conventional surface treatment. A galvanized steel sheet excellent in quality is provided.

以下に、本発明に係る表面処理亜鉛系めっき鋼板、およびその製造方法について記載する。まず、表面処理亜鉛系めっき鋼板について、図面に示す好適実施形態に基づいて詳細に説明する。   The surface-treated zinc-based plated steel sheet according to the present invention and a method for producing the same are described below. First, the surface-treated zinc-based plated steel sheet will be described in detail based on a preferred embodiment shown in the drawings.

<表面処理亜鉛系めっき鋼板>
図1は、本発明の表面処理亜鉛系めっき鋼板の一実施形態の模式的断面図である。
同図に示す表面処理亜鉛系めっき鋼板10は、亜鉛系めっき鋼板12、表面処理層14、ケイ素含有層16をこの順で積層した積層構造を有する。表面処理層14は、Zr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)の単位面積当りの元素付着合計量が2〜50mg/mであり、自己析出および/または電解析出により形成された層である。また、ケイ素含有層16は、有機ケイ素化合物(Y)を含有する水系金属表面処理剤を表面処理層上に塗布して形成される層である。
図1において、亜鉛系めっき鋼板12、表面処理層14、ケイ素含有層16の層厚は該図によっては限定されない。また、図1では、亜鉛系めっき鋼板12の一方の表面上にのみ、表面処理層14とケイ素含有層16とが積層されているが、図2に示すように亜鉛系めっき鋼板12の両面に表面処理層14およびケイ素含有層16を有していてもよい。
まず、表面処理亜鉛系めっき鋼板10を構成する、亜鉛系めっき鋼板12および各層について説明する。
<Surface-treated galvanized steel sheet>
FIG. 1 is a schematic cross-sectional view of one embodiment of a surface-treated zinc-based plated steel sheet according to the present invention.
A surface-treated galvanized steel sheet 10 shown in the figure has a laminated structure in which a galvanized steel sheet 12, a surface-treated layer 14, and a silicon-containing layer 16 are laminated in this order. The surface treatment layer 14 has an element deposition total amount of 2 to 50 mg / m 2 per unit area of at least one metal element (X) selected from the group consisting of Zr, Ti and Hf, It is a layer formed by analysis. The silicon-containing layer 16 is a layer formed by applying an aqueous metal surface treatment agent containing an organosilicon compound (Y) on the surface treatment layer.
In FIG. 1, the layer thicknesses of the zinc-based plated steel sheet 12, the surface treatment layer 14, and the silicon-containing layer 16 are not limited depending on the figure. Further, in FIG. 1, the surface treatment layer 14 and the silicon-containing layer 16 are laminated only on one surface of the zinc-based plated steel sheet 12, but as shown in FIG. The surface treatment layer 14 and the silicon-containing layer 16 may be included.
First, the zinc-based plated steel sheet 12 and each layer constituting the surface-treated zinc-based plated steel sheet 10 will be described.

<亜鉛系めっき鋼板>
本発明の表面処理亜鉛系めっき鋼板に用いられる亜鉛系めっき鋼板12は、後述する表面処理層14、ケイ素含有層16の各層を積層し、かつ支持するためのものである。
亜鉛系めっき鋼板12の種類としては、特に限定されないが、例えば、亜鉛めっき鋼板、亜鉛−ニッケルめっき鋼板、亜鉛−鉄めっき鋼板、亜鉛−クロムめっき鋼板、亜鉛−アルミニウムめっき鋼板、亜鉛−チタンめっき鋼板、亜鉛−マグネシウムめっき鋼板、亜鉛−マンガンめっき鋼板、亜鉛−アルミニウム−マグネシウムめっき鋼板、亜鉛−アルミニウム−マグネシウム−シリコンめっき鋼板などの亜鉛系めっき鋼板などが挙げられる。
さらに、これらのめっき層に少量の異種金属元素または不純物として、コバルト、モリブデン、タングステン、ニッケル、チタン、クロム、アルミニウム、マンガン、鉄、マグネシウム、鉛、ビスマス、アンチモン、錫、銅、カドミウム、ヒ素などを含有したもの、シリカ、アルミナ、チタニア等の無機物を分散させたものが挙げられる。また、上記のようなめっきのうち、同種または異種のものを2層以上めっきした複層めっき鋼板を用いることもできる。
めっき方法は特に限定されるものではなく、公知の電気亜鉛めっき法、溶融亜鉛めっき法などが挙げられる。
また、亜鉛系めっき鋼板12の大きさや厚さも特に制限されない。
<Zinc-based plated steel sheet>
The galvanized steel sheet 12 used for the surface-treated galvanized steel sheet of the present invention is for laminating and supporting each of the surface treatment layer 14 and the silicon-containing layer 16 described later.
Although it does not specifically limit as a kind of galvanized steel plate 12, For example, a galvanized steel plate, a zinc-nickel plating steel plate, a zinc-iron plating steel plate, a zinc-chromium plating steel plate, a zinc-aluminum plating steel plate, a zinc-titanium plating steel plate Zinc-magnesium-plated steel sheets, zinc-manganese-plated steel sheets, zinc-aluminum-magnesium-plated steel sheets, zinc-plated steel sheets such as zinc-aluminum-magnesium-silicon-plated steel sheets, and the like.
In addition, as a small amount of different metal elements or impurities in these plating layers, cobalt, molybdenum, tungsten, nickel, titanium, chromium, aluminum, manganese, iron, magnesium, lead, bismuth, antimony, tin, copper, cadmium, arsenic, etc. In which inorganic substances such as silica, alumina, titania and the like are dispersed. In addition, among the above-described plating, a multi-layer plated steel sheet in which two or more layers of the same type or different types are plated can also be used.
The plating method is not particularly limited, and examples thereof include a known electrogalvanizing method and hot dip galvanizing method.
Further, the size and thickness of the galvanized steel sheet 12 are not particularly limited.

<表面処理層>
本発明の表面処理亜鉛系めっき鋼板10における表面処理層14は、上述した亜鉛系めっき鋼板12の上に積層され、主に、耐食性を付与する。また、表面処理層14は一度形成されると酸やアルカリに侵されず、曲げ加工に追従し、優れた被覆性を付与するものである。
表面処理層14は、より詳細には、Zr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)の単位面積当りの元素付着合計量が2〜50mg/mであり、自己析出および/または電解析出した層である。
<Surface treatment layer>
The surface treatment layer 14 in the surface-treated galvanized steel sheet 10 of the present invention is laminated on the galvanized steel sheet 12 described above, and mainly imparts corrosion resistance. Further, once formed, the surface treatment layer 14 is not attacked by acid or alkali, follows the bending process, and imparts excellent coverage.
More specifically, the surface treatment layer 14 has a total amount of element adhesion per unit area of at least one metal element (X) selected from the group consisting of Zr, Ti and Hf is 2 to 50 mg / m 2. A deposited and / or electrolytically deposited layer.

表面処理層14中における、Zr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)の単位面積当りの元素付着合計量は、2〜50mg/mであり、5〜30mg/mが好ましく、7〜25mg/mがより好ましい。金属元素(X)の合計付着量が2mg/m未満であると、耐食性が発現しないため好ましくない。また、合計付着量が50mg/mを超えると、鋼板などのとの密着性が得られなくなるため好ましくない。
なお、金属元素(X)の付着量は、蛍光X線分析装置(XRF)によって測定することができる。
The total amount of element adhesion per unit area of at least one metal element (X) selected from the group consisting of Zr, Ti, and Hf in the surface treatment layer 14 is 2 to 50 mg / m 2 , and 5 to 30 mg / m 2. m 2 is preferable, and 7 to 25 mg / m 2 is more preferable. If the total adhesion amount of the metal element (X) is less than 2 mg / m 2 , corrosion resistance is not exhibited, which is not preferable. Moreover, when the total adhesion amount exceeds 50 mg / m 2 , it is not preferable because adhesion to a steel plate or the like cannot be obtained.
In addition, the adhesion amount of metal element (X) can be measured with a fluorescent X-ray analyzer (XRF).

表面処理層14の構成成分は、主に、Zr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)の酸化物、フッ化物、および/または水酸化物であり、必要に応じて、添加剤(例えば、V、Mn、WまたはMoの酸化物および/または水酸化物や、Ni、Co、またはCuなどの金属元素)などが含有されていてもよい。なかでも、得られる層の欠陥がより少ない点で、Zr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)とフッ素元素とを主構成元素とすることが好ましい。
なお、表面処理層14は自己析出および/または電解析出により形成される層であり、その製造方法については後述する。
The component of the surface treatment layer 14 is mainly an oxide, fluoride, and / or hydroxide of at least one metal element (X) selected from the group consisting of Zr, Ti, and Hf. And additives (for example, oxides and / or hydroxides of V, Mn, W, or Mo, and metal elements such as Ni, Co, and Cu) may be contained. Among them, it is preferable that at least one metal element (X) selected from the group consisting of Zr, Ti, and Hf and a fluorine element are the main constituent elements in that the obtained layer has fewer defects.
The surface treatment layer 14 is a layer formed by self-deposition and / or electrolytic deposition, and the manufacturing method thereof will be described later.

<ケイ素含有層>
本発明の表面処理亜鉛系めっき鋼板10におけるケイ素含有層16は、上述した表面処理層14の上に積層され、主に、耐指紋性やバリア性を付与するものである。
ケイ素含有層16は、後述する有機ケイ素化合物(Y)を含有する水系金属表面処理剤を表面処理層上に塗布して形成される層であり、主として有機ケイ素化合物(Y)により構成されている。
<Silicon-containing layer>
The silicon-containing layer 16 in the surface-treated zinc-based plated steel sheet 10 of the present invention is laminated on the surface-treated layer 14 described above, and mainly imparts fingerprint resistance and barrier properties.
The silicon-containing layer 16 is a layer formed by applying an aqueous metal surface treatment agent containing an organosilicon compound (Y) described later on the surface treatment layer, and is mainly composed of an organosilicon compound (Y). .

ケイ素含有層14中における、有機ケイ素化合物(Y)に由来するSi(ケイ素原子)の単位面積当りの元素付着量(以後、単にSi付着量とも称する)は、後述する金属元素(X)との質量関係を満足すれば特に制限されないが、10〜200mg/mが好ましく、30〜150mg/mがより好ましい。上記範囲内であれば、耐食性、導電性、密着性など各種特性がより向上する。
なお、Si付着量は、蛍光X線分析装置(XRF)によって測定することができる。
In the silicon-containing layer 14, the element adhesion amount per unit area of Si (silicon atom) derived from the organosilicon compound (Y) (hereinafter also simply referred to as Si adhesion amount) is the same as the metal element (X) described later. Although it will not restrict | limit if mass relation is satisfied, 10-200 mg / m < 2 > is preferable and 30-150 mg / m < 2 > is more preferable. If it is in the said range, various characteristics, such as corrosion resistance, electroconductivity, and adhesiveness, will improve more.
In addition, Si adhesion amount can be measured with a fluorescent X-ray analyzer (XRF).

本発明の表面処理亜鉛系めっき鋼板10においては、表面処理層14中の、Zr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)の元素付着合計量(以後、Xとも称する)と、ケイ素含有層16中の有機ケイ素化合物(Y)に由来するSi付着量(以後、Yとも称する)との質量比〔Y/X〕が、0.1〜100.0であり、1〜30であることが好ましく、2〜15であることがより好ましい。上記質量比〔Y/X〕範囲を満たさないと、得られる表面処理亜鉛系めっき鋼板の耐食性と密着性との良好なバランスが得られず、好ましくない。より具体的には、質量比〔Y/X〕が大きい場合、特にYが大きい場合は処理の際にカスなどの廃棄物が出やすく、また、Xが小さい場合は耐指紋性が悪化する。質量比〔Y/X〕が小さい場合、特にYが小さい場合は耐食性が悪化し、Xが大きい場合は密着性が悪くなり、かつ耐食性も悪化する。   In the surface-treated zinc-based plated steel sheet 10 of the present invention, the total amount of element adhesion (hereinafter also referred to as X) of at least one metal element (X) selected from the group consisting of Zr, Ti and Hf in the surface treatment layer 14. ) And the Si adhesion amount (hereinafter also referred to as Y) derived from the organosilicon compound (Y) in the silicon-containing layer 16 is 0.1 to 100.0, and 1 It is preferable that it is -30, and it is more preferable that it is 2-15. If the above mass ratio [Y / X] range is not satisfied, a good balance between the corrosion resistance and adhesion of the surface-treated galvanized steel sheet to be obtained is not preferable. More specifically, when the mass ratio [Y / X] is large, particularly when Y is large, waste such as debris is easily generated during processing, and when X is small, fingerprint resistance is deteriorated. When the mass ratio [Y / X] is small, particularly when Y is small, the corrosion resistance deteriorates, and when X is large, the adhesion deteriorates and the corrosion resistance also deteriorates.

本発明の表面処理亜鉛系めっき鋼板10の皮膜(表面処理層14、ケイ素含有層16)には、さらに、被塗面に均一な皮膜を形成させるための濡れ性向上剤と呼ばれる界面活性剤や、増粘剤、導電性向上剤、意匠性向上のための着色顔料、造膜性向上のための造膜助剤なども含有させることできる。また、潤滑性付与剤として、ポリエチレンワックス、パラフィンワックスなどの有機潤滑剤や、黒鉛、雲母、二硫化モリブデンなどの固体潤滑剤なども配合できる。   In the coating of the surface-treated zinc-based plated steel sheet 10 of the present invention (surface-treated layer 14 and silicon-containing layer 16), a surfactant called a wettability improver for forming a uniform coating on the coated surface, Further, a thickener, a conductivity improver, a color pigment for improving the design property, a film forming aid for improving the film forming property, and the like can be contained. Moreover, organic lubricants, such as polyethylene wax and paraffin wax, solid lubricants, such as graphite, mica, and molybdenum disulfide, etc. can be mix | blended as a lubricity imparting agent.

また、本発明の表面処理亜鉛系めっき鋼板10の皮膜(表面処理層14、ケイ素含有層16)には、さらなる耐食性向上のため、有機インヒビターと呼ばれる1分子中にC=O基、C=C基、C≡C基、C=N基、C≡N基およびN=N基からなる群から選ばれる少なくとも1種の不飽和基、N−N基およびS元素を有する官能基からなる群から選ばれる少なくとも1種の官能基を有する化合物を配合できる。
これらの官能基を有する化合物としては、特に限定されないが、ホルムアルデヒド、アセトアルデヒドなどのアルデヒド類、アセトン、メチルエチルケトンなどのケトン類などのC=O基含有化合物、ベンゼンおよびその誘導体、ナフタレンおよびその誘導体、アクリル酸およびメタクリル酸およびその誘導体、アルキルカルボン酸エステル、アルキルアルデヒドなどのC=C基含有化合物、アセチレンアルコールやアセチレン誘導体などのC≡C基含有化合物、アジン、トリアジン、オサゾン染料、トリフェニルメタン染料、クニジン、ピリミジン、ピラゾール、イミダゾール、ピリジニウムおよびキノリニウム化合物などのC=N基含有化合物、エチレンシアンヒドリンなどのC≡N含有化合物、ヒドラジン化合物およびその誘導体などのN−N基含有化合物、アゾ染料などのN=N基含有化合物、スルホン酸、スルフォネート、スルフォアミド、チオ尿素および環状チオ尿素などのS元素含有化合物、などが挙げられる。
In addition, the coating (surface treatment layer 14 and silicon-containing layer 16) of the surface-treated zinc-based plated steel sheet 10 of the present invention has a C = O group, C = C in one molecule called an organic inhibitor for further improvement of corrosion resistance. A group consisting of at least one unsaturated group selected from the group consisting of a group, a C≡C group, a C═N group, a C≡N group and an N═N group, an N—N group and a functional group having an S element A compound having at least one selected functional group can be blended.
The compounds having these functional groups are not particularly limited, but aldehydes such as formaldehyde and acetaldehyde, C═O group-containing compounds such as ketones such as acetone and methyl ethyl ketone, benzene and its derivatives, naphthalene and its derivatives, acrylic C = C group-containing compounds such as acid and methacrylic acid and derivatives thereof, alkyl carboxylic acid esters and alkyl aldehydes, C≡C group-containing compounds such as acetylene alcohol and acetylene derivatives, azines, triazines, osazone dyes, triphenylmethane dyes, C═N group-containing compounds such as kunidine, pyrimidine, pyrazole, imidazole, pyridinium and quinolinium compounds, C≡N-containing compounds such as ethylene cyanohydrin, hydrazine compounds and their derivatives, etc. N-N group-containing compounds, N = N group-containing compounds such as azo dyes, sulphonic acid, sulphonate, Surufoamido, S element-containing compounds such as thiourea and cyclic thiourea, and the like.

<表面処理亜鉛系めっき鋼板の製造方法>
本発明の表面処理亜鉛系めっき鋼板の製造方法は、特に限定されないが、主に以下の工程を備える製造方法が好ましい。
(1)Zr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)を含む化合物(d)を含有する処理液を用いて、亜鉛系めっき鋼板の表面上に、自己析出および/または電解析出により表面処理層を形成する表面処理層形成工程
(2)表面処理層形成工程後、有機ケイ素化合物(Y)を含有する水系金属表面処理剤を上記表面処理層上に塗布して、ケイ素含有層を形成するケイ素含有層形成工程
以下に、各工程およびその他の任意の工程について、使用する材料とともに詳細に説明する。
<Method for producing surface-treated galvanized steel sheet>
Although the manufacturing method of the surface treatment zinc-plated steel plate of this invention is not specifically limited, The manufacturing method mainly provided with the following processes is preferable.
(1) Using a treatment liquid containing a compound (d) containing at least one metal element (X) selected from the group consisting of Zr, Ti and Hf, self-precipitation and / or on the surface of the galvanized steel sheet Alternatively, after the surface treatment layer forming step (2) surface treatment layer formation step for forming the surface treatment layer by electrolytic deposition, an aqueous metal surface treatment agent containing an organosilicon compound (Y) is applied on the surface treatment layer. The silicon-containing layer forming step for forming the silicon-containing layer Each step and other optional steps will be described in detail below together with the materials used.

<前処理工程>
使用される亜鉛系めっき鋼板は、必要に応じて、後述する表面処理層形成工程前に、その表面を洗浄してもよい。この洗浄により、亜鉛系めっき鋼板の表面に付着した油分、汚れが取り除かれる。洗浄方法は特に限定されず、公知の方法を適用することができる。例えば、脱脂剤や酸性脱脂剤で洗浄する方法、湯洗や溶剤洗浄が挙げられる。
また、亜鉛系めっき鋼板の表面を洗浄する前および/または後に、酸、アルカリなどによる表面調整を行ってもよい。このような処理を施すことにより、亜鉛系めっき鋼板の表面に形成される表面処理層と亜鉛系めっき鋼板との密着性が向上する。さらには、表面処理層の時間当たりの形成(析出)効率が向上する。
なお、上述した亜鉛系めっき鋼板の表面の洗浄および/または表面調整を行った後は、洗浄剤などが亜鉛系めっき鋼板の表面に残留しないように、さらに水洗いすることが好ましい。
<Pretreatment process>
If necessary, the surface of the zinc-based plated steel sheet to be used may be cleaned before the surface treatment layer forming step described later. This washing removes oil and dirt adhering to the surface of the galvanized steel sheet. The cleaning method is not particularly limited, and a known method can be applied. For example, a method of washing with a degreasing agent or an acidic degreasing agent, hot water washing or solvent washing may be mentioned.
Moreover, you may perform surface adjustment by an acid, an alkali, etc. before and / or after washing | cleaning the surface of a zinc-plated steel plate. By performing such treatment, the adhesion between the surface treatment layer formed on the surface of the zinc-based plated steel sheet and the zinc-based plated steel sheet is improved. Furthermore, the formation (precipitation) efficiency per time of the surface treatment layer is improved.
In addition, after washing | cleaning and / or adjusting the surface of the zinc-plated steel plate mentioned above, it is preferable to wash with water so that a cleaning agent etc. may not remain on the surface of a zinc-plated steel plate.

<表面処理層形成工程>
本発明の表面処理層形成工程は、Zr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)を含む化合物(d)を含有する処理液を用いて、亜鉛系めっき鋼板の表面上に、自己析出および/または電解析出により表面処理層を形成する工程である。この工程によって、上述した所定量の金属元素(X)を含有する表面処理層14が形成される。
表面処理層形成工程では、自己析出反応(態様1)および/または電解析出反応(態様2)によって金属元素(X)を含有する表面処理層が形成される。
以下に、それぞれの反応態様について説明する。
<Surface treatment layer forming step>
The surface treatment layer forming step of the present invention uses a treatment liquid containing a compound (d) containing at least one metal element (X) selected from the group consisting of Zr, Ti and Hf, This is a step of forming a surface treatment layer by self-deposition and / or electrolytic deposition. By this step, the surface treatment layer 14 containing the predetermined amount of the metal element (X) is formed.
In the surface treatment layer forming step, the surface treatment layer containing the metal element (X) is formed by the autodeposition reaction (embodiment 1) and / or the electrolytic deposition reaction (embodiment 2).
Below, each reaction aspect is demonstrated.

<自己析出>
自己析出反応においては、電解処理などの外部からの処理を必要とせず、所定の処理液と亜鉛系めっき鋼板とを接触させるだけで、亜鉛系めっき鋼板上に表面処理層が形成される。
使用される処理液としては、少なくとも1種のZr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)を含む化合物(d)と、フッ化水素酸、硝酸、硫酸およびこれらの塩からなる群から選ばれる少なくとも1つの酸成分(e)とを含有することが好ましい。金属元素(X)を含む化合物(d)は、表面処理層の主成分として作用する。また、酸成分(e)は、金属元素(X)を含む化合物(d)を溶解させ、金属素材表面をエッチングし、自己析出反応の起点となる、などの効果を発揮する。
なかでも、少なくとも1種のZr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)およびフッ素元素を含む処理液が好ましい。
<Self-precipitation>
In the self-deposition reaction, a surface treatment layer is formed on the galvanized steel sheet only by bringing a predetermined treatment liquid into contact with the galvanized steel sheet without requiring any external treatment such as electrolytic treatment.
The treatment liquid used includes at least one compound (d) containing at least one metal element (X) selected from the group consisting of Zr, Ti and Hf, hydrofluoric acid, nitric acid, sulfuric acid, and these It is preferable to contain at least one acid component (e) selected from the group consisting of salts. The compound (d) containing the metal element (X) acts as a main component of the surface treatment layer. In addition, the acid component (e) exhibits effects such as dissolving the compound (d) containing the metal element (X), etching the surface of the metal material, and serving as a starting point for the self-deposition reaction.
Among these, a treatment liquid containing at least one metal element (X) and fluorine element selected from the group consisting of at least one kind of Zr, Ti, and Hf is preferable.

Zr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)を含む化合物(d)としては、Zr、TiまたはHfを含有していれば特に限定されず、酸化物、水酸化物、錯化合物、無機酸、または有機酸の塩であってもよい。なかでも、有機錯化合物、フッ化物錯体、硫酸塩および硝酸塩からなる群から選ばれる少なくとも1つであることが好ましい。これら酸およびその塩類のアニオン成分は、化成処理後の洗浄工程で容易に除去でき、また仮に僅かに残留しても耐食性に対して悪影響を与えにくいため好ましい。
化合物(d)としては、例えば、硝酸ジルコニル、酢酸ジルコニル、硫酸ジルコニル、炭酸ジルコニウムアンモニウム、ジルコンフッ化水素酸、硫酸チタニル、乳酸とチタニウムアルコキシドとの反応物、チタンラウレート、チタンフッ化水素酸、乳酸ハフニウム、硝酸ハフニウム、フッ化ハフニウム、ハフニウムフッ化水素酸などが挙げられ、なかでもジルコンフッ化水素酸、チタンフッ化水素酸、ハフニウムフッ化水素酸などが好ましい。
The compound (d) containing at least one metal element (X) selected from the group consisting of Zr, Ti and Hf is not particularly limited as long as it contains Zr, Ti or Hf. Oxide, hydroxide , A complex compound, an inorganic acid, or a salt of an organic acid. Among these, at least one selected from the group consisting of organic complex compounds, fluoride complexes, sulfates and nitrates is preferable. These anionic components of acids and salts thereof are preferable because they can be easily removed in the washing step after the chemical conversion treatment, and even if they remain slightly, they do not adversely affect the corrosion resistance.
Examples of the compound (d) include zirconyl nitrate, zirconyl acetate, zirconyl sulfate, ammonium zirconium carbonate, zircon hydrofluoric acid, titanyl sulfate, a reaction product of lactic acid and titanium alkoxide, titanium laurate, titanium hydrofluoric acid, hafnium lactate. Hafnium nitrate, hafnium fluoride, hafnium hydrofluoric acid, and the like. Among them, zircon hydrofluoric acid, titanium hydrofluoric acid, hafnium hydrofluoric acid, and the like are preferable.

処理液中における金属元素(X)を含む化合物(d)の含有量は、使用される亜鉛系めっき鋼板などの種類によって適宜最適な量が選択される。なかでも、処理液中での化合物(d)中のZr、TiおよびHf元素の合計含有量(濃度)が、0.01〜10g/Lであることが好ましく、0.05〜5g/Lであることがより好ましく、0.1〜1g/Lであることがさらに好ましい。0.01g/L以上であると、表面処理層の形成速度がより迅速になるので、工業的に利用する上で好ましい。また、10g/L以下であると、処理液中において化合物(d)の溶解安定性をより容易に保つことができるので好ましい。   The content of the compound (d) containing the metal element (X) in the treatment liquid is appropriately selected depending on the type of zinc-based plated steel sheet used. Especially, it is preferable that the total content (concentration) of Zr, Ti, and Hf element in the compound (d) in the treatment liquid is 0.01 to 10 g / L, and 0.05 to 5 g / L. More preferably, it is more preferably 0.1-1 g / L. When it is 0.01 g / L or more, the formation rate of the surface treatment layer becomes faster, which is preferable for industrial use. Moreover, it is preferable that it is 10 g / L or less since the dissolution stability of the compound (d) can be more easily maintained in the treatment liquid.

処理液中におけるフッ化水素酸、硝酸、硫酸およびこれらの塩としては、例えば、フッ化水素酸(HF)、ジルコンフッ化水素酸(HZrF)、チタンフッ化水素酸(HTiF)またはハフニウムフッ化水素酸(HHfF)等のフッ化物錯体による酸、さらには硝酸、硫酸またはそれらの塩等が挙げられる。 Examples of hydrofluoric acid, nitric acid, sulfuric acid, and salts thereof in the treatment liquid include hydrofluoric acid (HF), zircon hydrofluoric acid (H 2 ZrF 6 ), and titanium hydrofluoric acid (H 2 TiF 6 ). or hafnium hydrofluoric acid (H 2 HfF 6) acid by a fluoride complex such as news nitric acid, such as sulfuric acid or a salt thereof.

処理液中におけるフッ化水素酸、硝酸、硫酸およびこれらの塩からなる群から選ばれる少なくとも1つの酸成分(e)の含有量は、使用される亜鉛系めっき鋼板などの種類によって適宜最適な量が選択される。
なかでも、処理液中における酸成分(e)の含有量(濃度)は、0.005〜20g/Lであることが好ましく、0.02〜10g/Lであることがより好ましい。0.005g/L以上であると、金属板の表面に対する十分なエッチング能を期待できる。20g/L以下であると、エッチング能力が適切となり、均一な表面処理層を析出させることができる。
The content of at least one acid component (e) selected from the group consisting of hydrofluoric acid, nitric acid, sulfuric acid and salts thereof in the treatment liquid is an optimal amount as appropriate depending on the type of zinc-based plated steel sheet used, etc. Is selected.
Especially, it is preferable that it is 0.005-20 g / L, and, as for content (concentration) of the acid component (e) in a process liquid, it is more preferable that it is 0.02-10 g / L. When it is 0.005 g / L or more, sufficient etching ability for the surface of the metal plate can be expected. When it is 20 g / L or less, the etching ability becomes appropriate, and a uniform surface treatment layer can be deposited.

処理液に使用される溶媒としては、特に限定されないが、環境保護の観点から、水が好ましい。なお、処理液中に、有機溶媒(例えば、アルコール、グリコール、グリセリン、アセトン)を含有していてもよい。   Although it does not specifically limit as a solvent used for a process liquid, From a viewpoint of environmental protection, water is preferable. In addition, the processing liquid may contain an organic solvent (for example, alcohol, glycol, glycerin, acetone).

処理液のpHは特に限定されないが、酸性条件が好ましく、具体的には、pHが2.0〜6.0が好ましく、2.5〜4.5がより好ましい。上記範囲内であれば、金属元素(X)の析出性がより向上する。   The pH of the treatment liquid is not particularly limited, but acidic conditions are preferable. Specifically, the pH is preferably 2.0 to 6.0, and more preferably 2.5 to 4.5. If it is in the said range, the precipitation property of metal element (X) will improve more.

自己析出(態様1)に使用される処理液は、さらに、Fe、Mn、Ni、Co、Ag、Mg、Al、Zn、CuおよびCeからなる群から選ばれる少なくとも1つの元素を含む化合物(f)を、少なくとも1種含有することが好ましい。化合物(f)は、自己析出反応を促進する。化合物(f)は、酸化物、水酸化物、錯化合物、無機酸、または有機酸の塩であってもよい。なかでも、有機錯化合物、フッ化物錯体、硫酸塩および硝酸塩からなる群から選ばれる少なくとも1つであることが好ましい。
化合物(f)としては、例えば、過マンガン酸、過マンガン酸カリウム、過マンガン酸ナトリウム、硝酸マンガン、硫酸マンガン、フッ化マンガン、炭酸マンガン、酢酸マンガン、硝酸マグネシウム、酸化マグネシウム、水酸化マグネシウム、硫酸マグネシウム、酢酸マグネシウム、硝酸アルミニウム、酸化アルミニウム、水酸化アルミニウム、硫酸アルミニウム、酢酸アルミニウム、酢酸セリウム(III)、酢酸セリウム(IV)、硝酸セリウム(III)、硝酸セリウム(IV)、塩化ニッケル、硫酸ニッケル、硝酸ニッケル、フッ化ニッケル、酸化ニッケル、水酸化ニッケル、塩化コバルト、硫酸コバルト、硝酸コバルト、フッ化コバルト、酸化コバルト、水酸化コバルト、塩化銀、硫酸銀、硝酸銀、フッ化銀、酸化銀、水酸化銀、塩化亜鉛、硫酸亜鉛、硝酸亜鉛、フッ化亜鉛、酸化亜鉛、水酸化亜鉛などが挙げられる。
The treatment liquid used for self-deposition (Aspect 1) further includes a compound (f) containing at least one element selected from the group consisting of Fe, Mn, Ni, Co, Ag, Mg, Al, Zn, Cu, and Ce. ) Is preferably contained. Compound (f) promotes the autodeposition reaction. Compound (f) may be an oxide, hydroxide, complex compound, inorganic acid, or salt of an organic acid. Among these, at least one selected from the group consisting of organic complex compounds, fluoride complexes, sulfates and nitrates is preferable.
Examples of the compound (f) include permanganic acid, potassium permanganate, sodium permanganate, manganese nitrate, manganese sulfate, manganese fluoride, manganese carbonate, manganese acetate, magnesium nitrate, magnesium oxide, magnesium hydroxide, sulfuric acid. Magnesium, magnesium acetate, aluminum nitrate, aluminum oxide, aluminum hydroxide, aluminum sulfate, aluminum acetate, cerium (III) acetate, cerium (IV) acetate, cerium (III) nitrate, cerium (IV) nitrate, nickel chloride, nickel sulfate , Nickel nitrate, nickel fluoride, nickel oxide, nickel hydroxide, cobalt chloride, cobalt sulfate, cobalt nitrate, cobalt fluoride, cobalt oxide, cobalt hydroxide, silver chloride, silver sulfate, silver nitrate, silver fluoride, silver oxide, Silver hydroxide, zinc chloride, sulfuric acid Examples include zinc, zinc nitrate, zinc fluoride, zinc oxide, and zinc hydroxide.

さらに、自己析出(態様1)の処理液の条件としては、処理液中の遊離フッ素イオン濃度が1〜30mg/Lで、化合物(f)中のFe、Mn、Ni、Co、Ag、Mg、Al、Zn、CuおよびCeの元素の合計質量濃度Fと、化合物(d)中のZr、TiおよびHfの金属元素(X)の合計質量濃度Dとの比(F/D)が1〜200で、処理液のpHが2.0以上であり、さらに、以下の式(1)を満たすことが好ましい。
式(1) pH≦−0.02×(F/D)+6
処理液がこれらの条件をすべて満たすときに、極めて短時間で、諸性能の優れた皮膜を形成できる。
Furthermore, the conditions of the treatment liquid for self-deposition (Aspect 1) include a free fluorine ion concentration of 1 to 30 mg / L in the treatment liquid, and Fe, Mn, Ni, Co, Ag, Mg, The ratio (F / D) of the total mass concentration F of the elements Al, Zn, Cu and Ce to the total mass concentration D of the metal elements (X) of Zr, Ti and Hf in the compound (d) is 1 to 200. And it is preferable that pH of a process liquid is 2.0 or more, and also satisfy | fills the following formula | equation (1).
Formula (1) pH ≦ −0.02 × (F / D) +6
When the treatment liquid satisfies all of these conditions, a film having excellent performance can be formed in an extremely short time.

ここで、遊離フッ素イオン濃度は、化合物(f)中の元素の添加量(つまり、合計質量濃度F)を調整することで1〜30mg/Lに調整することができる。
また、この自己析出用(態様1)の処理液のpHは、酸成分(e)の含有量およびアルカリ性物質の添加によって調整することができる。このアルカリ性物質は限定されず、処理液の性能を大きく劣化させずにpHを調整することができるものであればよい。このようなアルカリ性物質として、アンモニア、炭酸ナトリウム、有機アミン類(ジエタノールアミン、トリエチルアミン等)、無機水酸化物(水酸化ナトリウム、水酸化カリウム等)を好ましく例示することができる。
Here, the free fluorine ion concentration can be adjusted to 1 to 30 mg / L by adjusting the addition amount of the element in the compound (f) (that is, the total mass concentration F).
Further, the pH of the treatment liquid for self-deposition (Aspect 1) can be adjusted by the content of the acid component (e) and the addition of an alkaline substance. The alkaline substance is not limited as long as it can adjust the pH without greatly degrading the performance of the treatment liquid. Preferred examples of such an alkaline substance include ammonia, sodium carbonate, organic amines (diethanolamine, triethylamine, etc.) and inorganic hydroxides (sodium hydroxide, potassium hydroxide, etc.).

<自己析出:処理条件>
自己析出反応における、上記処理液と亜鉛系めっき鋼板との接触方法としては、特に限定されず、スプレー塗布法、ロール塗布法、浸漬法など公知の方法を使用することができる。なかでも、スプレー塗布法が好ましい。
接触条件(接触時間、処理液温度など)は、使用される処理液の種類により適宜最適な条件が選択される。なかでも、0.5〜20秒間であることが好ましく、1〜10秒間であることがより好ましい。この接触時間が短すぎると、処理液と亜鉛系めっき鋼板の表面が十分に反応せず、耐食性の優れた表面処理層が得られない場合がある。また、この接触時間が長すぎると、得られる表面処理層の性能向上は見られないうえ、ラインにおける操業効率の点からも好ましくない。
<Self-deposition: treatment conditions>
The method for contacting the treatment liquid and the zinc-based plated steel sheet in the self-deposition reaction is not particularly limited, and a known method such as a spray coating method, a roll coating method, or a dipping method can be used. Of these, the spray coating method is preferable.
As the contact conditions (contact time, treatment liquid temperature, etc.), optimum conditions are appropriately selected depending on the type of treatment liquid used. Especially, it is preferable that it is 0.5 to 20 seconds, and it is more preferable that it is 1 to 10 seconds. If the contact time is too short, the surface of the treatment liquid and the galvanized steel sheet may not sufficiently react, and a surface treatment layer with excellent corrosion resistance may not be obtained. Moreover, when this contact time is too long, the performance improvement of the surface treatment layer obtained is not seen, and it is not preferable also from the point of the operation efficiency in a line.

ここでスプレー塗布法による場合は、0.2〜5秒の間隔をおいて2回以上の間欠スプレーを施すことにより表面処理層の形成効率(析出効率)が高まる傾向がある。この場合、処理液が発泡し問題を生ずる場合には、処理液に消泡剤を添加することが好ましい。この消泡剤の種類には特に限定はなく、後の塗料密着性を損なうようなものでなければ公知のものを用いることができる。   Here, in the case of the spray coating method, there is a tendency that the formation efficiency (precipitation efficiency) of the surface treatment layer is increased by performing intermittent spraying twice or more at intervals of 0.2 to 5 seconds. In this case, when the treatment liquid foams and causes a problem, it is preferable to add an antifoaming agent to the treatment liquid. The type of the antifoaming agent is not particularly limited, and a known one can be used as long as it does not impair the later paint adhesion.

なお、処理液と亜鉛系めっき鋼板との接触時間とは、例えば、浸漬法による場合であれば、亜鉛系めっき鋼板が処理液に浸漬している時間を意味する。また、スプレー法による場合であれば、処理液を亜鉛系めっき鋼板の表面にスプレーで吹付けている時間を意味する。   In addition, the contact time between the treatment liquid and the zinc-based plated steel sheet means, for example, the time during which the zinc-based plated steel sheet is immersed in the treatment liquid in the case of an immersion method. Moreover, in the case of the spray method, it means the time during which the treatment liquid is sprayed on the surface of the galvanized steel sheet.

処理液の温度は、特に限定されないが、5〜60℃が好ましく、15〜40℃がより好ましい。上記範囲内であれば、適切な反応速度を保持しつつ、エネルギー効率が高まり、コストデメリットが生じ難い。   Although the temperature of a process liquid is not specifically limited, 5-60 degreeC is preferable and 15-40 degreeC is more preferable. If it is in the said range, energy efficiency will increase, maintaining a suitable reaction rate, and a cost demerit will not arise easily.

<電解析出>
電解析出反応においては、所定の処理液をカソードとした亜鉛系めっき鋼板と接触させ、アノードとの間で通電することで、亜鉛系めっき鋼板表面上に表面処理層が形成される。
電解析出において使用される処理液としては、少なくとも1種のZr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)を含む化合物(d)と、フッ化水素酸、硝酸、硫酸、りん酸およびこれらの塩からなる群から選ばれる少なくとも1つである酸成分(g)とを含有することが好ましい。化合物(d)は、表面処理層の主成分の供給源として作用する。酸成分(g)は、化合物(d)を溶解させる、処理液の導電性を上げる、などの効果を発揮する。
なかでも、少なくとも1種のZr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)およびフッ素元素を含む処理液が好ましい。
<Electrolytic deposition>
In the electrolytic deposition reaction, a surface treatment layer is formed on the surface of the zinc-based plated steel sheet by bringing it into contact with a zinc-based plated steel sheet using a predetermined treatment liquid as a cathode and energizing the anode.
The treatment liquid used in the electrolytic deposition includes at least one compound (d) containing at least one metal element (X) selected from the group consisting of Zr, Ti and Hf, hydrofluoric acid, nitric acid, It is preferable to contain at least one acid component (g) selected from the group consisting of sulfuric acid, phosphoric acid and salts thereof. The compound (d) acts as a supply source of the main component of the surface treatment layer. The acid component (g) exhibits effects such as dissolving the compound (d) and increasing the conductivity of the treatment liquid.
Among these, a treatment liquid containing at least one metal element (X) and fluorine element selected from the group consisting of at least one kind of Zr, Ti, and Hf is preferable.

電解析出で使用される化合物(d)は、上述した自己析出の処理液で使用される化合物と同義である。
処理液中における金属元素(X)を含む化合物(d)の含有量(濃度)は、使用される亜鉛系めっき鋼板などの種類によって適宜最適な量が選択される。好ましい含有量は、上述した自己析出の際に使用される処理液中の金属元素(X)の含有量と同じである。
The compound (d) used in the electrolytic deposition is synonymous with the compound used in the above-described autodeposition treatment solution.
As the content (concentration) of the compound (d) containing the metal element (X) in the treatment liquid, an optimal amount is appropriately selected depending on the type of the zinc-based plated steel sheet used. A preferable content is the same as the content of the metal element (X) in the treatment liquid used in the above-described self-precipitation.

酸成分(g)としては、上述の酸成分(e)で列挙した例示成分や、りん酸などが挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。
処理液中における酸成分(g)の合計含有量(濃度)は、5〜30g/Lであることが好ましく、10〜25g/Lであることがより好ましい。5g/L以上であると、金属板の表面に対する十分なエッチング能を期待できる。30g/L以下であると、エッチング能力が適切となり、均一な表面処理層を析出させることができる。
Examples of the acid component (g) include the exemplified components listed in the above acid component (e) and phosphoric acid. These may use only 1 type and may use 2 or more types together.
The total content (concentration) of the acid component (g) in the treatment liquid is preferably 5 to 30 g / L, and more preferably 10 to 25 g / L. When it is 5 g / L or more, sufficient etching ability for the surface of the metal plate can be expected. When it is 30 g / L or less, the etching ability becomes appropriate, and a uniform surface treatment layer can be deposited.

処理液に使用される溶媒としては、特に限定されないが、環境保護の観点から、水が好ましい。なお、処理液中に、有機溶媒(例えば、アルコール、グリコール、グリセリンやアセトン)を含有していてもよい。   Although it does not specifically limit as a solvent used for a process liquid, From a viewpoint of environmental protection, water is preferable. In addition, the processing liquid may contain an organic solvent (for example, alcohol, glycol, glycerin or acetone).

処理液のpHは特に限定されないが、酸性条件が好ましく、具体的には、pHが2.0〜6.0が好ましく、2.5〜4.5がより好ましい。上記範囲内であれば、金属元素(X)の析出性がより向上する。   The pH of the treatment liquid is not particularly limited, but acidic conditions are preferable. Specifically, the pH is preferably 2.0 to 6.0, and more preferably 2.5 to 4.5. If it is in the said range, the precipitation property of metal element (X) will improve more.

電解析出で使用される処理液としては、処理液中の遊離フッ素イオン濃度が1〜30mg/Lで、処理液のpHが2.0以上であることが好ましい。   The treatment liquid used in the electrolytic deposition preferably has a free fluorine ion concentration of 1 to 30 mg / L in the treatment liquid and a pH of the treatment liquid of 2.0 or more.

電解析出における処理液の温度は、特に限定されないが、5〜60℃が好ましく、15〜40がより好ましい。上記範囲内であれば、適切な反応速度を保持しつつ、エネルギー効率が高まり、コストデメリットが生じ難い。   Although the temperature of the process liquid in electrolytic deposition is not specifically limited, 5-60 degreeC is preferable and 15-40 are more preferable. If it is in the said range, energy efficiency will increase, maintaining a suitable reaction rate, and a cost demerit will not arise easily.

<電解析出:処理条件>
電解析出の方法としては、特に限定されず、公知の電解法を適用することができる。
電解条件においては、対極(陽極)としてステンレスかPb系合金を用い、温度を常温〜40℃、電流密度を0.5〜30A/dm(より好ましくは、1〜10A/dm)とすることが好ましい。
電解時間は、目的とする化合物(d)に含まれる金属元素(X)の必要量に応じて設定されるが、この電解処理により形成される表面処理層中での金属元素(X)の合計付着量が2〜50mg/mとなるためには、例えば、3A/dmの電流密度で0.5〜3秒間程度処理することが好ましい。
<Electrolytic deposition: treatment conditions>
The method for electrolytic deposition is not particularly limited, and a known electrolytic method can be applied.
Under the electrolysis conditions, stainless steel or a Pb-based alloy is used as the counter electrode (anode), the temperature is normal temperature to 40 ° C., and the current density is 0.5 to 30 A / dm 2 (more preferably 1 to 10 A / dm 2 ). It is preferable.
The electrolysis time is set according to the required amount of the metal element (X) contained in the target compound (d). The total amount of the metal element (X) in the surface treatment layer formed by this electrolysis treatment In order for the adhesion amount to be 2 to 50 mg / m 2 , for example, it is preferable to perform the treatment at a current density of 3 A / dm 2 for about 0.5 to 3 seconds.

上述した自己析出反応および電解析出反応は、一方のみを実施してもよいし、交互に実施してもよい。また、複数回実施してもよい。   Only one of the autodeposition reaction and the electrolytic deposition reaction described above may be performed, or may be performed alternately. Moreover, you may implement several times.

<洗浄工程>
表面処理層形成工程の後に、必要に応じて、表面処理層を有する亜鉛系めっき鋼板を水洗いし、乾燥する工程(洗浄工程)を実施してもよい。
水洗の方法は特定に限定されないが、例えば公知の浸漬法、スプレー法により行うことができる。水洗温度(水洗水の温度)は特に限定されず通常適用される温度でよいが、5〜60℃であることが好ましく、15〜40℃であることがより好ましい。このような温度であると、洗浄効率がより高まる。
水洗に使用する水洗水は、ドレン水、工業用水、市水、または脱イオン水を好適に用いることができる。
また、洗浄時間も特に限定されないが、例えば、浸漬法またはスプレー法の場合は、0.1〜10秒であることが好ましく、1〜5秒であることがより好ましい。水洗時間が短すぎると、表面処理層の表面に残存する余剰の処理液成分の除去が十分に行われず、耐食性に優れた表面処理層を得られないことがある。また、水洗時間が長すぎても、得られる表面処理層の性能向上は見られないうえ、ラインにおける操業効率の点からも好ましくない。
<Washing process>
After the surface treatment layer forming step, if necessary, a step (washing step) of washing and drying the zinc-based plated steel sheet having the surface treatment layer may be performed.
Although the method of washing with water is not particularly limited, it can be performed by, for example, a known dipping method or spray method. The washing temperature (the temperature of the washing water) is not particularly limited and may be a commonly applied temperature, but is preferably 5 to 60 ° C, and more preferably 15 to 40 ° C. At such a temperature, the cleaning efficiency is further increased.
As washing water used for washing, drain water, industrial water, city water, or deionized water can be preferably used.
Also, the washing time is not particularly limited. For example, in the case of the dipping method or the spray method, it is preferably 0.1 to 10 seconds, and more preferably 1 to 5 seconds. If the washing time is too short, the excess treatment liquid component remaining on the surface of the surface treatment layer is not sufficiently removed, and a surface treatment layer having excellent corrosion resistance may not be obtained. Further, even if the washing time is too long, the performance of the obtained surface treatment layer is not improved, and it is not preferable from the viewpoint of operation efficiency in the line.

なお、この洗浄時間とは、例えば、浸漬法による場合であれば、亜鉛系めっき鋼板が水洗水に浸漬している時間を意味する。また、スプレー法による場合であれば、水洗水を亜鉛系めっき鋼板の表面にスプレーで吹付けている時間を意味する。   In addition, this washing | cleaning time means the time when the zinc-plated steel plate is immersed in the washing water, for example, when it is a case of an immersion method. Moreover, in the case of the spray method, it means the time during which flush water is sprayed on the surface of the galvanized steel sheet.

このような水洗をした後は、その表面を乾燥させることが好ましい。付着水の除去だけ行う場合は、風乾、またはエアーブロー等の物理的除去でも構わない。形成した表面処理層を金属板の表面に強固に密着させ、また化学的にも安定な状態にするためには、加熱乾燥処理が効果的である。その場合の加熱条件は、表面処理層を形成した金属板の表面の最高到達温度(PMT)が30〜250℃となるように加熱乾燥処理することが好ましく、40〜150℃とするのがより好ましい。   After such washing with water, the surface is preferably dried. When only the adhered water is removed, physical removal such as air drying or air blowing may be performed. Heat-drying treatment is effective for bringing the formed surface treatment layer into close contact with the surface of the metal plate and making it chemically stable. In this case, the heating condition is preferably heat drying so that the maximum temperature (PMT) of the surface of the metal plate on which the surface treatment layer is formed is 30 to 250 ° C, more preferably 40 to 150 ° C. preferable.

<ケイ素含有層形成行程>
本発明のケイ素含有層形成工程は、表面処理層形成工程後、有機ケイ素化合物(Y)を含有する水系金属表面処理剤を上記表面処理層上に塗布して、ケイ素含有層を形成する工程である。
なお、有機ケイ素化合物(Y)は、1分子内に、式−SiR(式中、R、RおよびRは、それぞれ独立して、アルキル基、アルコキシ基または水酸基を表し、R、RおよびRのうち少なくとも1つはアルコキシ基を表す。)で表される官能基(a)を2個以上と、水酸基(官能基(a)に含まれ得るものとは別個のもの)、アミノ基、カルボキシル基、りん酸基、ホスホン酸基、スルホン基、ポリオキシエチレン鎖およびアミド基からなる群から選ばれる少なくとも1種の親水性官能基(b)とを含有し、官能基(b)1個当たりの分子量が100〜10000である化合物である。
まず、有機ケイ素化合物(Y)について説明する。
<Silicon-containing layer formation process>
The silicon-containing layer forming step of the present invention is a step of forming a silicon-containing layer by applying an aqueous metal surface treating agent containing an organosilicon compound (Y) on the surface-treated layer after the surface-treated layer forming step. is there.
Note that the organic silicon compound (Y) is, in one molecule, wherein -SiR 1 R 2 R 3 (wherein, R 1, R 2 and R 3 are each independently an alkyl group, an alkoxy group or a hydroxyl group And at least one of R 1 , R 2 and R 3 represents an alkoxy group) and two or more functional groups (a) and a hydroxyl group (which can be included in the functional group (a)) And at least one hydrophilic functional group (b) selected from the group consisting of amino group, carboxyl group, phosphoric acid group, phosphonic acid group, sulfone group, polyoxyethylene chain and amide group And a compound having a molecular weight of 100 to 10,000 per functional group (b).
First, the organosilicon compound (Y) will be described.

<有機ケイ素化合物(Y)>
有機ケイ素化合物(Y)は、1分子内に、式−SiRで表される官能基(a)を2個以上有する。
式中、R、RおよびRは、それぞれ独立して、アルキル基、アルコキシ基または水酸基を表し、R、RおよびRのうち少なくとも1つはアルコキシ基を表す。なかでも、アルコキシ基が好ましい。
アルキル基およびアルコキシ基の炭素数は特に制限されないが、炭素数1〜6が好ましく、炭素数1〜4がより好ましく、炭素数1または2が特に好ましい。
<Organic silicon compound (Y)>
The organosilicon compound (Y) has two or more functional groups (a) represented by the formula —SiR 1 R 2 R 3 in one molecule.
In the formula, R 1 , R 2 and R 3 each independently represents an alkyl group, an alkoxy group or a hydroxyl group, and at least one of R 1 , R 2 and R 3 represents an alkoxy group. Of these, an alkoxy group is preferable.
Although carbon number of an alkyl group and an alkoxy group is not specifically limited, C1-C6 is preferable, C1-C4 is more preferable, and C1-C2 is especially preferable.

有機ケイ素化合物(Y)は、1分子内に、水酸基(官能基(a)に含まれ得るものとは別個のもの)、アミノ基、カルボキシル基、りん酸基、ホスホン酸基、スルホン基、ポリオキシエチレン鎖およびアミド基からなる群から選ばれる少なくとも1種の親水性官能基(b)を1個以上有する。
親水性官能基(b)としては、アミノ基が好ましい。
The organosilicon compound (Y) has a hydroxyl group (separate from that which can be contained in the functional group (a)), amino group, carboxyl group, phosphoric acid group, phosphonic acid group, sulfone group, poly It has at least one hydrophilic functional group (b) selected from the group consisting of an oxyethylene chain and an amide group.
As the hydrophilic functional group (b), an amino group is preferable.

親水性官能基(b)と有機ケイ素化合物(Y)の分子量の関係は、親水性官能基(b)1個当たりの分子量が100〜10000であり、200〜5000が好ましい。有機ケイ素化合物(Y)において、親水性官能基(b)1個当たりの分子量が100未満であると、形成された皮膜の耐水性が著しく低くなる。また、親水性官能基(b)の1個当たりの分子量が10000より大きいと、有機ケイ素化合物(Y)を安定に溶解または分散させることが困難になる。
なお、上記分子量の測定方法としては、GPCを用いて測定することができる。
Regarding the relationship between the molecular weight of the hydrophilic functional group (b) and the organosilicon compound (Y), the molecular weight per hydrophilic functional group (b) is from 100 to 10,000, and preferably from 200 to 5,000. In the organosilicon compound (Y), when the molecular weight per hydrophilic functional group (b) is less than 100, the water resistance of the formed film is remarkably lowered. Moreover, when the molecular weight per hydrophilic functional group (b) is larger than 10,000, it is difficult to stably dissolve or disperse the organosilicon compound (Y).
In addition, as a measuring method of the said molecular weight, it can measure using GPC.

本発明の有機ケイ素化合物(Y)の製造方法は、特に限定されないが、例えば、(1)2つ以上の、活性水素含有官能基を有する化合物とクロロシランとを反応させる方法、(2)ビニル基を持つシランカップリング剤と共重合可能なビニル化合物とを反応させる方法、(3)特定の反応性官能基を有するシランカップリング剤と、その反応性官能基と反応しえる官能基を少なくとも1つ有するシランカップリング剤とを反応させる方法、(4)特定の反応性官能基を有するシランカップリング剤と、その反応性官能基と反応し得る官能基を持つ化合物とを反応させる方法、(5)多官能シランカップリング剤に親水基を修飾する方法などが挙げられる。   The method for producing the organosilicon compound (Y) of the present invention is not particularly limited. For example, (1) a method of reacting two or more compounds having an active hydrogen-containing functional group with chlorosilane, (2) a vinyl group And (3) a silane coupling agent having a specific reactive functional group and at least one functional group capable of reacting with the reactive functional group. (4) a method of reacting a silane coupling agent having a specific reactive functional group with a compound having a functional group capable of reacting with the reactive functional group, 5) A method of modifying a hydrophilic group in the polyfunctional silane coupling agent is exemplified.

本発明の有機ケイ素化合物(Y)の好ましい実施態様の一つとして、少なくとも1種の反応性官能基と式−SiR(式中、R、RおよびRは上記と同義である)で表される官能基(a)とを有する、少なくとも1種の有機シラン化合物(A)と、反応性官能基と反応可能な官能基を有する少なくとも1種の化合物(B)とを反応させて、得られる化合物(反応生成物)が挙げられる。
なお、有機シラン化合物(A)および化合物(B)は、それぞれ1種のみを使用してもよいし、複数を併用してもよい。
As one of the preferable embodiments of the organosilicon compound (Y) of the present invention, at least one reactive functional group and a formula -SiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 are At least one organosilane compound (A) having a functional group (a) represented by the same definition), and at least one compound (B) having a functional group capable of reacting with a reactive functional group, And the resulting compound (reaction product).
In addition, the organic silane compound (A) and the compound (B) may each be used alone or in combination.

有機シラン化合物(A)は、少なくとも1種の反応性官能基を有している。この反応性官能基を介して後述する化合物(B)と反応する。有機シラン化合物(A)は、反応性官能基を2つ以上有していてもよい。
反応性官能基は、他の官能基と反応して結合を形成する基であれば、特に限定されないが、例えば、水酸基、グリシジル基、1級アミノ基、2級アミノ基、メルカプト基、イソシアナト基、カルボキシル基、メチロール基、活性メチレン基、イミド基、アミド基、カルボニル基およびビニル基からなる群から選択される官能基が好ましい。なかでも、グリシジル基、1級アミノ基、メチロール基などが好ましい。
The organosilane compound (A) has at least one reactive functional group. It reacts with the compound (B) described later via this reactive functional group. The organosilane compound (A) may have two or more reactive functional groups.
The reactive functional group is not particularly limited as long as it is a group that reacts with other functional groups to form a bond. For example, a hydroxyl group, glycidyl group, primary amino group, secondary amino group, mercapto group, isocyanato group And a functional group selected from the group consisting of a carboxyl group, a methylol group, an active methylene group, an imide group, an amide group, a carbonyl group and a vinyl group. Of these, a glycidyl group, a primary amino group, a methylol group, and the like are preferable.

有機シラン化合物(A)は、式−SiR(式中、R、RおよびRは上記と同義である)で表される官能基(a)を有する。この官能基(a)は、上述した有機ケイ素化合物(Y)の官能基(a)と同義である。有機シラン化合物(A)は、官能基(a)を2つ以上有していてもよい。 Organic silane compound (A), (wherein, R 1, R 2 and R 3 are the same meaning as defined above) wherein -SiR 1 R 2 R 3 having the functional group (a) represented by. This functional group (a) is synonymous with the functional group (a) of the organosilicon compound (Y) described above. The organosilane compound (A) may have two or more functional groups (a).

有機シラン化合物(A)の分子量は、特に制限されないが、取り扱いやすさの点から、150〜500が好ましく、200〜400がより好ましい。   The molecular weight of the organosilane compound (A) is not particularly limited, but is preferably 150 to 500, more preferably 200 to 400, from the viewpoint of ease of handling.

有機シラン化合物(A)の好ましい実施態様の一つとして、一般式(I)で表される化合物が挙げられる。   One preferred embodiment of the organosilane compound (A) is a compound represented by the general formula (I).

Figure 2010111904
Figure 2010111904

一般式(I)中、Xは、エポキシ基、アミノ基、メルカプト基、ビニル基、およびイソシアネート基からなる群から選択されるいずれかの官能基を表す。Lは、2価の連結基、または単なる結合手を表す。Yは、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン基、水素原子、または水酸基を表す。   In general formula (I), X represents any functional group selected from the group consisting of an epoxy group, an amino group, a mercapto group, a vinyl group, and an isocyanate group. L represents a divalent linking group or a simple bond. Y each independently represents an alkyl group, an alkoxy group, a halogen group, a hydrogen atom, or a hydroxyl group.

一般式(I)中、Xは、エポキシ基、アミノ基、メルカプト基、ビニル基、およびイソシアネート基からなる群から選択されるいずれかの官能基を表す。なかでも、エポキシ基、アミノ基が好ましい。   In general formula (I), X represents any functional group selected from the group consisting of an epoxy group, an amino group, a mercapto group, a vinyl group, and an isocyanate group. Of these, an epoxy group and an amino group are preferable.

一般式(I)中、Lは、2価の連結基、または単なる結合手を表す。
Lで表される連結基としては、例えば、アルキレン基(炭素数1〜20が好ましい)、−O−、−S−、アリーレン基、−CO−、−NH−、−SO2−、−COO−、−CONH−、またはこれらを組み合わせた基が挙げられる。なかでも、アルキレン基が好ましい。単なる結合手の場合、一般式(I)のXがSi(ケイ素原子)と直接連結することをさす。
In general formula (I), L represents a divalent linking group or a simple bond.
Examples of the linking group represented by L include an alkylene group (preferably having 1 to 20 carbon atoms), —O—, —S—, an arylene group, —CO—, —NH—, —SO 2 —, —COO. -, -CONH-, or a combination thereof. Of these, an alkylene group is preferable. In the case of a simple bond, it means that X in the general formula (I) is directly connected to Si (silicon atom).

一般式(I)中、Yは、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン基、水素原子、または水酸基を表す。なかでも、アルコキシ基、水酸基が好ましい。なお、Yのうち少なくとも1つがアルコキシ基を表すことが好ましい。   In general formula (I), Y represents an alkyl group, an alkoxy group, a halogen group, a hydrogen atom, or a hydroxyl group each independently. Of these, an alkoxy group and a hydroxyl group are preferable. In addition, it is preferable that at least one of Y represents an alkoxy group.

有機シラン化合物(A)の具体例としては、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、および2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−(アミノエチル)3−アミノプロピルトリメトキシシラン、および3−アミノプロピルトリエトキシシランなどのアミノシラン、3−メルカプトプロピルトリメトキシシランなどのメルカプトシラン、3−イソシアネートプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシランなどのイソシアネートシラン、ビニルトリエトキシシラン、p−スチリルトリメトキシシランなどのビニル基含有シランなどが挙げられる。   Specific examples of the organic silane compound (A) include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the like. Epoxysilanes, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (aminoethyl) 3-aminopropyltrimethoxysilane, and aminosilanes such as 3-aminopropyltriethoxysilane, 3-mercaptopropyl Mercaptosilane such as trimethoxysilane, isocyanate silane such as 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, vinyl triethoxysilane, vinyl such as p-styryltrimethoxysilane Etc. containing silane.

化合物(B)は、上記の有機シラン化合物(A)の反応性官能基と反応可能な基を有していれば、特にその構造は限定されない。また、化合物(B)は式−SiRで表される官能基(a)を有していてもよい。さらに、化合物(B)は、上記の有機シラン化合物(A)で表される化合物であってもよい。つまり、有機ケイ素化合物(Y)は、有機シラン化合物(A)同士が反応して得られるものでもよい。
なお、反応可能な官能基としては、特に限定されないが、例えば、水酸基、グリシジル基、1級アミノ基、2級アミノ基、メルカプト基、イソシアナト基、カルボキシル基、メチロール基、活性メチレン基、イミド基、アミド基、カルボニル基およびビニル基からなる群から選択される官能基が好ましい。
化合物(B)の分子量は、特に制限されないが、取り扱いやすさの点から、100〜3000が好ましい。
The structure of the compound (B) is not particularly limited as long as it has a group capable of reacting with the reactive functional group of the organosilane compound (A). Moreover, the compound (B) may have a functional group (a) represented by the formula —SiR 1 R 2 R 3 . Further, the compound (B) may be a compound represented by the above-mentioned organosilane compound (A). That is, the organosilicon compound (Y) may be obtained by reaction between the organosilane compounds (A).
The reactive functional group is not particularly limited, and examples thereof include a hydroxyl group, a glycidyl group, a primary amino group, a secondary amino group, a mercapto group, an isocyanato group, a carboxyl group, a methylol group, an active methylene group, and an imide group. A functional group selected from the group consisting of amide group, carbonyl group and vinyl group is preferred.
The molecular weight of the compound (B) is not particularly limited, but is preferably 100 to 3000 from the viewpoint of ease of handling.

化合物(B)の具体例としては、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、および2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−(アミノエチル)3−アミノプロピルトリメトキシシラン、および3−アミノプロピルトリエトキシシランなどのアミノシラン、3−メルカプトプロピルトリメトキシシランなどのメルカプトシラン、3−イソシアネートプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシランなどのイソシアネートシラン、ビニルトリエトキシシラン、p−スチリルトリメトキシシランなどのビニル基含有シラン、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテルなどのエポキシ化合物、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、キシリレンジイソシアネートなどのイソシアネート化合物、メラミン、ジメチロールプロピオン酸などのメチロール含有化合物、アセトアセトキシアクリリレートなどの活性メチレン含有化合物、N‘Nイソプロピルカルボジイミドなどのイミド化合物、イソホロンジアミン、ピペラジン、ジフェニルメタンジアミンなどのアミン化合物、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテルなどのエポキシ化合物のポリオキシエチレン付加物、エタノールアミンやプロパノールアミンなどのヒドロキシルアミン、グリコールなどの多価アルコール、2−アミノエタンチオールや2−アミノプロパンチオールなどのアミンチオール、酒石酸、L−アスコルビン酸などのヒドロキシカルボン酸、2−アミノ−1−ナフタレンスルホン酸などのアミノスルホン酸、α−グリセロホスホン酸などのヒドロキシホスホン酸、ジアミノアルキルスルホン酸、グリシン、アラニン、グルタミン酸などのアミノ酸などが挙げられる。   Specific examples of the compound (B) include epoxies such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Aminosilanes such as silane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (aminoethyl) 3-aminopropyltrimethoxysilane, and 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxy Mercaptosilane such as silane, isocyanate group such as 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, vinyl group-containing sila such as vinyltriethoxysilane, p-styryltrimethoxysilane , Epoxy compounds such as sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, isocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, methylol such as melamine, dimethylol propionic acid, etc. Compounds, active methylene-containing compounds such as acetoacetoxy acrylate, imide compounds such as N′N isopropylcarbodiimide, amine compounds such as isophorone diamine, piperazine, diphenylmethane diamine, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl Ether, hydrogenated bisphenol A diglycidyl ether Polyoxyethylene adducts of epoxy compounds, hydroxylamines such as ethanolamine and propanolamine, polyhydric alcohols such as glycol, amine thiols such as 2-aminoethanethiol and 2-aminopropanethiol, tartaric acid, L-ascorbic acid, etc. Hydroxycarboxylic acids, aminosulfonic acids such as 2-amino-1-naphthalenesulfonic acid, hydroxyphosphonic acids such as α-glycerophosphonic acid, amino acids such as diaminoalkylsulfonic acid, glycine, alanine, and glutamic acid.

有機シラン化合物(A)と化合物(B)との反応比は、特に制限されないが、有機シラン化合物(A):化合物(B)(モル比)で10:1〜1:10が好ましく、5:1〜1:5がより好ましい。
これら有機シラン化合物(A)と化合物(B)との反応条件は、使用される化合物によって適宜最適な条件が選択される。また、反応の際に、溶媒(例えば、アルコールなど)などを使用してもよい。
The reaction ratio between the organosilane compound (A) and the compound (B) is not particularly limited, but is preferably 10: 1 to 1:10 in terms of the organosilane compound (A): the compound (B) (molar ratio). 1-1: 5 is more preferable.
As the reaction conditions between these organosilane compounds (A) and compounds (B), optimum conditions are appropriately selected depending on the compounds used. Moreover, you may use a solvent (for example, alcohol etc.) etc. in the case of reaction.

有機シラン化合物(A)と化合物(B)との好適な組み合わせとしては、両者が一般式(1)で表される化合物の場合、3−アミノプロピルトリメトキシシランとγ−グリシドキシプロピルトリメトキシシランの組み合わせが挙げられる。   As a suitable combination of the organic silane compound (A) and the compound (B), when both are compounds represented by the general formula (1), 3-aminopropyltrimethoxysilane and γ-glycidoxypropyltrimethoxy A combination of silanes can be mentioned.

水系金属表面処理剤中における有機ケイ素化合物(Y)の含有量は、特に制限されないが、取り扱いやすさの点から、処理剤全量に対して、2〜20質量%が好ましく、5〜15質量%がより好ましい。   The content of the organosilicon compound (Y) in the aqueous metal surface treatment agent is not particularly limited, but is preferably 2 to 20% by mass and 5 to 15% by mass with respect to the total amount of the treatment agent from the viewpoint of ease of handling. Is more preferable.

水系金属表面処理剤に使用される溶媒としては、主成分として水が使用される。なお、処理剤は、有機溶媒(例えば、アルコールなど)を含有していてもよい。   As a solvent used for the aqueous metal surface treatment agent, water is used as a main component. Note that the treatment agent may contain an organic solvent (for example, alcohol).

水系金属表面処理剤のpHは特に限定されないが、酸性が好ましく、具体的には2.5〜6が好ましく、3.5〜5がより好ましい。上記範囲内であれば、水系金属表面処理剤の安定性がより向上する。   The pH of the aqueous metal surface treatment agent is not particularly limited, but is preferably acidic, specifically 2.5 to 6 is preferable, and 3.5 to 5 is more preferable. If it is in the said range, stability of a water-system metal surface treating agent will improve more.

<その他添加剤>
水系金属表面処理剤は、さらに、2価以上の金属イオンを含有する金属化合物(C)を含むことが好ましい。金属化合物(C)を含有することにより、水系金属表面処理剤で処理した金属材料の耐食性が向上する。
金属化合物(C)に含有される2価以上の金属イオンは、Ti、Zr、Hf、V、Mg、Mn、Zn、W、Mo、Al、Ni、CoおよびCaイオンから選ばれる少なくとも1種であることが好ましい。
2価以上の金属イオンを含有する金属化合物(C)としては、上記の金属と、フルオロ酸、りん酸、硝酸および硫酸などの無機酸、ギ酸、酢酸、酪酸、シュウ酸、コハク酸、乳酸、L−アスコルビン酸、酒石酸、クエン酸、DL−リンゴ酸、マロン酸、マレイン酸、フタル酸などの有機酸との塩、または、上記の金属のアルコキシド、アルキルアセトネート、アルカンジオレート、ラクテート、アミネートまたはステアレートなどの錯塩などが挙げられる。例えば、Vイオン(バナジウムイオン)含有化合物としては、特に限定するものではないが、五酸化バナジウムV、メタバナジン酸HVO、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、オキシ三塩化バナジウムVOCl、三酸化バナジウムV、二酸化バナジウムVO、オキシ硫酸バナジウムVOSO、バナジウムオキシアセチルアセトネートVO(OC(=CH)CHCOCH))、バナジウムアセチルアセトネートV(OC(=CH)CHCOCH))、三塩化バナジウムVCl、リンバナドモリブデン酸などを例示することができる。また、5価のバナジウム化合物を用いる場合には、これを水酸基、カルボニル基、カルボキシル基、1〜3級アミノ基、アミド基、リン酸基およびホスホン酸基よりなる群から選ばれる少なくとも1種の官能基を有する有機化合物により、2価〜4価に還元したものも使用可能である。
これらの金属化合物(C)は、単独でも、2種以上組み合わせて使用してもよい。
水系金属表面処理剤中における金属化合物(C)の含有量は、特に制限されないが、ケイ素含有層の形成速度の点から、処理剤中の固形分全量に対して0.5〜20質量%が好ましく、1〜10質量%がより好ましい。なお、固形分とは、処理剤中で溶媒(例えば、水)を除いたケイ素含有層を構成する成分をさす。
<Other additives>
The aqueous metal surface treatment agent preferably further contains a metal compound (C) containing a divalent or higher valent metal ion. By containing the metal compound (C), the corrosion resistance of the metal material treated with the aqueous metal surface treatment agent is improved.
The divalent or higher valent metal ion contained in the metal compound (C) is at least one selected from Ti, Zr, Hf, V, Mg, Mn, Zn, W, Mo, Al, Ni, Co and Ca ions. Preferably there is.
Examples of the metal compound (C) containing a divalent or higher metal ion include the above metals and inorganic acids such as fluoro acid, phosphoric acid, nitric acid and sulfuric acid, formic acid, acetic acid, butyric acid, oxalic acid, succinic acid, lactic acid, Salts with organic acids such as L-ascorbic acid, tartaric acid, citric acid, DL-malic acid, malonic acid, maleic acid, phthalic acid, or alkoxides, alkylacetonates, alkanediolates, lactates, aminates of the above metals Or complex salts, such as a stearate, etc. are mentioned. For example, the V ion (vanadium ion) -containing compound is not particularly limited, but vanadium pentoxide V 2 O 5 , metavanadate HVO 3 , ammonium metavanadate, sodium metavanadate, vanadium oxytrichloride VOCl 3 , three Vanadium oxide V 2 O 3 , vanadium dioxide VO 2 , vanadium oxysulfate VOSO 4 , vanadium oxyacetylacetonate VO (OC (═CH 2 ) CH 2 COCH 3 )) 2 , vanadium acetylacetonate V (OC (═CH 2 ) CH 2 COCH 3 )) 3 , vanadium trichloride VCl 3 , phosphovanadomolybdic acid and the like. When a pentavalent vanadium compound is used, it is at least one selected from the group consisting of a hydroxyl group, a carbonyl group, a carboxyl group, a primary to tertiary amino group, an amide group, a phosphoric acid group, and a phosphonic acid group. What reduced to bivalent-tetravalent with the organic compound which has a functional group can also be used.
These metal compounds (C) may be used alone or in combination of two or more.
The content of the metal compound (C) in the aqueous metal surface treatment agent is not particularly limited, but is 0.5 to 20% by mass with respect to the total solid content in the treatment agent from the viewpoint of the formation rate of the silicon-containing layer. Preferably, 1-10 mass% is more preferable. In addition, solid content refers to the component which comprises the silicon containing layer except a solvent (for example, water) in a processing agent.

水系金属表面処理剤は、さらに、フッ化水素酸、有機酸およびりん酸からなる群から選ばれる少なくとも1種の酸(D)を含有することが好ましい。酸(D)を含有することにより、耐食性が向上する。
フッ化水素酸は、エッチング効果の他に、キレート作用を発揮し、表面処理亜鉛系めっき鋼板の耐食性を向上させる。有機酸は、酸の中では比較的酸性度の低い酸であるため、金属表面を強力にエッチングすることはないが、表面にある不均一な極薄い酸化膜を取り除くので表面処理亜鉛系めっき鋼板の耐食性を向上させる。リン酸は、金属表面上にごくわずかであるがリン酸塩系化成皮膜を形成させ、表面処理亜鉛系めっき鋼板の耐食性を向上させる。
水系金属表面処理剤中における酸(D)の含有量は、特に制限されないが、ケイ素含有層の形成速度の点から、処理剤中の固形分全量に対して、0.5〜20質量%が好ましく、1〜10質量%がより好ましい。なお、固形分とは、処理剤中で溶媒(例えば、水)を除いたケイ素含有層を構成する成分をさす。
The aqueous metal surface treatment agent preferably further contains at least one acid (D) selected from the group consisting of hydrofluoric acid, organic acid and phosphoric acid. Corrosion resistance improves by containing an acid (D).
In addition to the etching effect, hydrofluoric acid exhibits a chelating action and improves the corrosion resistance of the surface-treated zinc-based plated steel sheet. Since organic acids are acids with relatively low acidity among acids, they do not etch the metal surface strongly, but they remove the non-uniform and extremely thin oxide film on the surface. Improve the corrosion resistance. Phosphoric acid forms a phosphate-based chemical conversion film on the metal surface, but it improves the corrosion resistance of the surface-treated galvanized steel sheet.
The content of the acid (D) in the aqueous metal surface treatment agent is not particularly limited, but is 0.5 to 20% by mass with respect to the total solid content in the treatment agent from the point of formation rate of the silicon-containing layer. Preferably, 1-10 mass% is more preferable. In addition, solid content refers to the component which comprises the silicon containing layer except a solvent (for example, water) in a processing agent.

<処理条件>
ケイ素含有層は、上述した表面処理層形成工程後、有機ケイ素化合物(Y)を含有する水系金属表面処理剤を表面処理層上に塗布し、必要に応じて乾燥して、形成される。
塗布の方法としては、特に制限されず、スピンコーティング法、ロールコート法、浸漬法、スプレー塗布法、などが挙げられる。
塗膜を形成後、必要に応じて、塗膜を水洗してもよい。
工業的実用的皮膜形成のために、塗布後の塗膜を加熱乾燥することが好ましい。この場合、乾燥温度は、到達板温として30〜300℃が好ましく、40〜250℃がより好ましく、60〜200℃が特に好ましい。乾燥時間に関しては、到達板温が上記条件を満たしていれば特に制限されない。
<Processing conditions>
The silicon-containing layer is formed by applying an aqueous metal surface treatment agent containing an organosilicon compound (Y) on the surface treatment layer after the surface treatment layer forming step described above, and drying it as necessary.
The application method is not particularly limited, and examples thereof include a spin coating method, a roll coating method, a dipping method, and a spray coating method.
After forming the coating film, the coating film may be washed with water as necessary.
In order to form an industrially practical film, it is preferable to heat-dry the coated film after coating. In this case, the drying temperature is preferably 30 to 300 ° C., more preferably 40 to 250 ° C., and particularly preferably 60 to 200 ° C. as the ultimate plate temperature. The drying time is not particularly limited as long as the ultimate plate temperature satisfies the above conditions.

水系金属表面処理剤の使用温度は、特に限定されず、処理剤中に含有される成分によって適宜最適な条件が選択される。   The use temperature of the aqueous metal surface treatment agent is not particularly limited, and optimum conditions are appropriately selected depending on the components contained in the treatment agent.

<用途>
本発明の表面処理亜鉛系めっき鋼板は、上述のように亜鉛系めっき鋼板上に表面処理層とケイ素含有層とが積層した構造を備える。このような構成の表面処理亜鉛系めっき鋼板は、優れた耐食性、耐指紋性、導電性、塗膜密着性を示す。このような種々の特性をバランスよく備える亜鉛系めっき鋼板は、従来提供されておらず、本発明の表面処理亜鉛系めっき鋼板は種々の用途に適用することができる。例えば、家電、建材、自動車用鋼板などが挙げられる。
<Application>
The surface-treated zinc-based plated steel sheet of the present invention has a structure in which a surface-treated layer and a silicon-containing layer are laminated on a zinc-based plated steel sheet as described above. The surface-treated zinc-based plated steel sheet having such a configuration exhibits excellent corrosion resistance, fingerprint resistance, conductivity, and coating film adhesion. A galvanized steel sheet having such various characteristics in a well-balanced manner has not been provided conventionally, and the surface-treated galvanized steel sheet of the present invention can be applied to various applications. For example, household appliances, building materials, automobile steel plates, and the like can be given.

また、本発明の表面処理亜鉛系めっき鋼板に、プライマーを塗布し乾燥後、トップコート塗料を塗布し乾燥することで、塗装板としても使用することができる。プライマーは、樹脂を含有し、必要に応じて着色顔料や防錆顔料などを含有していてもよい。
樹脂としては、水系、溶剤系、粉体系などのいずれの形態のものでもよい。
着色顔料としては、酸化チタンやカーボンブラックなどの無機顔料や、アゾ系顔料といった有機顔料など公知の着色顔料を用いることができる。
防錆顔料としては、ストロンチウムクロメート、ジンクロメートなどのクロメート系防錆顔料、りん酸亜鉛などのりん酸系防錆顔料、モリブデン酸カルシウムなどのモリブデン酸系防錆顔料、水分散性シリカなどの微粒シリカなども用いることができる。
ただし、クロメート系防錆顔料は環境上有毒であるため使用しないことが望ましい。
また、消泡剤、分散補助剤、または、塗料粘度を下げるための希釈剤などの添加剤を適宜配合してもよい。
また、ここでトップコート塗料としては、特に限定されず、公知の塗装用トップコートを使用することができる。例えば、樹脂を含有し、必要に応じてさらに着色顔料や防錆顔料などを含有することができる。樹脂、着色顔料および防錆顔料、ならびに添加物としては、上記プライマーで使用したものと同様のものを用いることができる。
Moreover, it can be used also as a coating board by apply | coating a primer to the surface treatment zinc-plated steel plate of this invention, drying, and then apply | coating and drying a topcoat paint. The primer contains a resin and may contain a color pigment, a rust preventive pigment, or the like as necessary.
The resin may be in any form such as aqueous, solvent-based, and powder-based.
As the coloring pigment, known coloring pigments such as inorganic pigments such as titanium oxide and carbon black, and organic pigments such as azo pigments can be used.
Antirust pigments include chromate rust preventive pigments such as strontium chromate and zinc chromate, phosphate rust preventive pigments such as zinc phosphate, molybdate rust preventive pigments such as calcium molybdate, and fine particles such as water-dispersible silica. Silica and the like can also be used.
However, it is desirable not to use chromate-based anticorrosive pigments because they are environmentally toxic.
Moreover, you may mix | blend additives, such as a defoamer, a dispersion adjuvant, or a diluent for reducing a coating-material viscosity suitably.
Moreover, it does not specifically limit as a topcoat paint here, A well-known topcoat for coating can be used. For example, it contains a resin, and may further contain a color pigment, a rust preventive pigment, or the like as necessary. As the resin, the color pigment, the rust preventive pigment, and the additive, those similar to those used in the primer can be used.

本発明の表面処理亜鉛系めっき鋼板は、従来の表面処理法では得られなかった、優れた耐食性、耐指紋性、導電性、塗膜密着性を備える。その理由は以下のように推測される。本発明の表面処理亜鉛系めっき鋼板の表面処理層は、主に耐食性を付与する。この表面処理層は、酸やアルカリにも侵されず、曲げ加工にも追従し、優れた被覆性を示すが、極めて薄い皮膜であるため腐食要因の物理的および時間的遮断能、いわゆるバリア性に関しては十分ではない場合がある。バリア性を付与するために、表面処理層を厚く形成させると、表面処理層の表面が疎な皮膜になるだけでなく、層内での凝集破壊などによって剥離などを生じやすくなり、塗膜密着性や導電性が悪化する。そこで、上述したケイ素含有層を表面処理層に積層させることにより、上記のような弊害を防止しつつ、バリア性を付与することができる。   The surface-treated zinc-based plated steel sheet of the present invention has excellent corrosion resistance, fingerprint resistance, electrical conductivity, and coating film adhesion, which cannot be obtained by conventional surface treatment methods. The reason is presumed as follows. The surface treatment layer of the surface-treated zinc-based plated steel sheet of the present invention mainly imparts corrosion resistance. This surface treatment layer is not attacked by acids and alkalis and follows the bending process and shows excellent coating properties. However, it is a very thin film, so it has a physical and temporal blocking ability against corrosion factors, so-called barrier properties. May not be enough. When the surface treatment layer is formed thick in order to provide barrier properties, not only the surface of the surface treatment layer becomes a sparse film, but also peeling and the like are likely to occur due to cohesive failure in the layer, etc. And conductivity deteriorate. Therefore, by laminating the above-described silicon-containing layer on the surface treatment layer, it is possible to impart barrier properties while preventing the above-described adverse effects.

ケイ素含有層の特徴としては、まず、ケイ素化合物(Y)の一部が乾燥などにより濃縮されたときに、ケイ素化合物(Y)が互いに反応して連続皮膜を成膜すること、および、有機ケイ素化合物(Y)の一部が加水分解して生成した−OR基が金属表面とSi−O−M結合(M:被塗物表面の金属元素)を形成することにより、著しいバリア効果を発揮され、耐食性が向上すると推定される。また、緻密な皮膜形成が可能なため皮膜の薄膜化が可能となり、導電性も良好になる。さらに、その構造については、ケイ素−有機鎖の配列が規則的であり、また有機鎖が比較的短いことから、皮膜中の極めて微小な区域に、規則的かつ緻密にケイ素含有部と有機物部、すなわち無機物と有機物が配列している。そのため、無機系皮膜が通常有する導電性と、有機系皮膜が通常有する耐指紋性とを併せ持つ新規な皮膜の形成が可能になると推定される。
なお、本発明者らが、検討した結果、本発明のケイ素化合物(Y)を含有する表面処理層の単層構造の表面処理亜鉛系めっき鋼板では、特に、耐指紋性や耐食性が悪化し、上記のような性能バランスは得られなかった。つまり、本発明のように積層構造にすることによって、初めて諸特性の性能バランスに優れた表面処理亜鉛系めっき鋼板が得られる。
As a feature of the silicon-containing layer, first, when a part of the silicon compound (Y) is concentrated by drying or the like, the silicon compound (Y) reacts with each other to form a continuous film, and organic silicon A significant barrier effect is exhibited when the —OR group formed by hydrolysis of a part of the compound (Y) forms a Si—OM bond (M: metal element on the surface of the object to be coated) with the metal surface. It is estimated that the corrosion resistance is improved. In addition, since a dense film can be formed, the film can be thinned and the conductivity is improved. Further, with respect to the structure, since the arrangement of the silicon-organic chain is regular and the organic chain is relatively short, the silicon-containing part and the organic part are regularly and densely arranged in a very small area in the film. That is, the inorganic substance and the organic substance are arranged. Therefore, it is presumed that it becomes possible to form a new film having both the conductivity that the inorganic film normally has and the fingerprint resistance that the organic film normally has.
In addition, as a result of the study by the inventors, in the surface-treated zinc-based plated steel sheet having a single-layer structure of the surface treatment layer containing the silicon compound (Y) of the present invention, in particular, fingerprint resistance and corrosion resistance deteriorate, The performance balance as described above could not be obtained. That is, by using a laminated structure as in the present invention, a surface-treated galvanized steel sheet excellent in performance balance of various properties can be obtained for the first time.

以下に本発明の実施例および比較例を挙げて、本発明を具体的に説明するが、本発明はこれらにより限定されるものではない。試験板の調整、実施例および比較例について以下に説明する。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples of the present invention, but the present invention is not limited thereto. The adjustment of the test plate, examples and comparative examples will be described below.

(1)試験素材
以下の表1に示した市販の素材を用いた。
(1) Test material Commercially available materials shown in Table 1 below were used.

Figure 2010111904
Figure 2010111904

上記表1中、目付量はそれぞれの鋼板の主面上への目付量を示している。例えば、電気亜鉛めっき鋼板の場合は、20/20(g/m)であり、鋼板の両面のそれぞれに20g/mのめっきを有することを意味する。
なお、表1中、「態様1」とは自己析出により表面処理を形成するために使用する鋼板をさし、「態様2」とは電解析出により表面処理を形成するために使用する鋼板をさす。
In Table 1 above, the basis weight indicates the basis weight on the main surface of each steel plate. For example, in the case of an electrogalvanized steel sheet, it is 20/20 (g / m 2 ), which means that each surface of the steel sheet has a plating of 20 g / m 2 .
In Table 1, “Aspect 1” refers to a steel plate used for forming a surface treatment by self-deposition, and “Aspect 2” refers to a steel plate used for forming a surface treatment by electrolytic deposition. Sure.

(2)亜鉛系めっき鋼板の洗浄方法
上記の試験素材の表面(両面)を、水酸化ナトリウム系脱脂剤ファインクリーナーL4460(登録商標:日本パーカライジング株式会社製)を用いて処理し、表面に付着しているゴミや油を除去した。処理条件は、取扱説明書記載の標準濃度、温度40℃の条件で30秒スプレー処理した。処理後、試験素材を純水で30秒間水洗し、乾燥したものを試験板として使用した。
(2) Method for cleaning zinc-based plated steel sheet The surface (both sides) of the above test material is treated with sodium hydroxide-based degreasing agent Fine Cleaner L4460 (registered trademark: manufactured by Nihon Parkerizing Co., Ltd.) and adhered to the surface. Removed garbage and oil. The treatment conditions were spray treatment for 30 seconds under the conditions of standard concentration and temperature of 40 ° C. described in the instruction manual. After the treatment, the test material was washed with pure water for 30 seconds and dried to use as a test plate.

(3−1)表面処理層の形成(態様1:自己析出)
脱脂処理を行った表1に示す試験板(態様1)を、以下の表2に示す処理液(溶媒:水)および処理液条件にて処理し、表3に示す表面処理層を有する試験板を得た。なお、処理液の使用温度は50〜60℃とし、スプレー処理にて試験板と接触させた。また、処理時間は2秒〜10秒の間で、以下の表3に示す金属元素(X)付着量が得られるまで処理した。
なお、ESCA測定より、表面処理層は主に金属元素(X)(ジルコニウム元素、チタン元素、またはハフニウム元素)およびフッ素元素より構成されることがわかった。
また、表2中の濃度(D)は、金属元素(X)の質量濃度を表し、濃度(F)は使用される各金属の質量濃度を表す。
(3-1) Formation of surface treatment layer (Aspect 1: Autodeposition)
The test plate (surface 1) shown in Table 1 subjected to degreasing treatment was treated with the treatment liquid (solvent: water) and treatment liquid conditions shown in Table 2 below, and the test plate having the surface treatment layer shown in Table 3 Got. The use temperature of the treatment liquid was 50 to 60 ° C. and contacted with the test plate by spray treatment. The treatment time was 2 seconds to 10 seconds, and treatment was performed until the metal element (X) adhesion amount shown in Table 3 below was obtained.
From the ESCA measurement, it was found that the surface treatment layer was mainly composed of metal element (X) (zirconium element, titanium element or hafnium element) and fluorine element.
The concentration (D) in Table 2 represents the mass concentration of the metal element (X), and the concentration (F) represents the mass concentration of each metal used.

Figure 2010111904
Figure 2010111904

表2中のpHは、アンモニアで所定のpHになるように調整した。また、遊離フッ素濃度は、フッ素イオンメーターにて測定した。
また、表2中、「式(1)」とは上述した式(1):pH≦−0.02×(F/D)+6を表し、各処理液のpHが式(1)の関係を満足する場合を「成立可否:○」とする。
The pH in Table 2 was adjusted to a predetermined pH with ammonia. The free fluorine concentration was measured with a fluorine ion meter.
Further, in Table 2, “Expression (1)” represents the above-described Expression (1): pH ≦ −0.02 × (F / D) +6, and the pH of each treatment solution is related to Expression (1). When satisfied, it is assumed that “success / failure: ○”.

Figure 2010111904
Figure 2010111904

表3中、金属元素(X)の付着量は、蛍光X線にて測定を行った。   In Table 3, the adhesion amount of the metal element (X) was measured with fluorescent X-rays.

(3−2)表面処理層の形成(態様2:電解析出)
脱脂処理を行った表1に示す試験板(態様1)を、表4に示す処理液(溶媒:水)および処理液条件にて処理し、表5に示す表面処理層を有する試験板を得た。処理液の使用温度は50〜60℃とし、試験板を陰極、SUS304の薄板を陽極として、所定の処理液に浸漬すると同時に、所定量の電流を試験板に通電した。処理時間は2秒〜10秒の間で、表5に示す金属元素(X)付着量が得られるまでとした。
なお、ESCA測定より、Q1〜Q9、およびQ11での表面処理層は主に金属元素(X)(ジルコニウム元素、チタン元素、またはハフニウム元素)およびフッ素元素より構成されることが確認された。また、Q10での表面処理層は、主にジルコニウム元素および酸素元素より構成されることが確認された。なお、表4中の濃度(D)は、金属元素(X)の質量濃度を表す。
(3-2) Formation of surface treatment layer (Aspect 2: Electrodeposition)
The test plate (embodiment 1) shown in Table 1 subjected to degreasing treatment was processed under the treatment liquid (solvent: water) and treatment liquid conditions shown in Table 4 to obtain a test plate having the surface treatment layer shown in Table 5. It was. The processing solution was used at a temperature of 50 to 60 ° C. The test plate was used as a cathode and the thin plate of SUS304 was used as an anode, and at the same time, a predetermined amount of current was applied to the test plate. The treatment time was between 2 seconds and 10 seconds until the metal element (X) adhesion amount shown in Table 5 was obtained.
From the ESCA measurement, it was confirmed that the surface treatment layers in Q1 to Q9 and Q11 were mainly composed of a metal element (X) (zirconium element, titanium element, or hafnium element) and a fluorine element. In addition, it was confirmed that the surface treatment layer in Q10 is mainly composed of a zirconium element and an oxygen element. In addition, the concentration (D) in Table 4 represents the mass concentration of the metal element (X).

Figure 2010111904
Figure 2010111904

Figure 2010111904
Figure 2010111904

表5中、金属元素(X)の付着量は、蛍光X線にて測定を行った。   In Table 5, the adhesion amount of the metal element (X) was measured with fluorescent X-rays.

(3−3)表面処理層の形成(比較例)
以下の比較例(R1〜R4)の処理を実施した。なお、試験板としては、電気亜鉛めっき鋼板(EG)を使用した。
R1:表面処理層無し
R2:反応型クロメート処理
R3:りん酸亜鉛処理
R4:前述のP1の処理液に後述のS1を5g/L添加した処理液
なお、反応型クロメート処理(R2)は、ジンクロム3367(登録商標:日本パーカライジング株式会社製)を用い、取扱説明書に則ってCr付着量で15mg/mとなるように処理した。
また、りん酸亜鉛処理(R3)は、パルボンド3305(登録商標:日本パーカライジング株式会社製)を用い、取扱説明書に則ってクロム酸剥離法による皮膜量が1.0g/mになるように処理した。
(3-3) Formation of surface treatment layer (comparative example)
The following comparative examples (R1 to R4) were processed. In addition, as a test board, the electrogalvanized steel plate (EG) was used.
R1: No surface treatment layer R2: Reactive chromate treatment R3: Zinc phosphate treatment R4: Treatment liquid obtained by adding 5 g / L of S1 (described later) to the above-mentioned P1 treatment liquid Note that the reactive chromate treatment (R2) is a zinc chromate treatment. Using 3367 (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.), the amount of Cr deposited was 15 mg / m 2 in accordance with the instruction manual.
In addition, zinc phosphate treatment (R3) uses Palbond 3305 (registered trademark: manufactured by Nihon Parkerizing Co., Ltd.), and the coating amount by the chromic acid peeling method is 1.0 g / m 2 according to the instruction manual. Processed.

(4)ケイ素含有層の形成
上記の(3−1)〜(3−3)で作製した試験板上に、下記の(S1)〜(S3)で表される水系金属表面処理剤、または(S4)で表される比較例用処理剤をバーコーターで塗布し、表面処理層上にケイ素含有層を形成した。
なお、ケイ素含有層は、塗布後に到達板温度が150℃になるように焼付けた。
(S1):
3−グリシドキシプロピルトリメトキシシラン(2モル)と、3−アミノプロピルトリエトキシシラン(1モル)をエタノール中(100mL)で反応させ有機ケイ素化合物(Y)を合成し、その後純水と混合し、固形分が10質量%になるように調整した。生成物である有機ケイ素化合物(Y)は、アミノ基、水酸基を有しており、含まれる官能基(a)数は3個で、官能基(b)1個当たりの分子量は700であった。
(S2):
上記の水系金属表面処理剤(S1)に、りん酸を固形分に対して5質量%となるように添加した。
(S3):
上記の水系金属表面処理剤(S1)に、りん酸とメタバナジン酸アンモンを、それぞれ固形分に対して5質量%、2質量%となるように添加した。
(S4):
ウレタン樹脂(HYDRAN HW−340 株式会社DIC製)に、コロイダルシリカ(スノーテックスN 日産化学株式会社製)を固形分に対して15質量%となるように添加した。処理剤中に純水を加えて、全固形分が20質量%になるように調整した。
(4) Formation of silicon-containing layer A water-based metal surface treatment agent represented by the following (S1) to (S3) on the test plate prepared in the above (3-1) to (3-3), or ( The treating agent for comparative example represented by S4) was applied with a bar coater to form a silicon-containing layer on the surface treatment layer.
The silicon-containing layer was baked so that the ultimate plate temperature was 150 ° C. after application.
(S1):
3-glycidoxypropyltrimethoxysilane (2 mol) and 3-aminopropyltriethoxysilane (1 mol) are reacted in ethanol (100 mL) to synthesize an organosilicon compound (Y), and then mixed with pure water. The solid content was adjusted to 10% by mass. The product organosilicon compound (Y) has an amino group and a hydroxyl group, the number of functional groups (a) contained is 3, and the molecular weight per functional group (b) was 700. .
(S2):
Phosphoric acid was added to the aqueous metal surface treatment agent (S1) so as to be 5% by mass with respect to the solid content.
(S3):
To the aqueous metal surface treatment agent (S1), phosphoric acid and ammonium metavanadate were added so as to be 5% by mass and 2% by mass, respectively, based on the solid content.
(S4):
Colloidal silica (Snowtex N Nissan Chemical Co., Ltd.) was added to urethane resin (HYDRAN HW-340, manufactured by DIC Corporation) so as to be 15% by mass with respect to the solid content. Pure water was added to the treatment agent to adjust the total solid content to 20% by mass.

上述の(3−1)〜(3−3)で述べた表面処理層と、(S1)〜(S4)で表される処理剤を用いて形成されるケイ素含有層との作製を、以下の表6に示すように組み合わせて、表面処理層とケイ素含有層とを備える表面処理亜鉛系めっき鋼板を作製した。
なお、表面処理層中の金属元素(X)の単位面積当たりの合計付着量と、ケイ素含有層中の単位面積当たりのSi付着量とを蛍光X線によって測定し、その質量比[Y/X]を求めた。
Production of the surface treatment layer described in the above (3-1) to (3-3) and the silicon-containing layer formed using the treatment agent represented by (S1) to (S4) is as follows. In combination as shown in Table 6, a surface-treated galvanized steel sheet including a surface-treated layer and a silicon-containing layer was produced.
The total adhesion amount per unit area of the metal element (X) in the surface treatment layer and the Si adhesion amount per unit area in the silicon-containing layer were measured by fluorescent X-rays, and the mass ratio [Y / X ] Was requested.

Figure 2010111904
Figure 2010111904

(5)評価方法
(5−1)環境負荷性
上記の方法で得られた各表面処理亜鉛系めっき鋼板について、以下の判断基準に基づき、鋼板中に含有される成分より環境負荷性を評価した。評価基準は以下のとおりである。
<評価基準>
○:クロムを含有しない
×:クロムを含有する
(5) Evaluation method (5-1) Environmental impact property About each surface treatment zinc-plated steel plate obtained by said method, based on the following judgment criteria, environmental impact property was evaluated from the component contained in a steel plate. . The evaluation criteria are as follows.
<Evaluation criteria>
○: not containing chromium ×: containing chromium

(5−2)平面部耐食性
得られた各表面処理亜鉛系めっき鋼板に対して、JIS−Z2371に規定された塩水噴霧試験を240時間実施した。次に、白錆発生面積率を目視で測定し評価を行った。ここで白錆発生面積率とは、観察部位の面積(7cm×15cm)に対する白錆発生部位の面積の百分率である。評価基準は以下のとおりである。
<評価基準>
◎:白錆発生面積率5%未満
○:白錆発生面積率5%以上、10%未満
△:白錆発生面積率10%以上、50%未満
×:白錆発生面積率50%以上
(5-2) Plane part corrosion resistance The salt spray test prescribed | regulated to JIS-Z2371 was implemented with respect to each obtained surface treatment zinc-plated steel plate for 240 hours. Next, the white rust generation area ratio was visually measured and evaluated. Here, the white rust generation area ratio is a percentage of the area of the white rust generation site to the area of the observation site (7 cm × 15 cm). The evaluation criteria are as follows.
<Evaluation criteria>
◎: White rust generation area ratio less than 5% ○: White rust generation area ratio of 5% or more and less than 10% △: White rust generation area ratio of 10% or more and less than 50% ×: White rust generation area ratio of 50% or more

(5−3)脱脂後平面部耐食性
得られた各表面処理亜鉛系めっき鋼板に対して、ファインクリーナーL4460(標準建浴:A剤20g/L、B剤12g/L、温度60℃、2分浸漬後水洗)にて脱脂を行い、JIS−Z2371に規定された塩水噴霧試験を120時間実施した。次に、白錆発生面積率を目視で測定し評価を行った。ここで白錆発生面積率とは、観察部位の面積(7cm×15cm)に対する白錆発生部位の面積の百分率である。評価基準は以下のとおりである。
<評価基準>
◎:白錆発生面積率5%未満
○:白錆発生面積率5%以上、10%未満
△:白錆発生面積率10%以上、50%未満
×:白錆発生面積率50%以上
(5-3) Corrosion resistance of flat surface after degreasing Fine cleaner L4460 (standard building bath: A agent 20 g / L, B agent 12 g / L, temperature 60 ° C., 2 minutes, for each surface-treated galvanized steel sheet obtained Degreasing was performed by washing with water after immersion), and a salt spray test defined in JIS-Z2371 was performed for 120 hours. Next, the white rust generation area ratio was visually measured and evaluated. Here, the white rust generation area ratio is a percentage of the area of the white rust generation site to the area of the observation site (7 cm × 15 cm). The evaluation criteria are as follows.
<Evaluation criteria>
◎: White rust generation area ratio less than 5% ○: White rust generation area ratio of 5% or more and less than 10% △: White rust generation area ratio of 10% or more and less than 50% ×: White rust generation area ratio of 50% or more

(5−4)加工部耐食性
得られた各表面処理亜鉛系めっき鋼板に対して、エリクセン試験機にて7mm押出し加工を行い、JIS−Z2371に規定された塩水噴霧試験を120時間実施した。次に、白錆発生面積率を目視で測定し評価を行った。評価基準は以下のとおりである。
<評価基準>
◎:白錆発生面積率5%未満
○:白錆発生面積率5%以上、10%未満
△:白錆発生面積率10%以上、50%未満
×:白錆発生面積率50%以上
(5-4) Processed part corrosion resistance Each surface-treated zinc-based plated steel sheet was subjected to 7 mm extrusion using an Erichsen tester, and a salt spray test specified in JIS-Z2371 was performed for 120 hours. Next, the white rust generation area ratio was visually measured and evaluated. The evaluation criteria are as follows.
<Evaluation criteria>
◎: White rust generation area ratio less than 5% ○: White rust generation area ratio of 5% or more and less than 10% △: White rust generation area ratio of 10% or more and less than 50% ×: White rust generation area ratio of 50% or more

(5−5)耐指紋性
得られた各表面処理亜鉛系めっき鋼板上にワセリンと塗布し、色差計(日本電色工業株式会社製、color meter ZE2000)にて、ワセリン塗布前後のL値増減(△L)を測定した。評価基準は以下のとおりである。
<評価基準>
◎=△Lが1.0未満
○=△Lが1.0以上2.0未満
△=△Lが2.0以上3.0未満
×=△Lが3.0以上
(5-5) Fingerprint resistance On each surface-treated zinc-plated steel sheet obtained, petrolatum was applied, and the color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd., color meter ZE2000) increased or decreased the L value before and after petrolatum application. (ΔL) was measured. The evaluation criteria are as follows.
<Evaluation criteria>
◎ = △ L is less than 1.0 ○ = △ L is 1.0 or more and less than 2.0 △ = △ L is 2.0 or more and less than 3.0 × = △ L is 3.0 or more

(5−6)導電性
得られた各表面処理亜鉛系めっき鋼板に対して、層間抵抗測定機(TOEI KOGYO製、LRT−1A)を用いて、層間抵抗を測定した。評価基準は以下のとおりである。
<評価基準>
◎=層間抵抗が1.0Ω未満
○=層間抵抗が1.0Ω以上2.0Ω未満
△=層間抵抗が2.0Ω以上3.0Ω未満
×=層間抵抗が3.0Ω未満
(5-6) Conductivity For each of the obtained surface-treated zinc-based plated steel sheets, the interlayer resistance was measured using an interlayer resistance measuring machine (manufactured by TOEI KOGYO, LRT-1A). The evaluation criteria are as follows.
<Evaluation criteria>
◎ = Interlayer resistance is less than 1.0Ω ○ = Interlayer resistance is 1.0Ω or more and less than 2.0Ω △ = Interlayer resistance is 2.0Ω or more and less than 3.0Ω × = Interlayer resistance is less than 3.0Ω

(5−7)密着性
塗料(関西ペイント株式会社製アミラック#1000(白塗料))を用いて、得られた各表面処理亜鉛系めっき鋼板上に塗装処理を行った。塗装はバーコート塗布で行い、塗装後、140℃で20分間焼付けを行い、乾燥後膜厚で25μmの皮膜を形成した。
次に、各塗装後亜鉛系めっき鋼板に対して、1mm角、100個の碁盤目をNTカッターで切り入れ、これをエリクセン試験機で5mm押し出した後、この押し出し凸部に粘着テープによる剥離テストを行い、塗膜剥離個数にて評価した。評価基準は以下のとおりである。
<評価基準>
◎:剥離なし
○:剥離個数1個以上、10個未満
△:剥離個数11個以上、50個未満
×:剥離個数51個以上
(5-7) Adhesiveness Using a paint (Amirac # 1000 (white paint) manufactured by Kansai Paint Co., Ltd.), each surface-treated galvanized steel sheet was subjected to a coating treatment. The coating was performed by bar coating. After coating, baking was performed at 140 ° C. for 20 minutes, and a film having a thickness of 25 μm was formed after drying.
Next, after each coating, 1 mm square, 100 grids were cut with an NT cutter, and 5 mm was extruded with an Erichsen testing machine, and then the extruding convex part was peeled with an adhesive tape. And evaluated by the number of peeled coating films. The evaluation criteria are as follows.
<Evaluation criteria>
◎: No peeling ○: Number of peeled 1 or more, less than 10 △: Number of peeled 11 or more, less than 50 ×: Number of peeled 51 or more

実施例1〜24、および比較例1〜8で得られた表面処理亜鉛系めっき鋼板について、上記の(5−1)〜(5−7)の評価を行った結果を、表7に示す。   Table 7 shows the results of the above evaluations (5-1) to (5-7) for the surface-treated galvanized steel sheets obtained in Examples 1 to 24 and Comparative Examples 1 to 8.

Figure 2010111904
Figure 2010111904

表7より、表面処理層とケイ素含有層との積層構造を有する本発明の表面処理亜鉛系めっき鋼板は、環境負荷性、耐食性、耐指紋性、導電性、密着性のすべての項目において、良好な評価結果を示した。
比較例においては、比較例6のクロメート処理が本発明の表面処理亜鉛系めっき鋼板と同等程度の特性を示したが、クロムを含有する点で、環境負荷性に劣っていた。また、ケイ素含有層の代わりに、樹脂系皮膜を使用した比較例2〜4と比較しても、本発明の表面処理亜鉛系めっき鋼板は極めて良好な性能バランスを有していることがわかった。さらに、比較例1および比較例5のように、表面処理層またはケイ素含有層単層のみでは、十分な性能は得られなかった。
また、表面処理層を形成する処理液とケイ素含有層を形成する処理液とを混合して、単層構造とした比較例8では、耐食性および耐指紋性に劣っていた。
From Table 7, the surface-treated zinc-based plated steel sheet of the present invention having a laminated structure of a surface-treated layer and a silicon-containing layer is good in all the items of environmental impact, corrosion resistance, fingerprint resistance, conductivity, and adhesion. The evaluation result was shown.
In the comparative example, the chromate treatment of Comparative Example 6 showed the same characteristics as the surface-treated galvanized steel sheet of the present invention, but was inferior in environmental impact in that it contained chromium. Moreover, it turned out that the surface-treated zinc-based plated steel sheet of the present invention has a very good performance balance even when compared with Comparative Examples 2 to 4 using a resin-based film instead of the silicon-containing layer. . Further, as in Comparative Example 1 and Comparative Example 5, sufficient performance could not be obtained with only the surface treatment layer or the silicon-containing layer single layer.
Moreover, in the comparative example 8 which made the single layer structure by mixing the processing liquid which forms a surface treatment layer, and the processing liquid which forms a silicon containing layer, it was inferior to corrosion resistance and fingerprint resistance.

本発明に係る表面処理亜鉛系めっき鋼板の一実施形態の模式的断面図である。1 is a schematic cross-sectional view of one embodiment of a surface-treated zinc-based plated steel sheet according to the present invention. 本発明に係る表面処理亜鉛系めっき鋼板の一実施形態の模式的断面図である。1 is a schematic cross-sectional view of one embodiment of a surface-treated zinc-based plated steel sheet according to the present invention.

符号の説明Explanation of symbols

10、20 表面処理亜鉛系めっき鋼板
12 亜鉛系めっき鋼板
14 表面処理層
16 ケイ素含有層
10, 20 Surface-treated galvanized steel sheet 12 Zinc-based galvanized steel sheet 14 Surface-treated layer 16 Silicon-containing layer

Claims (7)

亜鉛系めっき鋼板上に、Zr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)の単位面積当りの元素付着合計量が2〜50mg/mであり、自己析出および/または電解析出により形成される表面処理層と、有機ケイ素化合物(Y)を含有する水系金属表面処理剤を前記表面処理層上に塗布して形成されるケイ素含有層とをこの順で備える表面処理亜鉛系めっき鋼板であって、
前記有機ケイ素化合物(Y)が、1分子内に、式−SiR(式中、R、RおよびRは、それぞれ独立して、アルキル基、アルコキシ基または水酸基を表し、R、RおよびRのうち少なくとも1つはアルコキシ基を表す。)で表される官能基(a)を2個以上と、水酸基(官能基(a)に含まれ得るものとは別個のもの)、アミノ基、カルボキシル基、りん酸基、ホスホン酸基、スルホン基、ポリオキシエチレン鎖およびアミド基からなる群から選ばれる少なくとも1種の親水性官能基(b)とを含有し、前記官能基(b)1個当たりの分子量が100〜10000である化合物であり、
前記表面処理層の前記金属元素(X)の元素付着合計量と、前記ケイ素含有層の前記有機ケイ素化合物(Y)に由来するSi付着量との質量比〔Y/X〕が0.1〜100.0であることを特徴とする、表面処理亜鉛系めっき鋼板。
On the galvanized steel sheet, the total amount of element adhesion per unit area of at least one metal element (X) selected from the group consisting of Zr, Ti and Hf is 2 to 50 mg / m 2 , and self-deposition and / or A surface treatment comprising a surface treatment layer formed by electrolytic deposition and a silicon-containing layer formed by applying an aqueous metal surface treatment agent containing an organosilicon compound (Y) on the surface treatment layer in this order. A galvanized steel sheet,
In one molecule, the organosilicon compound (Y) has the formula —SiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 each independently represents an alkyl group, an alkoxy group or a hydroxyl group). , R 1 , R 2 and R 3 represent at least one functional group (a) represented by two or more functional groups (a) and a hydroxyl group (which can be contained in the functional group (a)) And at least one hydrophilic functional group (b) selected from the group consisting of amino groups, carboxyl groups, phosphoric acid groups, phosphonic acid groups, sulfone groups, polyoxyethylene chains and amide groups. , A compound having a molecular weight of 100 to 10,000 per functional group (b),
The mass ratio [Y / X] of the total amount of element adhesion of the metal element (X) of the surface treatment layer and the amount of Si adhesion derived from the organosilicon compound (Y) of the silicon-containing layer is 0.1 to A surface-treated galvanized steel sheet, characterized by being 100.0.
前記有機ケイ素化合物(Y)が、少なくとも1種の反応性官能基と式−SiR(式中、R、RおよびRは前記と同義である)で表される官能基(a)とを有する、少なくとも1種の有機シラン化合物(A)と、前記反応性官能基と反応可能な官能基を有する少なくとも1種の化合物(B)とを反応させて、得られる化合物である、請求項1に記載の表面処理亜鉛系めっき鋼板。 The organosilicon compound (Y) is a functional group represented by at least one reactive functional group and a formula —SiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 are as defined above). Compound obtained by reacting at least one organic silane compound (A) having a group (a) with at least one compound (B) having a functional group capable of reacting with the reactive functional group The surface-treated zinc-based plated steel sheet according to claim 1, wherein 前記有機シラン化合物(A)の前記反応性官能基、および前記化合物(B)の前記官能基が、それぞれ独立に、水酸基(官能基(a)に含まれ得るものとは別個のもの)、グリシジル基、1級アミノ基、2級アミノ基、メルカプト基、イソシアネート基、カルボキシル基、メチロール基、活性メチレン基、イミド基、アミド基、カルボニル基およびビニル基からなる群から選択される少なくとも1種である、請求項2に記載の表面処理亜鉛系めっき鋼板。   The reactive functional group of the organosilane compound (A) and the functional group of the compound (B) are each independently a hydroxyl group (separate from those that can be contained in the functional group (a)), glycidyl At least one selected from the group consisting of a group, a primary amino group, a secondary amino group, a mercapto group, an isocyanate group, a carboxyl group, a methylol group, an active methylene group, an imide group, an amide group, a carbonyl group and a vinyl group The surface-treated zinc-based plated steel sheet according to claim 2. 前記有機シラン化合物(A)が、一般式(I)で表される化合物である、請求項2または3に記載の表面処理亜鉛系めっき鋼板。
Figure 2010111904

(一般式(I)中、Xは、エポキシ基、アミノ基、メルカプト基、ビニル基、およびイソシアネート基からなる群から選択されるいずれかの官能基を表す。Lは、2価の連結基、または単なる結合手を表す。Yは、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン基、水素原子、または水酸基を表す。)
The surface-treated galvanized steel sheet according to claim 2 or 3, wherein the organosilane compound (A) is a compound represented by the general formula (I).
Figure 2010111904

(In General Formula (I), X represents any functional group selected from the group consisting of an epoxy group, an amino group, a mercapto group, a vinyl group, and an isocyanate group. L represents a divalent linking group, Or represents a simple bond, each Y independently represents an alkyl group, an alkoxy group, a halogen group, a hydrogen atom, or a hydroxyl group.)
前記水系金属表面処理剤が、2価以上の金属イオンを含有する金属化合物(C)、および/または、フッ化水素酸、有機酸およびりん酸からなる群から選択される少なくとも1種の酸(D)を含有する、請求項1〜4のいずれかに記載の表面処理亜鉛系めっき鋼板。   The aqueous metal surface treatment agent is a metal compound (C) containing a divalent or higher valent metal ion and / or at least one acid selected from the group consisting of hydrofluoric acid, organic acid and phosphoric acid ( The surface-treated galvanized steel sheet according to any one of claims 1 to 4, comprising D). 前記金属化合物(C)に含有される金属イオンが、Ti、Zr、Hf、V、Mg、Mn、Zn、W、Mo、Al、Ni、Co、CeおよびCaイオンからなる群から選択される少なくとも1種である、請求項5に記載の表面処理亜鉛系めっき鋼板。   The metal ion contained in the metal compound (C) is at least selected from the group consisting of Ti, Zr, Hf, V, Mg, Mn, Zn, W, Mo, Al, Ni, Co, Ce and Ca ions. The surface-treated zinc-based plated steel sheet according to claim 5, which is one type. Zr、TiおよびHfからなる群から選ばれる少なくとも1つの金属元素(X)を含む化合物(d)を含有する処理液を用いて、自己析出および/または電解析出により、亜鉛系めっき鋼板の表面上に表面処理層を形成する表面処理層形成工程と、
前記表面処理層形成工程後、有機ケイ素化合物(Y)を含有する水系金属表面処理剤を前記表面処理層上に塗布して、ケイ素含有層を形成するケイ素含有層形成工程と、を備える表面処理亜鉛系めっき鋼板の製造方法であって、
前記有機ケイ素化合物(Y)が、1分子内に、式−SiR(式中、R、RおよびRは、それぞれ独立して、アルキル基、アルコキシ基または水酸基を表し、R、RおよびRのうち少なくとも1つはアルコキシ基を表す。)で表される官能基(a)を2個以上と、水酸基(官能基(a)に含まれ得るものとは別個のもの)、アミノ基、カルボキシル基、りん酸基、ホスホン酸基、スルホン基、ポリオキシエチレン鎖およびアミド基からなる群から選ばれる少なくとも1種の親水性官能基(b)とを含有し、前記官能基(b)1個当たりの分子量が100〜10000である化合物である、表面処理亜鉛系めっき鋼板の製造方法。
Surface of galvanized steel sheet by auto-deposition and / or electrolytic deposition using treatment liquid containing compound (d) containing at least one metal element (X) selected from the group consisting of Zr, Ti and Hf A surface treatment layer forming step of forming a surface treatment layer thereon;
After the surface treatment layer formation step, a silicon-containing layer formation step of forming a silicon-containing layer by applying an aqueous metal surface treatment agent containing an organosilicon compound (Y) onto the surface treatment layer A method for producing a galvanized steel sheet,
In one molecule, the organosilicon compound (Y) has the formula —SiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 each independently represents an alkyl group, an alkoxy group or a hydroxyl group). , R 1 , R 2 and R 3 represent at least one functional group (a) represented by two or more functional groups (a) and a hydroxyl group (which can be contained in the functional group (a)) And at least one hydrophilic functional group (b) selected from the group consisting of amino groups, carboxyl groups, phosphoric acid groups, phosphonic acid groups, sulfone groups, polyoxyethylene chains and amide groups. The manufacturing method of the surface treatment zinc-plated steel plate which is a compound whose molecular weight per said functional group (b) is 100-10000.
JP2008284587A 2008-11-05 2008-11-05 Surface-treated galvanized steel sheet Active JP5661238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284587A JP5661238B2 (en) 2008-11-05 2008-11-05 Surface-treated galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284587A JP5661238B2 (en) 2008-11-05 2008-11-05 Surface-treated galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2010111904A true JP2010111904A (en) 2010-05-20
JP5661238B2 JP5661238B2 (en) 2015-01-28

Family

ID=42300689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284587A Active JP5661238B2 (en) 2008-11-05 2008-11-05 Surface-treated galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5661238B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102363882A (en) * 2011-11-08 2012-02-29 大连三达奥克化学股份有限公司 Comprehensive treatment agent used before spray coating of galvanized steel sheet, and preparation method of comprehensive treatment agent
CN103046040A (en) * 2012-09-24 2013-04-17 中国海洋石油总公司 Chromium-free metal surface treatment composition
CN105579614A (en) * 2013-09-30 2016-05-11 巴斯夫涂料有限公司 Method for the autophoretic coating of metallic substrates by post-treating the coating with an aqueous sol-gel composition
KR20190129124A (en) * 2017-03-31 2019-11-19 가부시키가이샤 고베 세이코쇼 Galvanized Steel Sheet
KR20190130010A (en) * 2017-03-31 2019-11-20 가부시키가이샤 고베 세이코쇼 Galvanized Steel Sheet
JP2020502367A (en) * 2016-12-19 2020-01-23 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Corrosion protection and pre-cleaning method for metal members
WO2023090458A1 (en) * 2021-11-22 2023-05-25 日本製鉄株式会社 Surface-treated steel material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169585A (en) * 1991-10-24 1993-07-09 Sekisui Chem Co Ltd Laminate
JP2003293168A (en) * 2002-04-08 2003-10-15 Nisshin Steel Co Ltd PRECOATED Al-Si ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE
WO2003093533A1 (en) * 2002-04-16 2003-11-13 Nippon Steel Corporation Thermostabilized metal plate of high corrosion resistance, metal plate with organic coating and phosphated galvanized metal plate
JP2006009047A (en) * 2004-06-22 2006-01-12 Toyo Seikan Kaisha Ltd Surface treated metallic material, surface treatment method therefor and resin-coated metallic material
WO2007061011A1 (en) * 2005-11-22 2007-05-31 Nihon Parkerizing Co., Ltd. Chemical conversion coated metal plate and method for producing same
JP2007262577A (en) * 2006-03-01 2007-10-11 Nippon Paint Co Ltd Composition for metal surface treatment, metal surface treatment method, and metallic material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169585A (en) * 1991-10-24 1993-07-09 Sekisui Chem Co Ltd Laminate
JP2003293168A (en) * 2002-04-08 2003-10-15 Nisshin Steel Co Ltd PRECOATED Al-Si ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE
WO2003093533A1 (en) * 2002-04-16 2003-11-13 Nippon Steel Corporation Thermostabilized metal plate of high corrosion resistance, metal plate with organic coating and phosphated galvanized metal plate
JP2006009047A (en) * 2004-06-22 2006-01-12 Toyo Seikan Kaisha Ltd Surface treated metallic material, surface treatment method therefor and resin-coated metallic material
WO2007061011A1 (en) * 2005-11-22 2007-05-31 Nihon Parkerizing Co., Ltd. Chemical conversion coated metal plate and method for producing same
JP2007262577A (en) * 2006-03-01 2007-10-11 Nippon Paint Co Ltd Composition for metal surface treatment, metal surface treatment method, and metallic material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102363882A (en) * 2011-11-08 2012-02-29 大连三达奥克化学股份有限公司 Comprehensive treatment agent used before spray coating of galvanized steel sheet, and preparation method of comprehensive treatment agent
CN103046040A (en) * 2012-09-24 2013-04-17 中国海洋石油总公司 Chromium-free metal surface treatment composition
CN103046040B (en) * 2012-09-24 2014-09-17 中国海洋石油总公司 Chromium-free metal surface treatment composition
CN105579614A (en) * 2013-09-30 2016-05-11 巴斯夫涂料有限公司 Method for the autophoretic coating of metallic substrates by post-treating the coating with an aqueous sol-gel composition
JP2016540127A (en) * 2013-09-30 2016-12-22 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH Method for autodeposition coating of metal substrate with post-treatment of coating with aqueous sol-gel composition
JP7145157B2 (en) 2016-12-19 2022-09-30 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Corrosion prevention and cleaning pretreatment method for metal members
US11761092B2 (en) 2016-12-19 2023-09-19 Henkel Ag & Co. Kgaa Method for corrosion-protective and cleaning pretreatment of metallic components
JP2020502367A (en) * 2016-12-19 2020-01-23 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Corrosion protection and pre-cleaning method for metal members
KR20190130010A (en) * 2017-03-31 2019-11-20 가부시키가이샤 고베 세이코쇼 Galvanized Steel Sheet
KR102445014B1 (en) 2017-03-31 2022-09-19 가부시키가이샤 고베 세이코쇼 painted galvanized steel sheet
KR102445012B1 (en) 2017-03-31 2022-09-19 가부시키가이샤 고베 세이코쇼 painted galvanized steel sheet
KR20190129124A (en) * 2017-03-31 2019-11-19 가부시키가이샤 고베 세이코쇼 Galvanized Steel Sheet
WO2023090458A1 (en) * 2021-11-22 2023-05-25 日本製鉄株式会社 Surface-treated steel material
JP7445185B2 (en) 2021-11-22 2024-03-07 日本製鉄株式会社 surface treated steel

Also Published As

Publication number Publication date
JP5661238B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP4683582B2 (en) Water-based metal material surface treatment agent, surface treatment method and surface treatment metal material
TWI447264B (en) Surface-treating agent for metallic material
KR101433488B1 (en) Zinc-coated steel plate
JP5446057B2 (en) Zinc-based galvanized steel sheet for chemical conversion treatment, method for producing the same, and chemical conversion treated steel sheet
KR101471948B1 (en) Zinc-based metal coated steel sheet
KR101599167B1 (en) Surface-treatment solution for zinc or zinc alloy coated steel sheet, and zinc or zinc alloy coated steel sheet and method for manufacturing the same
WO2010001861A1 (en) Chemical conversion liquid for metal structure and surface treating method
JP5661238B2 (en) Surface-treated galvanized steel sheet
JP5075321B2 (en) Aqueous treatment agent for metal surface
KR101492485B1 (en) Method for manufacturing zinc or zinc alloy coated steel sheet and zinc or zinc alloy coated steel sheet manufactured by the method
KR20080111029A (en) Composition for metal surface treatment, metal surface treatment method, and metal material
JP2005036261A (en) Metal surface treatment composition, metal surface treatment method, and galvanized steel sheet
JP2009287079A (en) Highly corrosion resistant surface-treated steel sheet
JP5638191B2 (en) Chemical conversion treated metal plate and manufacturing method thereof
JP2009287080A (en) Highly corrosion resistant surface-treated steel sheet
JP2008274419A (en) Surface treated steel sheet having excellent corrosion resistance, electrodeposition coating adhesion and weldability
JP5577781B2 (en) Surface-treated steel sheet
JP3952198B2 (en) Metal surface treatment method and galvanized steel sheet
JP5490657B2 (en) High corrosion resistance surface-treated steel sheet
JP2009287078A (en) Highly corrosion resistant surface-treated steel sheet
JP5097311B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JP5490656B2 (en) High corrosion resistance surface-treated steel sheet
JP5441109B2 (en) High corrosion resistance surface-treated steel sheet
JP5461115B2 (en) High corrosion resistance surface-treated steel sheet
JP4916913B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141203

R150 Certificate of patent or registration of utility model

Ref document number: 5661238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250