JP2011151551A - カメラモジュールの製造方法及び装置 - Google Patents

カメラモジュールの製造方法及び装置 Download PDF

Info

Publication number
JP2011151551A
JP2011151551A JP2010010200A JP2010010200A JP2011151551A JP 2011151551 A JP2011151551 A JP 2011151551A JP 2010010200 A JP2010010200 A JP 2010010200A JP 2010010200 A JP2010010200 A JP 2010010200A JP 2011151551 A JP2011151551 A JP 2011151551A
Authority
JP
Japan
Prior art keywords
imaging
measurement
lens
unit
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010010200A
Other languages
English (en)
Inventor
Kiyofumi Yamamoto
清文 山本
Kenji Makino
研司 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010010200A priority Critical patent/JP2011151551A/ja
Publication of JP2011151551A publication Critical patent/JP2011151551A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】厚みの薄い基板に実装される撮像素子でも確実に保持して位置調整を行う。
【解決手段】レンズユニット計測工程20は、レンズユニット5と計測用撮像素子24を測定チャート25に直交するZ軸上にセットし、Z軸上の複数の測定位置にレンズユニット5を順次移動して計測用撮像素子24で撮像を行い、計測用撮像素子24から得られる撮像信号に基づいて各測定位置での合焦評価を行って撮影レンズ4の近似結像面を算出し、算出した情報を調整・固定工程22に出力する。素子ユニット計測工程21は、変位・チルトセンサ27を使用して基板の裏面を吸着保持した素子ユニット6の基板に対する撮像面の位置及び傾きを測定し、測定した情報を調整・固定工程22に出力する。調整・固定工程22は、前記2つの情報に基づいてレンズユニット5に対する素子ユニット6の位置及び傾きを調整し、調整後に双方を接着する。
【選択図】図5

Description

本発明は、携帯情報端末や携帯電話等の携帯機器に組み込まれるカメラモジュールの製造方法及び装置に関し、さらに詳しくは、撮影レンズと撮像素子とを位置調整して固定するカメラモジュールの製造方法及び装置に関するものである。
撮影レンズを鏡筒に組み込んだレンズユニットと、CCDやCMOS等の撮像素子を基板やホルダに組み付けた素子ユニットとを一体化したカメラモジュールが知られている。
現在のカメラモジュールは、一般的なデジタルカメラと同様に撮像素子の高画素化が進んでおり、例えば500〜1000万画素の撮像素子を使用したものが増えている。高画素数の撮像素子は、開口率が低くなるので、画素数に見合った解像度の画像を得るには、撮影レンズと撮像素子との厳密な位置調整が必要となる。しかも、デジタルカメラや携帯電話と同様に薄型化が進んでおり、これに伴いカメラモジュールの高さ(光軸方向の長さ)を低くすること(低背化)が望まれている。
光学ブロック(レンズユニット)に対して撮像ブロック(素子ユニット)を位置調整した後に、双方を接着により固定するカメラモジュールの生産方法及びその方法を用いた組立装置が提案されている(特許文献1)。光学ブロックは、レンズ鏡筒に光学レンズ(撮影レンズ)を組み込んだものである。撮像ブロックは、断面コ字状の撮像素子ホルダ(基板)の凹部にCCDやCMOS等の個体撮像素子を組み込んだものである。個体撮像素子は、撮像素子ホルダの下面に露出している複数の電極パッドに電気的に接続されている。複数の電極パッドを通じて電力が供給され、また、撮像した画像情報等からなる信号が外部に取り出される。撮像素子ホルダは、回転テーブルの上に位置決めされた状態で載置される。回転テーブルには、挿通孔を通じて電極パッドに接触するプローブピンが設けられている。撮像素子ホルダの上方には、可動式の光学系ホルダにより光学ブロックが把持されており、その上には測定用チャートが配されている。光学レンズを通して測定用チャートの画像を撮像素子で撮像して、得られた画像情報に基づいて撮像ブロックに対する光学ブロックの姿勢を調整している。
特開2005−198103号公報
しかしながら、撮像素子ホルダは、固体撮像素子を固定した面の周縁に一段高いリブを設けた断面コ字状となっており、光軸方向での厚みが厚い。しかも、そのリブの上端面に光学ブロックの下端面が接着固定されるため、カメラモジュールの高さ方向も高くなる。
カメラモジュールの低背化を考慮すると、撮像素子ホルダの厚みを薄くするのが好適である。また、撮像素子を基板に実装したリフロー実装が可能なカメラモジュールの場合でも、基板の厚みを薄くすることで低背化を実現することができる。
しかしながら、基板(以下、ホルダも含め「基板」と称す。)の厚みを薄くすると、撓みやすくなるため、例えば基板の外端面を両側から挟持すると、基板に撓みや反りが生じて素子ユニットを精度良く位置決め保持することができなくなり、結果的に位置調整を精度良く行えない。そこで、基板の裏面を、例えば吸着パッド等で保持することが考えられる。しかしながら、基板の裏面を保持すると、画像情報を取り出すための電極パッドを覆ってしまうことになり、カメラモジュールに使用する撮像素子から得られる画像情報に基づいて位置調整を行うことができなくなってしまう。
本発明は、基板の厚みを薄くした素子ユニットを保持することでも確実に位置調整が行えるようにしたカメラモジュールの製造方法及び装置を提供しようとするものである。
本発明では、レンズ保持手段により保持した撮影レンズと前記撮影レンズにより結像されるチャート像を撮像する計測用撮像素子とを測定チャートに直交するZ軸上にセットし、前記Z軸上に予め離散的に設定した複数の測定位置に前記測定チャート、撮影レンズ、及び計測用撮像素子のうちのいずれか一つを順次移動して前記計測用撮像素子で撮像を行い、前記計測用撮像素子から得られる撮像信号に基づいて撮影レンズの光軸倒れ及び焦点ズレを計測するレンズ計測工程と;基板の表面に取り付けられている撮像素子を撮像素子保持手段により保持し、光源からの光を平行光線にして前記撮像素子の撮像面に投光し、前記撮像面からの反射光を二次元イメージセンサに集光し、その集光スポットの位置に基づいて前記基板に対する前記撮像面の位置及び傾きを測定し、測定した情報を出力する撮像素子計測工程と;前記2つの計測工程から得られる情報に基づいて前記撮影レンズと前記撮像素子とのいずれか一方の、他方に対するZ軸上での位置、及び傾きを調整し、前記撮像素子の撮像面と前記撮影レンズの近似結像面との平行度を一致させる調整工程と;を含むものである。
基板としては、撮像信号を取り出すための電極を裏面に設けたプラスチック製のホルダや極薄の半導体ウェーハとしてもよい。ウェーハを用いるカメラモジュールは、撮像素子がウェーハの表面に実装されており、撮像素子の電極とウェーハに設けた貫通電極の一端が電気的に接続され、貫通電極の他端がウェーハの裏面に露呈しており、基板を用いるものと比べてワイヤボンディングのスペースを削減したコンパクトな構造になっている。
撮像素子保持手段としては、基板の裏面を吸着パッド等で真空吸着してもよいし、基板の表面と裏面を挟持してもよい。挟持する場合には、撮像素子やワイヤボンディングのスペースを除く範囲を挟持すればよい。これにより、リフロー実装が可能なカメラモジュールにも適用することができる。カメラモジュールをリフロー実装することができれば、例えば携帯電話のメイン基板を作る上で完全自動実装が可能となり、品質・コスト面で大幅なメリットが得られる。
レンズ保持手段、及び撮像素子保持手段としては、調整工程との間で移動自在に設け、計測前に保持した撮影レンズ、及び撮像素子の基板を計測後に持ち替えずに、調整工程で位置調整をするまでその保持を継続するように構成してもよい。このようにすれば、レンズ保持手段、及び撮像素子保持手段を調整工程での保持手段として兼用することができる。
レンズ計測工程としては、レーザー光や平行光を撮影レンズに入射させて出射光を二次元センサ等で受光してその位置を計測することで、撮影レンズの光軸倒れ、及び結像位置を計測してもよい。
また、レンズ計測工程としては、計測用撮像素子の撮像面上に設定された少なくとも5つの測定点の合焦度合を表す個別の合焦評価値を複数の測定位置毎に算出し、撮像位置の各々について所定の合焦評価値が得られたときにそれぞれのZ軸上の位置を合焦座標値とする合焦座標取得工程と;計測用撮像素子の撮像面をZ軸に直交するXY座標平面に対応させたときの各撮像位置のXY座標値と、それぞれの撮像位置ごとに得られたZ軸上の合焦座標値との組み合わせで表される少なくとも5つの評価点をXY座標平面とZ軸とを組み合わせた三次元座標系に展開したときに、これらの評価点の相対位置に基づいて三次元座標系で一平面として表される近似結像面を算出する結像面算出工程と;を含むのが望ましい。この場合、調整固定には、Z軸と近似結像面との交点である結像面座標値と、XY座標平面に対する近似結像面のX軸及びY軸回りの回転角度とを算出する調整値算出手段を含む。なお、調整値算出手段をレンズ計測固定に含ませても良い。
また、レンズ計測工程では、撮影レンズの光軸倒れ及び結像位置を計測するのに加えて、測定チャートの像に基づいて解像度等の検査も一緒に行ってもよい。
本発明では、レンズ計測工程と撮像素子計測工程とに分けて、撮影レンズの軸倒れ及び結像位置と、撮像素子の撮像面の位置及び傾きを個別に計測して、調整工程で撮影レンズと撮像素子とのいずれか一方の、他方に対する位置及び傾きを位置調整するため、例えば撮像素子の裏面を保持してカメラモジュールに使用する撮像素子から撮像信号を取り出すことができなくても、確実に位置調整を行うことができる。また、レンズ保持手段、及び撮像素子保持手段を調整工程との間で移動自在に設け、計測前に保持した撮影レンズ、及び撮像素子の基板を計測後に持ち替えずに、調整工程で位置調整をするまでその保持を継続するように構成したので、レンズ保持手段、及び撮像素子保持手段を調整工程での保持手段として兼用することができ、よって調整効率を大幅にアップさせる事が可能となる。
本発明のカメラモジュールの外観を示す正面側斜視図である。 カメラモジュールの背面側斜視図である。 レンズユニットと素子ユニットの外観を示す斜視図である。 カメラモジュールの断面図である。 カメラモジュールの製造装置の概略を示す説明図である。 レンズユニット計測装置の概略を示す説明図である。 測定チャートのチャート面を示す正面図である。 レンズユニット計測装置の概略を示すブロック図である。 計測用撮像素子の撮像面上に設定された撮像位置を示す説明図である。 素子ユニット計測装置の概略を示す説明図である。 吸着保持部の概略を示す斜視図である。 吸着保持部を示す断面図である。 素子ユニット計測装置の概略を示すブロック図である。 調整・固定装置の概略を示す説明図である。 調整・固定装置の概略を示すブロック図である。 レンズユニット計測工程の手順を示すフローチャートである。 合焦座標値取得工程の手順を示すフローチャートである。 素子ユニット計測工程の手順を示すフローチャートである。 調整・固定工程の手順を示すフローチャートである。 計測した各撮像位置のH−CTF値を示すグラフである。 計測した各撮像位置のV−CTF値を示すグラフである。 計測した各撮像位置の評価点をX軸側から見た3次元グラフである。 計測した各撮像位置の評価点をY軸側から見た3次元グラフである。 各撮像位置の合焦座標値から見た近似結像面をX軸側から見た3次元グラフである。 近似結像面の面方向から見た各評価点の3次元グラフである。
以下、本発明の一実施の形態を説明する。図1に示すカメラモジュール2は、立方形状になっており、前面中央に撮影開口3が形成されている。撮影開口3の奥には、撮影レンズ4が配置されている。カメラモジュール2の背面には、図2に示すように、撮像した撮像信号を取り出すための接点群6aが露出している。
カメラモジュール2は、図3に示すように、撮影光軸L方向に分割したレンズユニット5と素子ユニット6から構成されている。レンズユニット5には、撮影レンズ4が組み込まれている。両側面には、保持するときの位置決めとなる切欠7,8(図2参照)が設けられている。素子ユニット6は、撮像素子を組み込んだカバー部材10を厚みの薄い基板9に接着して一体化したものである。カバー部材10には、前面にガラス10aが組み込まれている。撮像素子の撮像面は、ガラス10aを通して露呈される。素子ユニット6は、撮像面がレンズユニット5の疑似結像面に平行になるようにレンズユニット5の背面側に接着により固定されている。
図4に示すように、レンズユニット5は、略筒状に形成されたユニット本体11と、このユニット本体11内に組み込まれたレンズ鏡筒12と、ユニット本体11の前面に固着される前カバー13から構成されている。撮影開口3は、前カバー13に設けられている。
レンズ鏡筒12は、円筒状に形成されており、例えば3群構成の撮影レンズ4が組み込まれている。レンズ鏡筒12は、ユニット本体11の前面に取り付けられた金属製の板バネ14に保持されており、板バネ14の弾性によって光軸L方向に移動自在となっている。
レンズ鏡筒12の外周とユニット本体11の内周には、互いに対峙するように永久磁石15と電磁石16とが取り付けられ、オートフォーカス機能を実現している。電磁石16は、供給される電流の向きが切り換えられることにより極性が変化する。レンズ鏡筒12は、永久磁石15が電磁石16の極性変化に応じて反発または吸引されることにより、光軸L方向に移動してフォーカスを調整している。電磁石16に電流を供給する接点16aは、例えば、ユニット本体11の下面から露出するように設けられている。なお、オートフォーカス機能に用いる機構としては、パルスモータ+送りネジ、ピエゾ振動子による送り機構等も考えられる。
素子ユニット6を構成する基板9には、撮像素子17が実装されている。撮像素子17は、各端子が基板9の端子にワイヤボンディングされている。基板9は、撮像素子17用のドライバ等を含む回路パターンを有し、裏面に前述した接点群6a(図2参照)が設けられている。基板9は、カバー部材10よりも一回り大きな輪郭形状になっている。撮像素子17の撮像面17aは、複数のマイクロアレイによって単一の平面に形成されている。カバー部材10は、断面コ字状になっており、開放側で撮像素子17を覆うように基板9に接着固定されている。
次に、本発明のカメラモジュール2の製造装置について説明する。カメラモジュール2の製造装置は、図5に示すように、レンズユニット計測工程20、素子ユニット計測工程21、及び調整・固定工程22とで構成されている。
レンズユニット計測工程20では、レンズユニット保持機構23で保持したレンズユニットと、レンズユニット5により結像されるチャート像を撮像する計測用撮像素子24とを測定チャート33に直交するZ軸上にセットし、Z軸上に予め離散的に設定した複数の測定位置にレンズユニット5を順次移動して測定位置毎に計測用撮像素子24で撮像を行い、計測用撮像素子24から得られる各撮像信号に基づいてレンズユニット5の近似結像面を算出し、そのデータを調整・固定工程22に送る。また、レンズユニット保持機構23は、調整・固定工程22との間で移動自在に設けられており、レンズユニット計測工程20で計測を完了したレンズユニット5を持ち替えずに調整・固定工程22に送る。なお、計測時にレンズユニット5を複数の測定位置に移動する代わりに、レンズユニット5を固定しておき、測定チャート33、又は計測用撮像素子24を移動してもよい。
素子ユニット計測工程21では、基板9を素子ユニット保持機構26で裏面から吸着保持し、変位・チルトセンサ27を用いて基板9に対する撮像面17aの位置、及び傾きを測定し、測定したデータを調整・固定工程22に送る。また、素子ユニット保持機構26は、調整・固定工程22との間で移動自在に設けられており、素子ユニット計測工程21で計測を完了した素子ユニット6を持ち替えずに調整・固定工程22に送る。
調整・固定工程22には、レンズユニット保持機構23と、素子ユニット保持機構26とが移動してくる。移動してくるとレンズユニット5の光軸L中心と素子ユニット6の撮像面17aの中心17bとが予め決めた直線P上に略一致するように位置決めされる。調整・固定工程22では、レンズユニット5の背面と素子ユニット6の前面とのいずれか一方に、接着剤供給器28により紫外線硬化接着剤を塗布し、前記2つの計測工程20,21で計測したデータに基づいて素子ユニット6の、レンズユニット5に対するZ軸上での位置、及び傾きを調整し、撮像面17aと近似結像面との平行度を一致させた後に、紫外線ランプ29から紫外線を照射して紫外線硬化接着剤を硬化させて双方を固定する。
詳しく説明すると、レンズユニット計測工程20にレンズユニット計測装置20aが配されている。レンズユニット計測装置20aは、図6に示すように、例えば、チャートユニット30と、集光ユニット31と、レンズユニット保持機構23と、計測用撮像素子24と、これらを制御するレンズ計測用制御部48から構成されている。
チャートユニット30は、筐体32内に嵌合される測定チャート33と、筐体32内に組み込まれて測定チャート33を背面から平行光で照明する光源34とから構成されている。測定チャート33は、例えば、光拡散性を有するプラスチック板で形成されている。
測定チャート33は、詳しくは図7に示すように矩形状のチャート面を有し、チャート面には、中心33aと、4象限上の左上、左下、右上、右下とに第1〜第5チャート画像35〜39がそれぞれ印刷されている。第1〜第5チャート画像35〜39は、全て同一の画像であり、黒色の線を所定間隔で配列させた、いわゆるラダー状のチャートパターンであり、それぞれ水平方向に配列させた水平チャート画像35a〜39aと、垂直方向に配列させた垂直チャート画像35b〜39bから構成されている。
集光ユニット31は、測定チャート33の中心33aに直交するZ軸上に集光レンズ41を保持している。集光レンズ41は、チャートユニット30から放射された光を集光し、開口42を通してレンズユニット5に入射させる。
レンズユニット保持機構23は、Z軸上でチャートユニット30に前面が向くようにレンズユニット5を位置決め保持する保持プレート43、この保持プレート43をZ軸方向に移動させるZ軸方向用移動ステージ44、及び調整・固定工程22との間で移動するための工程間用移動ステージ45で構成されている。
保持プレート43には、電磁石16の接点16aに接触する複数のプローブピン46aを備えたプローブユニット46が取り付けられている。このプローブユニット46は、電磁石16と、AFドライバ47(図8参照)とを電気的に接続する。
Z軸方向用移動ステージ44は、周知の自動精密ステージになっており、図示しないモータの回転によってボールネジを回転させ、このボールネジに噛合された保持プレート43をZ軸方向に移動させる。工程間用移動ステージ45は、Z軸方向用移動ステージ44と略同じ構成になっており、保持プレート43を調整・固定工程との間で移動させる。
レンズユニット計測工程20で説明した各部は、レンズ計測用制御部48に接続されている。計測用撮像素子24は、レンズユニット保持機構23に対してチャートユニット30とは逆側で、かつZ軸上の予め決められた位置に固定して配されており、レンズユニット5が測定位置に移動する毎にチャート像を撮像し、各撮像信号をレンズ計測用制御部48に送る。なお、計測用撮像素子24の撮像面24aは、測定チャート25と平行になっている。
レンズ計測用制御部48は、図8に示すように、例えば、CPUやROM、RAM等を備えたマイクロコンピュータであり、ROMに記憶されている制御プログラムに基づいて各部を制御している。また、レンズ計測用制御部48には、合焦座標値取得回路49、結像面算出回路50が設けられており、また、各種設定を行うキーボードやマウス等の入力装置63、設定内容や作業内容、作業結果等が表示されるモニタ52、データを記憶するメモリ53、及び調整・固定工程22との間でデータ通信を行う通信部54等が接続されている。
AFドライバ47は、電磁石16を駆動する駆動回路であり、プローブユニット46を介して電磁石16に電流を流している。計測用撮像素子ドライバ51は、計測用撮像素子24を駆動する駆動回路であり、計測用撮像素子24に制御信号を入力する。
合焦座標値取得回路49は、図9に示す撮像素子17の撮像面17a上に設定された第1〜第5撮像位置55a〜55eのZ軸方向において、合焦度合の高い位置である合焦座標値を取得する。第1〜第5撮像位置55a〜55eは、撮像面17aの中心17bと、4象限上の左上、左下、右上、右下とに設定されており、測定チャート33の第1〜第5チャート画像35〜39が撮像可能な位置及び範囲をそれぞれ有している。なお、測定チャート33は、撮影レンズ4により上下左右が反転して結像されるので、第2〜第5撮像位置55b〜55eは、それぞれ対角線上の反対側に配置された第2〜第5チャート画像36〜39を撮像する。
レンズ計測用制御部48は、第1〜第5撮像位置55a〜55eの合焦座標値を取得する際に、Z軸方向用移動ステージ44を制御し、Z軸上に予め離散的に設定された複数の測定位置に、レンズユニット5を順次に移動させる。また、レンズ計測用制御部48は、計測用撮像素子ドライバ51を制御し、各測定位置で撮影レンズ4が結像した第1〜第5チャート画像35〜39のチャート像を計測用撮像素子24に撮像させる。
合焦座標値取得回路49は、計測用撮像素子24から得られる撮像信号から第1〜第5撮像位置55a〜55eに対応する画素の信号を抽出し、その画素信号から第1〜第5撮像位置55a〜55eについて個別の合焦評価値を複数の測定位置ごとに算出し、第1〜第5撮像位置55a〜55eの各々について所定の合焦評価値が得られたときの測定位置をZ軸上の合焦座標値としている。
本実施形態では、合焦評価値として、コントラスト伝達関数値(Contrast Transfer Function:以下、CTF値と呼ぶ)を用いている。CTF値は、空間周波数に対する像のコントラストを表す値であり、CTF値が高いときに合焦しているとみなすことができる。CTF値は、計測用撮像素子24から出力された撮像信号の出力値の最大値と最小値との差を、出力値の最大値と最小値との和で除して求められる。例えば撮像信号の出力値の最大値をPとし、最小値をQとしたとき、CTF値は、以下の式(1)によって算出される。
[数1]
CTF値=(P−Q)/(P+Q)・・・(1)
合焦座標値取得回路49は、第1〜第5撮像位置55a〜55eの各々について、Z軸上に設定された複数の測定位置ごとに、XY座標平面上で設定した複数方向のそれぞれに対してCTF値を算出している。CTF値が算出される方向としては、任意の第1方向とこの第1方向に直交する第2方向であり、例えば本実施形態では、計測用撮像素子24の撮像面24aの横方向である水平方向(X軸方向)と、これに直交する垂直方向(Y軸方向)のCTF値であるH−CTF値及びV−CTF値をそれぞれ算出する。また、合焦座標値取得回路49は、第1〜第5撮像位置55a〜55eの各々について、H−CTF値及びV−CTF値が最大となる測定位置のZ軸上の座標を水平合焦座標値及び垂直合焦座標値として取得する。
結像面算出回路50には、合焦座標値取得回路49から第1〜第5撮像位置55a〜55eの水平合焦座標値及び垂直合焦座標値が入力される。結像面算出回路50は、撮像面24aをXY座標平面に対応させたときの各撮像位置55a〜55eのXY座標値と、それぞれの撮像位置55a〜55eごとに得られたZ軸上の水平合焦座標値及び垂直合焦座標値との組み合わせで表される10点の評価点を、XY座標平面とZ軸とを組み合わせた三次元座標系に展開し、これらの評価点の相対位置に基づいて三次元座標系で一平面として表される近似結像面を算出する。
結像面算出回路50による近似結像面の算出には、例えば、aX+bY+cZ+d=0の式(a〜dは任意の定数)で表される最小自乗法が用いられている。結像面算出回路50は、第1〜第5撮像位置55a〜55eのXY座標平面上の座標値と、合焦座標値取得回路49により求められたZ軸上の水平合焦座標値または垂直合焦座標値とを上記式に代入して演算することにより、近似結像面を算出する。算出した近似結像面のデータは、調整・固定工程22に送られる。
素子ユニット計測工程21には、図10に示すように、素子ユニット計測用装置58が配されている。素子ユニット計測用装置58は、素子ユニット保持機構26、変位・チルトセンサ27、及びこれらを制御する素子ユニット計測用制御部59等からなる。
素子ユニット保持機構26は、変位・チルトセンサ27に撮像面17aが向くように素子ユニット6の裏面を真空吸着して保持する吸着保持部57と、吸着保持部57をZ軸に直交する2軸(X、Y軸)の回りで傾きを調整する2軸回転ステージ60、2軸回転ステージ60をZ軸方向に移動させるZ軸方向用移動ステージ61、及び調整・固定工程との間で移動させる工程間用移動ステージ62で構成されている。
吸着保持部57は、撮像素子17を実装する基板9の裏面を真空吸着する。真空吸着により基板9を背後から保持するため、撓みやすい薄厚の基板9でも確実に保持することができる。吸着保持部57は、詳しくは図11に示すように、吸着面65、吸着溝70、位置決め部64が設けられている。吸着面65は、研磨仕上げが施された平滑面になっており、基板9の裏面を支持する。位置決め部64は、吸着面65から僅かに突出する位置決めピン64a、〜64cで構成されている。位置決めピン64aは基板9の外周のうちの垂直な一端面に当接し、また位置決めピン64b,64cは前記垂直な端面に隣接する水平な一端面に当接して素子ユニット6を吸着面65の面内の所定位置に位置決めする。吸着溝70は、吸着面65に形成されている溝であり、矩形状の矩形溝70aと、矩形溝70aの対角線上に沿って形成されているクロス溝70b,70cとで構成されている。クロス溝70b,70cは、矩形溝70aに四隅でそれぞれ接続されており、またクロス溝70b,70cの要溝74には、開口73が設けられている。開口73は、ダクト71に接続されているポンプ69に接続されている。なお、ポンプ69の駆動は、素子ユニット計測用制御部59により制御される。
要溝74は、図12に示すように、基板9の裏面の略中心を吸着し、また、矩形溝70aは、基板9の裏面のうちの撮像素子17を実装する範囲外を吸着するサイズになっている。吸着力は、要溝74の吸着が最も強く、これからクロス溝70b,70c、及び矩形溝70aの順に吸着力が弱まるため、撮像素子17を実装する部位からカバー部材10を接着した部位にかけて生じる基板9の反りを解消することができる。
図10に示す2軸回転ステージ60は、いわゆる自動2軸ゴニオステージと呼ばれるもので、図示しない2つのモータの回転により、撮像面17aの中心17bを中心にして、吸着保持部57をX軸の回りのθX方向と、Z軸及びX軸に直交するY軸の回りのθY方向で傾ける。これにより、素子ユニット6を各方向に傾けた際に、撮像面17aの中心17bとZ軸との位置関係がずれることがない。
Z軸方向用移動ステージ61は、2軸回転ステージ60をZ軸方向に移動させる。なお、Z軸方向用移動ステージ61は、レンズユニット計測工程20で説明したZ軸方向用移動ステージ44とサイズ等が異なる以外はほぼ同様のものなので、詳しい説明は省略する。
工程間用移動ステージ62は、レンズユニット計測工程20で説明した工程間用移動ステージ45と略同じ構成になっており、Z軸方向用移動ステージ61を調整・固定工程との間で移動させる。
変位・チルトセンサ27は、光源75からの光を第1コリメータレンズ76で平行光線にして、ハーフミラー77で反射した反射光をガラス10aの奧の撮像面17aに投光する。そして、撮像面17aからの反射光を、ハーフミラー77を透過させて第2コリメータレンズ78により二次元イメージセンサ79に集光し、そのスポット光の位置に基づいて素子ユニット6の基板9に対する撮像面17aの傾きを測定する。なお、変位・チルトセンサ27は、第1コリメータレンズ76から出射される平行光線が吸着面65に対して略垂直に入射する姿勢に予め位置決め固定されている。
変位・チルトセンサ27は、吸着面65に対して予め決めた間隔に固定されている。変位・チルトセンサ27の変位計測は、Z軸方向用移動ステージ61を駆動して二次元イメージセンサ79に集光するスポット光の径を計測する。スポット光の径が最小になる位置を探ることで、基板9に対する撮像面17aの基準位置からの変位を算出することができる。なお、素子ユニット保持機構26をZ軸方向に移動する代わりに、変位・チルトセンサ27を移動させてスポット光の径を計測してもよい。
素子ユニット計測工程21で説明した各部は、素子ユニット計測用制御部59に接続されている。素子ユニット計測用制御部59は、図13に示すように、例えば、CPUやROM、RAM等を備えたマイクロコンピュータであり、ROMに記憶されている制御プログラムに基づいて各部を制御し、撮像面17aの位置及び傾き算出回路83で、変位・チルトセンサ27から得られるデータに基づいて結像面の位置、及び傾きを算出し、算出したデータを調整・固定工程22に送る。なお、素子ユニット計測用制御部59には、図示していなが、各種設定を行うキーボードやマウス等の入力装置84と、設定内容や作業内容、作業結果等が表示されるモニタ85、データを記憶するメモリ86、及び調整・固定工程22との間でデータ通信を行う通信部87等が接続されている。
調整・固定工程22には、図14に示すように、調整・固定用装置90が配されている。調整・固定用装置90は、接着剤供給器91、紫外線ランプ92、及びこれらを統括的に制御する調整・固定用制御部93で構成されている。
接着剤供給器91は、素子ユニット6の位置調整を行う前に、レンズユニット5の裏面、又は素子ユニット6の前面に紫外線硬化接着剤を供給する。紫外線ランプ92は、素子ユニット6の位置調整を行った後に、紫外線硬化接着剤を供給した部位に紫外線を照射して紫外線硬化接着剤を硬化させる。なお、接着剤としては、瞬間接着剤、熱硬化接着剤、自然硬化接着剤等も利用可能である。瞬間接着剤を用いる場合には、素子ユニット6の位置調整を行った後で供給するのが望ましい。
調整・固定工程22で説明した各部は、調整・固定用制御部93に接続されている。調整・固定用制御部93は、素子ユニット計測用制御部59を介して素子ユニット保持機構26を制御して、レンズユニット5に対する素子ユニット6の位置、及び素子ユニット6の傾きを調整する。また、図15に示すように、前記2つの工程20,21から得られるデータを記憶するメモリ95、及びそれらデータに基づいて疑似結像面を算出するための調整値算出回路94を有している。
調整値算出回路94には、レンズユニット計測工程20で計測したレンズユニット5の疑似結像面の位置、及び傾きと、素子ユニット計測工程21で計測した撮像面の位置、及び傾きとのデータがそれぞれ入力される。調整値算出回路94は、近似結像面とZ軸との交点であるZ軸上の結像面座標値と、XY座標平面に対する近似結像面のX軸回り及びY軸回りの傾きであるXY方向回転角度とを算出する。調整・固定用制御部93は、調整値算出回路94から入力された結像面座標値及びXY方向回転角度に基づいてレンズユニット保持機構23、及び素子ユニット保持機構26のZ軸方向用移動ステージ44,61を駆動させ、撮像面17aが近似結像面に一致するようにレンズユニット5と素子ユニット6の間隔、及び素子ユニット6の姿勢を調整する。
なお、調整・固定用制御部93は、例えば、CPUやROM、RAM等を備えたマイクロコンピュータであり、ROMに記憶されている制御プログラムに基づいて各部を制御する。この調整・固定用制御部93には、各制御部48,59と通信を行うための通信部97が接続されている。
次に、上記実施形態の作用について、図16及び図17のフローチャートを参照しながら説明する。まず、レンズユニット5は、図示しないロボットによりハンドリングされてレンズユニット保持機構23に供給される。レンズユニット保持機構23は、切欠7を利用してレンズユニット5を位置決めして保持する(S1)。これによりプローブユニット46が接点16aに接触して電磁石16と、AFドライバ47とが電気的に接続される。
レンズユニット5の保持を完了した後、Z軸方向用移動ステージ44を駆動してレンズユニット5をZ軸上の予め決めた位置に移動し、撮影レンズ4を予め決めた焦点位置にセットする(S2)。その後、計測用撮像素子24の撮像面24aの第1〜第5撮像位置55a〜55eの水平合焦座標値及び垂直合焦座標値が取得される(S3)。レンズ計測用制御部48は、Z軸方向用移動ステージ44を制御して撮影レンズ4が計測用撮像素子24に最も近くなる最初の測定位置にレンズユニット5を移動させる(S3−1)。
レンズ計測用制御部48は、チャートユニット30の光源34を発光させる。発光後、計測用撮像素子ドライバ51を制御して、撮影レンズ4が結像した第1〜第5チャート画像35〜39を計測用撮像素子24に撮像させる(S3−2)。計測用撮像素子24から出力された撮像信号は、合焦座標値取得回路49に入力される。
合焦座標値取得回路49は、入力された撮像信号から第1〜第5撮像位置55a〜55eに対応する画素の信号を抽出し、その画素信号から第1〜第5撮像位置55a〜55eについてのH−CTF値及びV−CTF値を算出する(S3−3)。H−CTF値及びV−CTF値は、メモリ53に記憶される。
レンズ計測用制御部48は、レンズユニット5を複数の測定位置に順次に移動させ、各測定位置で計測用撮像素子24に測定チャート33のチャート像を撮像させる。合焦座標値取得回路49は、各測定位置で第1〜第5撮像位置55a〜55eのH−CTF値及びV−CTF値を算出する(S3−2〜S3−4)。
図20、21のグラフは、第1〜第5撮像位置55a〜55eの各測定位置におけるH−CTF値であるHa1〜Ha5と、V−CTF値であるVa1〜Va5の算出結果の一例を示している。なお、測定位置「0」は、撮影レンズ4による設計上の結像面を表している。合焦座標値取得回路49は、第1〜第5撮像位置55a〜55eの各々について、算出された複数のH−CTF値Ha1〜Ha5、及びV−CTF値Va1〜Va5の中から最大値を選択し、最大値が得られた測定位置のZ軸座標を第1〜第5撮像位置55a〜55eの水平合焦座標値及び垂直合焦座標値として取得する(S3−6)。
図20、21に示す例では、H−CTF値ha1〜ha5、及びV−CTF値va1〜va5がそれぞれ最大値となっており、これらのCTF値に対応する測定位置Z0〜Z5及びZ0〜Z4のZ軸座標が、水平合焦座標値及び垂直合焦座標値として取得される。
図22、23に示すグラフは、撮像面24aをXY座標平面に対応させたときの各撮像位置55a〜55eのXY座標値と、それぞれの撮像位置55a〜55eごとに得られたZ軸上の水平合焦座標値及び垂直合焦座標値との組み合わせで表される10個の評価点Hb1〜Hb5及びVb1〜Vb5を、XYZの三次元座標系に展開した状態を示している。これらのグラフから分るように、水平方向の評価点Hb1〜Hb5、及び垂直方向のVb1〜Vb5により表される撮影レンズ4の実際の結像面は、各部品の製造誤差、組立誤差により、Z軸の「0」上に形成される設計上の結像面に対してずれてしまう。
合焦座標値取得回路49において取得された水平合焦座標値及び垂直合焦座標値は、結像面算出回路50に入力される。結像面算出回路50は、最小自乗法により平面近似された近似結像面を算出する(S4)。図24及び25に示すように、結像面算出回路50により算出された近似結像面Fは、評価点Hb1〜Hb5及びVb1〜Vb5の相対位置に基づいてバランスよく設定されている。
結像面算出回路50で算出された近似結像面Fのデータは、メモリ53に記憶され(S5)、その後、調整・固定工程22に送られる(S6)。レンズ計測用制御部48は、データを送出後、工程間用移動ステージ45を制御して計測後のレンズユニット5を持ち替えることなくレンズユニット保持機構23を調整・固定工程に移動させる(S8)。
一方、素子ユニット計測工程21では、素子ユニット6の計測が、レンズユニット5の計測と並行して行われている。
図10で説明した素子ユニット計測工程の吸着保持部57には、図示していない真空ピンセットを用いて人手により素子ユニット6がセットされる。これを図示していないセンサ等で検出することに応答して素子ユニット計測用制御部59がポンプ69を駆動する。これにより、吸着保持部57が基板9の裏面を吸着保持する(S9)。基板9の端面の一部が位置決めピン64a〜64cにそれぞれ当接して吸着面65の所定位置に位置決めされる。
素子ユニット計測用制御部59は、Z軸方向用移動ステージ61を駆動してZ軸方向のうちの変位・チルトセンサ27に寄った基準位置に素子ユニット6を移動させる(S10)。その後、変位・チルトセンサ27を作動して二次元イメージセンサ79に集光するスポット光の位置に基づいて撮像面17aの基板9に対する傾きを計測し、その後に、Z軸方向用移動ステージ61を駆動して素子ユニット保持機構26を変位・チルトセンサ27から離れる方向に向けて移動して二次元イメージセンサ79に集光するスポット光が最小になる位置を探ることで基板9に対する撮像面17aの基準位置からの変位を計測する(S12)。計測したデータは、メモリ86に記憶され(S13)、また、調整・固定工程22に送られる(S14)。素子ユニット設計用制御部59は、データを送出後、工程間用移動ステージ62を駆動して、計測後の素子ユニット6を持ち替えることなく素子ユニット保持機構26を調整・固定工程に移動させる(S15)。
調整・固定用制御部93は、前記2つの工程20,21からデータをそれぞれ受け取っているか(S17)、また、レンズユニット保持機構23、及び素子ユニット保持機構26が移動してきたかを確認し(S18,S20)、確認後、レンズユニット保持機構23、及び素子ユニット保持機構26の工程間用移動ステージ45,62を駆動してレンズユニット5と素子ユニット6とを、光軸と撮像面17aの中心17bとが一直線上に並ぶ位置にそれぞれ位置決めする(S19,S21)。その後、調整・固定用制御部93は、接着剤供給器91から紫外線硬化接着剤を、レンズユニット5又は素子ユニット6の嵌合部に供給する(S22)。
各制御部48,59から得られるデータは、メモリ95に格納した後に、調整値算出回路94に入力される。図24及び図25で説明したように、調整値算出回路94は、近似結像面FとZ軸との交点である結像面座標値F1と、XY座標平面に対する近似結像面のX軸回り及びY軸回りの傾きであるXY方向回転角度とを算出する(S23)。
そして、調整・固定用制御部93は、結像面座標値F1とXY方向回転角度に基づいて、素子ユニット保持機構26の2軸回転ステージ60、及びZ軸方向用移動ステージ61を制御して、撮像面17aの中心17bが撮影レンズ4の結像面座標値F1に一致するように、素子ユニット6をZ軸方向に移動させ、また、撮像面17aの傾きが撮影レンズ4の近似結像面Fに一致するように、素子ユニット6のθX方向及びθY方向の角度を調整する(S24)。
レンズユニット5に対する素子ユニット6の位置及び傾きを調整した後に、調整・固定用制御部93は、紫外線ランプ92を点灯させて紫外線硬化接着剤を硬化させる(S25)。硬化後に調整・固定用制御部93は、素子ユニット計測用制御部59を介してポンプ69の作動を停止する。その後、図示しないロボットがレンズユニット5を保持し、その後、レンズユニット保持機構23での保持が解除されることでハンドリングされて、カメラモジュール2が調整・固定工程22から取り出される(S26)。取り出しを確認した後に、調整・固定用制御部93は、レンズユニット保持機構23、及び素子ユニット保持機構26をレンズユニット計測工程20、及び素子ユニット計測工程21にそれぞれ戻すように制御する(S28)。レンズユニット計測工程20、及び素子ユニット計測工程21では、レンズユニット保持機構23、及び素子ユニット保持機構26が戻ってきたことを確認(S8,S16)してから、前述した手順を繰り返し行う。
上記実施形態では、レンズユニット計測工程20でレンズユニット5を各測定位置に移動させているが、AFドライバ47を制御してレンズ鏡筒12を各測定位置に移動させてもよい。また、計測用撮像素子24を各測定位置に移動してもよいし、測定チャート33を移動させるようにしてもよい。
また、上記各実施形態では、調整・固定工程22でレンズユニット5と素子ユニット6の間隔を調整するときに、レンズユニット5に対して素子ユニット6を寄せているが、Z軸方向用移動ステージ44を制御してレンズユニット5を素子ユニット6に寄せるようにしてもよいし、Z軸方向用移動ステージ44、61をそれぞれ制御して両方を寄せるようにしてもよい。さらに、近似結像面に撮像面が一致にするようにレンズユニット5に対して素子ユニット6を調整しているが、逆に素子ユニット6に対してレンズユニット5を調整するようにしてもよい。この場合には、2軸回転ステージをレンズユニット保持機構23に設ければよい。
上記各実施形態のレンズユニット計測工程20では、計測用撮像素子24の撮像面24a上に設定された少なくとも5つの撮像位置から得られる撮像信号に基づいて各々の撮像位置での合焦度合を表す個別の合焦評価値を複数の測定位置ごとに算出してレンズユニット5の近似結像面を算出しているが、代わりに、レーザー光や平行光等を利用した周知の計測装置を用いてレンズユニット5の焦点ズレ、及びユニット本体11に対する撮影レンズ4の光軸倒れを計測してもよい。
上記各実施形態のレンズユニット計測工程20では、レンズユニット5の光軸倒れ及び焦点ズレを計測している。この計測時に、各撮像位置の合焦評価値に基づいて、撮影レンズ4単体の解像度等の検査を同時に行うようにしてもよい。例えば、一の撮像位置の合焦評価値が他の撮像位置での合焦評価値に比べて明らかにおかしいものや調整範囲外のもの場合、NG品としてここで除外すればよい。このようにすれば、レンズユニット5単体の解像度等の検査を別の工程で行う必要がないため、工数を削減することができる。
上記各実施形態では、レンズユニット保持手段、及び素子ユニット保持手段を調整・固定工程との間で移動自在に設け、持ち替えしないでレンズユニット5及び素子ユニット6を調整・固定工程に供給しているが、本発明ではこれに限らず、レンズユニット保持手段、及び素子ユニット保持手段を調整・固定工程にそれぞれ設けてもよい。
2 カメラモジュール
4 撮影レンズ
5 レンズユニット
6 素子ユニット
9 基板
17 撮像素子
23 レンズ保持機構
24 計測用撮像素子
25 測定チャート
26 素子ユニット保持機構

Claims (8)

  1. レンズ保持手段により保持した撮影レンズと前記撮影レンズにより結像されるチャート像を撮像する計測用撮像素子とを測定チャートに直交するZ軸上にセットし、前記Z軸上に予め離散的に設定した複数の測定位置に前記測定チャート、撮影レンズ、及び計測用撮像素子のうちのいずれか一つを順次移動して前記計測用撮像素子で撮像を行い、前記計測用撮像素子から得られる撮像信号に基づいて前記撮影レンズの光軸倒れ及び焦点ズレを計測し、計測した情報を出力するレンズ計測工程と、
    基板の表面に取り付けられた撮像素子を撮像素子保持手段により保持し、光源からの光を平行光線にして前記撮像素子の撮像面に投光し、前記撮像面からの反射光を二次元イメージセンサに集光し、その集光スポットの位置に基づいて前記基板に対する前記撮像面の位置及び傾きを測定し、測定した情報を出力する撮像素子計測工程と、
    前記2つの計測手段から得られる情報に基づいて前記撮影レンズと前記撮像素子とのいずれか一方を、前記撮像素子の撮像面と前記撮影レンズの近似結像面との平行度が一致するように位置調整する調整工程と、を含むことを特徴とするカメラモジュールの製造方法。
  2. 前記撮像素子保持手段は、前記基板の裏面をエアー吸着することを特徴とする請求項1記載のカメラモジュールの製造方法。
  3. 前記レンズ保持手段、及び前記撮像素子保持手段は、計測前に保持した前記撮影レンズ、及び前記撮像素子を、計測後に持ち替えずに保持したままの状態で前記調整工程に移動して前記調整工程での保持手段として兼用されることを特徴とする請求項1又は2記載のカメラモジュールの製造方法。
  4. 前記レンズ計測工程は、
    前記計測用撮像素子の撮像面上に設定された少なくとも5つの測定点の合焦度合を表す個別の合焦評価値を前記複数の測定位置毎に算出し、前記撮像位置の各々について所定の合焦評価値が得られたときにそれぞれのZ軸上の位置を合焦座標値とする合焦座標取得工程と、
    前記撮像面をZ軸に直交するXY座標平面に対応させたときの各撮像位置のXY座標値と、それぞれの撮像位置ごとに得られたZ軸上の合焦座標値との組み合わせで表される少なくとも5つの評価点を前記XY座標平面とZ軸とを組み合わせた三次元座標系に展開したときに、これらの評価点の相対位置に基づいて前記三次元座標系で一平面として表される近似結像面を算出する結像面算出工程と、を含み、
    前記レンズ計測工程、又は調整工程には、
    前記Z軸と前記近似結像面との交点である結像面座標値と、前記XY座標平面に対する前記近似結像面のX軸及びY軸回りの回転角度とを算出する調整値算出工程を含むことを特徴とする請求項1ないし3いずれか記載のカメラモジュールの製造方法。
  5. 撮影レンズが組み込まれレンズユニット保持手段により保持されるレンズユニットと、前記撮影レンズにより結像されるチャート像を撮像する計測用撮像素子と、を測定チャートに直交するZ軸上にセットし、前記Z軸上に予め離散的に設定した複数の測定位置に前記測定チャート、レンズユニット、及び計測用撮像素子のうちのいずれか一つを順次移動して前記計測用撮像素子で撮像を行い、前記計測用撮像素子から得られる撮像信号に基づいて前記レンズユニットの光軸倒れ及び焦点ズレを計測するレンズユニット計測手段と、
    基板の表面に撮像素子が取り付けられている素子ユニットを撮像素子保持手段により保持し、光源からの光を平行光線にして前記撮像素子の撮像面に投光し、前記撮像面からの反射光を二次元イメージセンサに集光し、その集光スポットの位置に基づいて前記基板に対する前記撮像面の位置及び傾きを測定し、測定した情報を出力する撮像素子計測手段と、
    前記2つの計測手段から得られる情報に基づいて前記レンズユニットと前記素子ユニットとのいずれか一方の、他方に対するZ軸上での位置、及び傾きを調整し、前記素子ユニットの撮像面と前記レンズユニットの近似結像面との平行度を一致させる調整手段と、を備えたことを特徴とするカメラモジュールの製造装置。
  6. 前記撮像素子保持手段は、前記基板の裏面をエアー吸着することを特徴とする請求項5記載のカメラモジュールの製造装置。
  7. 前記レンズユニット保持手段、及び前記撮像素子保持手段は、計測前に保持した前記レンズユニット、及び前記素子ユニットを、前記調整手段での位置調節が完了するまで持ち替えずに保持を継続することを特徴とする請求項5又は6記載のカメラモジュールの製造装置。
  8. 前記レンズユニット計測手段は、
    前記計測用撮像素子の撮像面上に設定された少なくとも5つの測定点の合焦度合を表す個別の合焦評価値を前記複数の測定位置毎に算出し、前記撮像位置の各々について所定の合焦評価値が得られたときにそれぞれのZ軸上の位置を合焦座標値とする合焦座標取得手段と、
    前記撮像面をZ軸に直交するXY座標平面に対応させたときの各撮像位置のXY座標値と、それぞれの撮像位置ごとに得られたZ軸上の合焦座標値との組み合わせで表される少なくとも5つの評価点を前記XY座標平面とZ軸とを組み合わせた三次元座標系に展開したときに、これらの評価点の相対位置に基づいて前記三次元座標系で一平面として表される近似結像面を算出する結像面算出手段と、を備えており、
    前記レンズユニット計測手段、又は調整手段は、
    前記Z軸と前記近似結像面との交点である結像面座標値と、前記XY座標平面に対する前記近似結像面のX軸及びY軸回りの回転角度とを算出する調整値算出手段を備えていることを特徴とする請求項5ないし7いずれか記載のカメラモジュールの製造装置。
JP2010010200A 2010-01-20 2010-01-20 カメラモジュールの製造方法及び装置 Pending JP2011151551A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010010200A JP2011151551A (ja) 2010-01-20 2010-01-20 カメラモジュールの製造方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010010200A JP2011151551A (ja) 2010-01-20 2010-01-20 カメラモジュールの製造方法及び装置

Publications (1)

Publication Number Publication Date
JP2011151551A true JP2011151551A (ja) 2011-08-04

Family

ID=44538159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010010200A Pending JP2011151551A (ja) 2010-01-20 2010-01-20 カメラモジュールの製造方法及び装置

Country Status (1)

Country Link
JP (1) JP2011151551A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040903A1 (ja) * 2013-09-20 2015-03-26 富士フイルム株式会社 撮像モジュールの製造方法及び撮像モジュールの製造装置
WO2015056720A1 (ja) * 2013-10-15 2015-04-23 富士フイルム株式会社 撮像モジュールの製造方法及び撮像モジュールの製造装置
JP2016131399A (ja) * 2014-06-19 2016-07-21 アキム株式会社 レンズ素子搬送機構、レンズ駆動装置、光軸調整装置並びに、光学モジュール製造設備及びその製造方法
KR101671450B1 (ko) * 2016-03-03 2016-11-01 배상신 카메라 모듈 조립 장치 및 이를 이용한 조립방법
JP2018157531A (ja) * 2017-03-15 2018-10-04 致伸科技股▲ふん▼有限公司 マルチレンズ光学装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040903A1 (ja) * 2013-09-20 2015-03-26 富士フイルム株式会社 撮像モジュールの製造方法及び撮像モジュールの製造装置
JP5879461B2 (ja) * 2013-09-20 2016-03-08 富士フイルム株式会社 撮像モジュールの製造方法及び撮像モジュールの製造装置
US9927594B2 (en) 2013-09-20 2018-03-27 Fujifilm Corporation Image pickup module manufacturing method and image pickup module manufacturing device
WO2015056720A1 (ja) * 2013-10-15 2015-04-23 富士フイルム株式会社 撮像モジュールの製造方法及び撮像モジュールの製造装置
JP2016131399A (ja) * 2014-06-19 2016-07-21 アキム株式会社 レンズ素子搬送機構、レンズ駆動装置、光軸調整装置並びに、光学モジュール製造設備及びその製造方法
KR101671450B1 (ko) * 2016-03-03 2016-11-01 배상신 카메라 모듈 조립 장치 및 이를 이용한 조립방법
JP2018157531A (ja) * 2017-03-15 2018-10-04 致伸科技股▲ふん▼有限公司 マルチレンズ光学装置

Similar Documents

Publication Publication Date Title
JP5198295B2 (ja) 撮像素子の位置調整方法、カメラモジュール製造方法及び装置、カメラモジュール
TWI510077B (zh) 攝像元件之位置調整方法、相機模組、以及其製造方法及製造裝置
US9927594B2 (en) Image pickup module manufacturing method and image pickup module manufacturing device
JP4960308B2 (ja) 撮像素子の位置調整方法、カメラモジュール製造方法及び装置
US10048462B2 (en) Manufacturing method of imaging module
TW200912375A (en) Laser irradiation apparatus and laser processing system using same apparatus
US9906695B2 (en) Manufacturing method of imaging module and imaging module manufacturing apparatus
JP2011151551A (ja) カメラモジュールの製造方法及び装置
JP6733895B1 (ja) カメラモジュール製造装置及びカメラモジュール製造方法
WO2014073262A1 (ja) 撮像素子位置検出装置
US9979868B2 (en) Image pickup module manufacturing method, and image pickup module manufacturing device
JP5004412B2 (ja) レンズ一体型撮像装置の製造方法及び製造装置
JP4960307B2 (ja) 撮像素子の位置調整方法、カメラモジュール製造方法及び装置
KR101958962B1 (ko) 렌즈 소자 반송 기구, 컨트롤러, 광축 조정 장치와 광학 모듈 제조 설비 및 그 제조 방법
JP5990655B2 (ja) 撮像モジュール、撮像モジュールの製造方法、電子機器
US9609196B2 (en) Imaging module and electronic device
US10020342B2 (en) Image pickup module manufacturing method, and image pickup module manufacturing device
JP4171336B2 (ja) 部品組立装置および部品組立方法
JP4046627B2 (ja) 光モジュールの組立方法及び組立装置
TW201521439A (zh) 攝影模組的製造方法以及攝影模組的製造裝置
TW201517621A (zh) 攝影模組的製造方法以及攝影模組的製造裝置