JP2011149670A - Thermoacoustic engine - Google Patents

Thermoacoustic engine Download PDF

Info

Publication number
JP2011149670A
JP2011149670A JP2010013416A JP2010013416A JP2011149670A JP 2011149670 A JP2011149670 A JP 2011149670A JP 2010013416 A JP2010013416 A JP 2010013416A JP 2010013416 A JP2010013416 A JP 2010013416A JP 2011149670 A JP2011149670 A JP 2011149670A
Authority
JP
Japan
Prior art keywords
thermoacoustic engine
loop
tube
bent
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010013416A
Other languages
Japanese (ja)
Other versions
JP5532959B2 (en
Inventor
Shinya Hasegawa
真也 長谷川
Tomohisa Saku
智久 窄
Makoto Abe
阿部  誠
Yasushi Yamamoto
康 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2010013416A priority Critical patent/JP5532959B2/en
Publication of JP2011149670A publication Critical patent/JP2011149670A/en
Application granted granted Critical
Publication of JP5532959B2 publication Critical patent/JP5532959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoacoustic engine having an optimal number and positions of bent parts of a loop pipe. <P>SOLUTION: In the thermoacoustic engine 1, a motor 7 composed of a heater 4, a regenerator 5, and a cooler 6 aligned in series is installed to the loop pipe 3 composed of a cylindrical pipe 2 closed in a loop shape. The bent parts 8a, 8b of the cylindrical pipe 2 are formed at only two positions on the loop pipe 3. The bent angle at the respective bent parts 8a, 8b is 180°. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ループ管に原動機が設けられた熱音響機関に係り、ループ管の最適な曲げ部の個数及び位置を有する熱音響機関に関する。   The present invention relates to a thermoacoustic engine in which a prime mover is provided in a loop tube, and relates to a thermoacoustic engine having an optimal number and position of bent portions of the loop tube.

廃熱からエネルギを取り出すためにスターリングエンジンの開発研究が活発に行われている。スターリングエンジンの形式には、α型、β型、γ型、フリーピストン型などがある。これに対し、最近では、米国などにおいて、構造が単純でピストンやクランクで構成された可動部を有さない熱音響機関の開発研究が活発に行われるようになった。   In order to extract energy from waste heat, research and development of Stirling engines have been actively conducted. Stirling engine types include α type, β type, γ type, and free piston type. On the other hand, in recent years, research and development of thermoacoustic engines that have a simple structure and do not have moving parts composed of pistons and cranks have been actively conducted in the United States and the like.

熱音響機関は、管の軸方向に、高温熱源との熱交換を行う加熱器と、低温熱源との熱交換を行う冷却器と、これら加熱器と冷却器との間で温度勾配を保持する再生器とを配置して構成される。管内の作動流体をある場所で局部的に加熱し、別のある場所で冷却すると、熱エネルギの一部が力学的エネルギである音響エネルギに変換されて管内の作動流体が自励振動を起こし、管内に音響振動すなわち音波が発生する。この作用は、熱力学的には、プライムムーバ(原動機)と見ることができる。この原理で熱エネルギを力学的エネルギにエネルギ変換を行うものが熱音響機関である。   The thermoacoustic engine maintains a temperature gradient between the heater and the cooler in the axial direction of the tube, a heater that exchanges heat with the high-temperature heat source, a cooler that exchanges heat with the low-temperature heat source, and the like. A regenerator is arranged. When the working fluid in the tube is locally heated in one place and cooled in another, a part of the heat energy is converted into acoustic energy, which is mechanical energy, and the working fluid in the tube undergoes self-excited vibration, Acoustic vibration, that is, sound waves are generated in the tube. This action can be seen thermodynamically as a prime mover. A thermoacoustic engine converts energy from heat energy into mechanical energy based on this principle.

図3に示されるように、従来の熱音響機関31は、円筒管32をループ状に閉じてなるループ管33に、加熱器34と再生器35と冷却器36とが順に並べられた原動機37が設置されたものである。   As shown in FIG. 3, a conventional thermoacoustic engine 31 includes a prime mover 37 in which a heater 34, a regenerator 35, and a cooler 36 are sequentially arranged in a loop tube 33 formed by closing a cylindrical tube 32 in a loop shape. Is installed.

特許第3050543号公報Japanese Patent No. 3050543 特開2006−145176号公報JP 2006-145176 A

ところで、従来の熱音響機関31は、ループ管33が直線部と曲げ部とを4つずつ組み合わせて構成される。すなわち、原動機37が設置された長辺直線部38aの両端に、最小曲げアール等の適宜な曲げアールで90°曲げられた曲げ部39a,39dが設けられ、それぞれの曲げ部に短辺直線部38b,38dが繋がり、それぞれ曲げ部39b,39cを介して原動機37とは対向側の長辺直線部38cに繋がる。巨視的に見ると、ループ管33は四角形(長方形)に曲げられることで閉じられている。   By the way, the conventional thermoacoustic engine 31 is configured by combining the loop tube 33 with four straight portions and four bent portions. That is, bent portions 39a and 39d bent by 90 ° with an appropriate bending radius such as a minimum bending radius are provided at both ends of the long side linear portion 38a where the prime mover 37 is installed. 38b and 38d are connected to each other and the motor 37 is connected to the long-side straight line portion 38c on the opposite side via the bent portions 39b and 39c. When viewed macroscopically, the loop tube 33 is closed by being bent into a quadrangle (rectangle).

しかしながら、一般に熱音響機関においては、曲げ部があると、そこに流速の腹(=音圧の節)が生じやすい。このため、4つの曲げ部39a〜39dを有する熱音響機関31においては、音圧の節が4箇所形成されやすいことになる。   However, in general, in a thermoacoustic engine, if there is a bent portion, an antinode of flow velocity (= node of sound pressure) tends to occur there. For this reason, in the thermoacoustic engine 31 having the four bent portions 39a to 39d, four sound pressure nodes are easily formed.

一方、一般に熱音響機関においては、熱交換効率を向上させるために最適な音圧の節の箇所は2箇所である。これに対して、従来の熱音響機関31は、音圧の節が4箇所形成されるので、熱交換効率が低下し、同じ熱エネルギの入力に対し音響エネルギの出力が小さい。   On the other hand, in general, in a thermoacoustic engine, there are two optimal sound pressure nodes in order to improve heat exchange efficiency. On the other hand, in the conventional thermoacoustic engine 31, since four nodes of the sound pressure are formed, the heat exchange efficiency is lowered, and the output of the acoustic energy is smaller than the input of the same thermal energy.

そこで、本発明の目的は、上記課題を解決し、ループ管の最適な曲げ部の個数及び位置を有する熱音響機関を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems and provide a thermoacoustic engine having an optimal number and position of bent portions of a loop tube.

上記目的を達成するために本発明は、円筒管をループ状に閉じてなるループ管に、加熱器と再生器と冷却器とが順に並べられた原動機が設置された熱音響機関において、前記円筒管の曲げ部が前記ループ管に2箇所のみ形成され、それぞれの曲げ部における曲げ角度が180°であるものである。   To achieve the above object, the present invention provides a thermoacoustic engine in which a prime mover in which a heater, a regenerator, and a cooler are arranged in order is installed in a loop tube formed by closing a cylindrical tube in a loop shape. Only two bent portions of the tube are formed in the loop tube, and the bending angle at each bent portion is 180 °.

前記2箇所の曲げ部が前記原動機から前記加熱器の方向に前記ループ管の全長の30〜35%の位置と80〜85%の位置に設けられてもよい。   The two bent portions may be provided at positions of 30 to 35% and 80 to 85% of the entire length of the loop pipe in the direction from the prime mover to the heater.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)ループ管の最適な曲げ部の個数及び位置を有する熱音響機関が提供される。   (1) A thermoacoustic engine having an optimal number and position of bent portions of a loop tube is provided.

(a)は本発明の一実施形態を示す熱音響機関の構成図、(b)はループ管を展開して示した配置区画図である。(A) is the block diagram of the thermoacoustic engine which shows one Embodiment of this invention, (b) is the arrangement | positioning division figure which expanded and showed the loop pipe | tube. (a)〜(d)は、本発明の実施形態による曲げ部の拡大図である。(A)-(d) is an enlarged view of the bending part by embodiment of this invention. 従来の熱音響機関の構成図である。It is a block diagram of the conventional thermoacoustic engine.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る熱音響機関1は、円筒管2をループ状に閉じてなるループ管3に、加熱器4と再生器5と冷却器6とが順に並べられた原動機7が設置された熱音響機関1である。この熱音響機関1において、円筒管2の曲げ部8a,8bがループ管3に2箇所のみ形成され、それぞれの曲げ部8a,8bにおける曲げ角度が180°である。   As shown in FIG. 1, in a thermoacoustic engine 1 according to the present invention, a heater 4, a regenerator 5, and a cooler 6 are arranged in order on a loop tube 3 formed by closing a cylindrical tube 2 in a loop shape. A thermoacoustic engine 1 in which a prime mover 7 is installed. In this thermoacoustic engine 1, the bent portions 8a and 8b of the cylindrical tube 2 are formed in only two places on the loop tube 3, and the bending angle at each of the bent portions 8a and 8b is 180 °.

ループ管3は、直線部9a,9bと曲げ部8a,8bとを2つずつ組み合わせて構成される。すなわち、原動機7が設置された直線部9aの両端に、180°曲げられた曲げ部8a,8bが設けられ、それぞれの曲げ部8a,8bに原動機7とは対向側の直線部9bが繋がることで、円筒管2がループ状に閉じられている。   The loop tube 3 is configured by combining two straight portions 9a and 9b and two bent portions 8a and 8b. That is, the bent portions 8a and 8b bent by 180 ° are provided at both ends of the straight portion 9a where the prime mover 7 is installed, and the straight portions 9b opposite to the prime mover 7 are connected to the bent portions 8a and 8b. Thus, the cylindrical tube 2 is closed in a loop shape.

ループ管3の内部には、作動流体が充填される。作動流体には、空気、ヘリウム、窒素、アルゴンなどの気体を用いるのが好ましい。   The inside of the loop tube 3 is filled with a working fluid. The working fluid is preferably a gas such as air, helium, nitrogen, or argon.

加熱器4は、円筒管2の内部に複数の内部フィン(図示せず)が配置され、円筒管2の周囲に複数の外部フィン(図示せず)が配置されてなる。加熱器4から軸方向に適宜な距離を隔てた箇所に冷却器6が設けられる。冷却器6は、加熱器4と同様に、円筒管2の内部に複数の内部フィンが配置され、円筒管2の周囲に複数の外部フィンが配置されてなる。加熱器4と冷却器6との間には、複数の金網を軸方向に積層したもの、あるいは多孔質セラミックスなどからなる再生器5が設けられる。   In the heater 4, a plurality of internal fins (not shown) are arranged inside the cylindrical tube 2, and a plurality of external fins (not shown) are arranged around the cylindrical tube 2. A cooler 6 is provided at a location separated from the heater 4 by an appropriate distance in the axial direction. Like the heater 4, the cooler 6 includes a plurality of internal fins disposed inside the cylindrical tube 2 and a plurality of external fins disposed around the cylindrical tube 2. Between the heater 4 and the cooler 6, a regenerator 5 made of a plurality of metal meshes laminated in the axial direction or porous ceramics is provided.

本発明の熱音響機関の作用効果を説明する。   The effects of the thermoacoustic engine of the present invention will be described.

すでに説明したように、一般に熱音響機関においては、曲げ部があると、そこに流速の腹(=音圧の節)が生じやすい。このため、2つの曲げ部8a,8bのみを有する本発明の熱音響機関1においては、音圧の節が2箇所のみ形成されることになる。   As already explained, in general, in a thermoacoustic engine, if there is a bending portion, an antinode of a flow velocity (= node of sound pressure) is likely to occur there. For this reason, in the thermoacoustic engine 1 of the present invention having only two bent portions 8a and 8b, only two sound pressure nodes are formed.

一方、すでに説明したように、一般に熱音響機関においては、熱交換効率を向上させるために最適な音圧の節の箇所は2箇所である。本発明の熱音響機関1においては、音圧の節が2箇所のみ形成されるので、熱交換効率が向上し、従来に比して同じ熱エネルギの入力に対し音響エネルギの出力が大きくなる。   On the other hand, as already explained, in a thermoacoustic engine, in general, there are two optimal sound pressure nodes in order to improve heat exchange efficiency. In the thermoacoustic engine 1 of the present invention, since only two sound pressure nodes are formed, the heat exchange efficiency is improved, and the output of the acoustic energy is increased with respect to the same heat energy input as compared with the conventional case.

本発明者らは、上記の作用効果をいっそう良好にするため、曲げ部8a,8bをどの位置に配置するとよいか検討することにした。   In order to further improve the above-described effects, the present inventors have decided where to place the bent portions 8a and 8b.

このために、原動機7の中心(再生器5の中心)を基準とし、ループ長を20等分してなる20の区画を定義する。原動機7から見て何番目と何番目の区画に、2つの曲げ部8a,8bが配置されるとよいかを発振温度差(音響振動の発生に最低必要な加熱器と冷却器の温度差)により調べた。発振温度差が小さい区画が曲げ部8a,8bの配置に好ましい区画となり、最も発振温度差が小さい2箇所の区画を見いだせばそれが最適の配置を示すこととなる。曲げ部8a,8bの位置は、曲げ部の中心の位置で表す。   For this purpose, 20 sections are defined by dividing the loop length into 20 parts with the center of the prime mover 7 (the center of the regenerator 5) as a reference. The oscillation temperature difference (the temperature difference between the heater and the cooler that is the minimum necessary for the generation of acoustic vibrations) is determined in what number and what section when viewed from the prime mover 7 the two bent portions 8a and 8b are arranged. We investigated by. A section having a small oscillation temperature difference is a preferable section for the arrangement of the bent portions 8a and 8b. If two sections having the smallest oscillation temperature difference are found, this indicates an optimum arrangement. The positions of the bent portions 8a and 8b are represented by the center position of the bent portion.

調査の結果、図1(b)に示されるように、区画A1(6/20〜7/20)、すなわち基準からループ管3の全長の30〜35%の位置に曲げ部8aを配置し、区画A2(16/20〜17/20)、すなわち基準からループ管3の全長の80〜85%の位置に曲げ部8bを配置するのが最適であることが分かった。   As a result of the investigation, as shown in FIG. 1 (b), the bent portion 8a is arranged at a position of 30 to 35% of the total length of the loop tube 3 from the section A1 (6/20 to 7/20), that is, from the reference, It turned out that it is optimal to arrange | position the bending part 8b in section A2 (16 / 20-17 / 20), ie, the position of 80 to 85% of the full length of the loop pipe | tube 3 from a reference | standard.

区画A1に曲げ部8aを配置し、区画A2に曲げ部8bを配置することにより、音圧の節が区画A1と区画A2に形成される。したがって、音圧の腹は区画A1と区画A2のちょうど中央に形成される。よって、音圧の腹は、原動機7から外れた位置に形成されることになる。図3の熱音響機関31では、音圧の腹(=流速の節)が原動機37の位置に形成されるが、音圧の腹では流体変位が微小であるため、大きな熱交換を行うことができず、熱交換効率が低くなる。これに対して本発明の熱音響機関1は、2箇所の曲げ部8a,8bに音圧の節が形成されるので、音圧の腹が原動機7から外れた位置に形成される。よって、原動機7の熱交換器(加熱器4及び冷却器6)において適切な大きさの流体変位を確保することができ、熱交換効率が向上する。   By disposing the bent portion 8a in the section A1 and arranging the bent portion 8b in the section A2, sound pressure nodes are formed in the sections A1 and A2. Therefore, the antinode of the sound pressure is formed at the exact center between the sections A1 and A2. Therefore, the antinode of the sound pressure is formed at a position away from the prime mover 7. In the thermoacoustic engine 31 of FIG. 3, the antinode of the sound pressure (= node of the flow velocity) is formed at the position of the prime mover 37. However, since the fluid displacement is small at the antinode of the sound pressure, large heat exchange can be performed. The heat exchange efficiency is low. On the other hand, in the thermoacoustic engine 1 of the present invention, since the nodes of the sound pressure are formed at the two bent portions 8a and 8b, the antinode of the sound pressure is formed at a position away from the prime mover 7. Therefore, the fluid displacement of an appropriate magnitude | size can be ensured in the heat exchanger (the heater 4 and the cooler 6) of the motor | power_engine 7, and heat exchange efficiency improves.

次に、曲げ部の定義と実施形態を説明する。   Next, the definition and embodiment of the bending part will be described.

本発明における曲げ部8a,8bは、円筒管2が180°曲げられたものであるが、その形態は種々考えられる。   The bent portions 8a and 8b in the present invention are formed by bending the cylindrical tube 2 by 180 °, and various forms are conceivable.

図2(a)の曲げ部21は、曲げの開始から終了まで、最小の曲率半径を保って曲げたもので、曲げの内側の曲率半径はほぼ0、曲げの外側の曲率半径は円筒管2の直径とほぼ等しい。これにより、直線部9aと直線部9bは接する。   The bent portion 21 in FIG. 2A is bent with a minimum radius of curvature from the start to the end of bending, the radius of curvature inside the bend is almost 0, and the radius of curvature outside the bend is the cylindrical tube 2. Is approximately equal to the diameter of Thereby, the linear part 9a and the linear part 9b contact | connect.

図2(b)の曲げ部22は、曲げの開始から終了まで適宜な曲率半径を保って曲げたものである。曲げの内側の曲率半径に対して曲げの外側の曲率半径が円筒管2の直径だけ大きい。直線部9aと直線部9bの間は離れている。   The bent portion 22 in FIG. 2B is bent with an appropriate radius of curvature from the start to the end of bending. The radius of curvature outside the bend is larger by the diameter of the cylindrical tube 2 than the radius of curvature inside the bend. The straight line portion 9a and the straight line portion 9b are separated from each other.

図2(c)の曲げ部23は、軸に対して45°の角度で切った円筒管2をつなぎ合わせたもので、曲げの外側にも曲げの内側にも直角部分がある。また、直線部9aと直線部9bの間に、ごく短い直線部が存在する。   The bending portion 23 in FIG. 2 (c) is obtained by connecting the cylindrical tubes 2 cut at an angle of 45 ° with respect to the axis, and has a right-angle portion on both the outside of the bend and the inside of the bend. There is a very short straight line portion between the straight line portion 9a and the straight line portion 9b.

図2(d)の曲げ部24は、曲げの内側において曲げの開始から終了まで適宜な曲率半径を保っており、直線部9aと直線部9bの間は離れている。曲げの外側には、アールの部分と直線の部分がある。   The bending portion 24 in FIG. 2D maintains an appropriate radius of curvature from the start to the end of bending inside the bending, and the linear portion 9a and the linear portion 9b are separated from each other. On the outside of the bend, there are a rounded portion and a straight portion.

本発明では、ループ長に対して十分に短い範囲、例えば、図1(b)に示した20等分の区画の1つ分に相当する範囲の中にトータル180°の曲げが含まれていれば、1箇所で180°曲げられたものと定義する。よって、図2(a)〜(d)に示したものは、全て本発明の曲げ部に含まれる。例えば、図2(b)の曲げ部22や図2(c)の曲げ部23は、曲げの開始から終了までが区画の1つ分に相当する範囲Aに含まれている。   In the present invention, a bending of a total of 180 ° is included in a range sufficiently short with respect to the loop length, for example, in a range corresponding to one of the 20 equal sections shown in FIG. For example, it is defined as being bent 180 ° at one place. Therefore, all shown in FIGS. 2A to 2D are included in the bent portion of the present invention. For example, the bending portion 22 in FIG. 2B and the bending portion 23 in FIG. 2C are included in a range A corresponding to one section from the start to the end of bending.

以上説明したように、本発明によれば、ループ管3の2箇所のみに曲げ角度が180°の曲げ部8a,8bが形成されたので、音圧の節の箇所が2箇所となり、熱交換効率が向上する。   As described above, according to the present invention, since the bent portions 8a and 8b having a bending angle of 180 ° are formed only in two places of the loop tube 3, the number of sound pressure nodes is two, and heat exchange is performed. Efficiency is improved.

また、本発明によれば、2箇所の曲げ部8a,8bが原動機7から加熱器4の方向にループ管3の全長の30〜35%の位置と80〜85%の位置に設けられたので、エネルギ変換効率が向上し、従来に比べて発振開始温度が低くなるという効果が得られる。従来では、例えば、原動機37において冷却器36が常温であるとすると常温よりかなり高い温度の加熱器34を必要としたのに対し、本発明では、冷却器6が常温であるならば常温よりそれほど高くない温度の加熱器4が利用できる。   Further, according to the present invention, since the two bent portions 8a and 8b are provided in the direction from the prime mover 7 to the heater 4 at positions 30 to 35% and 80 to 85% of the total length of the loop tube 3. As a result, the energy conversion efficiency is improved and the oscillation start temperature is lowered as compared with the conventional case. Conventionally, for example, if the cooler 36 is at room temperature in the motor 37, the heater 34 having a temperature considerably higher than the room temperature is required. A heater 4 with a low temperature can be used.

また、本発明によれば、エネルギ変換効率が向上するので、従来より大きな音響強度が得られる。   In addition, according to the present invention, the energy conversion efficiency is improved, so that a greater acoustic intensity can be obtained than before.

また、本発明によれば、エネルギ変換効率が向上するので、従来より少ない投入エネルギ量で発振が可能となる。   In addition, according to the present invention, since the energy conversion efficiency is improved, it is possible to oscillate with a smaller amount of input energy than before.

また、本発明によれば、少ない投入エネルギ量で発振が可能になるため、小型化が可能となる。小型化により、熱音響機関1の体積を従来より小さくすることができる。   In addition, according to the present invention, it is possible to oscillate with a small amount of input energy, and thus it is possible to reduce the size. By miniaturization, the volume of the thermoacoustic engine 1 can be made smaller than before.

また、本発明によれば、エネルギ変換効率が向上するので、ループ管3に受動機として冷凍機、冷却機を組み込んで冷凍装置、冷却装置を構成した場合、従来と比較して、冷凍・冷却性能を飛躍的に向上させることができる。   Further, according to the present invention, the energy conversion efficiency is improved. Therefore, when a refrigeration unit and a cooling unit are incorporated in the loop pipe 3 as a passive unit to form a refrigeration unit and a cooling unit, refrigeration / cooling is performed as compared with the conventional case. Performance can be improved dramatically.

また、本発明によれば、エネルギ変換効率が向上するので、ループ管3に受動機として発電機を組み込んで発電する場合、従来と比較して、発電量を飛躍的に向上させることができる。   In addition, according to the present invention, the energy conversion efficiency is improved. Therefore, when a power generator is incorporated in the loop pipe 3 as a passive machine to generate power, the power generation amount can be dramatically improved as compared with the conventional case.

1 熱音響機関
2 円筒管
3 ループ管
4 加熱器
5 再生器
6 冷却器
7 原動機
8a,8b 曲げ部
9a,9b 直線部
DESCRIPTION OF SYMBOLS 1 Thermoacoustic engine 2 Cylindrical tube 3 Loop tube 4 Heater 5 Regenerator 6 Cooler 7 Motor | generator 8a, 8b Bending part 9a, 9b Straight part

Claims (2)

円筒管をループ状に閉じてなるループ管に、加熱器と再生器と冷却器とが順に並べられた原動機が設置された熱音響機関において、
前記円筒管の曲げ部が前記ループ管に2箇所のみ形成され、それぞれの曲げ部における曲げ角度が180°であることを特徴とする熱音響機関。
In a thermoacoustic engine in which a prime mover in which a heater, a regenerator, and a cooler are arranged in order is installed in a loop tube formed by closing a cylindrical tube in a loop shape,
The thermoacoustic engine, wherein the bent portion of the cylindrical tube is formed in only two places on the loop tube, and the bending angle at each bent portion is 180 °.
前記2箇所の曲げ部が前記原動機から前記加熱器の方向に前記ループ管の全長の30〜35%の位置と80〜85%の位置に設けられたことを特徴とする請求項1記載の熱音響機関。   2. The heat according to claim 1, wherein the two bent portions are provided in positions of 30 to 35% and 80 to 85% of the total length of the loop pipe in the direction from the motor to the heater. Acoustic engine.
JP2010013416A 2010-01-25 2010-01-25 Thermoacoustic engine Expired - Fee Related JP5532959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010013416A JP5532959B2 (en) 2010-01-25 2010-01-25 Thermoacoustic engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010013416A JP5532959B2 (en) 2010-01-25 2010-01-25 Thermoacoustic engine

Publications (2)

Publication Number Publication Date
JP2011149670A true JP2011149670A (en) 2011-08-04
JP5532959B2 JP5532959B2 (en) 2014-06-25

Family

ID=44536814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010013416A Expired - Fee Related JP5532959B2 (en) 2010-01-25 2010-01-25 Thermoacoustic engine

Country Status (1)

Country Link
JP (1) JP5532959B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183844A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Thermoacoustic engine
CN110168291A (en) * 2016-10-18 2019-08-23 株式会社捷太格特 Thermoacoustic devices

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088378A (en) * 1998-07-17 2000-03-31 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Loop tube air pipe acoustic wave refrigerator
US20020166325A1 (en) * 2001-04-20 2002-11-14 Corey John A. Mechanical resonator and method for thermoacoustic systems
WO2005093339A1 (en) * 2004-03-26 2005-10-06 The Doshisha Acoustic heater and acoustic heating system
JP2006052909A (en) * 2004-08-13 2006-02-23 Doshisha Thermoacoustic device
JP2006118728A (en) * 2004-10-19 2006-05-11 Daikin Ind Ltd Thermoacoustic refrigeration machine
JP2006145176A (en) * 2004-11-24 2006-06-08 Aisan Ind Co Ltd Thermoacoustic engine
CN1955460A (en) * 2006-09-27 2007-05-02 浙江大学 Multi-way sound power output method of thermoacoustic engine
CN101275793A (en) * 2007-03-27 2008-10-01 中国科学院理化技术研究所 Heat voice magnetic refrigeration low temperature system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088378A (en) * 1998-07-17 2000-03-31 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Loop tube air pipe acoustic wave refrigerator
US20020166325A1 (en) * 2001-04-20 2002-11-14 Corey John A. Mechanical resonator and method for thermoacoustic systems
WO2005093339A1 (en) * 2004-03-26 2005-10-06 The Doshisha Acoustic heater and acoustic heating system
JP2006052909A (en) * 2004-08-13 2006-02-23 Doshisha Thermoacoustic device
JP2006118728A (en) * 2004-10-19 2006-05-11 Daikin Ind Ltd Thermoacoustic refrigeration machine
JP2006145176A (en) * 2004-11-24 2006-06-08 Aisan Ind Co Ltd Thermoacoustic engine
CN1955460A (en) * 2006-09-27 2007-05-02 浙江大学 Multi-way sound power output method of thermoacoustic engine
CN101275793A (en) * 2007-03-27 2008-10-01 中国科学院理化技术研究所 Heat voice magnetic refrigeration low temperature system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183844A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Thermoacoustic engine
CN110168291A (en) * 2016-10-18 2019-08-23 株式会社捷太格特 Thermoacoustic devices
CN110168291B (en) * 2016-10-18 2021-03-30 株式会社捷太格特 Thermoacoustic device

Also Published As

Publication number Publication date
JP5532959B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5423531B2 (en) Thermoacoustic engine
US6560970B1 (en) Oscillating side-branch enhancements of thermoacoustic heat exchangers
JP2007237020A (en) Thermoacoustic device
JP2012112621A (en) Thermoacoustic engine
JP5651947B2 (en) Thermoacoustic engine
CN107223196A (en) Thermoacoustic heat pump
JP6632029B2 (en) Thermoacoustic engine and thermoacoustic engine design method
JP5453950B2 (en) Thermoacoustic engine
JP5655313B2 (en) Thermoacoustic engine
JP5532959B2 (en) Thermoacoustic engine
JP6884491B2 (en) Thermoacoustic engine
JP5768688B2 (en) Thermoacoustic refrigeration equipment
JP5434680B2 (en) Thermoacoustic engine
JP2005253240A (en) Thermoacoustic power generator
JP5862250B2 (en) Thermoacoustic refrigeration equipment
JP5532938B2 (en) Thermoacoustic engine
JP5526600B2 (en) Thermoacoustic engine
JP5310287B2 (en) Thermoacoustic engine
JP2015021671A (en) Accumulator and accumulator manufacturing method
JP5446498B2 (en) Thermoacoustic engine
JP5299107B2 (en) Thermoacoustic engine
JP5768687B2 (en) Thermoacoustic refrigeration equipment
JP2007192443A (en) Pulse tube type heat storage engine
JP5799780B2 (en) Thermoacoustic refrigeration equipment
JP2010286203A (en) Thermoacoustic engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5532959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

LAPS Cancellation because of no payment of annual fees