JP2011148641A - Inorganic oxide powder which is surface-modified - Google Patents

Inorganic oxide powder which is surface-modified Download PDF

Info

Publication number
JP2011148641A
JP2011148641A JP2010008902A JP2010008902A JP2011148641A JP 2011148641 A JP2011148641 A JP 2011148641A JP 2010008902 A JP2010008902 A JP 2010008902A JP 2010008902 A JP2010008902 A JP 2010008902A JP 2011148641 A JP2011148641 A JP 2011148641A
Authority
JP
Japan
Prior art keywords
inorganic oxide
oxide powder
group
ionic liquid
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010008902A
Other languages
Japanese (ja)
Other versions
JP5730489B2 (en
Inventor
Hideaki Tashiro
英昭 田代
Akira Inoue
晃 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aerosil Co Ltd
Original Assignee
Nippon Aerosil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co Ltd filed Critical Nippon Aerosil Co Ltd
Priority to JP2010008902A priority Critical patent/JP5730489B2/en
Publication of JP2011148641A publication Critical patent/JP2011148641A/en
Application granted granted Critical
Publication of JP5730489B2 publication Critical patent/JP5730489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic oxide powder which can give sufficient and stable conductivity, when it is used as a conductivity-imparting agent of a semiconductive material or the like. <P>SOLUTION: The inorganic oxide powder which is surface-modified by performing surface treatment to an inorganic oxide powder is characterized by including an onium salt containing nitrogen on the surface, whose nitrogen content is 0.02% or more and 3% or less and immobilizing rate is 50% or more and 100% or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、合成樹脂・ゴム部材、帯電防止用フィルム、コート材等の各種半導電部材に導電性を持たせ、帯電防止効果を付与するために添加される導電性付与剤として好適な無機酸化物粉体に関する。更に詳しくは、樹脂等に添加した際に、十分に、かつ安定した導電性を付与し得る無機酸化物粉体に関するものである。   The present invention provides an inorganic oxide suitable as a conductivity-imparting agent that is added to impart conductivity to various semiconductive members such as a synthetic resin / rubber member, an antistatic film, and a coating material to impart an antistatic effect. It relates to powder. More specifically, the present invention relates to an inorganic oxide powder capable of imparting sufficient and stable conductivity when added to a resin or the like.

テレビ等の電気機器、自動車部品、光学用レンズ等の精密機器、光ディスク、有機板ガラス、看板等の様々な分野において、合成樹脂が利用されている。合成樹脂は、ガラス製品等に比べて軽量で強靱性に優れる反面、帯電しやすく、ホコリ等が付きやすいといった欠点がある。このような欠点を解消するため、組成物に導電性を有する添加剤を添加した半導電材料を用いて部材を製造することによって部材自体に導電性を付与したり、或いは部材表面に上記半導電材料を用いて得られたフィルムやコート材を設置して、帯電防止効果を付与するといった対策がなされている。   Synthetic resins are used in various fields such as electric devices such as televisions, automobile parts, precision devices such as optical lenses, optical disks, organic glass sheets, and signboards. Synthetic resins are lighter and have better toughness than glass products, but have the disadvantages of being easily charged and being susceptible to dust and the like. In order to eliminate such drawbacks, the member itself is made conductive by using a semiconductive material in which a conductive additive is added to the composition, or the semiconductive material is added to the surface of the member. Measures have been taken to provide an antistatic effect by installing a film or a coating material obtained using the material.

導電性を付与する方法については、従来から種々の検討がなされている。例えば、帯電防止剤としてアルカリ金属、アルカリ土類金属塩及びアンモニウム塩等の塩とイミダゾリン型界面活性剤とを併用した光硬化性樹脂組成物が開示されている(例えば、特許文献1参照。)。また、別の方法として、有機バインダにATO(五酸化アンチモンでドーピングした酸化錫)等の導電性を有する無機粒子を添加する方法、更にはこの無機粒子をシランカップリング剤で表面処理して添加した帯電防止ハードコート用組成物が開示されている。また、これら以外の方法としては、樹脂組成物に各種イオン性液体を添加してオニウム塩を含有させる方法も検討されている(例えば、特許文献3参照。)。   Various methods have been conventionally studied for imparting conductivity. For example, a photocurable resin composition in which an alkali metal, an alkaline earth metal salt, an ammonium salt or the like salt and an imidazoline type surfactant are used in combination as an antistatic agent is disclosed (for example, see Patent Document 1). . As another method, a method of adding inorganic particles having conductivity such as ATO (tin oxide doped with antimony pentoxide) to an organic binder, and further adding the inorganic particles by surface treatment with a silane coupling agent. An antistatic hardcoat composition is disclosed. Further, as a method other than these, a method in which various ionic liquids are added to a resin composition to contain an onium salt has been studied (for example, see Patent Document 3).

特開平05−339306号公報(請求項 、段落[0018]、段落[0019])JP 05-339306 A (Claims, paragraph [0018], paragraph [0019]) 特開2004−107529号公報(請求項1、段落[0015])JP 2004-107529 A (Claim 1, paragraph [0015]) 特開2006−193704号公報(請求項1)JP 2006-193704 A (Claim 1)

しかしながら、上記特許文献1のように帯電防止剤としてイオン導電剤を添加する場合、温度や湿度等、周囲の環境変化による電気抵抗率の変動が大きく、耐環境性が低いことや、ゴム又は樹脂等の他の材料との相性によってはイオン導電剤のブリードが生じ、長期的に安定した電気抵抗率が得られないという問題が生じる。また、上記無機粒子を添加する方法では、バインダ等の有機材料と無機粒子との親和性が悪く、分散性が悪化するため、面内抵抗値にバラツキが生じやすい。上記特許文献2のように、無機粒子をシランカップリング剤で表面処理することによって分散性は向上するものの、無機粒子に重金属を使用しているため、環境面における問題点は改善されない。更に、上記特許文献3のようなイオン性液体を添加した場合でも、上記特許文献1のようにブリードが生じてしまい、上記問題点は解決されていない。   However, when an ionic conductive agent is added as an antistatic agent as in Patent Document 1, the electrical resistance varies greatly due to changes in the surrounding environment such as temperature and humidity, and the environmental resistance is low. Depending on the compatibility with other materials such as the above, bleeding of the ionic conductive agent occurs, and there is a problem that a stable electrical resistivity cannot be obtained in the long term. Further, in the method of adding the inorganic particles, the affinity between the organic material such as the binder and the inorganic particles is poor and the dispersibility is deteriorated, so that the in-plane resistance value is likely to vary. Although the dispersibility is improved by surface-treating inorganic particles with a silane coupling agent as in Patent Document 2, environmental problems are not improved because heavy metals are used for the inorganic particles. Furthermore, even when an ionic liquid as in Patent Document 3 is added, bleeding occurs as in Patent Document 1, and the above problems are not solved.

そこで本発明者らは、鋭意研究を重ねた結果、イオン性液体で表面処理した無機酸化物粉体であって、粉体表面にイオン性液体によるオニウム塩が高い固定化率で固定された無機酸化物粉体を半導電材料の導電性付与剤として添加した場合、イオン性液体のブリードを生じさせることなく、しかもイオン性液体によるオニウム塩が、導電性を付与し、安定した電気抵抗率が得られることを知見し、本発明に至った。   Therefore, as a result of earnest research, the present inventors have obtained an inorganic oxide powder surface-treated with an ionic liquid, and an inorganic onium salt fixed with a high immobilization rate on the powder surface. When the oxide powder is added as a conductivity-imparting agent for the semiconductive material, the onium salt by the ionic liquid does not cause bleeding of the ionic liquid, and imparts conductivity, and has a stable electrical resistivity. It was found that it was obtained, and the present invention was achieved.

本発明の目的は、半導電材料等の導電性付与剤として用いた際に、十分、かつ安定した導電性を付与し得る無機酸化物粉体を提供することにある。   An object of the present invention is to provide an inorganic oxide powder capable of imparting sufficient and stable conductivity when used as a conductivity imparting agent such as a semiconductive material.

本発明の第1の観点は、無機酸化物粉体に表面処理を施すことにより表面改質された無機酸化物粉体において、表面に窒素を含有するオニウム塩を有し、窒素含有量が0.02%以上3%以下であり、かつオニウム塩の固定化率が50%以上100%以下であることを特徴とする。   A first aspect of the present invention is an inorganic oxide powder that has been surface-modified by subjecting the inorganic oxide powder to surface treatment, and has an onium salt containing nitrogen on the surface, and the nitrogen content is 0 0.02% or more and 3% or less, and the immobilization rate of the onium salt is 50% or more and 100% or less.

本発明の第2の観点は、第1の観点に基づく発明であって、更に表面処理がイオン性液体を用いた表面処理又はイオン性液体と表面改質剤とを併用した表面処理であり、イオン性液体を構成するカチオンが、次の式(1)で示される反応基を有する第4級アンモニウムカチオンであることを特徴とする。   The second aspect of the present invention is an invention based on the first aspect, wherein the surface treatment is a surface treatment using an ionic liquid or a surface treatment using a combination of an ionic liquid and a surface modifier, The cation constituting the ionic liquid is a quaternary ammonium cation having a reactive group represented by the following formula (1).

Figure 2011148641
但し、式(1)中、Xは1〜3の整数であり、R1は炭素数1〜3のアルキル基、アセチル基又はオキシム基であり、R2は炭素数1〜6のアルキル基、フェニル基又はトリフルオロプロピル基である。
Figure 2011148641
In the formula (1), X is an integer of 1 to 3, R 1 is an alkyl group, an acetyl group or an oxime group having 1 to 3 carbon atoms, R 2 is an alkyl group having 1 to 6 carbon atoms, A phenyl group or a trifluoropropyl group.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、更に無機酸化物粉体がシリカ、チタニア及びアルミナからなる群より選ばれた1種の無機酸化物粉体又は2種以上の複合無機酸化物粉体であるであることを特徴とする。   A third aspect of the present invention is an invention based on the first or second aspect, wherein the inorganic oxide powder is one inorganic oxide powder selected from the group consisting of silica, titania and alumina. Or it is the composite inorganic oxide powder of 2 or more types, It is characterized by the above-mentioned.

本発明の第4の観点は、第2又は第3の観点に基づく発明であって、更にイオン性液体を構成するアニオンがフッ化アルキルスルホニル基を含有することを特徴とする。   A fourth aspect of the present invention is an invention based on the second or third aspect, wherein the anion constituting the ionic liquid further contains an alkylsulfonyl fluoride group.

本発明の第1の観点の無機酸化物粉体は、無機酸化物粉体に表面処理を施すことにより表面改質された無機酸化物粉体であり、表面に窒素を含有するオニウム塩を有し、窒素含有量が0.02%以上3%以下であり、かつオニウム塩の固定化率が50%以上100%以下である。このように、表面に窒素を含有するオニウム塩を有するため、この無機酸化物粉体を半導電材料等の導電性付与剤として使用した場合、優れた帯電防止効果を発現させ得る。また、無機酸化物粉体に存在するオニウム塩の固定化率が非常に高く、耐水性、耐溶剤性及び耐久性に優れるため、長期的に安定した電気抵抗率が得られる。更に窒素含有量が上記範囲であるため、帯電防止効果に有用であるとされる106〜109Ωcmという低い電気抵抗率が得られる。 The inorganic oxide powder according to the first aspect of the present invention is an inorganic oxide powder that has been surface-modified by subjecting the inorganic oxide powder to surface treatment, and has an onium salt containing nitrogen on the surface. The nitrogen content is 0.02% or more and 3% or less, and the immobilization rate of the onium salt is 50% or more and 100% or less. Thus, since it has onium salt containing nitrogen on the surface, when this inorganic oxide powder is used as a conductivity imparting agent such as a semiconductive material, an excellent antistatic effect can be exhibited. Moreover, since the immobilization rate of the onium salt present in the inorganic oxide powder is very high and excellent in water resistance, solvent resistance and durability, a stable electrical resistivity can be obtained for a long period of time. Furthermore, since the nitrogen content is in the above range, a low electrical resistivity of 10 6 to 10 9 Ωcm, which is considered useful for the antistatic effect, can be obtained.

無機酸化物粉体の表面とイオン性液体との反応機構を説明する図である。It is a figure explaining the reaction mechanism of the surface of inorganic oxide powder, and an ionic liquid.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

本発明の無機酸化物粉体は、表面処理を施すことにより表面改質された無機酸化物粉体であり、図1に示すように、表面に窒素を含有するオニウム塩を有する。表面に窒素を含有するオニウム塩を有する無機酸化物粉体は、これをゴム部材、合成樹脂部材、帯電防止用フィルム、コート剤等の用途に用いた場合、良好な導電性を付与できることから、優れた帯電防止効果を発現させる。無機酸化物粉体表面に有するオニウム塩は、後述の表面処理に用いるイオン性液体に起因するものであり、無機酸化物粉体とオニウム塩とは、無機酸化物粉体表面の水酸基とイオン性液体を構成するカチオンの反応基との加水分解反応により、強固な共有結合によって結合されている。   The inorganic oxide powder of the present invention is an inorganic oxide powder that has been surface-modified by surface treatment, and has an onium salt containing nitrogen on the surface as shown in FIG. Since the inorganic oxide powder having an onium salt containing nitrogen on the surface can be used for applications such as a rubber member, a synthetic resin member, an antistatic film, a coating agent, etc., it can impart good conductivity. It exhibits an excellent antistatic effect. The onium salt on the surface of the inorganic oxide powder is caused by the ionic liquid used for the surface treatment described later. The inorganic oxide powder and the onium salt are the hydroxyl group and ionicity on the surface of the inorganic oxide powder. It is bonded by a strong covalent bond by a hydrolysis reaction with a reactive group of a cation constituting the liquid.

従来の、イオン性液体を用いた表面処理により表面改質された無機酸化物粉体では、無機酸化物粉体の表面に、単にイオン性液体によるオニウム塩が、物理的に被覆された状態で存在しているため、溶剤等に添加した際に容易に粉体表面からオニウム塩が分離してしまう。このため、この無機酸化物粉体を、例えば半導電材料等の導電性付与剤としての用途に用いた場合、粉体表面からオニウム塩が分離することにより、ブリードが生じる。そのため、長期的に安定した電気抵抗率が得られないという不具合が生じる。   In the conventional inorganic oxide powder that has been surface-modified by surface treatment using an ionic liquid, the surface of the inorganic oxide powder is simply coated with an onium salt by an ionic liquid. Therefore, the onium salt is easily separated from the powder surface when added to a solvent or the like. For this reason, when this inorganic oxide powder is used, for example, as a conductivity imparting agent such as a semiconductive material, bleeding occurs due to separation of the onium salt from the powder surface. Therefore, the malfunction that the electrical resistivity stable for a long term cannot be obtained arises.

一方、本発明の無機酸化物粉体は、上述のように強固な共有結合によって無機酸化物粉体表面にイオン性液体によるオニウム塩が結合しており、非常に高い耐水性、耐溶剤性及び耐久性を示す。このため、溶剤等に添加した場合でもオニウム塩は容易に分離せずに粉体表面に存在しているため、半導電材料等の導電性付与剤としての用途に用いた場合、安定した電気抵抗率が得られる。例えば、合成樹脂やゴム等に添加した場合、十分に導電性を付与し、ホコリ等の付着を防止することができる。   On the other hand, the inorganic oxide powder of the present invention has an extremely high water resistance, solvent resistance, and an onium salt bonded to the surface of the inorganic oxide powder by a strong covalent bond as described above. Shows durability. For this reason, even when added to a solvent or the like, the onium salt is not easily separated and exists on the surface of the powder. Therefore, when it is used as a conductivity imparting agent such as a semiconductive material, it has a stable electric resistance. Rate is obtained. For example, when added to a synthetic resin, rubber, or the like, sufficient conductivity can be imparted and adhesion of dust or the like can be prevented.

本発明の無機酸化物粉体の耐水性、耐溶剤性及び耐久性については、オニウム塩の固定化率によって示される。固定化率は無機酸化物粉体とオニウム塩の結合の度合いをいい、例えば表面処理した無機酸化物粉体を所定の条件で抽出溶剤で処理したとき、抽出処理前の粉体表面に存在するオニウム塩に対する処理後の粉体表面に存在するオニウム塩の割合によって表すことができる。即ち、固定化率が高いほど、無機酸化物粉体表面にオニウム塩がより強固に結合していることを意味する。オニウム塩は、上述のように、無機酸化物粉体の表面処理に用いた窒素を含有するイオン性液体に起因するものであるため、粉体表面における窒素量でもってオニウム塩の固定化率を判断することができる。本明細書において、オニウム塩の固定化率とは、ソックスレー抽出装置(BUCHI社製)により、所定の条件で抽出処理した後、この粉体に残存する窒素量の、抽出前の窒素量に対する割合をいう。   The water resistance, solvent resistance and durability of the inorganic oxide powder of the present invention are indicated by the onium salt immobilization rate. Immobilization rate refers to the degree of bonding between inorganic oxide powder and onium salt. For example, when surface-treated inorganic oxide powder is treated with an extraction solvent under specified conditions, it exists on the powder surface before extraction treatment. It can represent with the ratio of the onium salt which exists in the powder surface after a process with respect to onium salt. That is, the higher the immobilization rate, the stronger the onium salt is bonded to the surface of the inorganic oxide powder. Since the onium salt is derived from the ionic liquid containing nitrogen used for the surface treatment of the inorganic oxide powder as described above, the onium salt immobilization rate is determined by the amount of nitrogen on the powder surface. Judgment can be made. In this specification, the rate of onium salt immobilization is the ratio of the amount of nitrogen remaining in this powder to the amount of nitrogen before extraction after extraction under a predetermined condition by a Soxhlet extraction apparatus (manufactured by BUCHI). Say.

本発明の無機酸化物粉体は、オニウム塩の固定化率が50%以上100%以下、好ましくは60%以上100%以下と非常に高い値を示すものである。固定化率が50%未満では、これを半導電材料等の導電性付与剤として用いた場合、安定した電気抵抗率が得られない。一方、上限値を越えるものを実際に得るのは困難である。また、本発明の無機酸化物粉体は、窒素含有量が0.02%以上3.0%以下である。窒素含有量とは、この無機酸化物粉体に残存する窒素量の、無機酸化物粉体に対する割合をいう。窒素含有量が高い無機酸化物粉体ほど、導電性を付与する効果が高いことを意味する。窒素含有量が0.02%未満では、電気抵抗率が高くなり、十分に導電性を付与することができず、優れた帯電防止効果を発現させることができない。一方、上限値を越えると、固定化率が低下する。即ち、過剰なオニウム塩がブリードしてしまうことにより電気抵抗率が変動したり、また、部材等を汚染するといった不具合が生じる。このうち、窒素含有量は、0.05%以上2.0%以下であることが好ましい。   The inorganic oxide powder of the present invention exhibits a very high value of onium salt immobilization rate of 50% to 100%, preferably 60% to 100%. When the immobilization rate is less than 50%, when this is used as a conductivity-imparting agent such as a semiconductive material, a stable electrical resistivity cannot be obtained. On the other hand, it is difficult to actually obtain a product that exceeds the upper limit. The inorganic oxide powder of the present invention has a nitrogen content of 0.02% to 3.0%. The nitrogen content refers to the ratio of the amount of nitrogen remaining in the inorganic oxide powder to the inorganic oxide powder. An inorganic oxide powder having a higher nitrogen content means that the effect of imparting conductivity is higher. When the nitrogen content is less than 0.02%, the electrical resistivity is high, the conductivity cannot be sufficiently imparted, and the excellent antistatic effect cannot be exhibited. On the other hand, when the upper limit is exceeded, the immobilization rate decreases. That is, when the excess onium salt bleeds, the electrical resistivity fluctuates and the member or the like is contaminated. Of these, the nitrogen content is preferably 0.05% or more and 2.0% or less.

本発明の表面改質された無機酸化物粉体の母体となる無機酸化物粉体は、シリカ、チタニア及びアルミナからなる群より選ばれた1種の無機酸化物粉体又は2種以上の複合無機酸化物粉体であることが好ましい。シリカ粉は、ハロゲン化ケイ素化合物等の揮発性ケイ素化合物を火炎加水分解して得た、いわゆる乾式法シリカや、珪酸ソーダ水溶液の酸又はアルカリ金属塩による中和により得た、いわゆる湿式シリカが好ましい。また、チタニア粉は、揮発性のチタン化合物を揮発させてガス状態とし、これを可燃性又は不燃性ガスの存在下で高温分解して得られたものが好ましい。また、アルミナ粉は、熱分解法によって得られたものが好ましい。一方、複合無機酸化物粉体は、例えば、次のような方法で得られたシリカとチタニアの複合無機酸化物粉体を好適に用いることができる。先ず、四塩化ケイ素ガスと四塩化チタンガスとを不活性ガスと共に燃焼バーナの混合室に導入して水素及び空気と混合し、所定の比率の混合ガスとする。そして、この混合ガスを反応室で1000〜3000℃の温度で焼成して、シリカとチタニアの複合無機酸化物微粒子を生成させる。最後に、生成した微粒子を冷却してフィルタにて捕集することにより、シリカとチタニアの複合無機酸化物粉体が得られる。また、これらの無機酸化物粉体又は複合無機酸化物粉体に、リチウム、ナトリウム又はカリウム等のアルカリ金属酸化物や、マグネシウム又はカルシウム等のアルカリ土類金属を5質量%の割合で添加混合させた混合粉末を用いてもよい。   The inorganic oxide powder that is the base of the surface-modified inorganic oxide powder of the present invention is one inorganic oxide powder selected from the group consisting of silica, titania and alumina, or a composite of two or more. Inorganic oxide powder is preferred. The silica powder is preferably a so-called dry silica obtained by flame hydrolysis of a volatile silicon compound such as a silicon halide compound, or a so-called wet silica obtained by neutralization with an acid or alkali metal salt of a sodium silicate aqueous solution. . The titania powder is preferably obtained by volatilizing a volatile titanium compound into a gas state and subjecting it to high temperature decomposition in the presence of a flammable or nonflammable gas. The alumina powder is preferably obtained by a thermal decomposition method. On the other hand, as the composite inorganic oxide powder, for example, a composite inorganic oxide powder of silica and titania obtained by the following method can be suitably used. First, silicon tetrachloride gas and titanium tetrachloride gas are introduced together with an inert gas into the mixing chamber of the combustion burner and mixed with hydrogen and air to obtain a mixed gas of a predetermined ratio. And this mixed gas is baked at the temperature of 1000-3000 degreeC in a reaction chamber, and the composite inorganic oxide microparticles | fine-particles of a silica and a titania are produced | generated. Finally, the produced fine particles are cooled and collected by a filter, whereby a composite inorganic oxide powder of silica and titania is obtained. In addition, an alkali metal oxide such as lithium, sodium or potassium, or an alkaline earth metal such as magnesium or calcium is added to and mixed with these inorganic oxide powder or composite inorganic oxide powder at a ratio of 5% by mass. A mixed powder may be used.

これら母体となる無機酸化物粉体の1次平均粒径は、7〜100nmであることが好ましく、BET比表面積が30〜400m2/gであるものが好ましい。BET比表面積が下限値未満のものでは、平均粒径が大きくなりすぎるため、乾式法による製造が困難である。一方、上限値を越えるものは、平均粒径が小さく、現状では工業製品として存在しない。なお、本明細書において1次平均粒径とは、TEM(透過型電子顕微鏡)によって撮影された写真から、任意に選択した微粒子100個についてその粒径を測定し、これらを平均した値である。また、BET比表面積とは、BET法により測定された値である。 The primary average particle diameter of these inorganic oxide powders as a base is preferably 7 to 100 nm, and preferably has a BET specific surface area of 30 to 400 m 2 / g. When the BET specific surface area is less than the lower limit, the average particle size becomes too large, and thus it is difficult to produce by a dry method. On the other hand, those exceeding the upper limit have a small average particle size and are not present as industrial products at present. In the present specification, the primary average particle diameter is a value obtained by measuring the particle diameters of 100 arbitrarily selected fine particles from a photograph taken with a TEM (transmission electron microscope) and averaging these. . The BET specific surface area is a value measured by the BET method.

上記無機酸化物粉体又は複合無機酸化物粉体の表面処理は、イオン性液体を用いて施されるが、一般にイオン性液体は、次の式(2)で示されるカチオン(Q+)及びアニオン(A-)からなる常温で液体の溶融塩である。 The surface treatment of the inorganic oxide powder or the composite inorganic oxide powder is performed using an ionic liquid. Generally, the ionic liquid is a cation (Q + ) represented by the following formula (2) and It is a molten salt that is an anion (A ) and is liquid at room temperature.

+- (2)
カチオンとしては、次の式(3)〜(5)に示す第4級アンモニウムカチオンが挙げられる。
Q + A - (2)
Examples of the cation include quaternary ammonium cations represented by the following formulas (3) to (5).

Figure 2011148641
但し、式(3)中、R3〜R6はそれぞれ互いに同じであっても異なっていてもよく、置換されていてもよいアルキル基を示す。
Figure 2011148641
However, in formula (3), R 3 to R 6 may be the same as or different from each other, and each represents an optionally substituted alkyl group.

Figure 2011148641
但し、式(4)中、Q1は置換されていてもよい含窒素脂肪族環基を示す。R3及びR4は上
記に同じ。
Figure 2011148641
However, in Formula (4), Q < 1 > shows the nitrogen-containing aliphatic cyclic group which may be substituted. R 3 and R 4 are the same as above.

上記式(4)において、置換されていてもよい含窒素脂肪族環基としては、例えばピロリジル基、2−メチルピロリジル基、3−メチルピロリジル基、2−エチルピロリジル基、3−エチルピロリジル基、2,2−ジメチルピロリジル基、2,3−ジメチルピロリジル基、ピペリジル基、2−メチルピペリジル基、3−メチルピペリジル基、4−メチルピペリジル基、2,6−ジメチルピペリジル基、2,2,6,6−テトラメチルピペリジル基、モルホリノ基、2−メチルモルホリノ基、3−メチルモルホリノ基等が挙げられる。   In the above formula (4), examples of the optionally substituted nitrogen-containing aliphatic cyclic group include pyrrolidyl group, 2-methylpyrrolidyl group, 3-methylpyrrolidyl group, 2-ethylpyrrolidyl group, 3-ethyl Pyrrolidyl group, 2,2-dimethylpyrrolidyl group, 2,3-dimethylpyrrolidyl group, piperidyl group, 2-methylpiperidyl group, 3-methylpiperidyl group, 4-methylpiperidyl group, 2,6-dimethylpiperidyl group 2,2,6,6-tetramethylpiperidyl group, morpholino group, 2-methylmorpholino group, 3-methylmorpholino group and the like.

Figure 2011148641
但し、式(5)中、Q2は置換されていてもよい含窒素ヘテロ芳香族環基を示す。R3は上記に同じ。
Figure 2011148641
However, in formula (5), Q 2 represents an optionally substituted nitrogen-containing heteroaromatic ring group. R 3 is the same as above.

上記式(5)において、置換されていてもよい含窒素ヘテロ芳香族基としては、例えばピリジル基、2−メチルピリジル基、3−メチルピリジル基、4−メチルピリジル基、2,6−ジメチルピリジル基、2−メチル−6−エチルピリジル基、1−メチルイミダゾリル基、1,2−ジメチルイミダゾリル基、1−エチルイミダゾリル基、1−プロピルイミダゾリル基、1−ブチルイミダゾリル基、1−ペンチルイミダゾリル基、1−へキシルイミダゾリル基等が挙げられる。   In the above formula (5), examples of the optionally substituted nitrogen-containing heteroaromatic group include pyridyl group, 2-methylpyridyl group, 3-methylpyridyl group, 4-methylpyridyl group, and 2,6-dimethylpyridyl group. Group, 2-methyl-6-ethylpyridyl group, 1-methylimidazolyl group, 1,2-dimethylimidazolyl group, 1-ethylimidazolyl group, 1-propylimidazolyl group, 1-butylimidazolyl group, 1-pentylimidazolyl group, Examples include 1-hexylimidazolyl group.

本発明において、表面処理に用いる上記式(1)で示されるイオン性液体は、該イオン性液体を構成するカチオンが、上記式(3)〜式(5)に示す第4級アンモニウムカチオンであって、次の式(1)で示される反応基を有するものであることが好ましい。   In the present invention, the ionic liquid represented by the above formula (1) used for the surface treatment is such that the cation constituting the ionic liquid is a quaternary ammonium cation represented by the above formulas (3) to (5). Thus, it is preferable to have a reactive group represented by the following formula (1).

Figure 2011148641
但し、式(1)中、Xは1〜3の整数であり、R1は炭素数1〜3のアルキル基、アセチル基又はオキシム基であり、R2は炭素数1〜6のアルキル基、フェニル基又はトリフルオロプロピル基である。
Figure 2011148641
In the formula (1), X is an integer of 1 to 3, R 1 is an alkyl group, an acetyl group or an oxime group having 1 to 3 carbon atoms, R 2 is an alkyl group having 1 to 6 carbon atoms, A phenyl group or a trifluoropropyl group.

カチオンが、上記式(1)で示される反応基を有することにより、図1に示すように、無機酸化物粉体表面の水酸基とこの反応基との加水分解反応によって強固な共有結合で結合される。これにより、表面処理後の表面改質された無機酸化物粉体は、上述のような非常に高い固定化率でもってオニウム塩がその表面に存在し、優れた耐水性、耐溶剤性及び耐久性を発現させることができる。具体的には、トリメトキシシリル基、メチルジメトキシシリル基、トリエトキシシリル基、メチルジエトキシ基、トリアセトキシ基、メチルジアセトキシ基、トリオキシムシリル基又はメチルジオキシムシリル基等が挙げられる。   Since the cation has a reactive group represented by the above formula (1), as shown in FIG. 1, it is bonded with a strong covalent bond by a hydrolysis reaction between the hydroxyl group on the surface of the inorganic oxide powder and this reactive group. The As a result, the surface-modified inorganic oxide powder after the surface treatment has an onium salt on its surface with a very high fixation rate as described above, and has excellent water resistance, solvent resistance and durability. Sex can be expressed. Specific examples include a trimethoxysilyl group, a methyldimethoxysilyl group, a triethoxysilyl group, a methyldiethoxy group, a triacetoxy group, a methyldiacetoxy group, a trioximesilyl group, or a methyldioximesilyl group.

上記式(1)で示される反応基は、上記式(3)〜式(5)で示される第4級アンモニウムカチオンにおけるR3〜R6で示される置換されていてもよいアルキル基のいずれかに、該アルキル基の置換基として少なくとも1つ含まれていればよい。即ち、上記式(3)〜式(5)で示される第4級アンモニウムカチオンにおいて、R3〜R6で示される置換されていてもよいアルキル基であって、上記式(1)の反応基によって置換されているものの具体例としては、トリメトキシシリルプロピル基等が挙げられる。 The reactive group represented by the above formula (1) is any of optionally substituted alkyl groups represented by R 3 to R 6 in the quaternary ammonium cation represented by the above formula (3) to formula (5). May contain at least one substituent of the alkyl group. That is, in the quaternary ammonium cation represented by the above formulas (3) to (5), it is an optionally substituted alkyl group represented by R 3 to R 6, which is a reactive group represented by the above formula (1). Specific examples of those substituted with are trimethoxysilylpropyl group and the like.

上記式(1)の反応基を含まない他のR3〜R6で示される置換さていてもよいアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、デシル基、ドデシル基、オクタデシル基、シクロペンチル基、シクロヘキシル基等の炭素数1〜18の直鎖状、分岐鎖状又は環状の無置換アルキル基、或いはかかる無置換アルキル基を構成する一つ又は二つ以上水素原子が、例えばフェニル基等のアリール基、例えばジメチルアミノ基等の二置換アミノ基、ニトロ基、シアノ基、カルボキシル基、例えばホルミル基、アセチル基等のアシル基、例えばメトキシ基、エトキシ基、2−メトキシエトキシ基等のアルコキシ基、例えばビニル基等のアルケニル基、水酸基等の置換基で置換された、例えば1−メトキシエチル基、2−(ジメチルアミノ)メチル基、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、2−メトキシエチル基、2−(2−メトキシエトキシ)エチル基、アリル基等が挙げられる。 Examples of other optionally substituted alkyl groups represented by R 3 to R 6 not containing the reactive group of the above formula (1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group. , Sec-butyl group, tert-butyl group, pentyl group, pentyl group, neopentyl group, hexyl group, isohexyl group, decyl group, dodecyl group, octadecyl group, cyclopentyl group, cyclohexyl group, etc. -Like, branched or cyclic unsubstituted alkyl group, or one or two or more hydrogen atoms constituting the unsubstituted alkyl group is an aryl group such as a phenyl group, for example, a disubstituted amino group such as a dimethylamino group , A nitro group, a cyano group, a carboxyl group, such as an acyl group such as a formyl group, an acetyl group, such as a methoxy group, an ethoxy group, An alkoxy group such as a xoxyethoxy group, for example, a 1-methoxyethyl group, a 2- (dimethylamino) methyl group, a benzyl group, a 1-phenylethyl group, substituted with an alkenyl group such as a vinyl group, or a substituent such as a hydroxyl group, Examples include 2-phenylethyl group, 2-methoxyethyl group, 2- (2-methoxyethoxy) ethyl group, allyl group and the like.

本発明において、表面処理に用いられるイオン性液体を構成する上記第4級アンモニウムカチオンの具体例としては、例えば、1−(トリメトキシシリルプロピル)ピリジニウム、N−メチル−N−(トリメトキシシリルプロピル)ピペリジニウム又は1−メチル−3−(トリメトキシシリルプロピル)イミダゾリウム等が挙げられる。イオン性液体を構成するアニオンとしては、例えば、ビス(トリフルオロメタンスルホニル)イミデートイオン[N(SO2CF32 -]、ビス(ペンタフルオロエタンスルホニル)イミデートイオン[N(SO2252 -]、トリフルオロメタンスルホン酸イオン又はトリス(トリフルオロメチルスルホニル)炭酸イオン等が挙げられる。 In the present invention, specific examples of the quaternary ammonium cation constituting the ionic liquid used for the surface treatment include, for example, 1- (trimethoxysilylpropyl) pyridinium, N-methyl-N- (trimethoxysilylpropyl) ) Piperidinium or 1-methyl-3- (trimethoxysilylpropyl) imidazolium. Examples of the anion constituting the ionic liquid include bis (trifluoromethanesulfonyl) imidate ion [N (SO 2 CF 3 ) 2 ], bis (pentafluoroethanesulfonyl) imidate ion [N (SO 2 C 2). F 5 ) 2 ], trifluoromethanesulfonate ion or tris (trifluoromethylsulfonyl) carbonate ion.

本発明において、上記カチオン及びアニオンから選択されるイオン性液体のうち、1−(トリメトキシシリルプロピル)ピリジニウム=ビス(トリフルオロメタンスルホニル)イミド、N−メチル−N−(トリメトキシシリルプロピル)ピペリジニウム=ビス(トリフルオロメタンスルホニル)イミド又は1−メチル−3−(トリメトキシシリルプロピル)イミダゾリウム=ビス(トリフルオロメタンスルホニル)イミドが特に好ましい。   In the present invention, among ionic liquids selected from the above cations and anions, 1- (trimethoxysilylpropyl) pyridinium bis (trifluoromethanesulfonyl) imide, N-methyl-N- (trimethoxysilylpropyl) piperidinium = Bis (trifluoromethanesulfonyl) imide or 1-methyl-3- (trimethoxysilylpropyl) imidazolium = bis (trifluoromethanesulfonyl) imide is particularly preferred.

表面処理に際し、上記イオン性液体は、これをヘキサン、トルエン、アルコール(メタノール、エタノール、プロパノール等の炭素数1〜8の脂肪族アルコール)又はアセトン等の有機溶媒、場合によっては水等で希釈し、有機溶媒又は水中のイオン性液体の濃度を所定の濃度に調整してから表面処理に用いれば、均一な表面処理ができるため好ましい。   In the surface treatment, the ionic liquid is diluted with an organic solvent such as hexane, toluene, alcohol (C1-C8 aliphatic alcohol such as methanol, ethanol or propanol) or acetone, or water in some cases. It is preferable to use the surface treatment after adjusting the concentration of the ionic liquid in the organic solvent or water to a predetermined concentration, because a uniform surface treatment can be performed.

また、表面処理は、上記イオン性液体と表面改質剤とを併用した表面処理であってもよい。イオン性液体との併用が可能な表面改質剤としては、例えば、ヘキサメチルジシラザンのようなアルキルシラザン系化合物、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、メチルトリメトキシシラン、ブチルトリメトキシシランのようなアルキルアルコキシシラン系化合物、ジメチルジクロロシラン、トリメチルクロロシランのようなクロロシラン系化合物又はシリコーンオイル系化合物等が挙げられ、これらを単独で用いてもよいし、或いは目的に応じて2種以上を混合して用いてもよい。上記シリコーンオイル系化合物としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイルといったストレートシリコーンオイルや、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、カルビノール変性シリコーンオイル、メタクリル変性シリコーンオイル、メルカプト変性シリコーンオイル、フェノール変性シリコーンオイル、片末端反応性変性シリコーンオイル、両末端反応性変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、アルキル変性シリコーンオイル、高級脂肪酸エステル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸含有変性シリコーンオイル、フッ素変性シリコーンオイル等の変性シリコーンオイルが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。イオン性液体による表面処理を、上記表面改質剤と併用することにより、疎水性を付与した無機酸化物粉体を得ることができる。また、バインダ等の有機材料との親和性、分散性を向上させる。   Further, the surface treatment may be a surface treatment using both the ionic liquid and the surface modifier. Examples of surface modifiers that can be used in combination with ionic liquids include alkylsilazane compounds such as hexamethyldisilazane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, methyltrimethoxysilane, butyltrimethyl. Examples include alkylalkoxysilane compounds such as methoxysilane, chlorosilane compounds such as dimethyldichlorosilane and trimethylchlorosilane, or silicone oil compounds, and these may be used alone or in accordance with the purpose. You may mix and use the above. Examples of the silicone oil compounds include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, carbinol-modified silicone oil, methacrylic acid, and the like. Modified silicone oil, Mercapto modified silicone oil, Phenol modified silicone oil, One end reactive modified silicone oil, Both ends reactive modified silicone oil, Heterogeneous functional group modified silicone oil, Polyether modified silicone oil, Methylstyryl modified silicone oil, Alkyl Modified silicone oil, higher fatty acid ester modified silicone oil, hydrophilic special modified silicone oil, high Alkoxy-modified silicone oil, higher fatty acid containing modified silicone oil include modified silicone oil and fluorine-modified silicone oil. These may be used alone or in combination of two or more. By using a surface treatment with an ionic liquid in combination with the surface modifier, an inorganic oxide powder imparted with hydrophobicity can be obtained. In addition, it improves the affinity and dispersibility with organic materials such as binders.

上記イオン性液体又はイオン性液体と上記表面改質剤とを併用する表面処理により、本発明の表面改質された無機酸化物粉体を製造する具体的な方法は、次の通りである。先ず、原料となる無機酸化物粉体100質量部に対して、好ましくは3〜50質量部となる量のイオン性液体を用意する。イオン性液体の使用量が下限値未満では、十分な導電性付与効果を有する粉体が得られず、帯電防止効果に有用であるとされる106〜109Ωcmという低い電気抵抗率が得られない。一方、上限値を越えると固定化率が低下する。即ち、過剰なオニウム塩がブリードしてしまうため好ましくない。また、イオン性液体は、希釈せずにそのまま使用することもできるが、上述のように有機溶媒又は水で希釈してから使用すれば、無機酸化物粉体における表面改質をより均一に行うことができるため好ましい。この場合の有機溶媒又は水の添加量は、使用するイオン性液体100質量部に対して、好ましくは100〜2000質量部、更に好ましくは100〜1000質量部である。イオン性液体100質量部に対する有機溶媒又は水の添加量が100質量部未満では希釈による上記効果が得られにくく、一方、2000質量部を越えると、有機溶媒又は水の添加量が多くなりすぎて無機酸化物粉体が凝集しやすくなるため好ましくない。 A specific method for producing the surface-modified inorganic oxide powder of the present invention by the surface treatment using the ionic liquid or the ionic liquid in combination with the surface modifier is as follows. First, an ionic liquid is preferably prepared in an amount of 3 to 50 parts by mass with respect to 100 parts by mass of the inorganic oxide powder as a raw material. When the amount of the ionic liquid used is less than the lower limit, a powder having sufficient conductivity cannot be obtained, and a low electrical resistivity of 10 6 to 10 9 Ωcm, which is considered useful for the antistatic effect, is obtained. I can't. On the other hand, when the upper limit is exceeded, the immobilization rate decreases. That is, it is not preferable because excess onium salt bleeds. In addition, the ionic liquid can be used as it is without being diluted, but if it is used after being diluted with an organic solvent or water as described above, the surface modification of the inorganic oxide powder is performed more uniformly. This is preferable. In this case, the amount of the organic solvent or water added is preferably 100 to 2000 parts by mass, more preferably 100 to 1000 parts by mass with respect to 100 parts by mass of the ionic liquid used. If the amount of the organic solvent or water added relative to 100 parts by mass of the ionic liquid is less than 100 parts by mass, the above-mentioned effect due to dilution is difficult to obtain, whereas if it exceeds 2000 parts by mass, the amount of organic solvent or water added becomes too large. This is not preferable because the inorganic oxide powder tends to aggregate.

表面改質剤を併用する表面処理を行う場合は、上記希釈した又は希釈していないイオン性液体に、無機酸化物粉体100質量部に対して5〜50質量部となる量の表面改質剤を更に添加する。表面改質剤の添加量が下限値未満では、無機酸化物粉体における表面改質が不均一になりやすい。一方、上限値を越えると無機酸化物粉体の凝集が起こるため好ましくない。また、このイオン性液体には、反応を促進するために、触媒等を更に添加してもよい。   When performing surface treatment using a surface modifier in combination, the surface modification in an amount of 5 to 50 parts by mass with respect to 100 parts by mass of the inorganic oxide powder is performed on the diluted or non-diluted ionic liquid. Add more agent. When the addition amount of the surface modifier is less than the lower limit value, the surface modification in the inorganic oxide powder tends to be uneven. On the other hand, exceeding the upper limit is not preferable because the inorganic oxide powder aggregates. Further, a catalyst or the like may be further added to the ionic liquid in order to promote the reaction.

次に、無機酸化物粉体を反応容器に入れ、窒素等の不活性ガス雰囲気下、粉末を回転羽根等で攪拌しながら上記イオン性液体又は表面改質剤が添加されたイオン性液体を粉末に添加する。窒素等の不活性ガス雰囲気とする理由は、酸化を防止するためである。そして、これを80℃〜300℃の温度で30〜120分間反応容器内で混合する。温度を80℃〜300℃の範囲とする理由は、下限値未満では、無機酸化物粉体における表面改質が不十分になるため、無機酸化物粉体にオニウム塩が固定化されにくく、一方、上限値を越えると表面改質剤が劣化するおそれがあるため好ましくない。このうち、温度は100〜300℃の範囲であることが特に好ましい。また、混合する時間が下限値未満では、無機酸化物粉体における表面改質が不十分になるため、無機酸化物粉体にオニウム塩が固定化されにくく、一方、上限値を越えると表面改質剤が劣化するおそれがあるため好ましくない。このうち、30〜90分間混合するのが特に好ましい。その後、室温に放置又は冷却水等によって粉末を冷却する。   Next, the inorganic oxide powder is put into a reaction vessel, and the ionic liquid or the ionic liquid to which the surface modifier is added is stirred while stirring the powder with a rotary blade or the like in an inert gas atmosphere such as nitrogen. Add to. The reason why the atmosphere is an inert gas such as nitrogen is to prevent oxidation. And it mixes in the reaction container for 30 to 120 minutes at the temperature of 80 to 300 degreeC. The reason why the temperature is in the range of 80 ° C. to 300 ° C. is that, if the surface is less than the lower limit, the surface modification of the inorganic oxide powder becomes insufficient, so that the onium salt is hardly immobilized on the inorganic oxide powder. If the upper limit is exceeded, the surface modifier may be deteriorated, which is not preferable. Of these, the temperature is particularly preferably in the range of 100 to 300 ° C. Also, if the mixing time is less than the lower limit value, surface modification in the inorganic oxide powder becomes insufficient, so that the onium salt is hardly immobilized on the inorganic oxide powder. This is not preferable because the quality agent may deteriorate. Among these, it is particularly preferable to mix for 30 to 90 minutes. Thereafter, the powder is allowed to stand at room temperature or cooled with cooling water or the like.

以上の工程により、本発明の表面改質された無機酸化物粉体が得られる。このようにして得られた本発明の表面改質された無機酸化物粉体は、合成樹脂・ゴム部材、帯電防止用フィルム、コート材等の各種半導電部材に帯電防止効果を付与するために添加される導電性付与剤として好適に用いることができる。また、本発明の無機酸化物粉体は、樹脂又はゴム等に添加した場合に、非常に安定した電気抵抗率を与えるため、電気抵抗率の精密な制御が求められる半導電部材、例えば画像形成装置における帯電ロール、転写ロール、現像ロール等の形成にも好適に用いることができる。更に、電子写真の現像剤であるトナー等において、流動性改善や帯電性を調整するため、或いはトナーの転写性や耐久性を向上させる目的で添加される外添材としても好適に用いることができる。   Through the above steps, the surface-modified inorganic oxide powder of the present invention is obtained. The surface-modified inorganic oxide powder of the present invention thus obtained is used to impart an antistatic effect to various semiconductive members such as a synthetic resin / rubber member, an antistatic film, and a coating material. It can use suitably as an electroconductivity imparting agent to be added. In addition, the inorganic oxide powder of the present invention gives a very stable electrical resistivity when added to a resin or rubber or the like, and therefore a semiconductive member that requires precise control of electrical resistivity, such as image formation. It can also be suitably used for forming a charging roll, a transfer roll, a developing roll, etc. in the apparatus. Furthermore, it is preferably used as an external additive added for the purpose of improving fluidity, adjusting the chargeability, or improving the transferability and durability of the toner in toner that is an electrophotographic developer. it can.

次に本発明の実施例を比較例とともに詳しく説明する。予め、実施例1〜12又は比較例1,2に用いたイオン性液体について、次の合成例1〜3により合成した。   Next, examples of the present invention will be described in detail together with comparative examples. The ionic liquids used in Examples 1 to 12 or Comparative Examples 1 and 2 were synthesized in advance according to the following Synthesis Examples 1 to 3.

<合成例1>
先ず、200mlのフラスコに1−メチルイミダゾール17.4g(0.21モル)と3−クロロプロピルトリメトキシシラン38.0g(0.192モル)を入れ、窒素気流下90℃で72時間攪拌して反応させた。反応終了後、反応液に酢酸エチル100gを加えてろ過した。分離した固体を酢酸エチルで洗浄し、減圧下にて乾燥し1−メチル−3−(トリメトキシシリルプロピル)イミダゾリウム=クロライド66.4g(収率96%)を得た。
<Synthesis Example 1>
First, 17.4 g (0.21 mol) of 1-methylimidazole and 38.0 g (0.192 mol) of 3-chloropropyltrimethoxysilane are placed in a 200 ml flask and stirred at 90 ° C. for 72 hours under a nitrogen stream. Reacted. After completion of the reaction, 100 g of ethyl acetate was added to the reaction solution and filtered. The separated solid was washed with ethyl acetate and dried under reduced pressure to obtain 66.4 g (yield 96%) of 1-methyl-3- (trimethoxysilylpropyl) imidazolium chloride.

次に、得られた1−メチル−3−トリメトキシシランプロピルイミダゾリウム=クロライド20g(0.056モル)を200mlのフラスコ中でアセトン70gに溶解させ、ビス(トリフルオロメタンスルホニル)イミド酸リチウム16.1g(0.056モル)を加えた後、窒素気流下24時間室温で攪拌した。この反応液をろ過した後、得られたろ液を濃縮し酢酸エチル30gを加え放置した。次いで、析出した結晶を分離し、減圧下で揮発成分を除去し1−メチル−3−(トリメトキシシリルプロピル)イミダゾリウム=ビス(トリフルオロメタンスルホニル)イミド35.5g(収率75%)を得た。   Next, 20 g (0.056 mol) of 1-methyl-3-trimethoxysilanepropyl imidazolium chloride obtained was dissolved in 70 g of acetone in a 200 ml flask, and lithium bis (trifluoromethanesulfonyl) imidoate 16. After adding 1 g (0.056 mol), the mixture was stirred at room temperature for 24 hours under a nitrogen stream. After the reaction solution was filtered, the obtained filtrate was concentrated and 30 g of ethyl acetate was added and left standing. Next, the precipitated crystals were separated, and volatile components were removed under reduced pressure to obtain 35.5 g of 1-methyl-3- (trimethoxysilylpropyl) imidazolium bis (trifluoromethanesulfonyl) imide (yield 75%). It was.

<合成例2>
先ず、200mlのフラスコにピリジン20g(0.25モル)と3-クロロプロピルトリメトキシシラン38.0g(0.192モル)を入れ、窒素気流下90℃で72時間攪拌して反応させた。反応終了後、反応液に酢酸エチル100gを加えてろ過した。分離した固体を酢酸エチルで洗浄し、減圧下にて乾燥し1−(トリメトキシシリルプロピル)ピリジニウム=クロライド40.0g(収率75%)を得た。
<Synthesis Example 2>
First, 20 g (0.25 mol) of pyridine and 38.0 g (0.192 mol) of 3-chloropropyltrimethoxysilane were placed in a 200 ml flask and reacted by stirring at 90 ° C. for 72 hours in a nitrogen stream. After completion of the reaction, 100 g of ethyl acetate was added to the reaction solution and filtered. The separated solid was washed with ethyl acetate and dried under reduced pressure to obtain 40.0 g (yield 75%) of 1- (trimethoxysilylpropyl) pyridinium chloride.

次に、得られた1−(トリメトキシシリルプロピル)ピリジニウム=クロライド20g(0.072モル)を200mlのフラスコ中でアセトン90gに溶解させ、ビス(トリフルオロメタンスルホニル)イミド酸リチウム20.7g(0.072モル)を加えた後、窒素気流下24時間室温で攪拌した。この反応液をろ過した後、得られたろ液を濃縮し酢酸エチル30gを加え放置した。最後に、析出した結晶を分離し、減圧下で揮発成分を除去し1−(トリメトキシシリルプロピル)ピリジニウム=ビス(トリフルオロメタンスルホニル)イミド28.0g(収率74%)を得た。   Next, 20 g (0.072 mol) of 1- (trimethoxysilylpropyl) pyridinium chloride obtained was dissolved in 90 g of acetone in a 200 ml flask, and 20.7 g (0 of lithium bis (trifluoromethanesulfonyl) imidoate) was obtained. 0.072 mol), and the mixture was stirred at room temperature for 24 hours under a nitrogen stream. After the reaction solution was filtered, the obtained filtrate was concentrated and 30 g of ethyl acetate was added and left standing. Finally, the precipitated crystals were separated, and volatile components were removed under reduced pressure to obtain 28.0 g of 1- (trimethoxysilylpropyl) pyridinium bis (trifluoromethanesulfonyl) imide (yield 74%).

<合成例3>
先ず、200mlのフラスコに1-メチルピペリジン20g(0.202モル)と3-クロロプロピルトリメトキシシラン38.0g(0.192モル)を入れ、窒素気流下90℃で48時間攪拌して反応させた。反応終了後、反応液にアセトニトリル90gを加えてろ過した。分離した固体を酢酸エチルで洗浄し、減圧下にて乾燥し1−メチル−1−(トリメトキシシリルプロピル)ピペリジニウム=クロライド18.0g(収率29%)を得た。
<Synthesis Example 3>
First, 20 g (0.202 mol) of 1-methylpiperidine and 38.0 g (0.192 mol) of 3-chloropropyltrimethoxysilane were placed in a 200 ml flask, and the mixture was allowed to react by stirring at 90 ° C. for 48 hours in a nitrogen stream. It was. After completion of the reaction, 90 g of acetonitrile was added to the reaction solution and filtered. The separated solid was washed with ethyl acetate and dried under reduced pressure to obtain 18.0 g (yield 29%) of 1-methyl-1- (trimethoxysilylpropyl) piperidinium chloride.

次に、得られた1−メチル−1−(トリメトキシシリルプロピル)ピペリジニウム=クロライド10g(0.034モル)を200mlのフラスコ中でアセトン60gに溶解させ、ビス(トリフルオロメタンスルホニル)イミド酸リチウム14.5g(0.034モル)を加えた後、窒素気流下24時間室温で攪拌した。この反応液をろ過した後、得られたろ液を濃縮し酢酸エチル30gを加え放置した。最後に、析出した結晶を分離し、減圧下で揮発成分を除去し1−メチル−1−(トリメトキシシリルプロピル)ピペリジニウム=ビス(トリフルオロメタンスルホニル)イミド16.3g(収率90%)を得た。   Next, 10 g (0.034 mol) of 1-methyl-1- (trimethoxysilylpropyl) piperidinium chloride obtained was dissolved in 60 g of acetone in a 200 ml flask, and lithium bis (trifluoromethanesulfonyl) imidoate 14 After adding 0.5 g (0.034 mol), the mixture was stirred at room temperature for 24 hours under a nitrogen stream. After the reaction solution was filtered, the obtained filtrate was concentrated and 30 g of ethyl acetate was added and left standing. Finally, the precipitated crystals were separated, and volatile components were removed under reduced pressure to obtain 16.3 g (yield 90%) of 1-methyl-1- (trimethoxysilylpropyl) piperidinium = bis (trifluoromethanesulfonyl) imide. It was.

<実施例1>
先ず、イオン性液体として、合成例2で得た1−(トリメトキシシリルプロピル)ピリジニウム=ビス(トリフルオロメタンスルホニル)イミド50gに、有機溶媒としてエタノールを200g添加して希釈させたイオン性液体を用意した。次に、BET比表面積が200m2/gの気相法で得られたシリカ粉(日本アエロジル社製 商品名:アエロジル200)200gを反応容器に入れ、この反応容器に窒素雰囲気の下、粉末を回転羽根で撹拌しながら上記希釈させたイオン性液体を添加した。次いで、これを窒素雰囲気の下、100℃の温度で60分間攪拌しながら混合した後、冷却水で冷却し、無機酸化物粉体を得た。この表面処理を施して表面改質された無機酸化物粉体を実施例1とした。
<Example 1>
First, as an ionic liquid, an ionic liquid prepared by diluting 200 g of ethanol as an organic solvent to 50 g of 1- (trimethoxysilylpropyl) pyridinium = bis (trifluoromethanesulfonyl) imide obtained in Synthesis Example 2 is prepared. did. Next, 200 g of silica powder (trade name: Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.) obtained by a gas phase method having a BET specific surface area of 200 m 2 / g was placed in a reaction vessel, and the powder was placed in this reaction vessel under a nitrogen atmosphere. The diluted ionic liquid was added while stirring with a rotary blade. Next, this was mixed with stirring at a temperature of 100 ° C. for 60 minutes under a nitrogen atmosphere, and then cooled with cooling water to obtain an inorganic oxide powder. An inorganic oxide powder surface-modified by this surface treatment was taken as Example 1.

<実施例2>
以下の表1に示すように、実施例1と同じイオン性液体20gに有機溶媒としてエタノールを80g添加して希釈させたこと以外は、実施例1と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を実施例2とした。
<Example 2>
As shown in Table 1 below, surface treatment was applied to the inorganic oxide in the same manner as in Example 1 except that 80 g of ethanol as an organic solvent was added to 20 g of the same ionic liquid as in Example 1 and diluted. A powder was obtained. This surface-modified inorganic oxide powder was taken as Example 2.

<実施例3>
以下の表1に示すように、実施例1と同じイオン性液体3gに有機溶媒としてエタノールを20g添加して希釈させたこと以外は、実施例1と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を実施例3とした。
<Example 3>
As shown in Table 1 below, a surface treatment was performed in the same manner as in Example 1 except that 20 g of ethanol as an organic solvent was added to 3 g of the same ionic liquid as in Example 1 and diluted to form an inorganic oxide. A powder was obtained. This surface-modified inorganic oxide powder was taken as Example 3.

<実施例4>
以下の表1に示すように、実施例1で用いたイオン性液体の代わりに、合成例1で得た1−メチル−3−(トリメトキシシリルプロピル)イミダゾリウム=ビス(トリフルオロメタンスルホニル)イミド3gに有機溶媒としてエタノールを20g添加して希釈させたこと以外は、実施例1と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を実施例4とした。
<Example 4>
As shown in Table 1 below, 1-methyl-3- (trimethoxysilylpropyl) imidazolium bis (trifluoromethanesulfonyl) imide obtained in Synthesis Example 1 instead of the ionic liquid used in Example 1 Surface treatment was performed in the same manner as in Example 1 except that 20 g of ethanol as an organic solvent was added to 3 g and diluted to obtain inorganic oxide powder. This surface-modified inorganic oxide powder was taken as Example 4.

<実施例5>
以下の表1に示すように、実施例1で用いたイオン性液体の代わりに、合成例3で得た1−メチル−1−(トリメトキシシリルプロピル)ピペリジニウム=ビス(トリフルオロメタンスルホニル)イミド3gに有機溶媒としてエタノールを20g添加して希釈させたこと以外は、実施例1と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を実施例5とした。
<Example 5>
As shown in Table 1 below, 3 g of 1-methyl-1- (trimethoxysilylpropyl) piperidinium = bis (trifluoromethanesulfonyl) imide obtained in Synthesis Example 3 instead of the ionic liquid used in Example 1 In the same manner as in Example 1 except that 20 g of ethanol was added as an organic solvent for dilution, surface treatment was performed to obtain an inorganic oxide powder. This surface-modified inorganic oxide powder was taken as Example 5.

<実施例6>
以下の表1に示すように、実施例1と同じイオン性液体3gに有機溶媒としてエタノールを20g添加して希釈させたこと、表面改質剤としてジメチルシリコーンオイル(信越化学社製 商品名:KF−96 100cs)20gをヘキサン60gで希釈して更に添加したこと、及び300℃の温度で撹拌したこと以外は、実施例1と同様に表面処理を施して無機酸化物粉体を得た。この表面を改質させた無機酸化物粉体を実施例6とした。
<Example 6>
As shown in Table 1 below, 20 g of ethanol as an organic solvent was added to 3 g of the same ionic liquid as in Example 1 and diluted, and dimethyl silicone oil (trade name: KF manufactured by Shin-Etsu Chemical Co., Ltd.) was used as a surface modifier. A surface treatment was performed in the same manner as in Example 1 except that 20 g of -96 100 cs) was further diluted with 60 g of hexane and further stirred at a temperature of 300 ° C. to obtain an inorganic oxide powder. This inorganic oxide powder whose surface was modified was designated as Example 6.

<実施例7>
以下の表1に示すように、表面改質剤としてジメチルシリコーンオイルの代わりにヘキサメチルジシラザンを用いたこと、及び150℃の温度で撹拌したこと以外は、実施例6と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を実施例7とした。
<Example 7>
As shown in Table 1 below, the surface treatment was performed in the same manner as in Example 6 except that hexamethyldisilazane was used instead of dimethyl silicone oil as a surface modifier, and stirring was performed at a temperature of 150 ° C. To obtain an inorganic oxide powder. This surface-modified inorganic oxide powder was taken as Example 7.

<実施例8>
以下の表1に示すように、表面改質剤としてジメチルシリコーンオイルの代わりにオクチルトリメトキシシランを用いたこと、及び150℃の温度で撹拌したこと以外は、実施例6と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を実施例8とした。
<Example 8>
As shown in Table 1 below, the surface treatment was conducted in the same manner as in Example 6 except that octyltrimethoxysilane was used instead of dimethylsilicone oil as the surface modifier, and stirring was performed at a temperature of 150 ° C. To obtain an inorganic oxide powder. This surface-modified inorganic oxide powder was taken as Example 8.

<実施例9>
シリカ粉末としてアエロジル200の代わりに、BET比表面積が200m2/gの湿式法で得られたシリカ粉(DSL.ジャパン社製 商品名:CARPLEX#80)を用いたこと以外は、実施例3と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を実施例9とした。
<Example 9>
Example 3 and Example 3 except that silica powder obtained by a wet method with a BET specific surface area of 200 m 2 / g (trade name: CARPLEX # 80 manufactured by DSL Japan) was used as the silica powder instead of Aerosil 200. Similarly, surface treatment was performed to obtain an inorganic oxide powder. This surface-modified inorganic oxide powder was taken as Example 9.

<実施例10>
以下の表1に示すように、シリカ粉末としてアエロジル200の代わりに、BET比表面積が200m2/gの湿式法で得られたシリカ粉(DSL.ジャパン社製 商品名:CARPLEX#80)を用いたこと以外は、実施例7と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を実施例10とした。
<Example 10>
As shown in Table 1 below, instead of Aerosil 200, silica powder obtained by a wet method with a BET specific surface area of 200 m 2 / g (trade name: CARPLEX # 80, manufactured by DSL. Japan) is used as silica powder. Except for the above, surface treatment was performed in the same manner as in Example 7 to obtain an inorganic oxide powder. This surface-modified inorganic oxide powder was taken as Example 10.

<実施例11>
以下の表1に示すように、無機酸化物粉体としてチタニア粉(日本アエロジル社製、商品名:アエロジルP25)を用いたこと、表面改質剤としてヘキサメチルジシラザンの代わりにオクチルトリメトキシシランを用いたこと以外は、実施例7と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を実施例11とした。
<Example 11>
As shown in Table 1 below, titania powder (product name: Aerosil P25, manufactured by Nippon Aerosil Co., Ltd.) was used as the inorganic oxide powder, and octyltrimethoxysilane was used as the surface modifier instead of hexamethyldisilazane. Except that was used, the surface treatment was performed in the same manner as in Example 7 to obtain an inorganic oxide powder. This surface-modified inorganic oxide powder was taken as Example 11.

<実施例12>
以下の表1に示すように、無機酸化物粉体としてアルミナ粉(日本アエロジル社製、商品名:アエロジルAluC)を用いたこと、表面改質剤としてヘキサメチルジシラザンの代わりにオクチルトリメトキシシランを用いたこと以外は、実施例7と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を実施例12とした。
<Example 12>
As shown in Table 1 below, alumina powder (manufactured by Nippon Aerosil Co., Ltd., trade name: Aerosil AluC) was used as the inorganic oxide powder, and octyltrimethoxysilane instead of hexamethyldisilazane as the surface modifier. Except that was used, the surface treatment was performed in the same manner as in Example 7 to obtain an inorganic oxide powder. This surface-modified inorganic oxide powder was taken as Example 12.

<比較例1>
以下の表2に示すように、実施例1と同じイオン性液体110gに有機溶媒としてエタノールを500g添加して希釈させたこと以外は、実施例1と同様に表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を比較例1とした。
<Comparative Example 1>
As shown in Table 2 below, the inorganic oxide powder was subjected to a surface treatment in the same manner as in Example 1 except that 500 g of ethanol as an organic solvent was added to 110 g of the same ionic liquid as in Example 1 and diluted. Got the body. This surface-modified inorganic oxide powder was used as Comparative Example 1.

<比較例2>
実施例1と同じイオン性液体0.5gに有機溶媒としてエタノールを10g添加して希釈させたこと、以下の表2に示すように、表面改質剤としてジメチルシリコーンオイル(信越化学社製 商品名:KF−96 100cs)20gをヘキサン60gで希釈して更に添加したこと、及び300℃の温度で撹拌したこと以外は、比較例1と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を比較例1とした。
<Comparative example 2>
10 g of ethanol as an organic solvent was added to 0.5 g of the same ionic liquid as in Example 1 and diluted. As shown in Table 2 below, dimethyl silicone oil (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was used as a surface modifier. : KF-96 100 cs) Except that 20 g was diluted with 60 g of hexane and further added, and stirred at a temperature of 300 ° C., surface treatment was performed to obtain an inorganic oxide powder as in Comparative Example 1. It was. This surface-modified inorganic oxide powder was used as Comparative Example 1.

<比較例3>
以下の表2に示すように、イオン性液体として、1−(トリメトキシシリルプロピル)ピリジニウム=ビス(トリフルオロメタンスルホニル)イミドの代わりに、脂肪族アミン系のイオン性液体(広栄化学社製:IL−A2)10gに有機溶媒としてエタノールを40g添加して希釈させたこと以外は、比較例1と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を比較例3とした。
<Comparative Example 3>
As shown in Table 2 below, instead of 1- (trimethoxysilylpropyl) pyridinium bis (trifluoromethanesulfonyl) imide as an ionic liquid, an aliphatic amine-based ionic liquid (manufactured by Koei Chemical Co., Ltd .: IL) -A2) An inorganic oxide powder was obtained by performing a surface treatment in the same manner as in Comparative Example 1 except that 40 g of ethanol as an organic solvent was added to 10 g and diluted. This surface-modified inorganic oxide powder was used as Comparative Example 3.

<比較例4>
以下の表2に示すように、更に表面改質剤としてジメチルシリコーンオイル(信越化学社製 商品名:KF−96 100cs)20gをヘキサン60gで希釈して更に添加したこと、及び300℃の温度で撹拌したこと以外は、比較例3と同様に表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を比較例4とした。
<Comparative example 4>
As shown in Table 2 below, 20 g of dimethyl silicone oil (trade name: KF-96 100 cs, manufactured by Shin-Etsu Chemical Co., Ltd.) as a surface modifier was further diluted with 60 g of hexane, and at a temperature of 300 ° C. Except for stirring, surface treatment was performed in the same manner as in Comparative Example 3 to obtain an inorganic oxide powder. This surface-modified inorganic oxide powder was designated as Comparative Example 4.

<比較例5>
以下の表2に示すように、表面改質剤としてジメチルシリコーンオイルの代わりにヘキサメチルジシラザンを用いたこと、及び150℃の温度で撹拌したこと以外は、比較例4と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を比較例5とした。
<Comparative Example 5>
As shown in Table 2 below, the surface treatment was conducted in the same manner as in Comparative Example 4 except that hexamethyldisilazane was used instead of dimethyl silicone oil as a surface modifier, and stirring was performed at a temperature of 150 ° C. To obtain an inorganic oxide powder. This surface-modified inorganic oxide powder was used as Comparative Example 5.

<比較例6>
以下の表2に示すように、表面改質剤としてヘキサメチルジシラザンの代わりにオクチルトリメトキシシランを用いたこと以外は、比較例5と同様に、表面処理を施して無機酸化物粉体を得た。この表面改質された無機酸化物粉体を比較例4とした。

<Comparative Example 6>
As shown in Table 2 below, the inorganic oxide powder was subjected to surface treatment in the same manner as in Comparative Example 5 except that octyltrimethoxysilane was used as the surface modifier instead of hexamethyldisilazane. Obtained. This surface-modified inorganic oxide powder was designated as Comparative Example 4.

Figure 2011148641
Figure 2011148641

Figure 2011148641
<比較試験及び評価>
実施例1〜12及び比較例1〜6の無機酸化物粉体について、窒素含有量、固定化率及び電気抵抗率を評価した。これらの結果を以下の表3に示す。
Figure 2011148641
<Comparison test and evaluation>
About the inorganic oxide powder of Examples 1-12 and Comparative Examples 1-6, nitrogen content, the immobilization rate, and the electrical resistivity were evaluated. These results are shown in Table 3 below.

(1) 窒素含有量:SUMIGRAPH NC−22を用い、所定量の無機酸化物粉体をサンプルとして、上記SUMIGRAPHが備える、秤量を完了した標準試料及び測定試料の入ったボートを装置にセットし、測定した。測定データ処理プログラムにて最終結果まで自動計算される。計算された値は、所定量の無機酸化物粉体中の窒素量の含有量として表される。   (1) Nitrogen content: using SUMIGRAPH NC-22, using a predetermined amount of inorganic oxide powder as a sample, setting the boat with the standard sample and the measurement sample with the above-mentioned SUMIGRAPH in the weighing, It was measured. The measurement data processing program automatically calculates the final result. The calculated value is expressed as the content of nitrogen in a predetermined amount of inorganic oxide powder.

(2) オニウム塩の固定化率:先ず、無機酸化物粉体0.7gを資料とし、抽出溶媒としてエタノールを用いてソックスレー抽出装置(BUCHI社製)により、抽出時間60分、リンス時間30分とする条件で粉体上の遊離オイルを抽出した。抽出後、粉体における窒素含有量を上記のように測定し、抽出前の粉体における窒素含有量で割ったものの百分率を算出し、これをオニウム塩の固定化率とした。   (2) Immobilization rate of onium salt: First, 0.7 g of inorganic oxide powder was used as a document, ethanol was used as an extraction solvent, and a Soxhlet extraction device (manufactured by BUCHI) was used for an extraction time of 60 minutes and a rinsing time of 30 minutes. The free oil on the powder was extracted under the following conditions. After extraction, the nitrogen content in the powder was measured as described above, and the percentage divided by the nitrogen content in the powder before extraction was calculated, and this was used as the onium salt immobilization rate.

(3) 電気抵抗率: 高抵抗率計(三菱化学社製 Hiresta−UP)を用い、所定量の無機酸化物粉体をサンプルとして、上記高抵抗率計が備えるシリンダー上部から投入しプローブユニットを取り付けた。そして、圧力及び電圧を所定値に設定して測定を開始し、設定時間経過後、測定が終了して表示された抵抗値を読み取った。また、デジタルスケールの表示値をサンプルの厚みとして読み取り、下記式にて比抵抗率を演算した。   (3) Electric resistivity: Using a high resistivity meter (Hiresta-UP, manufactured by Mitsubishi Chemical Corporation), using a predetermined amount of inorganic oxide powder as a sample, the probe unit is inserted from the top of the cylinder of the high resistivity meter. Attached. Then, the pressure and voltage were set to predetermined values and measurement was started. After the set time had elapsed, the measurement was completed and the displayed resistance value was read. Moreover, the display value of the digital scale was read as the thickness of the sample, and the specific resistivity was calculated by the following formula.

ρv=49.08×ρ/t (6) 上記式(6)中、ρvは体積比抵抗率(Ωcm)であり、ρは上記読み取った抵抗値(Ω)であり、tはサンプルの厚み(mm)である。                     ρv = 49.08 × ρ / t (6) In the above formula (6), ρv is the volume resistivity (Ωcm), ρ is the read resistance value (Ω), and t is the thickness of the sample ( mm).

(4) ブリード:無機酸化物粉体を導電性付与剤として添加して得られたゴム試験片について、25%圧縮した状態で、70℃の温度で72時間放置した後、その表面のブリードの有無を目視により確認した。表3中、記号「A」は、ブリードが認められなかったことを意味し、記号「B」は、ブリードが少々認められたことを意味し、記号「C」は、ブリードが顕著に認められたことを意味する。
(4) Bleed: A rubber test piece obtained by adding inorganic oxide powder as a conductivity-imparting agent was allowed to stand at a temperature of 70 ° C. for 72 hours in a compressed state of 25%. The presence or absence was confirmed visually. In Table 3, the symbol “A” means that no bleed was observed, the symbol “B” means that some bleed was observed, and the symbol “C” markedly recognized bleed. Means that.

Figure 2011148641
表1〜表3から明らかなように、本発明の表面改質された無機酸化物粉体は、帯電防止効果に有用であるとされる106〜109Ωcmという電気抵抗率を示す。更に、粉体表面にイオン性液体によるオニウム塩が高い固定化率で固定されているため、半導電材料の導電性付与剤として添加した場合、イオン性液体のブリードを生じさせること無く、高い評価が得られた。しかもイオン性液体によるオニウム塩が、導電性を付与し、安定した電気抵抗率が得られる。
Figure 2011148641
As is apparent from Tables 1 to 3, the surface-modified inorganic oxide powder of the present invention exhibits an electrical resistivity of 10 6 to 10 9 Ωcm, which is said to be useful for the antistatic effect. Furthermore, since the onium salt by the ionic liquid is fixed on the powder surface at a high immobilization rate, it is highly evaluated without causing bleeding of the ionic liquid when added as a conductivity imparting agent for a semiconductive material. was gotten. In addition, the onium salt by the ionic liquid imparts conductivity and a stable electrical resistivity can be obtained.

本発明の表面改質された無機酸化物粉体は、合成樹脂・ゴム部材、帯電防止用フィルム、コート材等の各種半導電部材へ添加する導電性付与剤の他、電子写真の現像剤であるトナー等において、流動性改善や帯電性を調整するため、或いはトナーの転写性や耐久性を向上させる目的で添加される外添材としても利用することができる。   The surface-modified inorganic oxide powder of the present invention is an electrophotographic developer as well as a conductivity imparting agent added to various semiconductive members such as a synthetic resin / rubber member, an antistatic film, and a coating material. In some toners and the like, the toner can be used as an external additive added for the purpose of improving fluidity and adjusting the chargeability, or for the purpose of improving the transferability and durability of the toner.

Claims (4)

無機酸化物粉体に表面処理を施すことにより表面改質された無機酸化物粉体において、表面に窒素を含有するオニウム塩を有し、窒素含有量が0.02%以上3%以下であり、かつ前記オニウム塩の固定化率が50%以上100%以下であることを特徴とする表面改質された無機酸化物粉体。   The inorganic oxide powder that has been surface-modified by subjecting the inorganic oxide powder to surface treatment has an onium salt containing nitrogen on the surface, and the nitrogen content is 0.02% or more and 3% or less. And the surface-modified inorganic oxide powder characterized by the immobilization rate of the said onium salt being 50% or more and 100% or less. 前記表面処理がイオン性液体を用いた表面処理又は前記イオン性液体と表面改質剤とを併用した表面処理であり、前記イオン性液体を構成するカチオンが、次の式(1)で示される反応基を有する第4級アンモニウムカチオンである請求項1記載の表面改質された無機酸化物粉体。
Figure 2011148641
但し、式(1)中、Xは1〜3の整数であり、R1は炭素数1〜3のアルキル基、アセチル基又はオキシム基であり、R2は炭素数1〜6のアルキル基、フェニル基又はトリフルオロプロピル基である。
The surface treatment is a surface treatment using an ionic liquid or a surface treatment using a combination of the ionic liquid and a surface modifier, and a cation constituting the ionic liquid is represented by the following formula (1): The surface-modified inorganic oxide powder according to claim 1, which is a quaternary ammonium cation having a reactive group.
Figure 2011148641
In the formula (1), X is an integer of 1 to 3, R 1 is an alkyl group, an acetyl group or an oxime group having 1 to 3 carbon atoms, R 2 is an alkyl group having 1 to 6 carbon atoms, A phenyl group or a trifluoropropyl group.
前記無機酸化物粉体がシリカ、チタニア及びアルミナからなる群より選ばれた1種の無機酸化物粉体又は2種以上の複合無機酸化物粉体である請求項1又は2記載の表面改質された無機酸化物粉体。   The surface modification according to claim 1 or 2, wherein the inorganic oxide powder is one kind of inorganic oxide powder selected from the group consisting of silica, titania and alumina, or two or more kinds of composite inorganic oxide powders. Inorganic oxide powder. 前記イオン性液体を構成するアニオンがフッ化アルキルスルホニル基を含有する請求項2又は3記載の表面改質された無機酸化物粉体。   The surface-modified inorganic oxide powder according to claim 2 or 3, wherein the anion constituting the ionic liquid contains an alkylsulfonyl fluoride group.
JP2010008902A 2010-01-19 2010-01-19 Surface-modified inorganic oxide powder and method for producing the same Active JP5730489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008902A JP5730489B2 (en) 2010-01-19 2010-01-19 Surface-modified inorganic oxide powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008902A JP5730489B2 (en) 2010-01-19 2010-01-19 Surface-modified inorganic oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011148641A true JP2011148641A (en) 2011-08-04
JP5730489B2 JP5730489B2 (en) 2015-06-10

Family

ID=44543916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008902A Active JP5730489B2 (en) 2010-01-19 2010-01-19 Surface-modified inorganic oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5730489B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054657A1 (en) 2011-10-11 2013-04-18 東海ゴム工業株式会社 Elastomer material with immobilized ion component, and production method thereof
WO2013140640A1 (en) * 2012-03-23 2013-09-26 東海ゴム工業株式会社 Insulating silicone rubber composition
WO2014156876A1 (en) * 2013-03-25 2014-10-02 東海ゴム工業株式会社 Reactive ionic liquid and ion-immobilized metal oxide particles produced using same, ion-immobilized elastomer, and transducer
JP2014221737A (en) * 2013-05-13 2014-11-27 国立大学法人 鹿児島大学 Ionic liquid having silsesquioxane structure, and production method thereof
KR20170127721A (en) * 2016-05-12 2017-11-22 삼성에스디아이 주식회사 Protected anode for lithium battery and lithium metal battery comprising the same
JP2018158977A (en) * 2017-03-22 2018-10-11 堺化学工業株式会社 Complex particle, resin composition, dielectric elastomer and transducer
CN110655698A (en) * 2019-11-05 2020-01-07 苏州鼎立工业胶辊有限公司 High-thermal-conductivity composite rubber
GB2592383A (en) * 2020-02-25 2021-09-01 Kilwaughter Minerals Ltd Ionic liquid surface coatings
JP7034419B2 (en) 2015-12-14 2022-03-14 エルジー エナジー ソリューション リミテッド Battery module, battery pack containing the battery module and automobile including the battery pack
JP7340935B2 (en) 2018-02-12 2023-09-08 エアバス ディフェンス アンド スペース ゲーエムベーハー Battery configuration for structurally integrating the battery within the vehicle
JP7534204B2 (en) 2019-12-13 2024-08-14 日本化学工業株式会社 Coated particles and conductive materials containing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322307A (en) * 1998-05-15 1999-11-24 Konica Chemical Corp Modified inorganic oxide sol and its production
JP2003512926A (en) * 1999-11-05 2003-04-08 インペリアル・ケミカル・インダストリーズ・ピーエルシー Immobilized ionic liquid
JP2006124676A (en) * 2004-09-28 2006-05-18 Seiko Epson Corp Encapsulated inorganic microparticle and method for producing the same, coating composition containing the same and method for coating with the composition, and printing composition containing the encapsulated inorganic microparticle and method for printing with the printing composition
JP2006193704A (en) * 2004-12-13 2006-07-27 Koei Chem Co Ltd Antistatic agent for resin composition
JP2009500150A (en) * 2005-07-04 2009-01-08 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Surface modification of solid support materials
JP2009035573A (en) * 2007-07-31 2009-02-19 Jgc Catalysts & Chemicals Ltd Surface treatment method for metal oxide particle, dispersion liquid containing the surface treated metal oxide particle, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP2009155435A (en) * 2007-12-26 2009-07-16 Toyo Ink Mfg Co Ltd Metal oxide dispersion, and resin composition and molding using the same
JP2009209349A (en) * 2008-02-08 2009-09-17 Nippon Chem Ind Co Ltd Powdery silica composite particles and process for producing the same, dispersion of silica composite particle, and resin composition
WO2011007731A1 (en) * 2009-07-14 2011-01-20 日本アエロジル株式会社 Surface-modified metal oxide powder and process for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322307A (en) * 1998-05-15 1999-11-24 Konica Chemical Corp Modified inorganic oxide sol and its production
JP2003512926A (en) * 1999-11-05 2003-04-08 インペリアル・ケミカル・インダストリーズ・ピーエルシー Immobilized ionic liquid
JP2006124676A (en) * 2004-09-28 2006-05-18 Seiko Epson Corp Encapsulated inorganic microparticle and method for producing the same, coating composition containing the same and method for coating with the composition, and printing composition containing the encapsulated inorganic microparticle and method for printing with the printing composition
JP2006193704A (en) * 2004-12-13 2006-07-27 Koei Chem Co Ltd Antistatic agent for resin composition
JP2009500150A (en) * 2005-07-04 2009-01-08 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Surface modification of solid support materials
JP2009035573A (en) * 2007-07-31 2009-02-19 Jgc Catalysts & Chemicals Ltd Surface treatment method for metal oxide particle, dispersion liquid containing the surface treated metal oxide particle, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP2009155435A (en) * 2007-12-26 2009-07-16 Toyo Ink Mfg Co Ltd Metal oxide dispersion, and resin composition and molding using the same
JP2009209349A (en) * 2008-02-08 2009-09-17 Nippon Chem Ind Co Ltd Powdery silica composite particles and process for producing the same, dispersion of silica composite particle, and resin composition
WO2011007731A1 (en) * 2009-07-14 2011-01-20 日本アエロジル株式会社 Surface-modified metal oxide powder and process for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, Q. ET AL: "Surface confined ionic liquid as a stationary phase for HPLC", THE ANALYST, vol. 131, JPN6010058033, 21 July 2006 (2006-07-21), pages 1000 - 1005, ISSN: 0002864460 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054657A1 (en) 2011-10-11 2013-04-18 東海ゴム工業株式会社 Elastomer material with immobilized ion component, and production method thereof
CN103429666A (en) * 2011-10-11 2013-12-04 东海橡塑工业株式会社 Elastomer material with immobilized ion component, and production method thereof
US9076574B2 (en) 2011-10-11 2015-07-07 Sumitomo Riko Company Limited Elastomer material containing immobilized ionic components and method for manufacturing the same
WO2013140640A1 (en) * 2012-03-23 2013-09-26 東海ゴム工業株式会社 Insulating silicone rubber composition
JP2013199509A (en) * 2012-03-23 2013-10-03 Tokai Rubber Ind Ltd Insulating silicone rubber composition
CN103890099A (en) * 2012-03-23 2014-06-25 东海橡塑工业株式会社 Insulating silicone rubber composition
US9056989B2 (en) 2012-03-23 2015-06-16 Sumitomo Riko Company Limited Insulating silicone rubber composition
CN103890099B (en) * 2012-03-23 2016-04-13 住友理工株式会社 Insulativity silicone rubber composition
WO2014156876A1 (en) * 2013-03-25 2014-10-02 東海ゴム工業株式会社 Reactive ionic liquid and ion-immobilized metal oxide particles produced using same, ion-immobilized elastomer, and transducer
US9954162B2 (en) 2013-03-25 2018-04-24 Sumitomo Riko Company Limited Reactive ionic liquid, and ion-immobilized metal oxide particle, ion-immobilized elastomer, and transducer using same
CN104854115A (en) * 2013-03-25 2015-08-19 住友理工株式会社 Reactive ionic liquid and ion-immobilized metal oxide particles produced using same, ion-immobilized elastomer, and transducer
JP5926399B2 (en) * 2013-03-25 2016-05-25 住友理工株式会社 Reactive ionic liquid and ion-immobilized metal oxide particles, ion-immobilized elastomer and transducer using the same
JPWO2014156876A1 (en) * 2013-03-25 2017-02-16 住友理工株式会社 Reactive ionic liquid and ion-immobilized metal oxide particles, ion-immobilized elastomer and transducer using the same
JP2014221737A (en) * 2013-05-13 2014-11-27 国立大学法人 鹿児島大学 Ionic liquid having silsesquioxane structure, and production method thereof
JP7034419B2 (en) 2015-12-14 2022-03-14 エルジー エナジー ソリューション リミテッド Battery module, battery pack containing the battery module and automobile including the battery pack
KR20170127721A (en) * 2016-05-12 2017-11-22 삼성에스디아이 주식회사 Protected anode for lithium battery and lithium metal battery comprising the same
US20190112453A1 (en) * 2016-05-12 2019-04-18 Samsung Sdi Co., Ltd. Protective negative electrode for lithium metal battery and lithium metal battery comprising same
JP2019515481A (en) * 2016-05-12 2019-06-06 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. Protective negative electrode for lithium metal battery, and lithium metal battery containing the same
KR102640841B1 (en) * 2016-05-12 2024-02-27 삼성에스디아이 주식회사 Protected anode for lithium battery and lithium metal battery comprising the same
JP2018158977A (en) * 2017-03-22 2018-10-11 堺化学工業株式会社 Complex particle, resin composition, dielectric elastomer and transducer
JP7340935B2 (en) 2018-02-12 2023-09-08 エアバス ディフェンス アンド スペース ゲーエムベーハー Battery configuration for structurally integrating the battery within the vehicle
CN110655698A (en) * 2019-11-05 2020-01-07 苏州鼎立工业胶辊有限公司 High-thermal-conductivity composite rubber
CN110655698B (en) * 2019-11-05 2021-07-09 苏州鼎立工业胶辊有限公司 High-thermal-conductivity composite rubber
JP7534204B2 (en) 2019-12-13 2024-08-14 日本化学工業株式会社 Coated particles and conductive materials containing same
GB2592383A (en) * 2020-02-25 2021-09-01 Kilwaughter Minerals Ltd Ionic liquid surface coatings
GB2592383B (en) * 2020-02-25 2024-10-02 Kilwaughter Minerals Ltd Ionic liquid surface coatings

Also Published As

Publication number Publication date
JP5730489B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5730489B2 (en) Surface-modified inorganic oxide powder and method for producing the same
JP5847581B2 (en) Method for producing surface-modified metal oxide powder
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP2630946B2 (en) Fluidity improver for positively chargeable resin powder
JP2009292915A (en) Surface-modified inorganic oxide powder and toner composition for electrophotography
KR100887273B1 (en) Hydroxyalkyl-functionalized fillers
KR101521364B1 (en) Surface-modified silica powder and method for producing the same, as well as toner composition for electrophotography
KR101172146B1 (en) Highly disperse metal oxides having a high positive surface charge
JP2008521980A (en) Metal oxide with permanent positive surface charge over a wide range of pH
JP2011032114A (en) Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JPH11278845A (en) Hydrophobic titanium oxide fine powder and its production
JP6962296B2 (en) Positively charged hydrophobic spherical silica particles, a method for producing the same, and a positively charged toner composition using the same.
JP2014114175A (en) Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JP5603659B2 (en) Surface-modified inorganic oxide powder, method for producing the inorganic oxide powder, and semiconductive material
JP5020224B2 (en) Method for producing surface-treated silica
JP6382608B2 (en) Positively chargeable silica particles and method for producing the same
TWI804672B (en) Positively charged hydrophobic spherical silica particles, method for producing same, and positively charged toner composition using the positively charged hydrophobic spherical silica particles
JP5542457B2 (en) Method for producing surface-treated fumed silica powder
JP4099748B2 (en) Surface modified inorganic oxide powder
JP2005015251A (en) Hydrophobic spherical silica minute particle, its manufacturing method, and toner additive therewith for electrostatic charge image development
JP4279206B2 (en) External toner additive
JP2014162681A (en) Surface-treated silica powder and method for manufacturing the same
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP5683101B2 (en) Surface-treated silica
JP2005292592A (en) Surface-treated silica

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150408

R150 Certificate of patent or registration of utility model

Ref document number: 5730489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250