JP2011146240A - Circuit breaker with thermomotive type tripper, and its temperature inspection method - Google Patents

Circuit breaker with thermomotive type tripper, and its temperature inspection method Download PDF

Info

Publication number
JP2011146240A
JP2011146240A JP2010005961A JP2010005961A JP2011146240A JP 2011146240 A JP2011146240 A JP 2011146240A JP 2010005961 A JP2010005961 A JP 2010005961A JP 2010005961 A JP2010005961 A JP 2010005961A JP 2011146240 A JP2011146240 A JP 2011146240A
Authority
JP
Japan
Prior art keywords
temperature
bimetal
hole
circuit breaker
radiation thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010005961A
Other languages
Japanese (ja)
Inventor
Motohiko Eto
基比古 江藤
Katsumi Ono
克巳 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010005961A priority Critical patent/JP2011146240A/en
Publication of JP2011146240A publication Critical patent/JP2011146240A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Breakers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit breaker having a thermomotive type tripper capable of measuring temperature of a bimetal or a member coming in contact with a bimetal with high accuracy with the use of a radiation thermometer. <P>SOLUTION: In the circuit breaker having a thermomotive type tripper in which a bimetal 2 is heated by overcurrent, the thermomotive type tripper for carrying out a tripping action between a movable contact and a fixed contact due to bending of the heated bimetal 2 is housed in a case 7, temperature of the bimetal 2 or that of a temperature measuring part 8 of a member in contact with the bimetal 2 is measured with a radiation thermometer 10 to detect action time of the thermomotive type tripper, a through-hole 9 opposed to the temperature measuring part 8 is provided at the case 7, and a reflection surface for reflecting measured wavelength light of the radiation thermometer 10 is formed on an inner peripheral surface of the through-hole 9. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は熱動式引き外し装置を有する回路遮断器及びその温度検査方法に関する。   The present invention relates to a circuit breaker having a thermal trip device and a temperature inspection method thereof.

回路遮断器に用いる熱動式引き外し装置は、定格以上の過電流を検出し、主回路の可動接点と固定接点間の引き外し遮断を行う装置である。過電流が流れた際の引き外し特性は、JIS等の規格でその範囲が定められており、製品はそれを満たす必要がある。しかし、熱動式引き外し装置においては、構成する部品の製作ばらつきや素材のばらつきのため、引き外し特性のばらつきが避けられない。そこで通常は引き外し特性を調整するための構造が組み込んであり、特性の検査・調整を行っている。
引き外し特性を検査・調整するためには、その特性値を正確に測定する必要がある。熱動式引き外し装置では、所定電流を通電して通電開始から引き外し完了までの時間(トリップ時間)やバイメタル変位量を計測することにより引き外し特性を測定することが多い。一方、バイメタルの湾曲係数は既知であるため、バイメタル温度を測定することでバイメタル変位量を求めることができる。従って、バイメタル温度を測定することによって引き外し特性を把握することができる。
A thermal tripping device used for a circuit breaker is a device that detects an overcurrent exceeding a rating and performs tripping breakage between a movable contact and a fixed contact of a main circuit. The range of the trip characteristic when an overcurrent flows is defined by a standard such as JIS, and the product must satisfy it. However, in a thermal tripping device, variations in tripping characteristics are unavoidable due to manufacturing variations of components and materials. Therefore, a structure for adjusting the tripping characteristic is usually incorporated, and the characteristic is inspected and adjusted.
In order to inspect and adjust the tripping characteristic, it is necessary to accurately measure the characteristic value. In the thermal tripping device, the tripping characteristic is often measured by energizing a predetermined current and measuring the time (trip time) from the start of energization to the completion of tripping and the amount of bimetal displacement. On the other hand, since the curvature coefficient of bimetal is known, the amount of bimetal displacement can be obtained by measuring the bimetal temperature. Therefore, the trip characteristic can be grasped by measuring the bimetal temperature.

バイメタル温度を計測するにあたっては、計測によってバイメタル湾曲量に影響を及ぼさないために、非接触で測定する方法が望ましい。接触式温度計による計測では、測定子を介してバイメタルに外部から荷重が加わるためバイメタルに撓みが生じ、引き外し特性を変化させてしまう。非接触温度測定方法としては、赤外線吸収素子を組み込んだ放射温度計を用いるのが一般的である。   In measuring the bimetal temperature, a non-contact measurement method is desirable so that the bimetal bending amount is not affected by the measurement. In the measurement using the contact-type thermometer, a load is applied to the bimetal from the outside through the probe, so that the bimetal is bent and the tripping characteristic is changed. As a non-contact temperature measurement method, a radiation thermometer incorporating an infrared absorption element is generally used.

国際公開第WO2005/104159号パンフレットInternational Publication No. WO2005 / 104159 Pamphlet

しかし、回路遮断器の小型化や高密度化の進展に伴い、回路遮断器に電流を給電する電極や,引き外し特性調整機構や,引き外し開放機構などが回路遮断器の上部に密集するようになり、トリップ時間を検査し調整するために、バイメタル等の温度を測定する放射温度計をバイメタルを直接望む位置に設置することが困難になってきた。
本発明は、かかる課題を解決するためになされたものであり、放射温度計を用いて、バイメタル又はバイメタルに当接した部材の温度を高精度に計測することが可能な熱動式引き外し装置を有する回路遮断器及びその温度検査方法を提供することを目的としている。
However, with the progress of miniaturization and higher density of circuit breakers, the electrodes that supply current to the circuit breakers, the trip characteristic adjustment mechanism, the trip opening mechanism, etc. are concentrated at the top of the circuit breaker. In order to inspect and adjust the trip time, it has become difficult to install a radiation thermometer for measuring the temperature of a bimetal or the like at a position where the bimetal is directly desired.
The present invention has been made to solve such a problem, and a thermal trip device capable of measuring the temperature of a bimetal or a member in contact with the bimetal with high accuracy using a radiation thermometer. It is an object of the present invention to provide a circuit breaker having the above and a temperature inspection method thereof.

本発明に係わる熱動式引き外し装置を有する回路遮断器は、過電流によりバイメタルが加熱され、加熱されたバイメタルの湾曲により可動接点と固定接点間の引き外し動作を行う熱動式引き外し装置が筺体に収納され、バイメタル又はバイメタルに当接した部材の温度測定部の温度が放射温度計で測定され、前記熱式引き外し装置の動作時間が検査される熱動式引き外し装置を有する回路遮断器において、前記筺体に前記温度測定部に対向する貫通孔を設け、その貫通孔の内周面に、前記放射温度計の測定波長光が反射する反射面を形成したものである。     A circuit breaker having a thermal trip device according to the present invention is a thermal trip device in which a bimetal is heated by an overcurrent, and a tripping operation between a movable contact and a fixed contact is performed by the curvature of the heated bimetal. Is a circuit having a thermal trip device in which the temperature of the temperature measuring portion of the bimetal or a member in contact with the bimetal is measured with a radiation thermometer and the operating time of the thermal trip device is inspected In the circuit breaker, a through-hole facing the temperature measurement unit is provided in the casing, and a reflection surface for reflecting the measurement wavelength light of the radiation thermometer is formed on an inner peripheral surface of the through-hole.

また、本発明に係わる熱動式引き外し装置を有する回路遮断器の温度検査方法は、過電
流によりバイメタルが加熱され、加熱されたバイメタルの湾曲により可動接点と固定接点間の引き外し動作を行う熱動式引き外し装置が筺体に収納され、バイメタル又はバイメタルに当接した部材の温度測定部の温度が放射温度計で測定され、前記熱式引き外し装置の動作時間が検査される熱動式引き外し装置を有する回路遮断器の温度検査方法において、前記筺体に前記温度測定部に対向する貫通孔を設け、その貫通孔の内周面に、前記放射温度計の測定波長光が反射する反射面を形成し、前記温度測定部から放射され前記貫通孔の内周面の反射面で反射した反射光を含む放射光を前記筺体の外部に設けた前記放射温度計で受光して前記温度測定部の温度を測定するようにしたものである。
Further, in the circuit breaker temperature inspection method having the thermal tripping device according to the present invention, the bimetal is heated by overcurrent, and the tripping operation between the movable contact and the fixed contact is performed by the curvature of the heated bimetal. A thermal type in which a thermal trip device is housed in a housing, the temperature of the temperature measuring part of the bimetal or a member in contact with the bimetal is measured with a radiation thermometer, and the operating time of the thermal trip device is inspected In the circuit breaker temperature inspection method having a tripping device, a through hole facing the temperature measurement unit is provided in the housing, and the reflection of the measurement wavelength light of the radiation thermometer reflected on the inner peripheral surface of the through hole Forming a surface, and receiving the radiated light including the reflected light radiated from the temperature measuring portion and reflected by the reflecting surface of the inner peripheral surface of the through hole with the radiation thermometer provided outside the housing, and measuring the temperature Department temperature It is obtained so as to measure.

本発明の熱動式引き外し装置を有する回路遮断器及びその温度検査方法によれば、筺体にバイメタル又はバイメタルに当接した部材の温度測定部に対向する貫通孔を設け、その貫通孔の内周面に、放射温度計の測定波長光が反射する反射面を形成したので、前記温度測定部から放射され前記貫通孔の内周面の反射面で反射した反射光を含む放射光を前記放射温度計で受光して前記温度測定部の温度を測定できるため、前記放射温度計が前記温度測定部からの放射光を受光でき、また、仮に前記放射温度計が前記温度測定部を直接望むことができない場合でも貫通孔の内周面の反射面で反射した反射光である放射光を受光でき前記温度測定部の温度を測定できる。   According to the circuit breaker having the thermal trip device of the present invention and the temperature inspection method thereof, a through-hole facing the temperature measuring portion of the bimetal or a member in contact with the bimetal is provided in the housing, and the inside of the through-hole Since the reflection surface for reflecting the measurement wavelength light of the radiation thermometer is formed on the peripheral surface, the radiation light including the reflected light radiated from the temperature measurement unit and reflected by the reflection surface of the inner peripheral surface of the through hole is emitted. Since the temperature of the temperature measuring unit can be measured by receiving light with a thermometer, the radiation thermometer can receive the radiated light from the temperature measuring unit, and the radiation thermometer directly wants the temperature measuring unit. Even if it is not possible, it is possible to receive the radiated light reflected by the reflecting surface on the inner peripheral surface of the through hole and measure the temperature of the temperature measuring unit.

本発明の実施の形態1における熱動式引き外し装置を有する回路遮断器を一部破断し、温度測定態様を示す一部断面正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a partial cross section front view which partially fractures | ruptures the circuit breaker which has the thermal tripping device in Embodiment 1 of this invention, and shows a temperature measurement aspect. 本発明の実施の形態2における熱動式引き外し装置を有する回路遮断器の要部を示すと共に、温度測定態様を示す斜視図である。It is a perspective view which shows the principal part of the circuit breaker which has the thermal tripping device in Embodiment 2 of this invention, and shows a temperature measurement aspect. 本発明の実施の形態3における熱動式引き外し装置を有する回路遮断器の要部を示すと共に、温度測定態様を示す側面図である。It is a side view which shows the principal part of the circuit breaker which has the thermal tripping device in Embodiment 3 of this invention, and shows a temperature measurement aspect. 本発明の実施の形態6における熱動式引き外し装置を有する回路遮断器の要部を示すと共に、温度測定態様を示す斜視図である。It is a perspective view which shows the principal part of the circuit breaker which has the thermal tripping device in Embodiment 6 of this invention, and shows a temperature measurement aspect. 熱動式引き外し装置を有する回路遮断器の要部を示すと共に、温度測定態様を説明する斜視図である。It is a perspective view which shows the principal part of the circuit breaker which has a thermal tripping device, and demonstrates a temperature measurement aspect.

初めに、本発明に至る前の思考技術について説明する。図5は熱動式引き外し装置を有する回路遮断器の要部を示すと共に、温度測定態様を説明する斜視図である。21は熱動式引き外し装置に用いられるバイメタル、22は回路遮断器の回路電流が流れるヒータで、ヨーク23と共にバイメタル21に沿わせて当接し回路電流として過電流が流れたときにバイメタル21を加熱し湾曲させる。バイメタル21とヒータ22とヨーク23は互いに当接して固定されている。一体となったバイメタル21とヒータ22とヨーク23は筺体24の底部材に固定されている。   First, the thinking technique before reaching the present invention will be described. FIG. 5 is a perspective view illustrating a temperature measurement mode as well as a main part of a circuit breaker having a thermal trip device. Reference numeral 21 denotes a bimetal used in the thermal tripping device. Reference numeral 22 denotes a heater through which the circuit current of the circuit breaker flows. The bimetal 21 is brought into contact with the yoke 23 along the bimetal 21 and an overcurrent flows as a circuit current. Heat and curve. The bimetal 21, the heater 22, and the yoke 23 are fixed in contact with each other. The integrated bimetal 21, heater 22 and yoke 23 are fixed to the bottom member of the casing 24.

ここで、所定の過電流を流してバイメタルを加熱したときのバイメタル又はバイメタルに当接した部材の温度測定部の温度を測定しようとする。しかし、前述したように、回路遮断器の小型化や高密度化の進展に伴い、バイメタル等の温度を測定する放射温度計をバイメタルを直接望む位置に設置することが困難になってきた。そこで、本発明の思考技術では、熱動式引き外し装置が収納された筺体24に、バイメタル21又はバイメタル21に当接した部材の温度測定部27に対向する貫通孔25を設ける。図5の場合は、筺体24の底部材に貫通孔25を設ける。26は筺体の外部に設けられた放射温度計で、貫通孔25を通して、前記温度測定部27を直接望んでいる。放射温度計26は温度測定部27から放射され貫通孔25を通った放射光を受光して温度測定部27の温度を測定することができる。   Here, an attempt is made to measure the temperature of the temperature measuring portion of the bimetal or a member in contact with the bimetal when the bimetal is heated by flowing a predetermined overcurrent. However, as described above, with the progress of miniaturization and higher density of circuit breakers, it has become difficult to install a radiation thermometer that measures the temperature of a bimetal or the like at a position where the bimetal is desired directly. Therefore, in the thinking technique of the present invention, the through-hole 25 facing the bimetal 21 or the temperature measuring portion 27 of the member in contact with the bimetal 21 is provided in the housing 24 in which the thermal tripping device is accommodated. In the case of FIG. 5, the through hole 25 is provided in the bottom member of the housing 24. Reference numeral 26 denotes a radiation thermometer provided outside the housing, and directly desires the temperature measuring unit 27 through the through hole 25. The radiation thermometer 26 can measure the temperature of the temperature measurement unit 27 by receiving the radiation emitted from the temperature measurement unit 27 and passing through the through hole 25.

しかしながら、ヒータ22によるバイメタル加熱が十分に得られ、遮断性能を劣化させずに温度を測定するためには、貫通孔25の孔径を一定以下にする必要がある。貫通孔25の孔径を一定以下にすると、貫通孔25の筐体外表面の出口29(放射温度計26に面している貫通孔25の出口)から、温度測定部27までの距離によって、放射温度計26の視野が妨害され、正確な温度が測定できなくなる可能性があり、図5による温度測定が適用できる回路遮断器の形式が限られてしまうという問題がある。換言すると、放射温度計26の受光レンズ30の全体面積に達する放射光28が貫通孔25から得られず、周辺部が欠けた放射光になってします問題がある。なお、放射温度計26の受光レンズ30の焦点により、受光レンズ30と温度測定部27までの距離は決まっていることから、安定した温度測定を行うためには、放射温度計26を貫通孔25の出口29から遠ざけることはできない。   However, in order to sufficiently obtain the bimetal heating by the heater 22 and measure the temperature without deteriorating the shut-off performance, it is necessary to make the diameter of the through hole 25 equal to or less than a certain value. When the hole diameter of the through hole 25 is set to a certain value or less, the radiation temperature depends on the distance from the outlet 29 (outlet of the through hole 25 facing the radiation thermometer 26) on the outer surface of the housing of the through hole 25 to the temperature measuring unit 27. There is a possibility that the visual field of the total 26 is obstructed and an accurate temperature cannot be measured, and there is a problem that the type of circuit breaker to which the temperature measurement according to FIG. 5 can be applied is limited. In other words, there is a problem in that the radiated light 28 reaching the entire area of the light receiving lens 30 of the radiation thermometer 26 cannot be obtained from the through hole 25 and becomes a radiated light with a lacking peripheral portion. Since the distance between the light receiving lens 30 and the temperature measuring unit 27 is determined by the focal point of the light receiving lens 30 of the radiation thermometer 26, the radiation thermometer 26 is inserted into the through hole 25 in order to perform stable temperature measurement. It cannot be kept away from the exit 29.

実施の形態1.
本件発明は、従来の先行技術及び前述の思考技術の問題点を解消しようとするものである。図1は本発明の実施の形態1における熱動式引き外し装置を有する回路遮断器を一部破断し、温度測定態様を示す一部断面正面図である。図1において、1はヨークで、バイメタル2に当接し固定され、回路遮断器の回路電流が流れる。3はトリップバー、4は引き外し機構部、5は主回路で可動接点5aと固定接点5bを有する。6は調整機構で、トリップ時間を調整する。熱動式引き外し装置は、ヨーク1,バイメタル2,トリップバー3,引き外し機構部5,調整機構6から構成されている。
Embodiment 1 FIG.
The present invention is intended to solve the problems of the conventional prior art and the above-described thinking technique. FIG. 1 is a partial cross-sectional front view showing a temperature measurement mode by partially breaking a circuit breaker having a thermal tripping device according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a yoke which is fixed in contact with the bimetal 2 so that a circuit current of the circuit breaker flows. 3 is a trip bar, 4 is a tripping mechanism, and 5 is a main circuit having a movable contact 5a and a fixed contact 5b. 6 is an adjustment mechanism for adjusting the trip time. The thermal tripping device includes a yoke 1, a bimetal 2, a trip bar 3, a tripping mechanism portion 5, and an adjustment mechanism 6.

定格電流以上の過電流が流れたときの動作は以下のとおりである。
(1)ヨーク1あるいはバイメタル2に過電流が流れることにより、ヨーク1あるいはバイメタル2の温度が上昇する。
(2)バイメタル2の温度の上昇に伴ってバイメタル2が湾曲する。
(3)バイメタル2の湾曲量が大きくなり、トリップバー3を押す。
(4)引き外し機構部4が作動して、固定接点5bから可動接点5aを引き外し主回路5を瞬時に遮断する(トリップする)。
The operation when an overcurrent exceeding the rated current flows is as follows.
(1) When an overcurrent flows through the yoke 1 or the bimetal 2, the temperature of the yoke 1 or the bimetal 2 rises.
(2) The bimetal 2 bends as the temperature of the bimetal 2 increases.
(3) The bending amount of the bimetal 2 increases, and the trip bar 3 is pushed.
(4) The tripping mechanism unit 4 is actuated to trip the movable contact 5a from the fixed contact 5b and instantaneously shut off (trip) the main circuit 5.

過電流が流れはじめてからトリップするまでの時間は、JIS等の規格により範囲が定められており、製品のトリップ時間は、その範囲を満足しなければならない。しかし、引き外し機構の作動点、すなわち、バイメタル2がトリップバー3を押す位置が、引き外し装置を構成する各部品の加工・組立誤差、材料特性のばらつき等、製造ばらつきの累積によりばらついて、通電開始からトリップするまでの時間(トリップ時間)にばらつきが生じる。そこで、このような製造ばらつきを吸収するために、バイメタル2先端やトリップバー3に調整機構6を設け、組立工程において検査・調整作業を行っている。   The range from the start of overcurrent to the trip is defined by the standards such as JIS, and the product trip time must satisfy the range. However, the operating point of the tripping mechanism, that is, the position where the bimetal 2 pushes the trip bar 3 varies due to the accumulation of manufacturing variations such as processing / assembly errors of each component constituting the tripping device, variations in material characteristics, etc. Variation occurs in the time (trip time) from the start of energization to the trip. Therefore, in order to absorb such manufacturing variations, an adjustment mechanism 6 is provided at the tip of the bimetal 2 and the trip bar 3, and inspection and adjustment operations are performed in the assembly process.

検査・調整作業では、ワーク毎の引き外し特性を正確に測定する必要がある。通常は所定の電流値を通電してトリップ時間を計測したり、その間のバイメタル変位量を計測することにより、引き外し特性を測定することが多い。しかしトリップ時間やバイメタル変位量は、通電開始時のワーク温度や測定環境温度に大きく影響されるため、一定温度に管理された状態で計測するか、もしくはワーク温度や周囲温度に基づいて計測値を補正しなければならない。
一方、バイメタルはその温度と湾曲係数によって湾曲量(変位量)が決定するが、湾曲係数は既知であるため、バイメタル温度を計測することにより変位量を求めることができる。従って、バイメタル温度を計測することによって、引き外し特性を測定することが可能である。
In inspection / adjustment work, it is necessary to accurately measure the tripping characteristics of each workpiece. Usually, the trip characteristic is often measured by energizing a predetermined current value and measuring the trip time or measuring the amount of bimetal displacement during that time. However, since the trip time and bimetal displacement are greatly affected by the workpiece temperature and measurement environment temperature at the start of energization, measure the trip time or the measured environment based on the workpiece temperature and ambient temperature. It must be corrected.
On the other hand, the bending amount (displacement amount) of the bimetal is determined by the temperature and the bending coefficient. However, since the bending coefficient is known, the displacement amount can be obtained by measuring the bimetal temperature. Therefore, the trip characteristic can be measured by measuring the bimetal temperature.

図1において、7は熱動式引き外し装置及び可動接点5a、固定接点5b等を収納する
筺体で、上部筺体7aと、下部筺体7bを有する。筺体はPET(ポリエチレンテレフタレート)樹脂製とすることができる。8はバイメタル2又はバイメタル2に当接した部材(この場合は、ヨーク1の下面)の温度測定部である。バイメタル2とヨーク1やヒータなどが互いに当接されておれば、ヨーク1やヒータの温度とバイメタル2の温度には密接な関係があり、バイメタル2に当接した部材の温度を測定することによりバイメタル2の温度を計算できる。9は温度測定部8に対向する貫通孔(1〜5Φ)で、この場合は、温度測定部8であるヨーク1の底面の直下の下部筺体7bの底部材(1〜10mm)に円筒状に穿設されている。10は赤外線吸収素子を組み込んだ放射温度計で、温度測定部8との距離が受光レンズ10aの焦点距離に合う筺体外の位置に配置される。貫通孔9の内周面には、放射温度計10の測定波長光が反射する反射面が形成されている。
In FIG. 1, reference numeral 7 denotes a housing for housing a thermal tripping device, movable contact 5a, fixed contact 5b and the like, and has an upper housing 7a and a lower housing 7b. The casing can be made of PET (polyethylene terephthalate) resin. Reference numeral 8 denotes a temperature measuring portion of the bimetal 2 or a member that contacts the bimetal 2 (in this case, the lower surface of the yoke 1). If the bimetal 2 and the yoke 1 and the heater are in contact with each other, the temperature of the yoke 1 and the heater and the temperature of the bimetal 2 are closely related, and the temperature of the member in contact with the bimetal 2 is measured. The temperature of the bimetal 2 can be calculated. Reference numeral 9 denotes a through hole (1 to 5Φ) facing the temperature measuring unit 8. In this case, the bottom member (1 to 10 mm) of the lower casing 7 b just below the bottom surface of the yoke 1 serving as the temperature measuring unit 8 is formed in a cylindrical shape. It has been drilled. Reference numeral 10 denotes a radiation thermometer incorporating an infrared absorption element, which is arranged at a position outside the housing where the distance from the temperature measuring unit 8 matches the focal length of the light receiving lens 10a. On the inner peripheral surface of the through hole 9, a reflection surface is formed that reflects the measurement wavelength light of the radiation thermometer 10.

このように貫通孔9の内周面に反射面を形成することにより、放射温度計10は、温度測定部8から放射される赤外線(つまり放射光11)が、貫通孔9を直接的に通過する放射光のみならず、貫通孔9の内周面の反射面で反射した放射光をも観測することができる。そのため図5の思考技術のように温度測定部27からの直接的放射光を観測した場合に比べ、十分な放射光を観測することができる。また、バイメタルの屈曲により温度測定部8と貫通孔9の出口との距離が変動しても温度測定部8からの放射光が安定して放射温度計10に入射し、安定した温度測定が可能になる。   By forming the reflection surface on the inner peripheral surface of the through hole 9 in this way, the radiation thermometer 10 allows the infrared rays (that is, the radiated light 11) radiated from the temperature measuring unit 8 to pass directly through the through hole 9. In addition to the emitted light, the reflected light reflected by the reflecting surface of the inner peripheral surface of the through hole 9 can be observed. Therefore, sufficient radiated light can be observed compared to the case where direct radiated light from the temperature measuring unit 27 is observed as in the thinking technique of FIG. Further, even if the distance between the temperature measuring unit 8 and the outlet of the through hole 9 varies due to the bending of the bimetal, the radiated light from the temperature measuring unit 8 is stably incident on the radiation thermometer 10 and stable temperature measurement is possible. become.

非接触式温度計は物体から放射される赤外線の放射エネルギー量を検知することで物体の温度を測定する。物体から放射される赤外線の放射量は、材質やその表面状態により違いがあり、同一温度であっても放射する赤外線エネルギー量(放射率)は異なる。非接触温度計では理想黒体(放射率100%の理論的な物体)を基準に温度を算出しており、それ以外の物体では個々の放射率に合わせて補正を行わなければならない。
放射率は通常実験的に得られるもので、測定物の放射率を短時間で求めることは困難なため、量産工程でワーク毎に放射率を求めることはできない。従って、バイメタル又はその当接部材の放射率がばらついている場合には、そのばらつきが温度計測のばらつきとなってしまう。さらに、バイメタル又はその当接部材表面は一般には金属光沢面となっているため、バイメタル近傍にある他の熱源から放射される赤外線がバイメタル又はその当接部材表面で反射され易い。その反射光が放射温度計に入射してしまうと測定誤差となってしまう。
A non-contact thermometer measures the temperature of an object by detecting the amount of infrared radiation radiated from the object. The amount of infrared radiation radiated from an object varies depending on the material and its surface state, and the amount of infrared energy (emissivity) radiated differs even at the same temperature. In a non-contact thermometer, the temperature is calculated based on an ideal black body (theoretical object with 100% emissivity), and other objects must be corrected according to the individual emissivity.
Since the emissivity is usually obtained experimentally, and it is difficult to obtain the emissivity of the measurement object in a short time, the emissivity cannot be obtained for each workpiece in the mass production process. Therefore, when the emissivity of the bimetal or its abutting member varies, the variation becomes a variation in temperature measurement. Furthermore, since the bimetal or its abutting member surface is generally a metallic luster surface, infrared rays radiated from other heat sources in the vicinity of the bimetal are easily reflected on the bimetal or its abutting member surface. If the reflected light enters the radiation thermometer, a measurement error occurs.

また、放射率が低い場合でも放射率に応じて補正をかけることで温度の測定は可能であるが、赤外線(放射光)の絶対量が少なくなるので測定でのノイズ成分が多くなり、温度測定精度が低下してしまう。よって、高精度な温度計測のためには放射率が高くかつ一定であることが望ましい。
そこで、バイメタル又はその当接部材の温度測定部となる表面を黒色、望ましくは、つや消し黒色とすることにより放射率を高くしかつ一定にすることができる。これにより異なる温度測定部でも一定の高い放射率となるため、バイメタル温度又はその当接部材の温度を高精度に安定して測定できる。また、つや消し塗装とすることで他の熱源からの反射を抑えることができ、計測誤差を少なくできる。
In addition, even if the emissivity is low, the temperature can be measured by correcting it according to the emissivity, but the absolute amount of infrared rays (radiated light) decreases, so the noise component in the measurement increases and the temperature is measured. Accuracy will be reduced. Therefore, it is desirable that the emissivity is high and constant for highly accurate temperature measurement.
Therefore, the emissivity can be increased and made constant by making the surface of the bimetal or its contact member the temperature measurement part black, preferably matte black. As a result, even at different temperature measuring parts, a constant high emissivity is obtained, so that the bimetal temperature or the temperature of the contact member can be stably measured with high accuracy. In addition, by using matte coating, reflection from other heat sources can be suppressed, and measurement errors can be reduced.

黒色とするには例えば塗装やエッチングによる方法がある。つや消し黒色にするには、つや消し用の黒色塗料を使用すれば良い。また、エッチングと共に酸化させることによりつや消し黒色にしても良い。この場合、エッチング液としては、バイメタルが鉄系の素材のときは、例えば水酸化ナトリウム溶液や燐酸塩溶液を用い、銅系の素材のときは、例えばセレンを含有する酸性水溶液を用いる。   To make it black, for example, there is a method by painting or etching. A matte black paint may be used to make the matte black. Moreover, you may make it matt black by oxidizing with etching. In this case, as the etching solution, for example, a sodium hydroxide solution or a phosphate solution is used when the bimetal is an iron-based material, and an acidic aqueous solution containing, for example, selenium is used when the bimetal is a copper-based material.

実施の形態2.
図2は本発明の実施の形態2における熱動式引き外し装置を有する回路遮断器の主要部
を示すと共に、温度測定態様を示す斜視図である。図1と同一符号は同一又は相当部分を示す。バイメタル2にヨーク1およびヒータ16が取り付けられている。ヒータ16はーク1と共にバイメタル2に沿わせて当接し固定し回路電流が流れている。一体となったバイメタル2とヒータ16とヨーク1は下部筺体7bの底部材に固定されている。下部筺体7bは例えば、幅100−500mm×長さ50−300mm×高さ30−100mmである。温度測定部8はヒータ16の下面である。温度測定部8に対向して下部筺体7bの底部材には、円筒状貫通孔9が穿設されている。円筒状貫通孔9は、例えば、長さ1−10mm、φ1−5mmである。円筒状貫通孔9の内周面には、放射温度計10の測定波長800−1800nmが反射するアルミニューム蒸着膜の反射面が形成されている。
Embodiment 2. FIG.
FIG. 2 is a perspective view showing the temperature measurement mode as well as the main part of the circuit breaker having the thermal tripping device according to the second embodiment of the present invention. 1 denote the same or corresponding parts. A yoke 1 and a heater 16 are attached to the bimetal 2. The heater 16 has contacts fixed to the circuit current along a bimetal 2 with yaw click 1 stream. The integrated bimetal 2, the heater 16, and the yoke 1 are fixed to the bottom member of the lower casing 7b. The lower housing 7b is, for example, 100-500 mm wide × 50-300 mm long × 30-100 mm high. The temperature measuring unit 8 is the lower surface of the heater 16. A cylindrical through hole 9 is formed in the bottom member of the lower housing 7b so as to face the temperature measuring unit 8. The cylindrical through-hole 9 has a length of 1-10 mm and φ1-5 mm, for example. On the inner peripheral surface of the cylindrical through-hole 9, a reflection surface of an aluminum vapor deposition film that reflects the measurement wavelength 800 to 1800 nm of the radiation thermometer 10 is formed.

このように筺体に温度測定部8に対向して貫通孔9を穿設させ、貫通孔9の内周面に反射面を形成することで、温度観測時に貫通孔9の出口から1−20mm程度離れて、放射温度計を配置することにより、放射温度計10は、温度測定部8から放射される放射光11が、貫通孔9を直接的に通過する放射光のみならず、貫通孔9の内周面の反射面で反射した放射光をも観測することができ、十分な放射光を観測することができる。また、バイメタルの屈曲により温度測定部8と貫通孔9の出口との距離が変動しても温度測定部8からの放射光が安定して放射温度計10に入射し、安定した温度測定が可能になる。   In this way, the through-hole 9 is formed in the housing so as to face the temperature measuring portion 8 and a reflection surface is formed on the inner peripheral surface of the through-hole 9, so that about 1-20 mm from the outlet of the through-hole 9 at the time of temperature observation. By disposing the radiation thermometer apart, the radiation thermometer 10 allows the radiation light 11 radiated from the temperature measuring unit 8 to pass through the through hole 9 as well as the radiation light directly passing through the through hole 9. The radiant light reflected by the reflecting surface on the inner peripheral surface can also be observed, and sufficient radiated light can be observed. Further, even if the distance between the temperature measuring unit 8 and the outlet of the through hole 9 varies due to the bending of the bimetal, the radiated light from the temperature measuring unit 8 is stably incident on the radiation thermometer 10 and stable temperature measurement is possible. become.

実施の形態3.
図3は本発明の実施の形態3における熱動式引き外し装置を有する回路遮断器の主要部を示すと共に、温度測定態様を示す側面図である。図1,2と同一符号は同一又は相当部分を示す。一体となったバイメタル2とヨーク1とヒータ16は下部筺体の底部材7cに固定されている。温度測定部8はバイメタル2の下面であり、この下面には、黒色、望ましくは、つや消し黒色を施すとよい。温度測定部8に対向して下部筺体7bの底部材7cに、円筒状貫通孔9が穿設されている。円筒状貫通孔9の内周面には、放射温度計10の反射面が形成されている。
Embodiment 3 FIG.
FIG. 3 is a side view showing the temperature measurement mode as well as the main part of the circuit breaker having the thermal tripping device according to the third embodiment of the present invention. 1 and 2 indicate the same or corresponding parts. The integrated bimetal 2, yoke 1 and heater 16 are fixed to the bottom member 7c of the lower casing. The temperature measuring unit 8 is the lower surface of the bimetal 2, and the lower surface is preferably black, preferably matte black. A cylindrical through hole 9 is formed in the bottom member 7c of the lower housing 7b so as to face the temperature measuring unit 8. A reflection surface of the radiation thermometer 10 is formed on the inner peripheral surface of the cylindrical through hole 9.

このように筺体に温度測定部8に対向して貫通孔9を穿設させ、貫通孔9の内周面に反射面を形成することで、実施の形態1,2と同様に、放射温度計10は、温度測定部8から放射される放射光11が、貫通孔9を直接的に通過する放射光のみならず、貫通孔9の内周面の反射面で反射した放射光をも観測することができ、十分な放射光を観測することができる。   As described above, the radiation thermometer is formed in the same manner as in the first and second embodiments by forming the through hole 9 in the casing so as to face the temperature measurement unit 8 and forming the reflection surface on the inner peripheral surface of the through hole 9. 10 observes not only the radiated light directly emitted from the temperature measurement unit 8 but also the radiated light reflected by the reflecting surface of the inner peripheral surface of the through hole 9. And sufficient radiation can be observed.

実施の形態4.
実施の形態1において、貫通孔9に形成する放射温度計10の測定波長光が反射する反射面は、できるだけ高い反射率であることが望ましい。そこで例えば、金蒸着膜、誘電体多層膜といった反射率の高い物質を貫通孔9の内周面に形成することにより、より高い反射率となり、内周面で吸収される赤外線が減少し、より多くの反射光が放射温度計10に入射する結果、より安定した測定が可能になる。
Embodiment 4 FIG.
In Embodiment 1, it is desirable that the reflection surface on which the measurement wavelength light of the radiation thermometer 10 formed in the through hole 9 is reflected has a reflectivity as high as possible. Therefore, for example, by forming a highly reflective substance such as a gold vapor deposition film or a dielectric multilayer film on the inner peripheral surface of the through-hole 9, the reflectivity becomes higher, and infrared rays absorbed by the inner peripheral surface are reduced. As a result of a lot of reflected light entering the radiation thermometer 10, more stable measurement is possible.

実施の形態5.
実施の形態1おいて、貫通孔9を含む筐体7の一部の材質が、放射温度計10の測定波長の反射材となるアルミニュームで形成されることにより、貫通孔9の内周面に反射面を改めて形成する必要がなくなり、低コスト化できる。
Embodiment 5 FIG.
In the first embodiment, the inner peripheral surface of the through-hole 9 is formed by forming a part of the material of the housing 7 including the through-hole 9 from aluminum which is a reflective material having a measurement wavelength of the radiation thermometer 10. Therefore, it is not necessary to form a reflection surface again, and the cost can be reduced.

実施の形態6.
図4は本発明の実施の形態6における熱動式引き外し装置を有する回路遮断器の要部を示すと共に、温度測定態様を示す斜視図である。図1,2,3と同一符号は同一又は相当部分を示す。一体となったバイメタル2とヨーク1とヒータ16は下部筺体7bの底部材に固定されている。温度測定部8はバイメタル2の下面であり、この下面には、黒色、望
ましくは、つや消し黒色を施すとよい。
Embodiment 6 FIG.
FIG. 4 is a perspective view showing the temperature measurement mode as well as the main part of the circuit breaker having the thermal tripping device according to the sixth embodiment of the present invention. 1, 2 and 3 indicate the same or corresponding parts. The integrated bimetal 2, yoke 1 and heater 16 are fixed to the bottom member of the lower housing 7b. The temperature measuring unit 8 is the lower surface of the bimetal 2, and the lower surface is preferably black, preferably matte black.

温度測定部8に対向して下部筺体7bの底部材に貫通孔17が穿設されている。この貫通孔17は、断面が概ね円形であるが、長さ方向に屈曲している。その結果、放射温度計10の設置位置から温度測定部8が直接見えない場所であっても温度の測定が可能となる。貫通孔17内周面には、放射温度計10の測定波長光の反射面が形成されている。また、貫通孔17を含む筐体7bの一部の材質が、放射温度計10の測定波長光の反射材となる材料で形成させてもよい。   A through-hole 17 is formed in the bottom member of the lower housing 7b so as to face the temperature measuring unit 8. The through-hole 17 has a substantially circular cross section, but is bent in the length direction. As a result, the temperature can be measured even in a place where the temperature measuring unit 8 is not directly visible from the installation position of the radiation thermometer 10. A reflection surface of the measurement wavelength light of the radiation thermometer 10 is formed on the inner peripheral surface of the through-hole 17. In addition, a part of the material of the housing 7b including the through hole 17 may be formed of a material that is a reflective material for the measurement wavelength light of the radiation thermometer 10.

温度測定部8から放射された放射光は、温度測定部8に対向して形成した屈曲貫通孔17に入射し、反射面で反射した反射光が屈曲貫通孔17から放射され、放射温度計10の受光レンズ10aで受光される。そのため、放射温度計10の設置位置から温度測定部8が直接見えない場所であっても温度の測定が可能となる。このように筺体に温度測定部8に対向して屈曲貫通孔17を形成し、屈曲貫通孔17の内周面に反射面を形成することで、放射温度計10は、温度測定部8から放射される放射光11が、屈曲貫通孔17の内周面の反射面で反射した放射光を観測することができ、放射光より温度測定部8の温度を測定できる。   The radiated light radiated from the temperature measuring unit 8 is incident on the bent through hole 17 formed so as to face the temperature measuring unit 8, and the reflected light reflected by the reflecting surface is radiated from the bent through hole 17. Is received by the light receiving lens 10a. Therefore, it is possible to measure the temperature even where the temperature measuring unit 8 is not directly visible from the installation position of the radiation thermometer 10. Thus, the radiation thermometer 10 radiates from the temperature measurement unit 8 by forming the bent through hole 17 in the casing so as to face the temperature measurement unit 8 and forming the reflection surface on the inner peripheral surface of the bent through hole 17. The radiated light 11 reflected by the reflection surface on the inner peripheral surface of the bent through hole 17 can be observed, and the temperature of the temperature measuring unit 8 can be measured from the radiated light.

1 ヨーク 2 バイメタル
3 トリップバー 4 引き外し機構部
5 主回路 5a 可動接点
5b 固定接点 6 調整機構
7 筺体 7a 上部筺体
7b 下部筺体 8 温度測定部
9 貫通孔 10 放射温度計
10a 受光レンズ 11 放射光
16 ヒータ 17 屈曲貫通孔
DESCRIPTION OF SYMBOLS 1 Yoke 2 Bimetal 3 Trip bar 4 Trip mechanism 5 Main circuit 5a Movable contact 5b Fixed contact 6 Adjustment mechanism 7 Housing 7a Upper housing 7b Lower housing 8 Temperature measuring section 9 Through-hole 10 Radiation thermometer 10a Light receiving lens 11 Sync light 16 Heater 17 Bent through hole

Claims (7)

過電流によりバイメタルが加熱され、加熱されたバイメタルの湾曲により可動接点と固定接点間の引き外し動作を行う熱動式引き外し装置が筺体に収納され、
バイメタル又はバイメタルに当接した部材の温度測定部の温度が放射温度計で測定され、前記熱式引き外し装置の動作時間が検査される熱動式引き外し装置を有する回路遮断器において、
前記筺体に前記温度測定部に対向する貫通孔を設け、
その貫通孔の内周面に、前記放射温度計の測定波長光が反射する反射面を形成した熱動式引き外し装置を有する回路遮断器。
A thermal trip device that performs a tripping operation between the movable contact and the fixed contact by bending of the heated bimetal is accommodated in the housing by overcurrent,
In a circuit breaker having a thermal tripping device in which the temperature of the temperature measuring part of a member abutting on the bimetal or the bimetal is measured with a radiation thermometer, and the operating time of the thermal tripping device is inspected,
A through hole facing the temperature measurement unit is provided in the housing,
A circuit breaker having a thermal trip device in which a reflection surface for reflecting the measurement wavelength light of the radiation thermometer is formed on an inner peripheral surface of the through hole.
前記筺体に前記温度測定部に対向して設けた前記貫通孔は、前記貫通孔の長手方向に屈曲している請求項1記載の熱動式引き外し装置を有する回路遮断器。   The circuit breaker having a thermal trip device according to claim 1, wherein the through-hole provided in the casing so as to face the temperature measuring portion is bent in a longitudinal direction of the through-hole. 前記貫通孔の内周面に、前記放射温度計の測定波長光が反射するアルミニューム蒸着膜又は金蒸着膜を形成した請求項1又は請求項2記載の熱動式引き外し装置を有する回路遮断器。   3. A circuit breaker having a thermal tripping device according to claim 1 or 2, wherein an aluminum vapor deposition film or a gold vapor deposition film that reflects the measurement wavelength light of the radiation thermometer is formed on an inner peripheral surface of the through hole. vessel. 前記貫通孔の内周面に、前記放射温度計の測定波長光が反射する誘電体多層膜を形成した請求項1又は請求項2記載の熱動式引き外し装置を有する回路遮断器。   The circuit breaker having a thermal trip device according to claim 1 or 2, wherein a dielectric multilayer film that reflects the measurement wavelength light of the radiation thermometer is formed on an inner peripheral surface of the through hole. 前記貫通孔を設けた部分の筺体材質を前記放射温度計の測定波長光の反射材で形成した請求項1又は請求項2記載の熱動式引き外し装置を有する回路遮断器。   The circuit breaker having a thermal trip device according to claim 1 or 2, wherein the housing material of the portion where the through hole is provided is formed of a reflection material for the measurement wavelength light of the radiation thermometer. 前記温度測定部の表面を黒色又はつや消し黒色とする請求項1〜請求項5のいずれか1項に記載の熱動式引き外し装置を有する回路遮断器。   The circuit breaker having the thermal tripping device according to any one of claims 1 to 5, wherein a surface of the temperature measuring unit is black or matte black. 過電流によりバイメタルが加熱され、加熱されたバイメタルの湾曲により可動接点と固定接点間の引き外し動作を行う熱動式引き外し装置が筺体に収納され、
バイメタル又はバイメタルに当接した部材の温度測定部の温度が放射温度計で測定され、前記熱式引き外し装置の動作時間が検査される熱動式引き外し装置を有する回路遮断器の温度検査方法において、
前記筺体に前記温度測定部に対向する貫通孔を設け、
その貫通孔の内周面に、前記放射温度計の測定波長光が反射する反射面を形成し、
前記温度測定部から放射され前記貫通孔の内周面の反射面で反射した反射光を含む放射光を前記筺体の外部に設けた前記放射温度計で受光して前記温度測定部の温度を測定するようにした熱動式引き外し装置を有する回路遮断器の温度検査方法。
A thermal trip device that performs a tripping operation between the movable contact and the fixed contact by bending of the heated bimetal is accommodated in the housing by overcurrent,
Circuit breaker temperature inspection method having a thermal trip device in which the temperature of a temperature measuring section of a bimetal or a member in contact with the bimetal is measured with a radiation thermometer, and the operating time of the thermal trip device is inspected In
A through hole facing the temperature measurement unit is provided in the housing,
On the inner peripheral surface of the through hole, a reflection surface that reflects the measurement wavelength light of the radiation thermometer is formed,
Measures the temperature of the temperature measurement unit by receiving the radiated light including the reflected light radiated from the temperature measurement unit and reflected by the reflection surface of the inner peripheral surface of the through hole with the radiation thermometer provided outside the housing. A method for inspecting a temperature of a circuit breaker having a thermal trip device.
JP2010005961A 2010-01-14 2010-01-14 Circuit breaker with thermomotive type tripper, and its temperature inspection method Pending JP2011146240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010005961A JP2011146240A (en) 2010-01-14 2010-01-14 Circuit breaker with thermomotive type tripper, and its temperature inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005961A JP2011146240A (en) 2010-01-14 2010-01-14 Circuit breaker with thermomotive type tripper, and its temperature inspection method

Publications (1)

Publication Number Publication Date
JP2011146240A true JP2011146240A (en) 2011-07-28

Family

ID=44460926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005961A Pending JP2011146240A (en) 2010-01-14 2010-01-14 Circuit breaker with thermomotive type tripper, and its temperature inspection method

Country Status (1)

Country Link
JP (1) JP2011146240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847200B1 (en) 2016-12-02 2017-12-19 Lsis Co., Ltd. Molded case circuit breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847200B1 (en) 2016-12-02 2017-12-19 Lsis Co., Ltd. Molded case circuit breaker

Similar Documents

Publication Publication Date Title
JP5558629B2 (en) Laser processing equipment
JP5054523B2 (en) Sensor
CN108012357B (en) Infrared emitter with layered structure
US20070115445A1 (en) Radiation system and lithographic apparatus
JP2008145133A (en) Radiation thermometer
WO2009081748A1 (en) Radiometric temperature measuring method and radiometric temperature measuring system
JP7162835B2 (en) blackbody furnace
EP1863057B1 (en) Circuit breaker and thermal trip
JP2011146240A (en) Circuit breaker with thermomotive type tripper, and its temperature inspection method
JP2006098295A (en) Emissivity measurement apparatus
JP2010048575A (en) Optical distance measuring sensor and apparatus with sensor mounted
WO2017145670A1 (en) Infrared sensor device
JP4369475B2 (en) Thermal trip device and circuit breaker using the same
US20060198424A1 (en) Probe structure for an ear thermometer
KR100765673B1 (en) Thermal type tripping device and circuit breaker using the same
Lee et al. Normal and directional spectral emittance measurement of semi-transparent materials using two-substrate method: alumina
EP2770521A1 (en) Thermo magnetic trip unit for a circuit breaker and circuit breaker
JP2001050818A (en) Non-contact temperature-measuring sensor
JP2010002268A (en) Microwave-type densitometer and liquid temperature correcting method thereof
JP2010175442A (en) Thermopile type infrared detector
TW201230351A (en) Temperature sensing system for use in a rapid temperature process
WO2017086280A1 (en) Method for measuring heat history, implement for measuring heat history, and device for measuring heat history
JP2005134153A (en) Temperature measuring instrument and temperature measuring method
JP6001992B2 (en) Perspective determination device
Mashkov et al. In situ non contact temperature measurements on PCB during soldering process