JP2011141019A - Solenoid valve driving device, solenoid valve, solenoid valve driving method, and drive control program of solenoid valve driving device - Google Patents

Solenoid valve driving device, solenoid valve, solenoid valve driving method, and drive control program of solenoid valve driving device Download PDF

Info

Publication number
JP2011141019A
JP2011141019A JP2010003497A JP2010003497A JP2011141019A JP 2011141019 A JP2011141019 A JP 2011141019A JP 2010003497 A JP2010003497 A JP 2010003497A JP 2010003497 A JP2010003497 A JP 2010003497A JP 2011141019 A JP2011141019 A JP 2011141019A
Authority
JP
Japan
Prior art keywords
current
solenoid valve
value
valve
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010003497A
Other languages
Japanese (ja)
Other versions
JP5554573B2 (en
Inventor
Tokuhide Nawata
徳秀 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP2010003497A priority Critical patent/JP5554573B2/en
Publication of JP2011141019A publication Critical patent/JP2011141019A/en
Application granted granted Critical
Publication of JP5554573B2 publication Critical patent/JP5554573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solenoid valve driving device, having high detection precision of a plunger holding state. <P>SOLUTION: The solenoid valve driving device 1 maintains a valve open state of a solenoid valve 4 by supplying holding current which is smaller than starting current to the solenoid valve 4 after the valve open state is made by supply of starting current. It includes a detection resistance R3 serially arranged with the solenoid valve 4 to detect energization current to the solenoid valve 4, a monitoring means 3 to monitor detection voltage generating at the detection resistance R3 in a case where current is supplied to the solenoid valve 4, an abnormality detection means 6 to detect whether the solenoid valve 4 is normally opened or the solenoid valve 4 is abnormally closed based on variation of detection voltage monitored by the monitoring means 3 in a case where the holding current is being supplied to the solenoid valve 4, and an automatic restoration means 6 to automatically restore the solenoid valve 4 to the valve open state by increasing current to be supplied to the solenoid valve 4 in a case where abnormality is detected by the abnormality detection means 6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、起動電流を供給して弁開状態になった電磁弁に、前記起動電流より小さい保持電流を供給することにより前記電磁弁の弁開状態を維持する電磁弁駆動装置、電磁弁、電磁弁駆動方法及び電磁弁駆動装置の駆動制御プログラムに関する。   The present invention provides an electromagnetic valve driving device that maintains a valve open state of the solenoid valve by supplying a holding current smaller than the start current to an electromagnetic valve that is in a valve open state by supplying a startup current, The present invention relates to an electromagnetic valve driving method and a drive control program for an electromagnetic valve driving device.

流体制御に使用される電磁弁は、電磁弁駆動装置により電流供給量を制御されて動作を制御される。電磁弁は、ソレノイドに起動電流が供給されると、ソレノイドに固定された固定鉄心にプランジャが吸着され、弁開状態になる。その後、電磁弁は、保持電流が供給され(例えば定格電流の58〜70%)、弁開状態を維持する。   The operation of the solenoid valve used for fluid control is controlled by controlling the amount of current supplied by the solenoid valve driving device. When a starting current is supplied to the solenoid, the solenoid valve is attracted to a fixed iron core fixed to the solenoid, and the valve is opened. Thereafter, the solenoid valve is supplied with a holding current (for example, 58 to 70% of the rated current), and maintains the valve open state.

ところで、電源から電磁弁に供給する供給電流を一定に制御する場合、電磁弁に流れる電流の電流値は、電流供給開始後から上昇し、弁が開き始めると同時に減少する。そして、プランジャが固定鉄心に当たって吸着されると、電磁弁に流れる電流の電流値が、再び上昇して所定の電流値に安定する。そして、電磁弁への電力供給を停止すると、電磁弁に流れる電流の電流値は、プランジャが固定鉄心から離れるまで減少した後上昇し、プランジャが弁座に当接すると、再び減少し始める。従って、電磁弁は、起動電流供給時に弁開動作を開始する(弁体が弁座から離れて弁を開き始める)電流値以下で、且つ、起動電流供給停止時に弁閉動作を開始する(プランジャが固定鉄心から離れ始める)電流値以上の範囲で保持電流を設定すれば、開状態を維持できる。   By the way, when the supply current supplied to the solenoid valve from the power source is controlled to be constant, the current value of the current flowing through the solenoid valve increases after the start of current supply and decreases as the valve starts to open. When the plunger hits the fixed iron core and is attracted, the current value of the current flowing through the solenoid valve rises again and stabilizes to a predetermined current value. When the power supply to the solenoid valve is stopped, the current value of the current flowing through the solenoid valve increases after decreasing until the plunger leaves the fixed iron core, and starts decreasing again when the plunger contacts the valve seat. Therefore, the solenoid valve starts the valve opening operation when supplying the starting current (the valve body starts to open the valve away from the valve seat) or less, and starts the valve closing operation when the starting current supply is stopped (plunger). If the holding current is set in a range equal to or greater than the current value), the open state can be maintained.

ところが、保持電流を小さくすると、装置からの振動・衝撃、流体の流れから来る振動・衝撃等で、プランジャが固定鉄心から離れて弁座位置に復帰しやすい。一方、例えば保持電流を起動電流値より小さく、かつ、弁開動作開始時の電流値より大きい値に保持電流を設定することにより(例えば定格電流の58〜70%)、プランジャの異常復帰を防ごうとすると、エネルギーロスが生じる。そのため、従来の電磁弁駆動装置は、例えば、振動を検出する振動センサを設け、保持電流を小さくしていた。これによれば、振動センサが検出する振動によりプランジャが弁閉位置に復帰する虞があるか否かを判断し、復帰する虞がある場合に、ソレノイドに供給する電流値を大きくすることにより、プランジャの異常復帰を防ぐことができる(例えば特許文献1参照。)。   However, if the holding current is reduced, the plunger is likely to move away from the fixed iron core and return to the valve seat position due to vibration / impact from the device, vibration / impact from the fluid flow, and the like. On the other hand, for example, by setting the holding current to a value smaller than the starting current value and larger than the current value at the start of the valve opening operation (for example, 58 to 70% of the rated current), the abnormal return of the plunger is prevented. Attempting to do so results in energy loss. Therefore, the conventional solenoid valve driving device is provided with, for example, a vibration sensor that detects vibration to reduce the holding current. According to this, it is determined whether there is a possibility that the plunger may return to the valve closed position due to vibration detected by the vibration sensor, and when there is a possibility that the plunger returns, by increasing the current value supplied to the solenoid, Abnormal return of the plunger can be prevented (see, for example, Patent Document 1).

特開2009−14185号公報JP 2009-14185 A

しかしながら、従来の電磁弁駆動装置では、粘性の高い液体の制御に電磁弁を使用する場合に、外部衝撃等でプランジャが弁座方向へ移動するときであっても、プランジャの移動速度が遅く弁閉時の衝撃が小さいため、異常を検知できない虞があった。また、装置からの衝撃と流体圧の振動とを区別し難いという問題もあった。よって、従来の電磁弁駆動装置は、プランジャ保持状態の検出程度が低かった。また、プランジャ保持状態の検出に振動センサ等が必要となり、コスト高であった。   However, in the conventional solenoid valve driving device, when the solenoid valve is used to control a highly viscous liquid, the plunger moving speed is slow even when the plunger moves in the valve seat direction due to an external impact or the like. Since the impact when closing is small, there is a possibility that an abnormality cannot be detected. There is also a problem that it is difficult to distinguish between the impact from the apparatus and the vibration of the fluid pressure. Therefore, the conventional solenoid valve driving device has a low degree of detection of the plunger holding state. Further, a vibration sensor or the like is required for detecting the plunger holding state, which is expensive.

本発明は、上記問題点を解決するためになされたものであり、プランジャ保持状態の検出精度が高い安価な電磁弁駆動装置、電磁弁、電磁弁駆動方法及び電磁弁駆動装置の駆動制御プログラムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and includes an inexpensive solenoid valve drive device, solenoid valve, solenoid valve drive method, and drive control program for the solenoid valve drive device with high detection accuracy of the plunger holding state. The purpose is to provide.

本発明に係る電磁弁駆動装置、電磁弁、電磁弁駆動方法及び電磁弁駆動装置の駆動制御プログラムは、次のような構成を有している。
起動電流を供給して弁開状態になった電磁弁に、前記起動電流より小さい保持電流を供給することにより前記電磁弁の弁開状態を維持する電磁弁駆動装置において、前記電磁弁と直列に配置され、前記電磁弁への通電電流を検出する検出抵抗と、前記電磁弁に電流を供給する場合に、前記検出抵抗に発生する検出電圧を監視する監視手段と、前記電磁弁に前記保持電流を供給している場合に、前記監視手段が監視する前記検出電圧の変化により、前記電磁弁が正常に弁開しているか、前記電磁弁が異常に弁閉したかを検知する異常検知手段と、前記異常検知手段が異常を検知した場合に前記電磁弁に供給する電流を増加させて前記電磁弁を弁開状態に自動復帰させる自動復帰手段と、を有する。
The solenoid valve drive device, the solenoid valve, the solenoid valve drive method, and the drive control program for the solenoid valve drive device according to the present invention have the following configuration.
In a solenoid valve driving device that maintains a valve open state of the solenoid valve by supplying a holding current smaller than the start current to a solenoid valve that is in a valve open state by supplying a startup current, in series with the solenoid valve A detection resistor arranged to detect the energization current to the solenoid valve; a monitoring means for monitoring a detection voltage generated in the detection resistor when supplying a current to the solenoid valve; and the holding current to the solenoid valve An abnormality detecting means for detecting whether the electromagnetic valve is normally opened or the electromagnetic valve is abnormally closed due to a change in the detection voltage monitored by the monitoring means. And an automatic return means for automatically returning the solenoid valve to a valve open state by increasing a current supplied to the solenoid valve when the abnormality detection means detects an abnormality.

前記監視手段は、前記検出抵抗に発生する検出電圧と、目的とする電流値に調整された基準電圧とを比較し、前記検出電圧が前記基準電圧以下の場合には、前記電磁弁に電流を供給するように駆動し、前記検出電圧が前記基準電圧を超える場合には、駆動を停止して前記電磁弁に電流を供給しない駆動手段と、前記駆動手段の駆動状態を電気信号により検知して駆動波形を取得する駆動波形取得手段と、を含み、前記異常検知手段は、前記電磁弁が前記保持電流を供給された場合に前記駆動波形取得手段に取得される弁開状態時駆動波形と、前記保持電流を供給された場合に前記電磁弁が弁閉状態になった場合に前記駆動波形取得手段に取得される弁閉状態時駆動波形とが異なり、前記保持電流を前記電磁弁に供給した後に前記駆動波形取得手段が取得する駆動波形を前記弁開状態時駆動波形と一致するか否かを判断し、前記駆動波形が前記弁開状態時駆動波形と一致する場合には正常と判断し、前記駆動波形が前記弁開状態時駆動波形と一致しない場合には異常と判断するものであることが好ましい。   The monitoring means compares a detection voltage generated in the detection resistor with a reference voltage adjusted to a target current value. When the detection voltage is equal to or lower than the reference voltage, a current is supplied to the solenoid valve. When the detection voltage exceeds the reference voltage, the driving means that stops driving and does not supply current to the solenoid valve, and the driving state of the driving means is detected by an electric signal. Drive waveform acquisition means for acquiring a drive waveform, and the abnormality detection means is a valve-open-state drive waveform acquired by the drive waveform acquisition means when the electromagnetic valve is supplied with the holding current; When the holding current is supplied, when the electromagnetic valve is in a valve closed state, the driving waveform is acquired by the drive waveform acquisition unit, and the holding current is supplied to the electromagnetic valve. Later the drive waveform acquisition It is determined whether or not the drive waveform acquired by the stage matches the drive waveform in the valve open state. If the drive waveform matches the drive waveform in the valve open state, it is determined that the drive waveform is normal. It is preferable that an abnormality is determined when the drive waveform does not coincide with the valve open state.

また、前記保持電流を供給された前記電磁弁が弁開状態から弁閉動作する場合に前記駆動波形取得手段に取得される弁閉動作時のOFF時間が、前記弁開状態時駆動波形のOFF時間と異なるものであって、前記異常検知手段は、前記保持電流を前記電磁弁に供給した後に前記駆動波形取得手段が取得する駆動波形のOFF時間を計測し、前記駆動波形のOFF時間が前記弁開状態時の駆動波形のOFF時間より長い場合にも異常を検知することが好ましい。   Further, when the solenoid valve to which the holding current is supplied performs the valve closing operation from the valve open state, the OFF time during the valve closing operation acquired by the drive waveform acquisition unit is the OFF of the drive waveform during the valve open state. The abnormality detection means measures an OFF time of the drive waveform acquired by the drive waveform acquisition means after supplying the holding current to the solenoid valve, and the OFF time of the drive waveform It is preferable to detect an abnormality even when the drive waveform is longer than the OFF time in the valve open state.

また、前記電磁弁を確実に弁開状態に起動させることができる所定値から電流値0までを均等に分割して下降値を求め、前記電磁弁に供給する電流値を前記下降値に従って下降させた場合に、前記駆動波形取得手段が取得する下降時駆動波形を電流下降時の電流値に関連付けて記憶する記憶手段と、前記電磁弁に供給する電流値を、ゼロから前記下降値と同じ値ずつ上昇させた場合に、前記駆動波形取得手段により取得される駆動波形が前記下降時駆動波形と一致するか否かを判断し、一致しないと判断した場合に、現在測定している電流値に余裕値を加算して保持電流値を決定する保持電流値学習手段と、を有することが好ましい。   In addition, a decrease value is obtained by equally dividing a predetermined value from a value that can reliably start the solenoid valve into an open state to a current value of 0, and the current value supplied to the solenoid valve is decreased according to the decrease value. Storage means for storing the driving waveform at the time of lowering obtained by the driving waveform obtaining means in association with the current value at the time of current lowering, and the current value supplied to the solenoid valve from zero to the same value as the lowering value If the drive waveform acquired by the drive waveform acquisition means coincides with the drive waveform at the time of descent when it is increased, the current value currently measured is It is preferable to have holding current value learning means for adding a margin value and determining a holding current value.

また、前記保持電流値学習手段が前記保持電流値を決定した後、更に、前記電磁弁に供給する電流値を前記下降値と同じ値で上昇させた場合に、前記駆動波形取得手段により取得される駆動波形が前記下降時駆動波形と一致するか否かを判断し、一致したと判断した場合に、現在測定している電流値に余裕値を加算して起動電流値を決定する起動電流値学習手段を有することが好ましい。   In addition, after the holding current value learning unit determines the holding current value, when the current value supplied to the solenoid valve is further increased by the same value as the lowering value, it is acquired by the drive waveform acquiring unit. Starting current value to determine the starting current value by adding a margin value to the current measured current value It is preferable to have learning means.

前記監視手段は、PWM出力により前記電磁弁に電流を供給する回路を一定周期で開閉し、前記電磁弁に供給する電流の電流値を一定に制御する駆動手段と、前記駆動手段が電流を一定に制御している状態で、前記検出抵抗に発生する検出電圧のリップル値を測定するリップル値測定手段と、を含み、前記異常検知手段は、前記電磁弁が前記保持電流を一定に供給されて弁開している場合と、前記電磁弁が前記保持電流を一定に供給された状態で異常に弁閉した場合とで、前記検出抵抗に発生する検出電圧のリップル値が異なっており、前記リップル値測定手段が測定するリップル測定値が、前記電磁弁が前記保持電流を一定に供給されて弁開している場合に前記検出抵抗に発生する検出電圧の保持判別リップル値と一致するか否かを判断し、前記リップル測定値が前記保持判別リップル値と一致する場合には正常と判断し、前記リップル測定値が前記保持判別リップル値と一致しない場合には異常と判断するものであることが好ましい。   The monitoring means opens and closes a circuit that supplies current to the solenoid valve by PWM output at a constant cycle, and controls the current value of the current supplied to the solenoid valve to be constant, and the drive means keeps the current constant. And a ripple value measuring means for measuring a ripple value of a detection voltage generated in the detection resistor in a state where the electromagnetic valve is supplied with the holding current constant. The ripple value of the detection voltage generated in the detection resistor is different between when the valve is open and when the solenoid valve is abnormally closed with the holding current being supplied constantly, and the ripple Whether or not the ripple measurement value measured by the value measuring means coincides with the holding determination ripple value of the detection voltage generated in the detection resistor when the solenoid valve is supplied with the holding current at a constant value and is opened. Judge Wherein it is determined to be normal if the ripple measurement value matches the holding determination ripple value, it is preferable if the ripple measurement value does not match the held determination ripple value is for determining that abnormal.

また、前記電磁弁を確実に弁開状態に起動させることができる所定値から電流値0までを均等に分割して下降値を求め、前記電磁弁に供給する電流値を前記下降値に従って下降させた場合に、前記リップル値測定手段が測定する下降時リップル値を電流下降時の電流値に関連付けて記憶する第1記憶手段と、前記電磁弁に供給する電流値を、ゼロから前記下降値と同じ値ずつ上昇させた場合に、前記リップル値測定手段により測定される上昇時リップル値を電流上昇時の電流値に関連付けて記憶する第2記憶手段と、前記第1記憶手段に記憶された前記下降時リップル値と前記第2記憶手段に記憶された前記上昇時リップル値とからリップル値の異なるヒステリシス領域の下限電流値を求め、前記下限電流値に余裕値を加えて前記保持電流値を決定する保持電流値学習手段と、を有することが好ましい。   In addition, a decrease value is obtained by equally dividing a predetermined value from a value that can reliably start the solenoid valve into an open state to a current value of 0, and the current value supplied to the solenoid valve is decreased according to the decrease value. A first storage means for storing the ripple value at the time of falling measured by the ripple value measuring means in association with the current value at the time of the current drop, and the current value supplied to the solenoid valve from zero to the falling value. A second storage means for storing the rising ripple value measured by the ripple value measuring means in association with the current value at the time of current rise when the same value is increased; and the second storage means stored in the first storage means A lower limit current value in a hysteresis region having a different ripple value is obtained from the falling ripple value and the rising ripple value stored in the second storage means, and the holding current value is obtained by adding a margin value to the lower limit current value. A holding current value learning means determining, it is preferable to have a.

また、前記第1記憶手段に記憶された前記下降時リップル値と前記第2記憶手段に記憶された前記上昇時リップル値とからリップル値の異なるヒステリシス領域の上限電流値を求め、前記上限電流値の一つ大きい学習電流値に余裕値を加えて起動電流値を決定する起動電流値学習手段を有することが好ましい。   Further, an upper limit current value in a hysteresis region having different ripple values is obtained from the falling ripple value stored in the first storage means and the rising ripple value stored in the second storage means, and the upper limit current value is obtained. It is preferable to have a starting current value learning means for determining a starting current value by adding a margin value to the learning current value one larger than

また、前記異常検知手段が異常を検知したことを報知する報知手段を有することが好ましい。   Moreover, it is preferable to have a notifying means for notifying that the abnormality detecting means has detected an abnormality.

上記何れか1つの電磁弁駆動装置を有する電磁弁であることが好ましい。   It is preferable that it is a solenoid valve which has any one said solenoid valve drive device.

起動電流を供給して弁開状態になった電磁弁に、前記起動電流より小さい保持電流を供給することにより前記電磁弁の弁開状態を維持する電磁弁駆動方法において、前記電磁弁に電流を供給する場合に、前記電磁弁と直列に配置されて前記電磁弁への通電電流を検出する検出抵抗に発生する検出電圧を監視する監視ステップと、前記電磁弁に前記保持電流を供給している場合に、前記監視ステップにて監視する前記検出電圧の変化により、前記電磁弁が正常に弁開しているか、前記電磁弁が異常に弁閉したかを検知する異常検知ステップと、記異常検知ステップにて異常を検知した場合に前記電磁弁に供給する電流を増加させて前記電磁弁を弁開状態に自動復帰させる自動復帰ステップと、を有する。   In a solenoid valve driving method for maintaining a valve open state of the solenoid valve by supplying a holding current smaller than the start current to a solenoid valve that is in a valve open state by supplying a startup current, a current is supplied to the solenoid valve. When supplying, a monitoring step of monitoring a detection voltage generated in a detection resistor that is arranged in series with the electromagnetic valve and detects an energization current to the electromagnetic valve, and the holding current is supplied to the electromagnetic valve An abnormality detection step for detecting whether the solenoid valve is normally opened or the solenoid valve is abnormally closed due to a change in the detection voltage monitored in the monitoring step; An automatic return step of automatically returning the solenoid valve to the valve open state by increasing the current supplied to the solenoid valve when an abnormality is detected in the step.

起動電流を供給して弁開状態になった電磁弁に、前記起動電流より小さい保持電流を供給することにより前記電磁弁の弁開状態を維持する電磁弁駆動装置の駆動制御プログラムにおいて、コンピュータを、前記電磁弁に電流を供給する場合に、前記電磁弁と直列に配置されて前記電磁弁への通電電流を検出する検出抵抗に発生する検出電圧を監視する監視手段と、前記電磁弁に前記保持電流を供給している場合に、前記監視手段が監視する前記検出電圧の変化により、前記電磁弁が正常に弁開しているか、前記電磁弁が異常に弁閉したかを検知する異常検知手段と、前記異常検知手段が異常を検知した場合に前記電磁弁に供給する電流を増加させて前記電磁弁を弁開状態に自動復帰させる自動復帰手段として、機能させる。   In a drive control program for a solenoid valve driving device that maintains a valve open state of the solenoid valve by supplying a holding current smaller than the start current to a solenoid valve that is in a valve open state by supplying a startup current. Monitoring means for monitoring a detection voltage generated in a detection resistor that is arranged in series with the electromagnetic valve and detects a current flowing to the electromagnetic valve when supplying current to the electromagnetic valve; and Abnormality detection for detecting whether the electromagnetic valve is normally opened or abnormally closed due to a change in the detection voltage monitored by the monitoring means when a holding current is supplied And an automatic return means for automatically returning the electromagnetic valve to the valve open state by increasing the current supplied to the electromagnetic valve when the abnormality detection means detects an abnormality.

上記構成の電磁弁駆動装置、電磁弁、電磁弁駆動方法及び電磁弁駆動装置の駆動制御プログラムは、外部衝撃等により、保持電流を供給される電磁弁が異常に弁閉することがある。通常、電磁弁は、弁開状態時と弁閉状態に発生するインダクタンスが異なり、特定の回路においては、そのインダクタンスの影響を受けて、電磁弁と直列に配置された検出抵抗に発生する検出電圧が変化する。この点に着目し、上記構成では、電磁弁に保持電流を供給する場合に、検出抵抗に発生する検出電圧を監視し、検出電圧の変化により電磁弁が正常に弁開しているか異常に弁閉しているかを検知する。このため、プランジャの移動に伴う過渡現象を使用した検出方法(電流波形、プランジャの衝撃振動等)とは異なり、電磁弁の動作状態を検出抵抗に発生する検出電圧の変化により静的定常的に検知するので、振動センサ等を電磁弁に設ける必要がなく、ローコストで異常を迅速に検知できる。しかも、例えば電磁弁が粘性の高い液体を制御し、弁閉時の衝撃が小さい場合でも、電磁弁の異常な弁閉動作と正常な弁閉動作を検出電圧の変化により明確に判別するので、検知精度が高い。電磁弁の異常が確認された場合には、電磁弁に供給する電流を保持電流より増加させて電磁弁を弁開状態に瞬時に自動復帰させる。   In the electromagnetic valve driving device, the electromagnetic valve, the electromagnetic valve driving method, and the drive control program for the electromagnetic valve driving device configured as described above, the electromagnetic valve to which the holding current is supplied may be abnormally closed due to an external impact or the like. Normally, an electromagnetic valve has a different inductance that is generated when the valve is open and when the valve is closed. In a specific circuit, the detection voltage generated by a detection resistor in series with the solenoid valve is affected by the inductance. Changes. Focusing on this point, in the above configuration, when a holding current is supplied to the solenoid valve, the detection voltage generated in the detection resistor is monitored, and the change of the detection voltage causes the solenoid valve to open normally or abnormally. Detect if closed. For this reason, unlike the detection method (current waveform, plunger impact vibration, etc.) that uses a transient phenomenon associated with the movement of the plunger, the operation state of the solenoid valve is statically and constantly changed by the change in the detection voltage generated in the detection resistor. Since it detects, it is not necessary to provide a vibration sensor etc. in a solenoid valve, and abnormality can be detected rapidly at low cost. Moreover, for example, even when the solenoid valve controls a highly viscous liquid and the impact when the valve is closed is small, the abnormal valve closing operation and the normal valve closing operation of the solenoid valve are clearly discriminated by the change in the detection voltage. High detection accuracy. When abnormality of the solenoid valve is confirmed, the current supplied to the solenoid valve is increased from the holding current, and the solenoid valve is automatically automatically returned to the valve open state instantly.

よって、上記構成の電磁弁駆動装置、電磁弁、電磁弁駆動方法及び電磁弁駆動装置の駆動制御プログラムによれば、プランジャ保持状態の検出精度を高めることができる。また、電磁弁が保持電流供給時に正常に弁開する場合と異常に弁閉する場合とで検出抵抗に発生する検出電圧が変化することに着目して検出抵抗の変化により電磁弁の動作状態を検知するので、振動センサ等を電磁弁に設ける必要がなく、安価である。   Therefore, according to the electromagnetic valve driving device, the electromagnetic valve, the electromagnetic valve driving method, and the drive control program for the electromagnetic valve driving device configured as described above, the detection accuracy of the plunger holding state can be increased. In addition, paying attention to the fact that the detection voltage generated in the detection resistor changes depending on whether the solenoid valve opens normally when the holding current is supplied or abnormally closes the valve, the operating state of the solenoid valve changes depending on the detection resistor change. Since it detects, it is not necessary to provide a vibration sensor etc. in a solenoid valve, and it is cheap.

上記構成の電磁弁駆動装置では、特定の回路においては、弁開状態時と弁閉状態時とで電磁弁に発生するインダクタンスの影響を受けて、電磁弁への電流の供給と遮断を制御する駆動手段の駆動状態が電磁弁の弁開状態時と弁閉状態時とで異なる。これに着目し、上記構成では、駆動波形取得手段により駆動手段の駆動状態を電気信号により検知して駆動波形(例えばON時間、OFF時間)を取得し、駆動波形から電磁弁の動作状態を検知している。すなわち、保持電流を電磁弁に供給した後に駆動波形取得手段により取得される駆動波形が、保持電流を供給された電磁弁が弁開状態である場合に駆動波形取得手段に取得される弁開状態時駆動波形と一致するか否かを判断し、駆動波形が弁開状態時駆動波形と一致する場合には、電磁弁が弁開状態を維持して正常であると判断し、駆動波形が弁開状態時駆動波形と一致しない場合には、電磁弁が保持電流を供給されているにもかかわらず弁開状態を維持できておらず異常であると判断している。このため、プランジャの移動に伴う過渡現象を使用した検出方法(電流波形、プランジャの衝撃振動等)とは異なり、電磁弁の動作状態を駆動手段の駆動波形により静的定常的に検知するので、振動センサ等を電磁弁に設ける必要がなく、ローコストで異常を迅速に検知できる。しかも、例えば電磁弁が粘性の高い液体を制御し、弁閉時の衝撃が小さい場合でも、電磁弁の異常な弁閉動作と正常な弁閉動作を駆動波形により明確に判別するので、検知精度が高い。   In the solenoid valve driving device having the above-described configuration, in a specific circuit, the supply and shut-off of current to the solenoid valve are controlled by the influence of the inductance generated in the solenoid valve when the valve is open and when the valve is closed. The drive state of the drive means is different between when the solenoid valve is open and when the valve is closed. Focusing on this, in the above configuration, the drive waveform acquisition means detects the drive state of the drive means from the electrical signal to acquire the drive waveform (eg, ON time, OFF time), and detects the operation state of the solenoid valve from the drive waveform. is doing. That is, the drive waveform acquired by the drive waveform acquisition means after supplying the holding current to the solenoid valve is the valve open state acquired by the drive waveform acquisition means when the solenoid valve supplied with the hold current is in the valve open state. If the drive waveform matches the drive waveform when the valve is open, it is determined that the solenoid valve is in a normal state with the valve open, and the drive waveform is If the drive waveform does not coincide with the open-state drive waveform, it is determined that the valve is not in an open state even though the holding current is supplied to the solenoid valve. For this reason, unlike the detection method using a transient phenomenon associated with the movement of the plunger (current waveform, impact vibration of the plunger, etc.), the operation state of the solenoid valve is statically detected by the drive waveform of the drive means. It is not necessary to provide a vibration sensor or the like in the solenoid valve, and an abnormality can be detected quickly at a low cost. In addition, for example, even when the solenoid valve controls a highly viscous liquid and the impact when the valve is closed is small, the abnormal valve closing operation and the normal valve closing operation of the solenoid valve are clearly distinguished by the drive waveform, so the detection accuracy Is expensive.

上記構成の電磁弁駆動装置は、保持電流を供給された電磁弁が弁開状態から弁閉動作する場合に駆動波形取得手段に取得される弁閉動作時のOFF時間が、弁開状態時駆動波形のOFF時間と異なることに着目し、保持電流を電磁弁に供給した後に駆動波形取得手段が取得する駆動波形のOFF時間を計測し、駆動波形のOFF時間が弁開状態時の駆動波形のOFF時間より長い場合にも異常を検知し、電磁弁を弁開状態に自動復帰させる。よって、上記構成によれば、電磁弁の弁閉動作中に異常を検知でき、衝撃検知等の他の方法よりも早く、電磁弁を正常な弁開状態に自動復帰させることができる。   The electromagnetic valve driving device having the above configuration is driven when the valve is in the open state, when the solenoid valve to which the holding current is supplied operates to close the valve from the valve open state. Paying attention to the difference from the OFF time of the waveform, measure the OFF time of the drive waveform acquired by the drive waveform acquisition means after supplying the holding current to the solenoid valve, and the OFF time of the drive waveform of the drive waveform when the valve is open Even when it is longer than the OFF time, an abnormality is detected and the solenoid valve is automatically returned to the valve open state. Therefore, according to the said structure, abnormality can be detected during the valve closing operation | movement of a solenoid valve, and a solenoid valve can be automatically returned to a normal valve open state earlier than other methods, such as impact detection.

上記構成の電磁弁駆動装置は、電磁弁を確実に弁開状態に起動させることができる所定値から電流値0までを均等に分割して下降値を求め、電磁弁に供給する電流値を下降値に従って下降させた場合に、駆動波形取得手段が取得する駆動波形をサンプル用駆動波形として電流下降時の電流値に関連付けて記憶手段に記憶する。そして、電磁弁に供給する電流値を、ゼロから下降値と同じ値ずつ上昇させていき、駆動波形取得手段により取得される駆動波形がサンプル用駆動波形と一致しない電流値を探索し、探索した流値に余裕値を加算して保持電流値を決定する。よって、上記構成によれば、個体差を考慮した保持電流値を電磁弁に供給して弁開状態を維持することができ、省エネ効果をより一層高めることができる。   The solenoid valve drive device having the above configuration equally divides the current value from 0 to a current value of 0 that can reliably start the solenoid valve in the valve open state, obtains the fall value, and lowers the current value supplied to the solenoid valve. When it is lowered according to the value, the drive waveform acquired by the drive waveform acquisition means is stored in the storage means as a sample drive waveform in association with the current value at the time of current drop. Then, the current value supplied to the solenoid valve is increased from zero by the same value as the decrease value, and the current value that the drive waveform acquired by the drive waveform acquisition means does not match the sample drive waveform is searched and searched. The holding current value is determined by adding a margin value to the flow value. Therefore, according to the said structure, the holding current value which considered the individual difference can be supplied to a solenoid valve, a valve open state can be maintained, and an energy-saving effect can be improved further.

上記構成の電磁弁駆動装置は、保持電流値を決定した後、更に、電磁弁に供給する電流値を下降値と同じ値で上昇させていき、駆動波形取得手段により取得される駆動波形がサンプル用駆動波形と一致する電流値を探索し、探索した電流値に余裕値を加算して起動電流値を決定する。よって、上記構成の電磁弁駆動装置によれば、起動時に電磁弁を弁開させる起動電流を個体差を考慮して定格電流より小さくし、省エネ効果をより一層高めることができる。   After determining the holding current value, the electromagnetic valve driving device having the above configuration further increases the current value supplied to the electromagnetic valve by the same value as the decrease value, and the driving waveform acquired by the driving waveform acquisition means is sampled. A current value that matches the drive waveform is searched, and a starting current value is determined by adding a margin value to the searched current value. Therefore, according to the solenoid valve driving device having the above-described configuration, the starting current for opening the solenoid valve at the time of starting can be made smaller than the rated current in consideration of individual differences, and the energy saving effect can be further enhanced.

上記構成の電磁弁駆動装置は、電磁弁の弁開閉動作に伴って発生するインダクタンスの変化の影響を受けて、電磁弁が保持電流を一定に供給されて弁開している場合と、電磁弁が保持電流を一定に供給された状態で異常に弁閉した場合とで、電磁弁の下流側に配置される検出抵抗に発生する検出電圧のリップル値が異なる。この点に着目し、電磁弁駆動装置は、電磁弁に供給する電流を起動電流から保持電流に切り替えた後に検出電圧のリップル値を測定し、測定したリップル測定値を、電磁弁に保持電流を一定に供給した場合に検出抵抗に発生する検出電圧の保持判別リップル値と比較する。リップル測定値が保持判別リップル値と一致する場合には正常と判断し、測定したリップル測定値が保持判別リップル値と一致しない場合には異常と判断する。このため、プランジャの移動に伴う過渡現象を使用した検出方法(電流波形、プランジャの衝撃振動等)とは異なり、電磁弁の動作状態を検出抵抗に発生する検出電圧のリップル値により静的定常的に検知するので、振動センサ等を電磁弁に設ける必要がなく、ローコストで異常を迅速に検知できる。しかも、例えば電磁弁が粘性の高い液体を制御し、弁閉時の衝撃が小さい場合でも、電磁弁の異常な弁閉動作と正常な弁閉動作を検出電圧のリップル値により明確に判別するので、検知精度が高い。   The electromagnetic valve driving device having the above-described configuration includes a case where the electromagnetic valve is opened by being supplied with a constant holding current under the influence of a change in inductance caused by a valve opening / closing operation of the electromagnetic valve, However, the ripple value of the detection voltage generated in the detection resistor arranged on the downstream side of the electromagnetic valve is different from that in the case where the valve is abnormally closed while the holding current is supplied constantly. Focusing on this point, the solenoid valve drive device measures the ripple value of the detected voltage after switching the current supplied to the solenoid valve from the starting current to the holding current, and the measured ripple value is supplied to the solenoid valve. It is compared with the holding discrimination ripple value of the detection voltage generated in the detection resistor when it is supplied constantly. When the measured ripple value matches the hold determination ripple value, it is determined to be normal, and when the measured ripple measurement value does not match the hold determination ripple value, it is determined to be abnormal. For this reason, unlike the detection method that uses the transient phenomenon associated with the movement of the plunger (current waveform, impact vibration of the plunger, etc.), the operation state of the solenoid valve is statically steady due to the ripple value of the detection voltage generated in the detection resistor. Therefore, it is not necessary to provide a vibration sensor or the like on the solenoid valve, and an abnormality can be detected quickly at a low cost. Moreover, for example, even when the solenoid valve controls a highly viscous liquid and the impact when the valve is closed is small, the abnormal valve closing operation and normal valve closing operation of the solenoid valve are clearly discriminated by the ripple value of the detection voltage. , Detection accuracy is high.

上記構成の電磁弁駆動装置は、電磁弁を確実に弁開状態に起動させることができる所定値から電流値0までを均等に分割して下降値を求め、電磁弁に供給する電流値を、求めた下降値に従って下降させた場合に、リップル値測定手段が測定する下降時リップル値を電流下降時の電流値に関連付けて第1記憶手段に記憶する。そして、電磁弁に供給する電流値を、ゼロから下降値と同じ値ずつ上昇させた場合に、リップル値測定手段により測定される上昇時リップル値を電流上昇時の電流値に関連付けて第2記憶手段に記憶する。そして、第1記憶手段に記憶された下降時リップル値と第2記憶手段に記憶された上昇時リップル値とからリップル値の異なるヒステリシス領域の下限電流値を求め、求めた下限電流値に余裕値を加えて保持電流値を決定することにより、当該電磁弁に適した保持電流値を学習する。よって、上記構成の電磁弁駆動装置によれば、個体差を考慮した保持電流値を電磁弁に供給して弁開状態を維持することができ、省エネ効果をより一層高めることができる。   The electromagnetic valve driving device having the above-described configuration obtains a descending value by equally dividing a predetermined value from a predetermined value that can activate the electromagnetic valve into the valve open state to a current value of 0, and a current value supplied to the electromagnetic valve, When it is lowered according to the obtained fall value, the ripple value at the time of fall measured by the ripple value measuring means is stored in the first storage means in association with the current value at the time of current fall. Then, when the current value supplied to the solenoid valve is increased from zero by the same value as the decrease value, the rising ripple value measured by the ripple value measuring means is associated with the current value at the time of the current increase in the second memory. Store in the means. Then, a lower limit current value in a hysteresis region having different ripple values is obtained from the falling ripple value stored in the first storage means and the rising ripple value stored in the second storage means, and a margin value is added to the obtained lower limit current value. Is added to determine the holding current value to learn the holding current value suitable for the solenoid valve. Therefore, according to the electromagnetic valve driving device having the above-described configuration, the holding current value in consideration of individual differences can be supplied to the electromagnetic valve to maintain the valve open state, and the energy saving effect can be further enhanced.

上記構成の電磁弁駆動装置は、第1記憶手段に記憶された下降時リップル値と第2記憶手段に記憶された上昇時リップル値とからリップル値の異なるヒステリシス領域の上限電流値を求め、求めた上限電流値の一つ大きい学習電流値に余裕値を加えて起動電流値を決定することにより、当該電磁弁に適した起動電流値を学習する。よって、上記構成の電磁弁駆動装置によれば、起動時に電磁弁を弁開させる起動電流を個体差を考慮して定格電流より小さくし、省エネ効果をより一層高めることができる。   The electromagnetic valve driving device having the above configuration obtains an upper limit current value in a hysteresis region having different ripple values from the falling ripple value stored in the first storage means and the rising ripple value stored in the second storage means. The starting current value suitable for the solenoid valve is learned by adding a margin value to the learning current value that is one larger of the upper limit current value and determining the starting current value. Therefore, according to the solenoid valve driving device having the above-described configuration, the starting current for opening the solenoid valve at the time of starting can be made smaller than the rated current in consideration of individual differences, and the energy saving effect can be further enhanced.

上記構成の電磁弁駆動装置は、報知手段により異常を報知するので、電磁弁の異常をユーザに知らせて適切な処置を行わせることができる。   Since the electromagnetic valve drive device having the above configuration notifies the abnormality by the notification means, it is possible to notify the user of the abnormality of the electromagnetic valve and to take an appropriate measure.

本発明の第1実施形態に係る電磁弁駆動装置の回路図である。It is a circuit diagram of the solenoid valve drive device concerning a 1st embodiment of the present invention. 検出電圧波形と、駆動電圧を電磁弁に印加するタイミングチャートの一例を示す図である。It is a figure which shows an example of the timing chart which applies a detection voltage waveform and a drive voltage to a solenoid valve. 駆動波形と検出電圧波形の一例を示す図である。It is a figure which shows an example of a drive waveform and a detection voltage waveform. 電磁弁駆動装置の駆動制御プログラムのフローである。It is a flow of the drive control program of a solenoid valve drive device. 本発明の第2実施形態に係る電磁弁駆動装置の駆動制御プログラムのフローである。It is a flow of the drive control program of the solenoid valve drive device concerning a 2nd embodiment of the present invention. 電磁弁駆動装置の検出電圧波形と駆動波形の一例を示す図である。It is a figure which shows an example of the detection voltage waveform and drive waveform of a solenoid valve drive device. 本発明の第3実施形態に係る電磁弁駆動装置の回路図である。It is a circuit diagram of the solenoid valve drive device concerning a 3rd embodiment of the present invention. 学習プログラムのフローである。It is a flow of a learning program. 本発明の第4実施形態に係る電磁弁駆動装置の回路図である。It is a circuit diagram of the solenoid valve drive device concerning a 4th embodiment of the present invention. 本発明の第4実施形態に係る学習プログラムのフローである。It is a flow of the learning program which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る電磁弁駆動装置の回路図である。It is a circuit diagram of the solenoid valve drive device concerning a 5th embodiment of the present invention. 電磁弁駆動装置の駆動制御プログラムのフローである。It is a flow of the drive control program of a solenoid valve drive device. 本発明の第6実施形態に係る電磁弁駆動装置の回路図である。It is a circuit diagram of the solenoid valve drive device concerning a 6th embodiment of the present invention. PWM方式制御における起動時プランジャ吸着状態電流波形を示す図である。It is a figure which shows the plunger adsorption state current waveform at the time of starting in PWM system control. PWM方式制御におけるプランジャ非吸着状態電流波形を示す図である。It is a figure which shows the plunger non-adsorption state current waveform in PWM system control. PWM方式制御におけるプランジャ吸着状態電流波形を示す図である。It is a figure which shows the plunger adsorption state current waveform in PWM system control. PWM方式制御における異常復帰時電流波形を示す図である。It is a figure which shows the electric current waveform at the time of abnormal reset in PWM system control. 電磁弁駆動装置の駆動制御プログラムのフローである。It is a flow of the drive control program of a solenoid valve drive device. 本発明の第7実施形態に係り、電磁弁駆動装置に記憶された学習プログラムのフローである。It is a flow of the learning program memorize | stored in the solenoid valve drive device concerning 7th Embodiment of this invention. 本発明の第8実施形態に係る電磁弁駆動装置の回路図である。It is a circuit diagram of the solenoid valve drive device concerning an 8th embodiment of the present invention.

以下に、本発明に係る電磁弁駆動装置、電磁弁、電磁弁駆動方法及び電磁弁駆動装置の駆動制御プログラムの一実施形態について、図面を参照しながら説明する。   Hereinafter, an embodiment of a solenoid valve drive device, a solenoid valve, a solenoid valve drive method, and a drive control program for a solenoid valve drive device according to the present invention will be described with reference to the drawings.

(第1実施形態)
<電磁弁駆動装置の構成>
図1は、本発明の第1実施形態に係る電磁弁駆動装置(以下「駆動装置」という。)1の回路図である。
駆動装置1は、電源E1と電磁弁4とに接続し、起動電流を供給して弁開状態になった電磁弁4に起動電流より小さい保持電流を供給することにより電磁弁4の弁開状態を維持する。駆動装置1は、電源E1から電磁弁4に供給する電圧・電流の値を制御する制御手段2と、電源E1と電磁弁4とを接続する回路を開閉することにより制御手段2が制御する値の電圧・電流を電磁弁4に供給して電磁弁4を駆動させる駆動手段3を有する。
(First embodiment)
<Configuration of electromagnetic valve drive device>
FIG. 1 is a circuit diagram of an electromagnetic valve drive device (hereinafter referred to as “drive device”) 1 according to a first embodiment of the present invention.
The driving device 1 is connected to the power source E1 and the solenoid valve 4, and supplies the starting current to the solenoid valve 4 that is in the valve open state to supply a holding current smaller than the starting current to thereby open the solenoid valve 4. To maintain. The driving device 1 includes a control unit 2 that controls the value of voltage and current supplied from the power source E1 to the electromagnetic valve 4, and a value that is controlled by the control unit 2 by opening and closing a circuit that connects the power source E1 and the electromagnetic valve 4. Drive means 3 for driving the solenoid valve 4 by supplying the voltage / current to the solenoid valve 4.

制御手段2は、電源端子CN1が電源E1に接続されている。電源端子CN1は、マイコン用電源E2が並列に接続され、電力がマイクロコンピュータ(駆動波形取得手段、異常検知手段、保持電流値制御手段の一例。以下「マイコン」という。)6に供給される。マイコン用電源E2は、コンデンサCが並列に接続され、マイコン6に安定した電力を供給する。マイコン6は、入力用端子CN3を介して図示しない上位装置に接続され、図示しない上位装置との間で電気信号を入出力する。マイコン6は、不揮発性の読み書き可能なEEPROM(記憶手段の一例)7に、各種プログラムやデータを記憶する。そして、マイコン6は、D/A変換器8から信号出力端子9を介して駆動手段3へ指令を出力し、駆動手段3の駆動状態を電気信号(ON/OFF信号)により第1信号入力端子10から入力する。   In the control means 2, the power supply terminal CN1 is connected to the power supply E1. The power supply terminal CN1 is connected to a microcomputer power supply E2 in parallel, and power is supplied to a microcomputer 6 (an example of drive waveform acquisition means, abnormality detection means, holding current value control means, hereinafter referred to as “microcomputer”). The microcomputer power supply E <b> 2 is connected to the capacitor C in parallel and supplies stable power to the microcomputer 6. The microcomputer 6 is connected to a host device (not shown) via the input terminal CN3 and inputs / outputs electrical signals to / from the host device (not shown). The microcomputer 6 stores various programs and data in a nonvolatile read / write EEPROM (an example of a storage unit) 7. Then, the microcomputer 6 outputs a command from the D / A converter 8 to the driving means 3 via the signal output terminal 9, and the driving state of the driving means 3 is a first signal input terminal by an electric signal (ON / OFF signal). Input from 10.

一方、駆動手段3は、電磁弁接続端子CN2が電磁弁4のソレノイド5と並列に接続されている。電磁弁接続端子CN2には、双方向性降伏ダイオードD2が並列に接続され、駆動装置1を異常高電圧から保護するサージ回路を構成している。駆動手段3は、電磁弁4の下流側に電磁弁4と直列に検出抵抗R3が配置され、検出抵抗R3に発生する検出電圧により電磁弁4への通電電流を検出できるようになっている。駆動手段3は、コンパレータOPがマイコン6から出力される指令(基準電圧)と検出抵抗R3に発生する検出電圧とを比較して、ハイ出力とロー出力を切り替え、トランジスタTR1,TR2を開閉させることにより電源E1と電磁弁4とを接続する回路を開閉する。   On the other hand, in the driving means 3, the solenoid valve connection terminal CN <b> 2 is connected in parallel with the solenoid 5 of the solenoid valve 4. A bidirectional breakdown diode D2 is connected in parallel to the solenoid valve connection terminal CN2 to constitute a surge circuit that protects the drive device 1 from an abnormally high voltage. The drive means 3 has a detection resistor R3 arranged in series with the solenoid valve 4 on the downstream side of the solenoid valve 4, and can detect the energization current to the solenoid valve 4 by the detection voltage generated in the detection resistor R3. The driving means 3 compares the command (reference voltage) output from the microcomputer 6 with the detection voltage generated in the detection resistor R3 by the comparator OP, switches between high output and low output, and opens and closes the transistors TR1 and TR2. Thus, the circuit connecting the power source E1 and the solenoid valve 4 is opened and closed.

具体的には、電磁弁4と検出抵抗R3との間の接点M1には、コンパレータOPのマイナス入力端子に接続され、検出抵抗R3に発生する検出電圧がコンパレータOPに入力電圧として入力されるようになっている。コンパレータOPは、プラス入力端子がマイコン6の信号出力端子9に接続されて基準電圧を入力する。コンパレータOPの出力端子は、トランジスタTR2と第1信号入力端子10とを接続する配線上に設けられた接点M2に接続され、出力電圧をトランジスタTR2のベースに作用させるようになっている。トランジスタTR2のコレクタは、電源E1とソレノイド5の上流側とを接続する配線上に設けられたトランジスタTR1のベースに接続され、エミッタが電源E1とソレノイド5の下流側とを接続する配線に接続されている。トランジスタTR1は、コレクタが電源E1に接続され、エミッタがソレノイド5に接続されている。   Specifically, the contact M1 between the solenoid valve 4 and the detection resistor R3 is connected to the negative input terminal of the comparator OP so that the detection voltage generated in the detection resistor R3 is input to the comparator OP as an input voltage. It has become. The comparator OP has a positive input terminal connected to the signal output terminal 9 of the microcomputer 6 and inputs a reference voltage. The output terminal of the comparator OP is connected to a contact M2 provided on a wiring connecting the transistor TR2 and the first signal input terminal 10, and the output voltage is applied to the base of the transistor TR2. The collector of the transistor TR2 is connected to the base of the transistor TR1 provided on the wiring connecting the power source E1 and the upstream side of the solenoid 5, and the emitter is connected to the wiring connecting the power source E1 and the downstream side of the solenoid 5. ing. The transistor TR1 has a collector connected to the power supply E1 and an emitter connected to the solenoid 5.

従って、駆動手段3は、検出抵抗R3に発生する検出電圧(入力電圧)が基準電圧以下の場合、すなわち電磁弁4への通電電流が基準電流値以下の場合には、コンパレータOPがハイ出力してトランジスタTR1,TR2を閉じ、ソレノイド5に電力供給可能にする。一方、検出抵抗R3に発生する検出電圧が基準電圧より大きい場合、すなわち電磁弁4への通電電流が基準電流値より大きい場合には、コンパレータOPがロー出力してトランジスタTR1,TR2を開き、ソレノイド5への電力供給を遮断する。   Therefore, the driving means 3 outputs a high output from the comparator OP when the detection voltage (input voltage) generated at the detection resistor R3 is lower than the reference voltage, that is, when the current flowing to the solenoid valve 4 is lower than the reference current value. Thus, the transistors TR1 and TR2 are closed so that power can be supplied to the solenoid 5. On the other hand, when the detection voltage generated in the detection resistor R3 is larger than the reference voltage, that is, when the energization current to the solenoid valve 4 is larger than the reference current value, the comparator OP outputs low to open the transistors TR1 and TR2, and the solenoid Shut off the power supply to 5.

駆動手段3は、トランジスタTR1,TR2が開いても、ソレノイド5に蓄えられた電流を流して電磁弁4を駆動させられるように、トランジスタTR1の下流側とトランジスタTR2の上流側においてダイオード(或いはショットキーバリアダイオード)D1を電磁弁接続端子CN2と並列に接続している。よって、駆動手段3は、トランジスタTR1,TR2を適宜開閉することにより、ソレノイド5に供給する電流を制御手段2の指令に従って比較回路11(抵抗R1,R2,コンパレータOP)に設定されたヒステリシスの範囲内で安定させることが可能である。   The driving means 3 has diodes (or shots) on the downstream side of the transistor TR1 and the upstream side of the transistor TR2 so that the current stored in the solenoid 5 can be driven to drive the solenoid valve 4 even when the transistors TR1 and TR2 are opened. (Key barrier diode) D1 is connected in parallel with the solenoid valve connection terminal CN2. Therefore, the drive means 3 opens and closes the transistors TR1 and TR2 as appropriate, thereby setting the current supplied to the solenoid 5 in the hysteresis range set in the comparison circuit 11 (resistors R1, R2, comparator OP) according to the command of the control means 2. It is possible to stabilize within.

マイコン6は、第1信号入力端子10がトランジスタTR2のベースに接点M2を介して接続しており、駆動手段3がコンパレータOPの出力に応じてトランジスタTR1,TR2を開閉してソレノイド5に電力供給する動作を電気信号により検知している。   In the microcomputer 6, the first signal input terminal 10 is connected to the base of the transistor TR2 through the contact M2, and the driving means 3 opens and closes the transistors TR1 and TR2 according to the output of the comparator OP to supply power to the solenoid 5. The operation to be detected is detected by an electrical signal.

ところで、電磁弁4は、ソレノイド5のインダクタンス変化に起因して弁開閉動作時に、電流値の変化度が変わる。そのため、コンパレータOPは、抵抗R1,R2によるヒステリシスに対応する周期が変わるヒステリシス型自励式コンバータを構成している。
尚、本実施形態では、マイコン6と比較回路11が、検出抵抗R3に発生する検出電圧を監視する「監視手段」を構成する。
Incidentally, the degree of change in the current value of the solenoid valve 4 changes due to the inductance change of the solenoid 5 during the valve opening / closing operation. Therefore, the comparator OP constitutes a hysteresis type self-excited converter in which the period corresponding to the hysteresis by the resistors R1 and R2 changes.
In the present embodiment, the microcomputer 6 and the comparison circuit 11 constitute “monitoring means” for monitoring the detection voltage generated in the detection resistor R3.

<電磁弁駆動装置の駆動電流波形特性>
上記駆動装置1がソレノイド5に定格電流を所定時間供給して電磁弁4を弁開閉動作させる場合に、ソレノイド5に流れる電流によって検出抵抗R3に発生する検出電圧の変化を調べる実験を行った。この実験で得られた検出電圧と時間との関係(検出電圧波形特性)と、駆動電圧を電磁弁4に印加するタイミングを示すタイミングチャートを、図2に示す。
図2のT0に示すように、電磁弁4に駆動電圧を印加すると、ソレノイド5に電流が流れ始め、図示しない固定鉄心を励磁し始めるため、検出抵抗R3に発生する検出電圧が上昇し始める。図2のT1に示すように、検出電圧が電圧値a1まで上昇すると、図示しないプランジャが図示しない固定鉄心に吸着され始める。通常、電磁弁4は、確実に弁開するために、定格電圧値a2より小さい値a1(例えば定格電圧値の60%)で弁開動作を開始するように設計されている。電磁弁4は、電圧値が弁開動作開始時T1の電圧値a1から減少し始める。図示しないプランジャが図示しない固定鉄心に当たって弁開動作を終了すると、検出電圧は・ソレノイド5のプランジャ吸着後のインダクタンスに従って図2に示す弁開動作終了時T2の電圧値a4から増加し始め、定格電流値となる電圧値a2で安定する。
<Drive current waveform characteristics of solenoid valve drive device>
When the drive device 1 supplied the rated current to the solenoid 5 for a predetermined time to open and close the solenoid valve 4, an experiment was conducted to examine the change in the detection voltage generated in the detection resistor R3 due to the current flowing through the solenoid 5. FIG. 2 shows a timing chart showing the relationship between the detection voltage and time obtained in this experiment (detection voltage waveform characteristics) and the timing at which the drive voltage is applied to the electromagnetic valve 4.
As shown at T0 in FIG. 2, when a drive voltage is applied to the solenoid valve 4, a current starts to flow through the solenoid 5, and a fixed iron core (not shown) starts to be excited, so that the detection voltage generated at the detection resistor R3 starts to rise. As shown at T1 in FIG. 2, when the detection voltage rises to the voltage value a1, a plunger (not shown) begins to be attracted to a fixed iron core (not shown). Normally, the solenoid valve 4 is designed to start the valve opening operation at a value a1 smaller than the rated voltage value a2 (for example, 60% of the rated voltage value) in order to reliably open the valve. The electromagnetic valve 4 starts to decrease in voltage value from the voltage value a1 at T1 when the valve opening operation starts. When the unillustrated plunger hits a fixed iron core (not illustrated) and ends the valve opening operation, the detected voltage starts to increase from the voltage value a4 at the end of the valve opening operation T2 shown in FIG. It becomes stable at the voltage value a2 as a value.

図2のT3に示すように、ソレノイド5へ駆動電圧印加を停止すると、ソレノイド5に流れる電流がソレノイド5のコイル抵抗でエネルギーを消費しながら減少するため、検出抵抗R3に発生する検出電圧が電圧値a2から減少し始める。図中T4に示すように、図示しないプランジャが図示しない固定鉄心から離れて弁閉動作を開始すると、図示しないプランジャの下降に伴う電磁誘導によりソレノイド5に電流が流れ、検出電圧の電圧値がa3から再び増加する。そして、図中T5に示すように、図示しないプランジャが図示しない弁体を図示しない弁座に当接させて弁閉状態になると、プランジャの復帰状態のインダクタンスに従って、検出電圧が電圧値a5から再び減少し、やがてゼロになる。   As indicated by T3 in FIG. 2, when the application of the drive voltage to the solenoid 5 is stopped, the current flowing through the solenoid 5 decreases while consuming energy by the coil resistance of the solenoid 5, so that the detection voltage generated at the detection resistor R3 is a voltage. It starts to decrease from the value a2. As shown at T4 in the figure, when a plunger (not shown) leaves a fixed iron core (not shown) and starts the valve closing operation, a current flows to the solenoid 5 due to electromagnetic induction accompanying the lowering of the plunger (not shown), and the voltage value of the detected voltage is a3. Increase again from. Then, as shown at T5 in the figure, when a plunger (not shown) brings a valve body (not shown) into contact with a valve seat (not shown) and the valve is closed, the detected voltage is returned from the voltage value a5 according to the inductance in the return state of the plunger. It decreases and eventually becomes zero.

図2の検出電圧波形に示すように、電圧値a4においての(T0−T1)間でのプランジャ非吸着時の電圧値の傾きP1と、T2後でのプランジャ吸着時の電圧値の傾きP2は異なる。この違いは、それぞれプランジャの非吸着・吸着によって、インダクタンスが変化することを表しており、インダクタンスが大きくなるプランジャ吸着後のT2からの電圧値の傾きP2がプランジャ非吸着時の電流値の傾きP1より緩やかになっている。   As shown in the detected voltage waveform of FIG. 2, the voltage value slope P1 when the plunger is not attracted between (T0-T1) at the voltage value a4 and the slope P2 of the voltage value when the plunger is attracted after T2 are Different. This difference indicates that the inductance changes due to the non-adsorption / adsorption of the plunger, and the gradient P2 of the voltage value from T2 after the plunger adsorption, where the inductance increases, is the gradient P1 of the current value when the plunger is not adsorbed. It has become more gradual.

ここで、弁閉動作開始時T4の電圧値a3は、弁開動作開始時T1の電圧値a1より小さい。換言すれば、電磁弁4は、弁開動作開始時の電圧値a1より小さい電圧値でも弁開状態を維持できる。省エネ効果を得るためには、電磁弁4の弁開状態を保持するための保持電流値を弁開動作開始時T1の電流値a1より小さくすることが望ましい。しかし、保持電流値を小さくすれば、外部衝撃等で電磁弁4が異常な弁閉動作をしやすくなる。電磁弁4の異常な弁閉動作を振動センサ等で検出する方策では、部品点数が増え、コストアップに繋がったり、電磁弁4が粘性の高い流体を制御する場合に弁閉時の振動が小さいため異常を検知できない問題がある。そこで、本実施形態では、図示しないプランジャの移動や電流変化などの動的指標ではなく、駆動手段3が電磁弁4に電流を供給するために駆動する駆動状態を静的で安定的な電気信号(ON/OFF信号)により取得し、電気信号の駆動波形により電磁弁4の動作状態を検知するようにしている。以下、駆動手段3から取得する駆動波形により電磁弁4の動作状態を確認できる根拠を具体的に説明する。   Here, the voltage value a3 at the start of the valve closing operation T4 is smaller than the voltage value a1 at the start of the valve opening operation T1. In other words, the solenoid valve 4 can maintain the valve open state even at a voltage value smaller than the voltage value a1 at the start of the valve opening operation. In order to obtain an energy saving effect, it is desirable to make the holding current value for holding the valve open state of the electromagnetic valve 4 smaller than the current value a1 at the time T1 when the valve opening operation starts. However, if the holding current value is reduced, the electromagnetic valve 4 can easily perform an abnormal valve closing operation due to an external impact or the like. Measures for detecting an abnormal valve closing operation of the solenoid valve 4 with a vibration sensor or the like increase the number of parts, leading to an increase in cost, or when the solenoid valve 4 controls a highly viscous fluid, the vibration when the valve is closed is small. Therefore, there is a problem that the abnormality cannot be detected. Therefore, in the present embodiment, a static and stable electric signal indicates a driving state in which the driving unit 3 is driven to supply a current to the electromagnetic valve 4 instead of a dynamic index such as plunger movement or current change (not shown). (ON / OFF signal) is acquired, and the operation state of the solenoid valve 4 is detected by the drive waveform of the electric signal. Hereinafter, the reason why the operation state of the electromagnetic valve 4 can be confirmed based on the drive waveform acquired from the drive unit 3 will be specifically described.

発明者は、電磁弁4に保持電流を供給して電磁弁4を弁開状態にした後に電磁弁4に外部衝撃を与え、電磁弁4を異常に弁閉動作させた場合に、検出抵抗R3に発生する検出電圧を測定すると共に、接点M2から取得されるON/OFF信号の駆動波形を測定する実験を行った。電磁弁4が弁開状態から異常弁閉動作を行い、弁閉状態になるまで接点M1から取得される検出電圧波形と、接点M2から取得されるON/OFF信号の駆動波形を図3に示す。   The inventor applies a holding current to the solenoid valve 4 to open the solenoid valve 4 and then applies an external shock to the solenoid valve 4 to cause the solenoid valve 4 to close abnormally. An experiment was conducted to measure the detection voltage generated at the same time and to measure the driving waveform of the ON / OFF signal acquired from the contact M2. FIG. 3 shows the detected voltage waveform acquired from the contact M1 until the electromagnetic valve 4 performs the abnormal valve closing operation from the valve open state and becomes the valve closed state, and the drive waveform of the ON / OFF signal acquired from the contact M2. .

図3に示す弁開状態時と弁閉状態時の検出電圧波形を比較すると、弁開状態の検出電圧周期X1が、弁閉状態の検出電圧周期X2より長くなっている。電磁弁4は、図2のP1,P2に示すように、弁開状態(プランジャ吸着状態)と弁閉状態(プランジャ非吸着状態)で、二つのインダクタンス成分を持つ。ソレノイド5に供給する電流の電流値が一定に制御されている状態では、ソレノイド5が発生するコイル抵抗とヒステリシス電圧幅が一定のため、弁開状態と弁閉状態では、そのインダクタンス成分とコイル成分に応じた電流変化の傾き(T=L/R(T:時定数、L:ヒステリシス値、R:コイル抵抗値))を持って、ヒステリシス幅内を指数関数に従った電流変化を起こす。ヒステリシス値は、弁開時と弁閉時の両方の傾きに対し、同一のインダクタンスとして働く。そのため、弁開状態時と弁閉状態時の検出電圧周期は、ON時間とOFF時間がともに変化して違いを生じる。
一方、図3の駆動波形(接点M2のON/OFF信号)は、検出電圧周期X1,X2が変化しても、保持電流供給状態で弁開する正常時におけるデューティ比(ON時間t1/1周期Y1)と、保持電流供給状態で弁閉する異常時におけるデューティ比(ON時間t2/1周期Y2)が同じである。これは、ソレノイド5が消費する消費電力が一定であることを意味する。しかし、駆動波形の周期は、正常時の周期Y1の方が異常時の周期Y2より長い。換言すれば、正常時に検出されるOFF時間(又はON時間t1)は、異常時に検出されるOFF時間(ON時間t2)より長い。
Comparing the detected voltage waveforms in the valve open state and the valve closed state shown in FIG. 3, the detection voltage cycle X1 in the valve open state is longer than the detection voltage cycle X2 in the valve close state. As shown by P1 and P2 in FIG. 2, the electromagnetic valve 4 has two inductance components in a valve open state (plunger adsorption state) and a valve closed state (plunger non-adsorption state). When the current value of the current supplied to the solenoid 5 is controlled to be constant, the coil resistance generated by the solenoid 5 and the hysteresis voltage width are constant. Therefore, in the valve open state and the valve closed state, the inductance component and the coil component And a current change slope (T = L / R (T: time constant, L: hysteresis value, R: coil resistance value)), and a current change according to an exponential function occurs within the hysteresis width. The hysteresis value acts as the same inductance for both the valve opening and valve closing slopes. Therefore, the detection voltage cycle in the valve open state and in the valve closed state varies depending on both the ON time and the OFF time.
On the other hand, the drive waveform (ON / OFF signal of the contact M2) in FIG. 3 shows the normal duty ratio (ON time t1 / 1 period) when the valve is opened in the holding current supply state even if the detection voltage periods X1 and X2 change. Y1) is the same as the duty ratio (ON time t2 / 1 cycle Y2) at the time of abnormality in which the valve is closed in the holding current supply state. This means that the power consumption consumed by the solenoid 5 is constant. However, the period of the drive waveform is longer in the normal period Y1 than in the abnormal period Y2. In other words, the OFF time (or ON time t1) detected at normal time is longer than the OFF time (ON time t2) detected at abnormal time.

以上より、電磁弁4に保持電流を供給した後、接点M2から取得されるON/OFF信号の駆動波形の周期(ON時間・OFF時間)を見れば、電磁弁4の弁開状態と弁閉状態とを電気的に静的に区別して検知できる。   As described above, when the holding current is supplied to the solenoid valve 4 and the period of the ON / OFF signal drive waveform (ON time / OFF time) acquired from the contact M2 is viewed, the valve open state and the valve close state of the solenoid valve 4 The state can be detected by being electrically and statically distinguished.

また、図3に示すように、保持電流を供給される電磁弁4が外部衝撃を加えられて異常な弁閉動作を開始すると、検出電圧の電圧値が大きくなり、異常弁閉動作時の検出電圧波形の周期X3は、弁開状態時の検出電圧周期X1より長くなる過渡現象が表れる。これは、プランジャ吸着状態で蓄えられた磁気エネルギーが、プランジャ復帰とともに解放され、ダイオードD1とコイル抵抗で熱エネルギーとして消費される間、過渡的に電流として流れるためである。
一方、図3の接点M2の駆動波形を見ると、電磁弁4が保持電流を供給された状態で外部衝撃を加えられて弁閉動作を開始すると、電磁弁4が弁閉状態になるまでOFF信号を入力し続け、OFF時間が正常時のOFF時間より長くなる。
よって、接点M2の駆動波形のOFF時間により、電磁弁4の正常な弁開状態と異常な弁閉動作の過渡現象とを電気的に区別できる。
In addition, as shown in FIG. 3, when the solenoid valve 4 to which a holding current is supplied is applied with an external impact and starts an abnormal valve closing operation, the voltage value of the detection voltage increases, and the detection during the abnormal valve closing operation is performed. The voltage waveform period X3 exhibits a transient phenomenon that is longer than the detection voltage period X1 when the valve is open. This is because the magnetic energy stored in the plunger attracted state is released as the plunger returns and flows transiently as current while being consumed as thermal energy by the diode D1 and the coil resistance.
On the other hand, when the driving waveform of the contact M2 in FIG. 3 is seen, when the solenoid valve 4 is supplied with a holding current and an external impact is applied to start the valve closing operation, the solenoid valve 4 is turned off until the solenoid valve 4 is closed. The signal continues to be input, and the OFF time becomes longer than the normal OFF time.
Therefore, the normal opening state of the electromagnetic valve 4 and the transient phenomenon of the abnormal valve closing operation can be electrically distinguished from each other by the OFF time of the driving waveform of the contact M2.

尚、ここでは、検出抵抗R3に発生する検出電圧の電圧値を用いて、電磁弁4の弁開閉動作を説明したが、ソレノイド5に流れる電流値を用いても、上記検出電圧波形と同様に電流波形が変動し、上記検出電圧波形と同様に電磁弁4の弁開閉動作を説明できることは、言うまでもない。   Here, the valve opening / closing operation of the solenoid valve 4 has been described using the voltage value of the detection voltage generated in the detection resistor R3, but the current value flowing through the solenoid 5 can be used in the same manner as the above detection voltage waveform. Needless to say, the current waveform fluctuates and the opening / closing operation of the solenoid valve 4 can be explained in the same manner as the detected voltage waveform.

<電磁弁駆動方法>
電磁弁駆動方法を説明する。
図1に示すマイコン6が図示しない上位装置から駆動指令を入力しない場合には、マイコン6がコンパレータOPに電圧を出力しない。そのため、トランジスタTR1,TR2がOFF状態になって開き、電源E1からソレノイド5へ電流が供給されない。
<Solenoid valve drive method>
An electromagnetic valve driving method will be described.
When the microcomputer 6 shown in FIG. 1 does not input a drive command from a host device (not shown), the microcomputer 6 does not output a voltage to the comparator OP. Therefore, the transistors TR1 and TR2 are turned off and opened, and no current is supplied from the power source E1 to the solenoid 5.

駆動装置1は、電磁弁4に非通電状態のときに、図示しない上位装置から入力用端子CN3を介してマイコン6に駆動指令が入力すると、図4に示す電磁弁駆動装置の駆動制御プログラムをEEPROM7から読み出して実行する。電磁弁駆動装置の駆動制御プログラムを実行するマイコン6は、ソレノイド5に定格電流を供給して電磁弁4に起動動作をさせてから、EEPROM7に予め記憶された保持電流をソレノイド5に供給して弁開状態を維持し、この保持電流を供給する間、駆動手段3からON/OFF信号を入力して電磁弁4の動作状態を監視し、電磁弁4が異常な弁閉動作をし或いは弁閉状態になった場合に、電磁弁4を自動的に弁開状態に復帰させる。以下、図4を参照しながら具体的に説明する。   When the drive command is input to the microcomputer 6 from the host device (not shown) via the input terminal CN3 when the solenoid valve 4 is not energized, the drive device 1 executes the drive control program for the solenoid valve drive device shown in FIG. Read from the EEPROM 7 and execute. The microcomputer 6 that executes the drive control program of the electromagnetic valve driving device supplies the solenoid 5 with a rated current to start the electromagnetic valve 4 and then supplies the holding current stored in the EEPROM 7 in advance to the solenoid 5. While the valve open state is maintained and this holding current is supplied, an ON / OFF signal is input from the driving means 3 to monitor the operation state of the solenoid valve 4, and the solenoid valve 4 performs an abnormal valve closing operation or the valve When the valve is in the closed state, the solenoid valve 4 is automatically returned to the valve open state. Hereinafter, this will be specifically described with reference to FIG.

マイコン6は、先ず図4のステップ1(以下「S1」と略記する。)において、100%定格電流駆動指令(起動電圧)をD/A変換器8から駆動手段3のコンパレータOPに出力する。そして、S2において、100%定格電流指令(起動用基準電圧Vc)を0.3秒間出力し、電磁弁4を弁開状態にする。   The microcomputer 6 first outputs a 100% rated current drive command (start-up voltage) from the D / A converter 8 to the comparator OP of the drive means 3 in Step 1 (hereinafter abbreviated as “S1”) in FIG. In S2, a 100% rated current command (starting reference voltage Vc) is output for 0.3 seconds, and the solenoid valve 4 is opened.

この起動時の駆動手段3の動作について具体的に説明すると、定格電流が検出抵抗R3に発生させる電圧より、充分に大きい電圧をマイコン6の端子より出し、コンパレータOPがハイ出力を保持するようにさせる。トランジスタTR1,TR2は、ONし続け、検出抵抗R3に発生する検出電圧と電源E1の電圧で規定される定格電流が電磁弁4に流れる。   The operation of the driving means 3 at the time of starting will be described in detail. A voltage that is sufficiently higher than the voltage that the rated current is generated in the detection resistor R3 is output from the terminal of the microcomputer 6 so that the comparator OP maintains a high output. Let The transistors TR1 and TR2 continue to be turned on, and a rated current defined by the detection voltage generated in the detection resistor R3 and the voltage of the power source E1 flows through the solenoid valve 4.

そして、図4のS3において、保持電流値指令(保持用基準電圧Vc)をコンパレータOPに出力することにより、ソレノイド5に供給する電流を起動電流から保持電流に切り替える。ここで、保持電流値指令は、ソレノイド5に供給する電流によって検出抵抗R3に発生する検出電圧が、弁開動作開始時T1の電圧値a1(図2参照)以下で、且つ、弁閉動作開始時T3の電圧値a3以上の値になるように規定され、EEPROM7に予め記憶されている。   Then, in S3 of FIG. 4, the current supplied to the solenoid 5 is switched from the starting current to the holding current by outputting a holding current value command (holding reference voltage Vc) to the comparator OP. Here, the holding current value command indicates that the detection voltage generated in the detection resistor R3 by the current supplied to the solenoid 5 is equal to or lower than the voltage value a1 (see FIG. 2) at the time T1 when the valve opening operation starts and the valve closing operation starts. It is defined to be equal to or greater than the voltage value a3 at time T3, and is stored in the EEPROM 7 in advance.

保持電流値指令出力時において、駆動手段3は、次のように動作する。
コンパレータOPは、検出抵抗R3に発生する検出電圧(入力電圧)Vbが保持用基準電圧Vc以下である場合、ハイ出力してトランジスタTR1,TR2を閉じ、電源E1からソレノイド5に電流を供給する。検出電圧Vbが保持用基準電圧Vcを超えると、コンパレータOPは、ロー出力してトランジスタTR1,2を開き、ソレノイド5に供給される電流を遮断する。このとき、ソレノイド5に蓄えられた電流がダイオード(或いは、ショットキーバリアダイオード)D1とソレノイド5との間を一方向に流れ続けるが、電流は、検出抵抗R3の抵抗成分によりエネルギーを消費され、電流値が低下していく。そして、検出電圧Vbが保持用基準電圧Vc以下になると、コンパレータOPは、再びハイ出力してトランジスタTR1,TR2を閉じ、ソレノイド5に電流を供給する。この一連の動作を繰り返すことにより、ソレノイド5に一定の保持電流が供給され、電磁弁4が弁開状態になる。
When the holding current value command is output, the driving unit 3 operates as follows.
When the detection voltage (input voltage) Vb generated in the detection resistor R3 is equal to or lower than the holding reference voltage Vc, the comparator OP outputs a high voltage to close the transistors TR1 and TR2 and supply current from the power supply E1 to the solenoid 5. When the detection voltage Vb exceeds the holding reference voltage Vc, the comparator OP outputs a low level to open the transistors TR1 and 2 and cut off the current supplied to the solenoid 5. At this time, the current stored in the solenoid 5 continues to flow in one direction between the diode (or Schottky barrier diode) D1 and the solenoid 5, but the current consumes energy by the resistance component of the detection resistor R3, The current value decreases. When the detection voltage Vb becomes equal to or lower than the holding reference voltage Vc, the comparator OP outputs again to close the transistors TR1 and TR2 and supply current to the solenoid 5. By repeating this series of operations, a constant holding current is supplied to the solenoid 5, and the solenoid valve 4 is opened.

図4のS4において、マイコン6は、第1信号入力端子10に入力するON/OFF信号に基づいて駆動波形の監視を開始する。電磁弁4の動作状態を監視し始める。そして、S5において、ON/OFF信号をパルス状に入力したか否かにより、駆動手段3がトランジスタTR1,TR2を開閉して保持電流発振を開始したか否かを判断する。ON/OFF信号をパルス状に入力せず、保持電流発振の開始を確認できない場合には(S5:NO)、そのまま待機する。   In S <b> 4 of FIG. 4, the microcomputer 6 starts monitoring the drive waveform based on the ON / OFF signal input to the first signal input terminal 10. The monitoring of the operation state of the solenoid valve 4 is started. Then, in S5, it is determined whether or not the driving means 3 has opened / closed the transistors TR1 and TR2 and started holding current oscillation depending on whether or not the ON / OFF signal is input in a pulse form. When the ON / OFF signal is not inputted in a pulse form and the start of the holding current oscillation cannot be confirmed (S5: NO), the process waits as it is.

一方、ON/OFF信号をパルス状に入力して、保持電流発振の開始を確認した場合には(S5:YES)、S6において、マイコン6に内蔵されている図示しないタイマをクリアし、ON信号の入力時間(ON時間)の計測を開始する。そして、S7において、第1信号入力端子10にOFF信号を入力したか否かにより、トランジスタTR1,TR2を閉じて駆動手段3の駆動を停止したか否かを判断する。トランジスタTR1,TR2が開き、駆動手段3が駆動停止していない場合には(S7:NO)、第1信号入力端子10にON信号が入力し続けているので、そのまま待機する。一方、トランジスタTR1,TR2が閉じ、駆動手段3が駆動停止した場合には(S7:YES)、1周期中のON時間を計測し終わった状態なので、S8において、ON時間測定値が、EEPROM7に記憶されている弁開状態時駆動波形の保持用判別ON時間範囲内であるか否かを判断する。   On the other hand, when the ON / OFF signal is input in a pulse form and the start of holding current oscillation is confirmed (S5: YES), a timer (not shown) built in the microcomputer 6 is cleared in S6, and the ON signal Measurement of input time (ON time) is started. In S7, it is determined whether or not the driving of the driving means 3 is stopped by closing the transistors TR1 and TR2 depending on whether or not an OFF signal is input to the first signal input terminal 10. If the transistors TR1 and TR2 are opened and the driving means 3 is not stopped (S7: NO), the ON signal continues to be input to the first signal input terminal 10, so that the process waits. On the other hand, when the transistors TR1 and TR2 are closed and the driving means 3 is stopped (S7: YES), since the ON time in one cycle has been measured, the ON time measurement value is stored in the EEPROM 7 in S8. It is determined whether or not it is within the stored determination ON time range for holding the drive waveform when the valve is open.

ON時間測定値が保持用判別ON時間の範囲内の場合には(S8:YES)、電磁弁4が弁閉状態になって異常であると考えられるので(図3のY1,t1,Y2,t2参照)、S1に戻る。S1以降の処理を繰り返すことにより、電磁弁4に保持電流より大きい起動電流を供給して電磁弁4を弁開状態に自動復帰させ、起動電流を保持電流に切り替えて再び電磁弁4の弁開状態を維持する。   When the ON time measurement value is within the range of the holding discrimination ON time (S8: YES), it is considered that the solenoid valve 4 is in a closed state and is abnormal (Y1, t1, Y2, FIG. 3). t2), the process returns to S1. By repeating the processing after S1, the starting current larger than the holding current is supplied to the solenoid valve 4 to automatically return the solenoid valve 4 to the valve open state, the starting current is switched to the holding current, and the solenoid valve 4 is opened again. Maintain state.

一方、ON時間測定値が保持用判別ON時間の範囲内でない場合には(図4のS8:NO)、S9において、マイコン6に内蔵されるタイマをクリアし、第1信号入力端子10に入力されるOFF信号の入力時間(OFF時間)を計測し始める。S10において、現在のOFF時間計測値は、EEPROM7に記憶されている弁開状態時駆動波形の保持用判別OFF時間以上か否かを判断する。現在のOFF時間計測値が保持用判別OFF時間以上でない場合には(S10:NO)、S11において、駆動手段3が駆動を開始したか判断する。第1信号入力端子10にON信号が入力するとき、トランジスタTR1,TR2が閉じてソレノイド5に電流が供給されるので、駆動手段3の駆動開始はON信号がマイコン6に再入力すること、換言すれば、OFF信号が入力し終わることにより判断される。OFF信号の入力途中で、駆動手段3が駆動を開始していない場合には(S11:NO)、S10に戻り、OFF時間を監視する。   On the other hand, if the ON time measurement value is not within the holding discrimination ON time range (S8: NO in FIG. 4), the timer built in the microcomputer 6 is cleared and input to the first signal input terminal 10 in S9. Measurement of the input time (OFF time) of the OFF signal to be started is started. In S <b> 10, it is determined whether or not the current OFF time measurement value is equal to or longer than the determination OFF time for holding the drive waveform in the valve open state stored in the EEPROM 7. If the current OFF time measurement value is not equal to or greater than the holding determination OFF time (S10: NO), it is determined in S11 whether the driving unit 3 has started driving. When the ON signal is input to the first signal input terminal 10, the transistors TR1 and TR2 are closed and the current is supplied to the solenoid 5, so that the driving means 3 starts driving when the ON signal is input again to the microcomputer 6. In this case, the determination is made when the OFF signal has been input. If the driving means 3 has not started driving during the input of the OFF signal (S11: NO), the process returns to S10 and the OFF time is monitored.

現在のOFF時間計測値が保持用判別OFF時間以上に長い場合には(S10:YES)、電磁弁4が保持電流を供給されているにもかかわらず異常に弁閉動作する途中(過渡状態)である考えられるので、S1に戻る。そして、S1以降の処理を繰り返すことにより、電磁弁4に保持電流より大きい起動電流を供給して電磁弁4を弁開状態に自動復帰させ、起動電流を保持電流に切り替えて再び電磁弁4の弁開状態を維持する。これにより、プランジャの異常復帰を早期に検知して、電磁弁4を弁開状態にすることが可能である。   When the current OFF time measurement value is longer than the holding determination OFF time (S10: YES), the solenoid valve 4 is abnormally closed (transient state) even though the holding current is supplied. Therefore, the process returns to S1. Then, by repeating the processing after S1, a starting current larger than the holding current is supplied to the solenoid valve 4, the solenoid valve 4 is automatically returned to the valve open state, the starting current is switched to the holding current, and the solenoid valve 4 is turned on again. Maintain valve open. Thereby, it is possible to detect the abnormal return of the plunger at an early stage and to open the solenoid valve 4.

一方、現在のOFF時間計測値が保持用判別OFF時間以上に長くなく(S10:NO)、且つ、駆動手段3が駆動を開始した場合には(S11:YES)、S12において、OFF時間計測値が保持用判別OFF時間の範囲内であるか否かを判断する。   On the other hand, if the current OFF time measurement value is not longer than the holding determination OFF time (S10: NO) and the driving means 3 starts driving (S11: YES), the OFF time measurement value is determined in S12. Is within the range of the holding discrimination OFF time.

OFF時間計測値が保持用判別OFF時間の範囲内である場合には(S12:YES)、駆動波形が弁開状態時駆動波形と一致して電磁弁4が正常に弁開状態を維持していると考えられるので、S6へ戻る。そして、S6以降の処理を繰り返して引き続き電磁弁4の保持動作を監視する。
これに対して、OFF時間計測値が保持用判別OFF時間の範囲内でない場合には(S12:NO)、保持電流を供給された電磁弁4が弁閉状態になって異常であると考えられるので、S1へ戻る。そして、S1以降の処理を繰り返すことにより、電磁弁4に保持電流より大きい起動電流を供給して電磁弁4を弁開状態にした後、起動電流を保持電流に切り替えて電磁弁4の弁開状態を維持する。
When the OFF time measurement value is within the holding determination OFF time range (S12: YES), the drive waveform matches the drive waveform when the valve is open, and the solenoid valve 4 is normally maintained in the valve open state. Since it is thought that there is, it returns to S6. And the process after S6 is repeated and the holding operation of the solenoid valve 4 is continuously monitored.
On the other hand, when the OFF time measurement value is not within the holding discrimination OFF time range (S12: NO), it is considered that the solenoid valve 4 supplied with the holding current is in a closed state and is abnormal. Therefore, it returns to S1. Then, by repeating the processing after S1, a starting current larger than the holding current is supplied to the solenoid valve 4 to bring the solenoid valve 4 into the valve open state, and then the starting current is switched to the holding current to open the solenoid valve 4. Maintain state.

上記処理を繰り返すことにより、電磁弁駆動装置1は、電磁弁4を動作させる間、駆動手段3の動作状態を電気信号(ON/OFF信号)で検知することにより電磁弁4の保持動作を監視し、電磁弁4の異常を検知した場合に電磁弁4を弁開状態に自動復帰させることが可能である。   By repeating the above processing, the electromagnetic valve driving device 1 monitors the holding operation of the electromagnetic valve 4 by detecting the operation state of the driving means 3 with an electric signal (ON / OFF signal) while operating the electromagnetic valve 4. When the abnormality of the electromagnetic valve 4 is detected, the electromagnetic valve 4 can be automatically returned to the valve open state.

<作用効果>
以上説明したように、本実施形態の電磁弁駆動装置1、電磁弁4、電磁弁駆動方法及び電磁弁駆動装置の駆動制御プログラムは、外部衝撃等により、保持電流を供給される電磁弁4が異常に弁閉することがある。通常、電磁弁4は、弁開状態時と弁閉状態に発生するインダクタンスが異なり、特定の回路においては、そのインダクタンスの影響を受けて、電磁弁4と直列に配置された検出抵抗R3に発生する検出電圧が変化する。この点に着目し、上記構成では、電磁弁4に保持電流を供給する場合に、検出抵抗にR3発生する検出電圧を監視し、検出電圧R3の変化により電磁弁4が正常に弁開しているか異常に弁閉しているかを検知する。このため、本実施形態の電磁弁駆動装置1、電磁弁4、電磁弁駆動方法及び電磁弁駆動装置の駆動制御プログラムは、プランジャの移動に伴う過渡現象を使用した検出方法(電流波形、プランジャの衝撃振動等)とは異なり、電磁弁4の動作状態を検出抵抗R3に発生する検出電圧の変化により静的定常的に検知するので、振動センサ等を電磁弁4に設ける必要がなく、ローコストで異常を迅速に検知できる。しかも、例えば電磁弁4が粘性の高い液体を制御し、弁閉時の衝撃が小さい場合でも、電磁弁4の異常な弁閉動作と正常な弁閉動作を検出電圧の変化により明確に判別するので、検知精度が高い。電磁弁4の異常が確認された場合には、電磁弁4に供給する電流を保持電流より増加させて電磁弁を弁開状態に瞬時に自動復帰させる。
<Effect>
As described above, the solenoid valve drive device 1, the solenoid valve 4, the solenoid valve drive method, and the drive control program for the solenoid valve drive device according to the present embodiment have the solenoid valve 4 to which a holding current is supplied by an external impact or the like. The valve may close abnormally. Normally, the solenoid valve 4 has different inductances in the valve open state and in the valve closed state. In a specific circuit, the inductance is affected by the inductance and is generated in the detection resistor R3 arranged in series with the solenoid valve 4. The detected voltage changes. Focusing on this point, in the above configuration, when the holding current is supplied to the solenoid valve 4, the detection voltage generated at the detection resistor R3 is monitored, and the change in the detection voltage R3 causes the solenoid valve 4 to open normally. Detect whether the valve is closed abnormally. For this reason, the solenoid valve drive device 1, the solenoid valve 4, the solenoid valve drive method, and the drive control program for the solenoid valve drive device of the present embodiment are based on the detection method (current waveform, plunger Unlike the shock vibration), the operation state of the solenoid valve 4 is detected statically and constantly by the change of the detection voltage generated in the detection resistor R3, so there is no need to provide a vibration sensor etc. in the solenoid valve 4 at low cost. Abnormalities can be detected quickly. Moreover, for example, even when the solenoid valve 4 controls a highly viscous liquid and the impact when the valve is closed is small, the abnormal valve closing operation and the normal valve closing operation of the solenoid valve 4 are clearly discriminated by the change in the detection voltage. So detection accuracy is high. When abnormality of the solenoid valve 4 is confirmed, the current supplied to the solenoid valve 4 is increased from the holding current, and the solenoid valve is automatically returned to the valve open state instantly.

よって、上記電磁弁駆動装置1、電磁弁4、電磁弁駆動方法及び電磁弁駆動装置の駆動制御プログラムによれば、プランジャ保持状態の検出精度を高めることができる。また、電磁弁4が保持電流供給時に正常に弁開する場合と異常に弁閉する場合とで検出抵抗R3に発生する検出電圧が変化することに着目して検出抵抗R3の変化により電磁弁4の動作状態を検知するので、振動センサ等を電磁弁に設ける必要がなく、安価である。   Therefore, according to the solenoid valve drive device 1, the solenoid valve 4, the solenoid valve drive method, and the drive control program for the solenoid valve drive device, the detection accuracy of the plunger holding state can be increased. Further, paying attention to the fact that the detection voltage generated in the detection resistor R3 changes depending on whether the solenoid valve 4 is normally opened or not when the holding current is supplied, the solenoid valve 4 is changed by the change of the detection resistor R3. Therefore, it is not necessary to provide a vibration sensor or the like in the solenoid valve, and it is inexpensive.

上記構成の電磁弁駆動装置1では、特定の回路においては、弁開状態時と弁閉状態時とで電磁弁に発生するインダクタンスの影響を受けて、電磁弁4への電流の供給と遮断を制御する駆動手段3の駆動状態が電磁弁4の弁開状態時と弁閉状態時とで異なる。これに着目し、上記電磁弁駆動装置1では、マイコン6により駆動手段3の駆動状態をON/OFFの電気信号により検知して駆動波形を取得し、駆動波形から電磁弁4の動作状態を検知している。すなわち、保持電流を電磁弁4に供給した後にマイコン6により取得される駆動波形(ON時間・OFF時間)が、保持電流を供給された電磁弁4が弁開状態である場合にマイコン6に取得される弁開状態時駆動波形(保持判別ON時間・保持判別OFF時間)と一致するか否かを判断し、駆動波形が弁開状態時駆動波形と一致する場合には、電磁弁が弁開状態を維持して正常であると判断し、駆動波形が弁開状態時駆動波形と一致しない場合には、電磁弁が保持電流を供給されているにもかかわらず弁開状態を維持できておらず異常であると判断している。このため、プランジャの移動に伴う過渡現象を使用した検出方法(電流波形、プランジャの衝撃振動等)とは異なり、電磁弁の動作状態を駆動手段3の駆動波形により静的定常的に検知するので、振動センサ等を電磁弁に設ける必要がなく、ローコストで異常を迅速に検知できる。しかも、例えば電磁弁が粘性の高い液体を制御し、弁閉時の衝撃が小さい場合でも、電磁弁の異常な弁閉動作と正常な弁閉動作を駆動波形により明確に判別するので、検知精度が高い。   In the solenoid valve drive device 1 having the above-described configuration, in a specific circuit, the current is supplied to and shut off from the solenoid valve 4 under the influence of inductance generated in the solenoid valve when the valve is open and when the valve is closed. The driving state of the driving means 3 to be controlled is different between when the solenoid valve 4 is in the valve open state and when the valve is in the closed state. Focusing on this, in the electromagnetic valve drive device 1, the microcomputer 6 detects the drive state of the drive means 3 by an ON / OFF electric signal to acquire a drive waveform, and detects the operation state of the solenoid valve 4 from the drive waveform. is doing. That is, the drive waveform (ON time / OFF time) acquired by the microcomputer 6 after supplying the holding current to the solenoid valve 4 is acquired by the microcomputer 6 when the solenoid valve 4 to which the holding current is supplied is in the valve open state. If the drive waveform matches the drive waveform in the valve open state, it is determined whether the drive waveform matches the drive waveform in the valve open state (holding determination ON time / holding determination OFF time). If the drive waveform does not match the drive waveform when the valve is open, the valve is kept open despite the solenoid valve being supplied with holding current. It is judged as abnormal. Therefore, unlike the detection method (current waveform, plunger impact vibration, etc.) using a transient phenomenon associated with the movement of the plunger, the operation state of the electromagnetic valve is statically and constantly detected by the drive waveform of the drive means 3. In addition, it is not necessary to provide a vibration sensor or the like in the solenoid valve, and an abnormality can be detected quickly at a low cost. In addition, for example, even when the solenoid valve controls a highly viscous liquid and the impact when the valve is closed is small, the abnormal valve closing operation and the normal valve closing operation of the solenoid valve are clearly distinguished by the drive waveform, so the detection accuracy Is expensive.

本実施形態の電磁弁駆動装置1は、保持電流を供給された電磁弁4が弁開状態から弁閉動作する場合にマイコン6に取得される駆動波形の1サイクル分をみると、弁閉動作時OFF時間が、弁開状態時駆動波形の過渡的なOFF時間と異なる。これに着目して、電磁弁駆動装置1は、保持電流を電磁弁4に供給した後にマイコン6が取得する駆動波形のOFF時間を計測し、駆動波形のOFF時間が弁開状態時の駆動波形のOFF時間より長い場合にも異常を検知し、電磁弁4を弁開状態に自動復帰させる。よって、本実施形態の電磁弁駆動装置1は、保持電流を供給されている電磁弁4が完全に弁閉する前に異常を検知でき、衝撃検知等の他の方法よりも早く、電磁弁4を正常な弁開状態に自動復帰させることができる。   When the solenoid valve 4 to which the holding current is supplied performs the valve closing operation from the valve open state, the electromagnetic valve driving device 1 according to the present embodiment shows the valve closing operation when one cycle of the drive waveform acquired by the microcomputer 6 is viewed. OFF time is different from the transient OFF time of the drive waveform when the valve is open. Paying attention to this, the solenoid valve driving device 1 measures the OFF time of the drive waveform acquired by the microcomputer 6 after supplying the holding current to the solenoid valve 4, and the drive waveform when the OFF time of the drive waveform is in the valve open state. Even when it is longer than the OFF time, an abnormality is detected, and the solenoid valve 4 is automatically returned to the valve open state. Therefore, the solenoid valve drive device 1 of the present embodiment can detect an abnormality before the solenoid valve 4 to which the holding current is supplied is completely closed, and is faster than other methods such as shock detection. Can be automatically returned to a normal valve open state.

本実施形態の電磁弁駆動装置1は、保持電流値が、弁開開始時の電流値以下であって、且つ、弁閉開始時の電流値以上であるので、保持電流を電磁弁4に供給した後、弁閉開始時の電流値により近い保持電流で電磁弁4を使用でき、低電力化が図れ、発熱を防止することができる。しかも、過大に余裕を見込んだタイマ動作と違い、起動電流供給後に電磁弁4の弁開状態を確認すると、直ちに起動電流を保持電流に切り替えて電磁弁4の弁開状態保持動作に移行することができ、無駄なエネルギーロスが少ない。また、起動電流により電磁弁4の弁開状態を確認してから保持動作に移行するため、電磁弁4の保持動作を確実に行うことができる。   The electromagnetic valve drive device 1 of the present embodiment supplies the holding current to the electromagnetic valve 4 because the holding current value is equal to or less than the current value at the start of valve opening and equal to or greater than the current value at the start of valve closing. After that, the solenoid valve 4 can be used with a holding current that is closer to the current value at the start of valve closing, so that power can be reduced and heat generation can be prevented. In addition, unlike the timer operation that allows an excessive margin, when the open state of the solenoid valve 4 is confirmed after the start-up current is supplied, the start-up current is immediately switched to the hold current and the operation shifts to the valve-open state hold operation of the solenoid valve 4. And there is little wasted energy loss. In addition, since the solenoid valve 4 is confirmed to be open by the starting current and then the holding operation is performed, the holding operation of the solenoid valve 4 can be reliably performed.

本実施形態の電磁弁駆動装置1は、電磁弁接続端子CN2をソレノイド5に接続することで既存の電磁弁4に着脱可能に取り付けられるので、電磁弁4と振動センサとの一体構造化やセンサ配線など現状の装置から大きく設計変更したり、電磁弁4を交換する必要がなく、既存の電磁弁4をそのまま利用して低電力化・低コスト化を図ることができる。   Since the solenoid valve drive device 1 of the present embodiment is detachably attached to the existing solenoid valve 4 by connecting the solenoid valve connection terminal CN2 to the solenoid 5, the integral construction of the solenoid valve 4 and the vibration sensor or the sensor There is no need to make a major design change from current devices such as wiring or to replace the solenoid valve 4, and the existing solenoid valve 4 can be used as it is to reduce power consumption and cost.

尚、本実施形態の電磁弁駆動装置1は、ランプや音声出力器などの報知手段をマイコン6や上位装置に設け、マイコン6が異常を検知した場合にその異常を報知するようにすれば、電磁弁4の異常をユーザに知らせて適切な処置を行わせることができる。   In addition, if the electromagnetic valve drive device 1 of this embodiment provides alerting means, such as a lamp and an audio output device, in the microcomputer 6 or a host device, and the microcomputer 6 detects an abnormality, the abnormality is notified. It is possible to notify the user of the abnormality of the electromagnetic valve 4 and perform appropriate measures.

(第2実施形態)
次に、本発明の第2実施形態について説明する。図5は、本発明の第2実施形態に係る電磁弁駆動装置の駆動制御プログラムのフローである。図6は、接点M1から取得される検出抵抗R3に発生する検出電圧と、接点M2から取得されるON/OFF信号の駆動波形の一例を示す図であって、特に、電磁弁4に起動電流を供給し始めてから保持電流を供給するまでの検出電圧波形と駆動波形を示す。
第2実施形態では、電磁弁駆動装置の駆動制御プログラムが100%定格電流を供給せずに電磁弁4を起動させて省エネを図る点(図5のS15〜S20)が第1実施形態と相違する。よって、ここでは、電磁弁4の起動動作のみを説明し、第1実施形態と共通する点は図面及び説明に第1実施形態と同一符号を用い、説明を適宜省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. FIG. 5 is a flow of a drive control program of the solenoid valve drive device according to the second embodiment of the present invention. FIG. 6 is a diagram showing an example of the detection voltage generated in the detection resistor R3 acquired from the contact M1 and the drive waveform of the ON / OFF signal acquired from the contact M2, and in particular, the starting current for the solenoid valve 4 is shown. The detected voltage waveform and the drive waveform from the start of supplying the current until the holding current is supplied are shown.
The second embodiment is different from the first embodiment in that the drive control program of the solenoid valve driving device starts the solenoid valve 4 without supplying 100% rated current to save energy (S15 to S20 in FIG. 5). To do. Therefore, only the starting operation of the solenoid valve 4 will be described here, and the same points as in the first embodiment will be used in the drawings and the description with the same reference numerals as in the first embodiment, and the description will be omitted as appropriate.

<検出電圧波形と駆動波形>
図6に示す検出電圧波形では、検出抵抗R3に発生する検出電圧の電圧値が、起動電流を供給し始める起動電流供給開始時T10から弁が開き始める起動弁開動作開始時T11まで上昇し、その後、電磁弁4の図示しないプランジャが図示しない固定鉄心に当たる起動弁開動作終了時T12まで下降する。その後、再び検出電圧の電圧値が上昇して、図中P11に示すように、起動弁開動作開始時T11より僅かに高い電圧値a11で安定する(起動電流安定時T13,T14)。検出電圧の電圧値は、トランジスタTR1,TR2の開閉動作により起動電流を保持電流に切り替えるまで小刻みに増減する。起動電流より小さい保持電流を電磁弁4に供給し始めると(保持電流供給開始時T14)、検出電圧の電圧値が減少し、保持電圧値a12に安定する(保持電流安定時T15)。電圧値が保持電圧値に安定すると、検出電圧周期がX1に安定する。
この場合、駆動波形は、起動電流供給開始時T10から起動電流安定時T13までON状態を維持し、起動電流安定時T13から短い周期Y4でON/OFFする。そして、保持電流供給開始時T14から保持電流安定時T15までOFF状態になり、保持電流安定時T15以降は、周期Y4より長い周期Y1でON/OFFする。
よって、起動電流を供給して電磁弁4が弁開状態になったか否かは、駆動波形が発振したか否か、そして、発振した周期のON/OFF時間により判別することが可能である。
<Detection voltage waveform and drive waveform>
In the detection voltage waveform shown in FIG. 6, the voltage value of the detection voltage generated in the detection resistor R3 increases from the start current supply start time T10 at which the start current starts to be supplied to the start valve opening operation start time T11 at which the valve starts to open, Thereafter, the plunger (not shown) of the solenoid valve 4 moves down to T12 when the start valve opening operation ends in contact with a fixed iron core (not shown). Thereafter, the voltage value of the detection voltage rises again and stabilizes at a voltage value a11 slightly higher than the start valve opening operation start time T11 as indicated by P11 in the figure (starting current stabilization time T13, T14). The voltage value of the detection voltage increases or decreases in small increments until the starting current is switched to the holding current by the opening / closing operation of the transistors TR1 and TR2. When a holding current smaller than the starting current is started to be supplied to the solenoid valve 4 (at the start of holding current supply T14), the voltage value of the detection voltage decreases and becomes stable at the holding voltage value a12 (at the holding current stabilization time T15). When the voltage value is stabilized at the holding voltage value, the detection voltage cycle is stabilized at X1.
In this case, the drive waveform maintains the ON state from the start-up current supply start time T10 to the start-up current stabilization time T13, and is turned ON / OFF in a short cycle Y4 from the start-up current stabilization time T13. Then, it is turned OFF from the holding current supply start time T14 to the holding current stabilization time T15, and after the holding current stabilization time T15, it is turned ON / OFF in a cycle Y1 longer than the cycle Y4.
Therefore, whether or not the electromagnetic valve 4 is opened by supplying the starting current can be determined by whether or not the drive waveform oscillates and the ON / OFF time of the oscillated cycle.

<電磁弁駆動方法>
次に、電磁弁駆動方法を説明する。
マイコン6は、図示しない上位装置から駆動指令を入力すると、図5に示す電磁弁駆動装置の駆動制御プログラムを起動する。そして、図5のS15において、EEPROM7に予め記憶された起動電流値を駆動手段3に出力するように、駆動手段3に起動電流駆動指令を与える。起動電流値は、起動時の消費電力を減少させるために、図示しない固定鉄心が図示しないプランジャを吸着し始める起動弁開動作開始時T11の電圧値a1(図6参照)以上で且つ100%定格電流値未満の範囲で設定される。
<Electromagnetic valve drive method>
Next, the electromagnetic valve driving method will be described.
When the microcomputer 6 receives a drive command from a host device (not shown), the microcomputer 6 starts a drive control program for the electromagnetic valve drive device shown in FIG. Then, in S15 of FIG. 5, an activation current drive command is given to the drive unit 3 so that the activation current value stored in advance in the EEPROM 7 is output to the drive unit 3. The starting current value is equal to or greater than the voltage value a1 (see FIG. 6) of the starting valve opening operation T11 at which the fixed iron core (not shown) begins to attract the plunger (not shown) in order to reduce the power consumption at the time of starting and is 100% rated. It is set in a range less than the current value.

そして、S16において、起動電流値を0.3秒間維持した後、S17において、接点M2から第1信号入力端子10に入力されるON/OFF信号により駆動波形を監視する。そして、S18において、駆動波形のON時間とOFF時間が、EEPROM7に予め記憶されている起動電流安定時T13から保持電流供給開始時T14までの周期Y4に含まれる起動用判別ON時間と起動用判別OFF時間(図6のY4参照)に一致するか否かを判断する。駆動波形のON時間とOFF時間が起動用判別ON時間とOFF時間に一致する場合には(S18:YES)、電磁弁4が起動電流により弁開状態になったと考えられるので、S3へ進む。S3以降の処理は、第1実施形態と同様であるので説明を省略する。   In S16, the starting current value is maintained for 0.3 seconds, and in S17, the drive waveform is monitored by the ON / OFF signal input from the contact M2 to the first signal input terminal 10. Then, in S18, the ON time and OFF time of the drive waveform are the start determination ON time and start determination included in the period Y4 from the start current stabilization time T13 to the holding current supply start time T14 stored in advance in the EEPROM 7. It is determined whether or not it coincides with the OFF time (see Y4 in FIG. 6). If the ON time and OFF time of the drive waveform coincide with the start determination ON time and OFF time (S18: YES), it is considered that the solenoid valve 4 has been opened due to the start current, and the process proceeds to S3. Since the process after S3 is the same as that of the first embodiment, the description thereof is omitted.

これに対して、駆動波形のON時間とOFF時間が起動用判別ON時間とOFF時間に一致しない場合には(S18:NO)、電磁弁4がまだ弁開状態になっていないので、S19において、100%定格電流駆動指令を駆動手段3に出力し、ソレノイド5に供給する電流の電流値を定格電流値まで上昇させる。そして、S20において、100%定格電流の供給を0.2秒間維持して電磁弁4を弁開状態にした後、S15に戻り、EEPROM7に記憶された起動電流値で再度ソレノイド5へ電流を供給する。このように100%定格電流値をソレノイド5に供給して電磁弁4を弁開状態にしてから、起動弁開動作開始時T11に必要な電流に対応する起動電流をソレノイド5に供給するので、起動電流を再度供給した場合に駆動波形のON/OFF時間が起動用判別値のON/OFF時間に等しくなる(S15、S16、S17、S18:YES)。そこで、S3へ進む。   On the other hand, when the ON time and OFF time of the drive waveform do not coincide with the start determination ON time and OFF time (S18: NO), the solenoid valve 4 has not yet been opened, so in S19. The 100% rated current drive command is output to the drive means 3, and the current value of the current supplied to the solenoid 5 is increased to the rated current value. In S20, the supply of 100% rated current is maintained for 0.2 seconds to open the solenoid valve 4, and then the process returns to S15 to supply the current to the solenoid 5 again with the starting current value stored in the EEPROM 7. To do. In this way, since the 100% rated current value is supplied to the solenoid 5 so that the solenoid valve 4 is in the valve open state, the startup current corresponding to the current required for the start valve opening operation start time T11 is supplied to the solenoid 5. When the start-up current is supplied again, the ON / OFF time of the drive waveform becomes equal to the ON / OFF time of the start discrimination value (S15, S16, S17, S18: YES). Therefore, the process proceeds to S3.

<作用効果>
従って、本実施形態の駆動装置1及び電磁弁駆動装置の駆動制御プログラムによれば、100%定格電流より小さい起動電流をソレノイド5に供給して電磁弁4を起動させるので、電磁弁4の起動に消費する電力を小さくして、省エネ効果を高めることができる。
<Effect>
Therefore, according to the drive control program for the drive device 1 and the solenoid valve drive device of the present embodiment, the solenoid valve 4 is activated by supplying the solenoid 5 with a startup current smaller than the 100% rated current. The power consumption can be reduced and the energy saving effect can be enhanced.

(第3実施形態)
次に、本発明の第3実施形態について説明する。図7は、本発明の第3実施形態に係る電磁弁駆動装置31の回路図である。図8は、学習プログラムのフローである。
第3実施形態の図7に示す電磁弁駆動装置31は、マイコン32が起動電流値と保持電流値を学習する学習プログラム(保持電流値学習手段、起動電流値学習手段の一例。図8参照。)を備える点が、第2実施形態と相違する。よって、ここでは、学習機能を中心に説明し、第2実施形態と共通する点は図面及び説明に第2実施形態と同一符号を用い、適宜説明を省略する。
(Third embodiment)
Next, a third embodiment of the present invention will be described. FIG. 7 is a circuit diagram of an electromagnetic valve driving device 31 according to the third embodiment of the present invention. FIG. 8 is a flow of the learning program.
7 of the third embodiment is a learning program (an example of a holding current value learning unit and a starting current value learning unit, in which a microcomputer 32 learns a starting current value and a holding current value. See FIG. 8. ) Is different from the second embodiment. Therefore, here, the learning function will be mainly described, and the same points as in the second embodiment will be used in the drawings and the description with the same reference numerals as those in the second embodiment, and the description will be omitted as appropriate.

<電磁弁駆動装置の回路構成>
図7に示すように、電磁弁駆動装置31は、学習機能を開始するためのスイッチSWがマイコン32に接続されている。マイコン32には、スイッチSWがONされると発光する発光ダイオードLD1〜LD5を備え、学習機能実行中であることをユーザに報知できるようになっている。また、電磁弁駆動装置31は、電磁弁接続端子CN2と検出抵抗R3との間の接点M1と、マイコン32の第2信号入力端子34とが接続され、接点M1の電圧・電流をA/D変換器33に入力して測定できるようになっている。
<Circuit configuration of solenoid valve drive device>
As shown in FIG. 7, in the electromagnetic valve driving device 31, a switch SW for starting a learning function is connected to the microcomputer 32. The microcomputer 32 includes light emitting diodes LD1 to LD5 that emit light when the switch SW is turned on, so that the user can be notified that the learning function is being executed. The electromagnetic valve driving device 31 is connected to the contact M1 between the electromagnetic valve connection terminal CN2 and the detection resistor R3 and the second signal input terminal 34 of the microcomputer 32, and the voltage / current of the contact M1 is A / D. Measurement can be performed by inputting to the converter 33.

<保持電流値及び起動電流値の学習方法>
次に、保持電流値及び起動電流値の学習方法について図8を参照しながら説明する。
図8に示す学習プログラムは、EEPROM7に記憶され、スイッチSWが押下された場合にマイコン32に実行されるものである。学習プログラムは、図6に示すように電磁弁4を弁開状態に起動させるための起動電圧値a11と、電磁弁4の弁開状態を保持するための保持電圧値a12を、電磁弁4の特性に合わせてマイコン32に決定させる。
<Learning method of holding current value and starting current value>
Next, a learning method of the holding current value and the starting current value will be described with reference to FIG.
The learning program shown in FIG. 8 is stored in the EEPROM 7 and is executed by the microcomputer 32 when the switch SW is pressed. As shown in FIG. 6, the learning program obtains a starting voltage value a11 for starting the solenoid valve 4 in the valve open state and a holding voltage value a12 for holding the valve open state of the solenoid valve 4. The microcomputer 32 is determined according to the characteristics.

具体的には、マイコン32は、先ず図8のS21において、定格電圧駆動指令(過大電流値指令)をD/A変換器8からコンパレータOPに出力する。駆動手段3は、コンパレータOPがトランジスタTR1,TR2を開閉することにより、ソレノイド5に定格電圧を印加し、電磁弁4を弁開状態にする。マイコン32は、S22において、接点M1から入力される電圧信号をA/D変換器で33で変換し、検出抵抗R3に発生する検出電圧に基づいて定格電流値を測定しEEPROM7に記憶する。   Specifically, the microcomputer 32 first outputs a rated voltage drive command (overcurrent value command) from the D / A converter 8 to the comparator OP in S21 of FIG. The driving means 3 opens and closes the solenoid valve 4 by applying a rated voltage to the solenoid 5 by the comparator OP opening and closing the transistors TR1 and TR2. In S22, the microcomputer 32 converts the voltage signal input from the contact M1 by the A / D converter 33, measures the rated current value based on the detected voltage generated in the detection resistor R3, and stores it in the EEPROM 7.

そして、マイコン32は、S23において、100%駆動指令を80%定格電流値指令に切り替えてコンパレータOPに出力し、ソレノイド5に供給する電流を定格電流の80%まで減少させる。通常の電磁弁4は、電流が58〜70%定格電流に設定されているため、ソレノイド5に供給する電流を定格電流の80%に減らしても、電磁弁4は弁開状態を維持できる。そして、S24において、電流値0から定格80%の電流値までを均等に分割し(例えば40分割)、80%定格電流値を一定量(例えば定格80%電流値の2%)ずつ電流値だけ下降させ、S25において、電流値が0になったか判断する。電流値が0になっていない場合には(S25:NO)、S26において、ON/OFF時間を現在の電流値(下降時電流値)に関連付けて記憶する。このS24,S25,S26の処理を繰り返すことにより、電流値が一定の量(下降値)ずつゼロまで段階的に下降され、各下降時電流値の1周期中のON時間とOFF時間が取得される。「一定量」は、保持電流より大きい値に設定された所定値から電流値0までの範囲を均等に分割して求められ、必ずしも定格電流値の2%としなくても良い。尚、この処理により取得されるON/OFF周期を、以下「電流下降時周期特性」という。   In S23, the microcomputer 32 switches the 100% drive command to the 80% rated current value command and outputs the command to the comparator OP to reduce the current supplied to the solenoid 5 to 80% of the rated current. Since the normal solenoid valve 4 has a current set at 58 to 70% rated current, the solenoid valve 4 can maintain the valve open state even if the current supplied to the solenoid 5 is reduced to 80% of the rated current. Then, in S24, the current value from 0 to the rated current value of 80% is equally divided (for example, 40 divisions), and the 80% rated current value is divided by a certain amount (for example, 2% of the rated 80% current value) by the current value. In step S25, it is determined whether the current value has become zero. If the current value is not 0 (S25: NO), in S26, the ON / OFF time is stored in association with the current current value (current value during descent). By repeating the processes of S24, S25, and S26, the current value is gradually decreased to zero by a certain amount (decreasing value), and the ON time and OFF time in one cycle of each decreasing current value are acquired. The The “constant amount” is obtained by equally dividing a range from a predetermined value set to a value larger than the holding current to a current value of 0, and does not necessarily have to be 2% of the rated current value. The ON / OFF cycle acquired by this processing is hereinafter referred to as “current falling time cycle characteristic”.

ソレノイド5に供給する電流をゼロまで減少させると(S25:YES)、電磁弁4が確実に弁閉する。マイコン32は、S27において、ソレノイド5に供給する電流値を0にセットする指令をコンパレータOPに出力する。そして、S28において、電流下降時周期特性取得時に使用した下降値(定格電流の2%)と同じ値で、ソレノイド5に供給する電流値を増加させる。そして、S29において、接点M2から第1信号入力端子10に入力するON/OFF信号に基づいて駆動手段3の駆動状態をON/OFF信号により検知して駆動波形(ON時間・OFF時間)を測定し、測定した駆動波形を現在の電流値(上昇時電流値)に関連付けて一時記憶領域(記憶手段の一例)35に記憶する。   When the current supplied to the solenoid 5 is reduced to zero (S25: YES), the solenoid valve 4 is reliably closed. In S27, the microcomputer 32 outputs a command for setting the current value supplied to the solenoid 5 to 0 to the comparator OP. In S28, the current value supplied to the solenoid 5 is increased by the same value as the decrease value (2% of the rated current) used when the current decrease period characteristic is acquired. In S29, based on the ON / OFF signal inputted from the contact M2 to the first signal input terminal 10, the driving state of the driving means 3 is detected by the ON / OFF signal, and the driving waveform (ON time / OFF time) is measured. Then, the measured drive waveform is stored in the temporary storage area (an example of a storage unit) 35 in association with the current value (current value at the time of increase).

そして、S30において、現在の上昇時電流値に一致する下降時電流値を一時記憶領域35から探索し、探索した下降時電流値の駆動波形(ON時間・OFF時間)と現在の駆動波形(ON時間・OFF時間)とが一致するか否かを判断する。ここで、「一致」には、誤差範囲を含むものとする。現在の駆動波形(ON時間・OFF時間)が探索した電流下降値のON時間・OFF時間と一致する場合には(S30:YES)、電磁弁4が弁閉していると考えられるので、S28へ戻り、更に電流値を上昇させて電流下降時の駆動波形と測定される駆動波形とが一致するか否かを判断する。   Then, in S30, the current value at the time of falling corresponding to the current value at the time of rising is searched from the temporary storage area 35, and the driving waveform (ON time / OFF time) of the searched current value at the falling time and the current driving waveform (ON) are searched. It is determined whether or not (time / OFF time) matches. Here, “match” includes an error range. If the current drive waveform (ON time / OFF time) matches the ON time / OFF time of the current drop value searched (S30: YES), it is considered that the solenoid valve 4 is closed, so S28. Then, the current value is further increased, and it is determined whether or not the drive waveform at the time of the current decrease matches the measured drive waveform.

現在の駆動波形(ON時間・OFF時間)が探索した下降時電流値の駆動波形ON時間・OFF時間と一致しない場合には(S30:NO)、電磁弁4が、下降時には保持状態にあり、ヒステリシスが発生したと考えられるので、S31において、現在の電流値を弁閉動作開始時の電流値に決定し、現在の駆動波形(ON時間・OFF時間)を現在の電流値(弁閉動作開始時の電流値)に関連付けてEEPROM7に記憶する。そして、S32において、EEPROM7に記憶した弁閉動作開始時の電流値より大きい電流値を保持電流値に決定し、保持電流値に対応する駆動波形(ON時間、OFF時間)を弁閉動作開始時の駆動波形(保持用判別ON時間、保持用判別OFF時間)に決定し、それぞれEEPROM7に記憶する。本実施形態では、例えば、ヒステリシス発生下限電流値の2倍の電流値と、定格電流の22%(消費電力の20分の1)の電流値との何れか大きい電流値を保持電流値として設定する。また、例えば、ヒステリシス発生下限電流値に余裕値(コイル温度範囲、コイル巻き数のばらつき、コアプランジャの磁気特性のばらつき等を考慮して与えられる許容値。例えば定格電流の5%に相当する電流値。)を加算し、保持電流値として設定しても良い。そして、その電流値の電流下降時の周期を中心とした例えば10%以内の値を、保持用駆動波形(保持用判別ON時間、保持用判別OFF時間)に使用する。尚、振動衝撃の多い環境では、それに応じた充分な余裕度を加算値として与えるなど、余裕値を選択可能にしても良い。   When the current drive waveform (ON time / OFF time) does not coincide with the searched drive waveform ON time / OFF time of the current value at the time of searching (S30: NO), the solenoid valve 4 is in the holding state when it is lowered, Since it is considered that hysteresis has occurred, in S31, the current value is determined as the current value at the start of the valve closing operation, and the current drive waveform (ON time / OFF time) is determined as the current current value (valve closing operation start). The current value is stored in the EEPROM 7. In S32, a current value larger than the current value at the start of the valve closing operation stored in the EEPROM 7 is determined as the holding current value, and a drive waveform (ON time, OFF time) corresponding to the holding current value is determined at the start of the valve closing operation. Drive waveforms (holding discrimination ON time, holding discrimination OFF time) are stored in the EEPROM 7 respectively. In the present embodiment, for example, a larger current value is set as the holding current value, which is a current value that is twice the hysteresis generation lower limit current value or a current value that is 22% of the rated current (twice of twentieth of the power consumption). To do. In addition, for example, an allowable value given the hysteresis lower limit current value taking into account a margin value (coil temperature range, variation in the number of coil turns, variation in magnetic characteristics of the core plunger, etc., for example, current corresponding to 5% of the rated current Value)) may be added and set as the holding current value. Then, a value within 10% of the current value centered on the period when the current drops is used for the holding drive waveform (holding determination ON time, holding determination OFF time). In an environment with a lot of vibration and impact, a margin value may be selectable, for example, by giving a sufficient margin as an added value.

そして、S33において、更にソレノイド5に供給する電流の電流値を、電流下降時周期特性取得時に使用した下降値と同じ値(定格電流の2%)だけ増加させる。そして、現在の上昇時電流値と、第1信号入力端子10に入力される駆動波形(ON時間・OFF時間)を一時記憶領域35に記憶する。そして、S35において、現在の上昇時電流値に一致する下降時電流値を一時記憶領域35から探索し、探索された下降時電流値の駆動波形(ON時間、OFF時間)と測定した駆動波形(ON時間、OFF時間)が一致するか否かを判断する。探索された下降時電流値の駆動波形と測定した駆動波形が一致しない場合には、まだ弁閉動作によりヒステリシスが発生しており、図示しないプランジャが図示しない固定鉄心に当たっていない(弁開状態でない)と考えられるので、S33へ戻り、下降値と同じ値で上昇時電流値を上昇させ、上記と同様の処理を行う。   In S33, the current value of the current supplied to the solenoid 5 is further increased by the same value (2% of the rated current) as the decrease value used when the current decrease period characteristic is acquired. Then, the current value at the time of rising and the drive waveform (ON time / OFF time) input to the first signal input terminal 10 are stored in the temporary storage area 35. Then, in S35, the current value at the time of falling corresponding to the current value at the time of rising is searched from the temporary storage area 35, the driving waveform (ON time, OFF time) of the searched current value at the falling time and the measured driving waveform ( It is determined whether or not the ON time and OFF time match. When the drive waveform of the searched current value at the time of searching does not match the measured drive waveform, hysteresis is still generated by the valve closing operation, and the plunger (not shown) does not hit the fixed iron core (not shown). Therefore, the process returns to S33, the rising current value is increased by the same value as the decreasing value, and the same processing as described above is performed.

測定した駆動波形(ON時間、OFF時間)が探索した電流下降時の駆動波形(ON時間、OFF時間)と一致する場合には(S35:YES)、電磁弁4が弁開状態になってヒステリシスが解消されたと考えられるので、現在の電流値を弁開状態時の電流値に決定してEEPROM7に記憶する。そして、S37において、弁開状態時の電流値以上の値を起動電流値に決定し、当該起動電流値に対応する駆動波形(ON時間、OFF時間)を起動用駆動波形(起動用判別ON時間、OFF時間)としてEEPROM7に記憶する。例えば、弁開状態時の電流値に余裕値(定格電流の5%〜10%に相当する電流値)を加算して、起動電流値とする。この起動電流値に対応する駆動周期の例えば5%以内の値を、起動用駆動波形に使用する。   When the measured drive waveform (ON time, OFF time) matches the searched drive waveform (ON time, OFF time) at the time of the current drop (S35: YES), the solenoid valve 4 is in the valve open state and hysteresis. Therefore, the current value is determined as the current value when the valve is open and stored in the EEPROM 7. In S37, a value equal to or greater than the current value in the valve open state is determined as a starting current value, and a driving waveform (ON time, OFF time) corresponding to the starting current value is set as a driving waveform (starting determination ON time). , OFF time) in the EEPROM 7. For example, a starting value is obtained by adding a margin value (a current value corresponding to 5% to 10% of the rated current) to the current value when the valve is open. For example, a value within 5% of the driving cycle corresponding to this starting current value is used for the starting driving waveform.

尚、マイコン32は、上述のように学習を終了したら、スイッチSWをOFFすると共に、発光ダイオードLD1〜LD5を消灯する。この消灯動作により、ユーザは学習機能が終了し、駆動装置1に通常動作させられるようになったことを確認できる。通常動作は第2実施形態で説明した動作(図5参照)と同様なので、説明を省略する。   When the microcomputer 32 finishes learning as described above, the microcomputer 32 turns off the switch SW and turns off the light emitting diodes LD1 to LD5. By this turn-off operation, the user can confirm that the learning function has ended and the drive device 1 can be normally operated. Since the normal operation is the same as the operation described in the second embodiment (see FIG. 5), the description is omitted.

<作用効果>
本実施形態の電磁弁駆動装置31は、電磁弁4を確実に弁開状態に起動させることができる所定値から電流値0までを均等に分割して下降値を求め、電磁弁4に供給する電流値を下降値に従って下降させた場合に、マイコン32が取得する駆動波形をサンプル用駆動波形として電流下降時の電流値に関連付けて一時記憶領域35に記憶する。そして、電磁弁4に供給する電流値を、ゼロから下降値と同じ値ずつ上昇させていき、マイコン32により取得される駆動波形がサンプル用駆動波形と一致しない電流値を探索し、探索した流値に余裕値を加算して保持電流値を決定し、EEPROM7に記憶する。よって、本実施形態の電磁弁駆動装置31によれば、個体差を考慮した保持電流値を電磁弁4に供給して弁開状態を維持することができ、省エネ効果をより一層高めることができる。具体的には、例えば、弁閉開始時の電流が定格電流の5%である電磁弁4では、例えば、定格電流値の5%に相当する余裕値を弁閉開始時の電流値に加算し、定格電流の10%で電磁弁の弁開状態を保持するようにすれば、保持電力が定格電力の1/100に低減でき、通電時間が長い電磁弁4では絶大な省エネ効果が得られる。
<Effect>
The electromagnetic valve drive device 31 of the present embodiment equally divides the predetermined value from the current value 0 that can activate the electromagnetic valve 4 into the valve open state to obtain a descending value and supplies it to the electromagnetic valve 4. When the current value is decreased according to the decrease value, the drive waveform acquired by the microcomputer 32 is stored in the temporary storage area 35 as a sample drive waveform in association with the current value at the time of current decrease. Then, the current value supplied to the solenoid valve 4 is increased from zero by the same value as the decrease value, and the current value in which the drive waveform acquired by the microcomputer 32 does not coincide with the sample drive waveform is searched for. A holding current value is determined by adding a margin value to the value and stored in the EEPROM 7. Therefore, according to the electromagnetic valve drive device 31 of the present embodiment, the holding current value considering individual differences can be supplied to the electromagnetic valve 4 to maintain the valve open state, and the energy saving effect can be further enhanced. . Specifically, for example, in the solenoid valve 4 in which the current at the start of valve closing is 5% of the rated current, for example, a margin value corresponding to 5% of the rated current value is added to the current value at the start of valve closing. If the open state of the solenoid valve is maintained at 10% of the rated current, the holding power can be reduced to 1/100 of the rated power, and the solenoid valve 4 having a long energization time can provide a great energy saving effect.

本実施形態の電磁弁駆動装置31は、保持電流値を決定した後、更に、電磁弁4に供給する電流値を上記下降値と同じ値で上昇させていき、マイコン32により取得される駆動波形がサンプル用駆動波形と一致する電流値を探索し、探索した電流値に余裕値を加算して起動電流値を決定し、EEPROM7に記憶する。よって、本実施形態の電磁弁駆動装置31によれば、起動時に電磁弁4を弁開させる起動電流を個体差を考慮して定格電流より小さくし、最低限の電力で電磁弁4を弁開状態に起動させることができるので、電磁弁省エネ効果をより一層高めることができる。特に、電磁弁駆動装置31は、起動時及び保持時の電流値が従来品より小さいので、電磁弁4の動作がソレノイド5の温度の影響を受けにくく、電磁弁4の応答性が定格電圧を電磁弁4に印加する場合と変わらない。   After determining the holding current value, the electromagnetic valve drive device 31 of the present embodiment further increases the current value supplied to the electromagnetic valve 4 by the same value as the above-mentioned decrease value, and the drive waveform acquired by the microcomputer 32 Is searched for a current value that matches the sample driving waveform, and a starting current value is determined by adding a margin value to the searched current value, and stored in the EEPROM 7. Therefore, according to the electromagnetic valve drive device 31 of the present embodiment, the starting current for opening the electromagnetic valve 4 at the time of starting is made smaller than the rated current in consideration of individual differences, and the electromagnetic valve 4 is opened with the minimum power. Since it can be activated to the state, the energy saving effect of the solenoid valve can be further enhanced. In particular, the solenoid valve driving device 31 has a current value at the time of starting and holding smaller than that of the conventional product, so that the operation of the solenoid valve 4 is not easily affected by the temperature of the solenoid 5, and the response of the solenoid valve 4 has a rated voltage. This is the same as when applied to the solenoid valve 4.

本実施形態の電磁弁駆動装置31は、学習により保持電流及び起動電流を決定するため、定格電流・定格電圧が低い電磁弁4でも適切な保持電流値と起動電流値を設定できる。そして、定格電流・定格電圧が小さい電磁弁4では、電流の立ち上がり傾き(速度)が大きく、定格電流・定格電圧が高い電磁弁より、高速応答できる。   Since the solenoid valve drive device 31 according to the present embodiment determines the holding current and the starting current by learning, an appropriate holding current value and starting current value can be set even with the solenoid valve 4 having a low rated current / rated voltage. The solenoid valve 4 with a small rated current / rated voltage has a large current rising slope (speed) and can respond faster than a solenoid valve with a high rated current / rated voltage.

本実施形態の電磁弁駆動装置1は、発光ダイオードLD1〜LD5の発光により保持電流値と起動電流値を学習していることをユーザに知らせるので、学習動作が完了する前に通常動作が行われる不具合を回避できる。   Since the solenoid valve drive device 1 of the present embodiment informs the user that the holding current value and the starting current value are learned by the light emission of the light emitting diodes LD1 to LD5, the normal operation is performed before the learning operation is completed. The trouble can be avoided.

(第4実施形態)
次に、本発明の第4実施形態について説明する。図9は、本発明の第4実施形態に係る電磁弁駆動装置36の回路図である。図10は、本発明の第4実施形態に係る学習プログラムのフローである。
図9に示す電磁弁駆動装置36は、図7に示す電磁弁駆動装置31の回路図中より、A/D変換器33、及び、A/D変換器33と接点M1とを接続する配線を除去し、接点M1をコンパレータOPのマイナス入力端子にのみ接続したものである。第4実施形態の図10に示す学習プログラムは、定格電流値を学習する点(S41〜S43)が第3実施形態と相違する。よって、ここでは、定格電流値の学習方法を中心に説明し、第3実施形態と共通する点は図面及び説明に第3実施形態と同一符号を用い、説明を適宜省略する。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. FIG. 9 is a circuit diagram of a solenoid valve driving device 36 according to the fourth embodiment of the present invention. FIG. 10 is a flow of a learning program according to the fourth embodiment of the present invention.
The electromagnetic valve driving device 36 shown in FIG. 9 has an A / D converter 33 and wiring for connecting the A / D converter 33 and the contact M1 from the circuit diagram of the electromagnetic valve driving device 31 shown in FIG. The contact M1 is removed and connected only to the negative input terminal of the comparator OP. The learning program shown in FIG. 10 of the fourth embodiment is different from the third embodiment in that the rated current value is learned (S41 to S43). Therefore, here, the method for learning the rated current value will be mainly described, and the same points as those in the third embodiment are denoted by the same reference numerals as those in the third embodiment in the drawings and description, and description thereof will be omitted as appropriate.

マイコン37は、スイッチSWが押下されると、図10に示す学習プログラムを実行する。マイコン37は、S40において、100%駆動指令を出力した後、S41において、コンパレータOPがトランジスタTR1,TR2を開閉することにより、接点M2から第1信号入力端子10を介して入力する信号が発振を停止したか否かを確認する。駆動指令を暫定的に減少させていき、接点M2からの信号が発振を開始すると、そのときの指令値(D/A変換器9の出力電圧)に検出抵抗R3の検出電圧を掛けた値が、定格電流値よりやや小さい値となる。このときの指令値をEEPROM7へ記憶する。よって、マイコン37はA/D変換なしで定格電流を測定できる。これにより、本実施形態の電磁弁駆動装置36は、第3実施形態で必要であったA/D変換器33が不要になり、ローコストなマイコン37を使用できる。   When the switch SW is pressed, the microcomputer 37 executes the learning program shown in FIG. The microcomputer 37 outputs a 100% drive command in S40, and then in S41, the comparator OP opens and closes the transistors TR1 and TR2, so that the signal input from the contact M2 via the first signal input terminal 10 oscillates. Check if it has stopped. When the drive command is temporarily reduced and the signal from the contact M2 starts oscillating, the command value (output voltage of the D / A converter 9) at that time is multiplied by the detection voltage of the detection resistor R3. The value is slightly smaller than the rated current value. The command value at this time is stored in the EEPROM 7. Therefore, the microcomputer 37 can measure the rated current without A / D conversion. As a result, the electromagnetic valve drive device 36 of the present embodiment does not require the A / D converter 33 required in the third embodiment, and can use a low-cost microcomputer 37.

(第5実施形態)
次に、本発明の第5実施形態について説明する。図11は、第5実施形態に係る電磁弁駆動装置41の回路図である。図12は、本発明の第5実施形態に係る電磁弁駆動装置の駆動制御プログラムのフローである。
第5実施形態では、電磁弁駆動装置の駆動制御プログラムがPWM制御を用いて保持時の弁開状態時駆動波形を学習させた後、学習した保持時の弁開状態時駆動波形に基づいて電磁弁4に通常動作を行わせる点が第1実施形態と相違する。よって、ここでは、第1実施形態と相違する点を中心に説明し、第1実施形態と共通する点は図面及び説明に第1実施形態と同一符号を用い、説明を適宜省略する。
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described. FIG. 11 is a circuit diagram of an electromagnetic valve drive device 41 according to the fifth embodiment. FIG. 12 is a flowchart of the drive control program for the solenoid valve drive device according to the fifth embodiment of the present invention.
In the fifth embodiment, after the drive control program of the solenoid valve drive device learns the drive waveform during the valve open state during holding using the PWM control, the electromagnetic control is performed based on the learned drive waveform during the valve open state during hold. The point which makes the valve 4 perform normal operation | movement differs from 1st Embodiment. Therefore, here, it demonstrates centering on a different point from 1st Embodiment, the point which is common in 1st Embodiment uses the same code | symbol as 1st Embodiment for drawing and description, and abbreviate | omits description suitably.

<電磁弁駆動装置の構成>
図11に示す電磁弁駆動装置41は、マイコン42が、電磁弁接続端子CN2と検出抵抗R3との間の接点M1にA/D変換器33を第2信号入力端子34を介して接続され、接点M1の電圧と電流を測定できるようになっている。マイコン42のPWM制御器43は、PWM指令出力端子44を介してトランジスタTR3のベースに接続されている。トランジスタTR3は、トランジスタTR1のベースとトランジスタTR2のコレクタとを接続する配線上に設けられた接点M3にコレクタが接続され、検出抵抗R3と電源E1とを接続する配線上に設けられた接点M4にエミッタが接続され、トランジスタTR1の開閉を制御する。また、マイコン42は、発光ダイオードLD1,LD2(報知手段の一例)が点滅可能に接続されている。マイコン42は、電磁弁4が正常動作を行う場合には発光ダイオードLD1を点灯し、電磁弁4に異常が発生した場合には発光ダイオードLD2を点灯する。
<Configuration of electromagnetic valve drive device>
In the electromagnetic valve drive device 41 shown in FIG. 11, the microcomputer 42 is connected to the contact M1 between the electromagnetic valve connection terminal CN2 and the detection resistor R3 via the A / D converter 33 via the second signal input terminal 34. The voltage and current of the contact M1 can be measured. The PWM controller 43 of the microcomputer 42 is connected to the base of the transistor TR3 via the PWM command output terminal 44. The transistor TR3 has a collector connected to a contact M3 provided on a wiring connecting the base of the transistor TR1 and a collector of the transistor TR2, and a contact M4 provided on a wiring connecting the detection resistor R3 and the power source E1. An emitter is connected to control opening and closing of the transistor TR1. Further, the microcomputer 42 is connected so that the light emitting diodes LD1 and LD2 (an example of a notification unit) can blink. The microcomputer 42 turns on the light emitting diode LD1 when the electromagnetic valve 4 performs normal operation, and turns on the light emitting diode LD2 when an abnormality occurs in the electromagnetic valve 4.

<電磁弁駆動方法>
マイコン42は、図示しない上位装置から駆動指令を入力すると、図12に示す電磁弁駆動装置の駆動制御プログラムをEEPROM7から読み出して実行する。マイコン42は、S50において、D/A変換器8から電流値を0にする指令を出力し、トランジスタTR2をOFF状態にする。そして、S51において、マイコン42がデューティ比22%のPWM駆動指令をPWM制御器43からトランジスタTR3に出力すると、トランジスタTR1,TR3が開閉し、ソレノイド5に供給される電流を22%定格電流値に安定させる。この場合、マイコン42の消費電力は、100%駆動指令をコンパレータOPに出力する場合の消費電力に対して約20分の1に抑制される。電磁弁4は、電流値ゼロから通電されるため、22%定格電流をソレノイド5に供給されても、図示しないプランジャが図示しない固定鉄心に吸着されない(弁開状態でない)。尚、PWM駆動指令のデューティ比は、マイコン42の消費電力をどの程度抑えるかによって任意に設定可能であり、消費電力を100%駆動指令をコンパレータOPに出力する時の約10分の1に抑えたい場合には、デューティ比31%のPWM駆動指令をトランジスタTR3に出力すると良い。
<Electromagnetic valve drive method>
When the microcomputer 42 inputs a drive command from a host device (not shown), the drive control program for the electromagnetic valve drive device shown in FIG. 12 is read from the EEPROM 7 and executed. In S50, the microcomputer 42 outputs a command for setting the current value to 0 from the D / A converter 8, and turns off the transistor TR2. In S51, when the microcomputer 42 outputs a PWM drive command having a duty ratio of 22% from the PWM controller 43 to the transistor TR3, the transistors TR1 and TR3 are opened and closed, and the current supplied to the solenoid 5 is set to the 22% rated current value. Stabilize. In this case, the power consumption of the microcomputer 42 is suppressed to about 1/20 of the power consumption when a 100% drive command is output to the comparator OP. Since the solenoid valve 4 is energized from a current value of zero, even if a 22% rated current is supplied to the solenoid 5, the plunger (not shown) is not attracted to the fixed iron core (not shown). Note that the duty ratio of the PWM drive command can be arbitrarily set depending on how much power consumption of the microcomputer 42 is suppressed, and the power consumption is suppressed to about 1/10 when 100% drive command is output to the comparator OP. If desired, a PWM drive command with a duty ratio of 31% may be output to the transistor TR3.

S52において、検出抵抗R3の電圧変化をA/D変換器33に入力して、ソレノイド5に流れる電流の平均電流値を測定し、この取得した電流値を保持電流AD値(定格電流22%の電流値)としてEEPROM7に記憶する。   In S52, the voltage change of the detection resistor R3 is input to the A / D converter 33, the average current value of the current flowing through the solenoid 5 is measured, and the obtained current value is used as the holding current AD value (rated current 22%). Current value) is stored in the EEPROM 7.

そして、S53において、保持電流値指令を比較回路11に出力し、ヒステリシス検知型自励式スイッチング動作を開始する。すなわち、PWM出力を停止してソレノイド5への通電をOFFし、D/A変換器8からコンパレータOPに、S52で取得した定格電流22%の電流値で電流をソレノイド5に供給する指令を出力する。これにより、駆動手段3は、コンパレータOPがマイコン42からの基準電圧と接点M1からの入力電圧(検出抵抗R3に発生する検出電圧)とを比較して出力を切り替え、トランジスタTR1,TR2の開閉を開始する。このとき、電磁弁4は、弁閉状態であり、ソレノイド5のプランジャ非吸着時のインダクタンスにより接点M1の電圧が変化する。そこで、S54において、接点M2からON/OFF信号をマイコン42に入力して異常復帰状態での保持電流供給時の異常復帰ON時間と異常復帰OFF時間を測定し、EEPROM7に記憶する。これにより、電磁弁4が保持電流供給時に弁開状態でなくなったときのON時間とOFF時間が取得される。   In S53, the holding current value command is output to the comparison circuit 11, and the hysteresis detection type self-excited switching operation is started. That is, the PWM output is stopped and the energization to the solenoid 5 is turned off, and a command is supplied from the D / A converter 8 to the comparator OP to supply current to the solenoid 5 at the rated current of 22% obtained in S52. To do. As a result, in the driving means 3, the comparator OP compares the reference voltage from the microcomputer 42 and the input voltage from the contact M1 (detection voltage generated at the detection resistor R3), switches the output, and opens and closes the transistors TR1 and TR2. Start. At this time, the solenoid valve 4 is in a closed state, and the voltage of the contact M1 changes due to the inductance of the solenoid 5 when the plunger is not attracted. Therefore, in S54, an ON / OFF signal is input from the contact M2 to the microcomputer 42, and the abnormal return ON time and the abnormal return OFF time when the holding current is supplied in the abnormal recovery state are measured and stored in the EEPROM 7. Thereby, the ON time and OFF time when the solenoid valve 4 is not in the valve open state when the holding current is supplied are acquired.

そして、S55において、定格電流22%の電流値を基にした100%電流値を算出し、算出した100%電流値指令或いはMAX指令(起動電流値指令)をコンパレータOPに出力する。そして、S55において、起動電流値指令を0.3秒間維持し、電磁弁4を弁開状態にして起動させる。   In S55, a 100% current value based on the current value of the rated current of 22% is calculated, and the calculated 100% current value command or MAX command (starting current value command) is output to the comparator OP. In S55, the starting current value command is maintained for 0.3 seconds, and the solenoid valve 4 is opened to start.

そして、S56において、22%定格電流をソレノイド5に供給するための保持電流値指令をコンパレータOPに出力し、ソレノイド5に供給する電流の電流値を保持電流値に減少させて保持動作に移行する。そして、S57において、第1信号入力端子10に入力するON/OFF信号に基づいて駆動波形を監視する。そして、S58において、保持電流の供給による発振を開始したか否かを判断する。ON信号を入力せず、保持電流の供給による発振を開始していない場合は(S58:NO)、駆動波形を監視しながら待機する。   In S56, a holding current value command for supplying a 22% rated current to the solenoid 5 is output to the comparator OP, and the current value of the current supplied to the solenoid 5 is decreased to the holding current value and the operation proceeds to the holding operation. . In S57, the drive waveform is monitored based on the ON / OFF signal input to the first signal input terminal 10. In S58, it is determined whether or not the oscillation due to the supply of the holding current has been started. When the ON signal is not input and the oscillation due to the supply of the holding current is not started (S58: NO), the process waits while monitoring the drive waveform.

ON信号を入力して保持電流の供給による発振を開始したら(S58:YES)、S59において、マイコン42内のタイマをクリアし、ON信号を入力するON時間の計測を開始する。そして、S60において、ON信号がOFF信号に切り替えられたか否かにより、駆動手段3が駆動停止したか否かを判断する。駆動停止していない場合には(S60:NO)、そのまま待機する。   When the ON signal is input and oscillation by supplying the holding current is started (S58: YES), in S59, the timer in the microcomputer 42 is cleared and the ON time measurement for inputting the ON signal is started. Then, in S60, it is determined whether or not the driving unit 3 has stopped driving depending on whether or not the ON signal is switched to the OFF signal. If the drive has not been stopped (S60: NO), the system waits as it is.

駆動停止を確認したら(S60:YES)、S61において、計測したON時間が、S54で測定した異常復帰ON時間と同じか否かを判断する。計測したON時間が異常復帰ON時間と同じ場合には(S61:YES)、電磁弁4が正常に弁開状態を維持されていないと考えられるので、S55に戻る。そして、S55以降の処理を実行することにより、起動、保持動作を電磁弁4に再度行わせる。   When the drive stop is confirmed (S60: YES), in S61, it is determined whether or not the measured ON time is the same as the abnormal recovery ON time measured in S54. If the measured ON time is the same as the abnormal return ON time (S61: YES), it is considered that the solenoid valve 4 is not normally maintained in the valve open state, and the process returns to S55. Then, starting and holding operations are performed again by the solenoid valve 4 by executing the processing after S55.

一方、計測したON時間が異常復帰ON時間と同じでない場合には(S61:NO)、S62において、ON信号がOFF信号に切り替えられたか否かにより、駆動手段3が駆動停止したか否かを判断する。そして、駆動停止していない場合には(S62:NO)、そのまま待機する。駆動停止した場合には(S62:YES)、S63において、マイコン42内のタイマをクリアし、OFF信号を入力するOFF時間の計測を開始する。そして、S64において、OFF信号がON信号に切り替えられたか否かにより、駆動開始したか否かを判断する。OFF信号がON信号に切り替えられず、駆動開始していないと判断した場合には(S64:NO)、そのまま待機する。OFF信号がON信号に切り替えられ、駆動開始したと判断した場合には(S64:YES)、S65において、測定したOFF時間がS54において測定した異常復帰OFF時間と一致するか否かを判断する。測定したOFF時間が異常復帰OFF時間と一致しない場合には(S65:NO)、電磁弁4が正常に弁開状態を維持されていると考えられるので、S59に戻り、引き続き駆動波形に基づいて電磁弁4の動作状態を監視する。一方、測定したOFF時間が異常復帰OFF時間と一致する場合には(S65:YES)、電磁弁4が正常に弁開状態を維持されていないと考えられるので、S55に戻る。そして、S55以降の処理を実行することにより、起動、保持動作を電磁弁4に再度行わせる。   On the other hand, if the measured ON time is not the same as the abnormal recovery ON time (S61: NO), whether or not the driving means 3 has stopped driving is determined in S62 depending on whether or not the ON signal is switched to the OFF signal. to decide. If the drive is not stopped (S62: NO), the process waits as it is. When the driving is stopped (S62: YES), in S63, the timer in the microcomputer 42 is cleared and measurement of the OFF time for inputting the OFF signal is started. Then, in S64, it is determined whether or not driving is started based on whether or not the OFF signal is switched to the ON signal. If the OFF signal is not switched to the ON signal and it is determined that the drive has not started (S64: NO), the process waits as it is. If the OFF signal is switched to the ON signal and it is determined that the driving is started (S64: YES), it is determined in S65 whether or not the measured OFF time coincides with the abnormal return OFF time measured in S54. If the measured OFF time does not coincide with the abnormal recovery OFF time (S65: NO), it is considered that the solenoid valve 4 is normally maintained in the valve open state, so the process returns to S59 and continues based on the drive waveform. The operation state of the solenoid valve 4 is monitored. On the other hand, when the measured OFF time coincides with the abnormal return OFF time (S65: YES), it is considered that the solenoid valve 4 is not normally maintained in the valve open state, and the process returns to S55. Then, starting and holding operations are performed again by the solenoid valve 4 by executing the processing after S55.

<作用効果>
このように、本実施形態の電磁弁駆動装置41は、通常動作を行う前に常に保持時の弁開時駆動波形(異常復帰ON時間、異常復帰OFF時間の決定)を行い、取得した保持時の弁開時駆動波形に基づいて電磁弁4の動作状態を監視するので、前もっての保持電流や起動電流を学習させる必要がない。そのため、使用時に適した異常復帰ON時間と異常復帰OFF時間を用いて電磁弁4の動作状態を検知でき、装置操作性をより一層高めることができる。
<Effect>
As described above, the electromagnetic valve drive device 41 of the present embodiment always performs the valve-opening drive waveform at the time of holding (determination of the abnormal return ON time and the abnormal return OFF time) before performing the normal operation and acquires the acquired holding time. Since the operating state of the solenoid valve 4 is monitored based on the valve opening driving waveform, it is not necessary to learn the holding current and the starting current in advance. Therefore, the operation state of the electromagnetic valve 4 can be detected using the abnormal return ON time and the abnormal return OFF time suitable for use, and the operability of the apparatus can be further enhanced.

(第6実施形態)
次に、本発明の第6実施形態について説明する。図13は、第6実施形態に係る電磁弁駆動装置61の回路図である。
第6実施形態の電磁弁駆動装置61では、ヒステリシスコンバータ回路に変え、PWMコンバータ回路を使用している。具体的には、比較回路11に代えてPWMコントローラ70を使用する。起動時、保持時の定電流制御は、マイコン62から指定電流の電圧指令をPWMコントローラ70に出す。PWMコントローラ70は、この電圧指令と、電磁弁4のソレノイド5に流れる電流を検出して検出抵抗R3に発生する検出電圧とを比較し、検出電圧が電圧指令より不足していれば、PWM波形のONデューティを広げるように制御し、検出電圧が電圧指令より過大であれば、PWM波形のONデューティを狭めるように制御することにより、電磁弁4に供給する電流を指示された一定電流に制御する。
尚、本実施形態では、マイコン62とPWMコントローラ70、ピークホールド回路71、ボトムホールド回路72bにより「監視手段」が構成されている。
(Sixth embodiment)
Next, a sixth embodiment of the present invention will be described. FIG. 13 is a circuit diagram of an electromagnetic valve driving device 61 according to the sixth embodiment.
In the electromagnetic valve driving device 61 of the sixth embodiment, a PWM converter circuit is used instead of the hysteresis converter circuit. Specifically, the PWM controller 70 is used instead of the comparison circuit 11. In the constant current control at the time of starting and holding, a voltage command of a designated current is output from the microcomputer 62 to the PWM controller 70. The PWM controller 70 compares the voltage command with the detected voltage generated in the detection resistor R3 by detecting the current flowing through the solenoid 5 of the solenoid valve 4, and if the detected voltage is less than the voltage command, the PWM waveform If the detected voltage is larger than the voltage command, the current supplied to the solenoid valve 4 is controlled to the specified constant current by controlling the PWM waveform to reduce the ON duty. To do.
In the present embodiment, the microcomputer 62, the PWM controller 70, the peak hold circuit 71, and the bottom hold circuit 72b constitute “monitoring means”.

図14〜図17は、図13に示す検出抵抗R3に発生する検出電圧(接点M1から入力される電圧)と、図13に示すPWMコントローラ70から出力されるPWM出力(図中CPで測定される出力)を示す図である。特に、図14は、PWM方式制御における起動時プランジャ吸着状態電流波形を示す図である。図15は、PWM方式制御におけるプランジャ非吸着状態電流波形を示す図である。図16は、PWM方式制御におけるプランジャ吸着状態電流波形を示す図である。図17は、PWM方式制御における異常復帰時電流波形を示す図である。
図14〜図16に示すように、PWMコントローラ70が電流を起動電流値又は保持電流値に一定制御するように出力するPWM出力は、起動電流供給時と保持電流供給時とで周期がTp1で同じである。しかし、起動電流供給時における1周期Tp1中のON時間Tdonは、保持電流供給時における1周期Td1中のON時間Td1より長い。そして、図15及び図16に示すように、保持電流供給時におけるプランジャ非吸着状態のPWM出力とプランジャ吸着状態のPWM出力は、周期Tp1と、その周期Tp1中のON時間Tp1が同じである。
14 to 17 show a detection voltage (voltage inputted from the contact M1) generated in the detection resistor R3 shown in FIG. 13 and a PWM output (measured by CP in the figure) outputted from the PWM controller 70 shown in FIG. Is an output). In particular, FIG. 14 is a diagram showing a plunger adsorption state current waveform at start-up in PWM system control. FIG. 15 is a diagram showing a plunger non-adsorption state current waveform in PWM control. FIG. 16 is a diagram illustrating a plunger adsorption state current waveform in PWM control. FIG. 17 is a diagram illustrating a current waveform at the time of abnormal recovery in PWM control.
As shown in FIG. 14 to FIG. 16, the PWM output that the PWM controller 70 outputs so that the current is controlled to the starting current value or the holding current value is a period of Tp1 when the starting current is supplied and when the holding current is supplied. The same. However, the ON time Tdon during one cycle Tp1 when the starting current is supplied is longer than the ON time Td1 during one cycle Td1 when the holding current is supplied. As shown in FIGS. 15 and 16, the PWM output in the plunger non-adsorption state and the PWM output in the plunger adsorption state when holding current is supplied have the same period Tp1 and the ON time Tp1 in the period Tp1.

図14〜図16に示すように、PWMコントローラ70が電流を一定電流に制御している状態では、周波数固定PWM波形のON状態では、ソレノイド5のインピーダンスとその時点の電流値に応じて、検出抵抗R3に発生する検出電圧が増加し、PWM波形のOFFでは、ソレノイド5のインピーダンスとその時点の電流値に応じて、検出抵抗R3に発生する検出電圧が減少する。そのため、検出抵抗R3に発生する検出電圧は、目標電圧値zを間に挟んだ一定の幅(リップル値r)の間を変動している。つまり、図16に示すようにプランジャが吸着状態にあり、コイルインダクタンスが大きい時と、図15に示すように非吸着状態にあり、コイルインダクタンスが小さい時とでは、検出電圧の増加・減少量が変わり、インダクタンスの大きい吸着状態にある時の方が、検出電圧のリップル値rは小さくなる。この検出電圧のリップル値rを監視することで、プランジャの吸着・非吸着が判別できる。   As shown in FIGS. 14 to 16, when the PWM controller 70 is controlling the current to a constant current, detection is performed in accordance with the impedance of the solenoid 5 and the current value at that time in the ON state of the fixed frequency PWM waveform. When the detection voltage generated in the resistor R3 increases and the PWM waveform is OFF, the detection voltage generated in the detection resistor R3 decreases according to the impedance of the solenoid 5 and the current value at that time. Therefore, the detection voltage generated in the detection resistor R3 fluctuates between a certain width (ripple value r) with the target voltage value z interposed therebetween. That is, when the plunger is in an attracted state as shown in FIG. 16 and the coil inductance is large, and when the plunger is in a non-adsorbed state and the coil inductance is small as shown in FIG. In other words, the ripple value r of the detection voltage is smaller when the attracting state has a larger inductance. By monitoring the ripple value r of the detection voltage, the adsorption / non-adsorption of the plunger can be determined.

次に、電磁弁駆動装置61の動作について説明する。図18は、電磁弁駆動装置の駆動制御プログラムのフローである。
ON信号あるいは、それを意味する電源が通電されると、制御手段2のマイコン62はPWMコントローラ70に、起動電流値に当たる指令電圧値を出す(S71)。PWMコントローラ70は、指令値に従い、トランジスタTR1の駆動を開始する。
Next, the operation of the electromagnetic valve driving device 61 will be described. FIG. 18 is a flow of a drive control program of the solenoid valve drive device.
When the ON signal or the power source that means it is energized, the microcomputer 62 of the control means 2 outputs a command voltage value corresponding to the starting current value to the PWM controller 70 (S71). The PWM controller 70 starts driving the transistor TR1 according to the command value.

トランジスタTR1の駆動制御方法は、マイコン62が一定周波数でONパルスをPWMコントローラ70に出力して行う。このとき、マイコン62は、電磁弁4に流れる電流により検出抵抗R3に発生する検出電圧をA/D変換器63に読み込むことにより、起動電流に達するまで、電磁弁4に流れる電流の現在の電流値を監視する。これは、端子65への電流検出電圧入力で、一定時間の測定値の平均値を求め、判断する。マイコン62は、現在の電流値が指令値より少なければ、PWMコントローラ70に出力するONパルスのパルス幅を広げ、また、現在の電流値が指令値より大きければ、ONパルスのパルス幅を狭めることにより、現在の電流値が目標電流値になるように駆動手段3を駆動させる。   The driving control method for the transistor TR1 is performed by the microcomputer 62 outputting an ON pulse to the PWM controller 70 at a constant frequency. At this time, the microcomputer 62 reads the detection voltage generated in the detection resistor R3 due to the current flowing through the electromagnetic valve 4 into the A / D converter 63, so that the current of the current flowing through the electromagnetic valve 4 is reached until the starting current is reached. Monitor the value. This is determined by obtaining an average value of measured values for a certain time by inputting a current detection voltage to the terminal 65. The microcomputer 62 widens the pulse width of the ON pulse output to the PWM controller 70 if the current value is smaller than the command value, and narrows the pulse width of the ON pulse if the current value is larger than the command value. Thus, the driving unit 3 is driven so that the current value becomes the target current value.

上記のようにして、マイコン62は、駆動手段3が定電流駆動に入ったのを見計らい(例えば、0.3秒後)、端子68,69からピークホールド回路71とボトムホールド回路72にリセット指令を出し(S72,S73)、それぞれ、電流値の監視ホールド動作を開始させる。PWM周期の少なくとも1サイクル以上、電流値の監視ホールド動作を行わせ、それぞれのピーク値(最大電流値)および、ボトム値(最小電流値)を端子66,67を介してA/D変換器63で読み込ませる。そして、ピーク値とボトム値の差である電流の変動幅(=起動時のリップル値)を計測する(S74)。   As described above, the microcomputer 62 expects that the driving means 3 has entered constant current driving (for example, after 0.3 seconds), and resets commands from the terminals 68 and 69 to the peak hold circuit 71 and the bottom hold circuit 72. (S72, S73), and the current value monitoring hold operation is started. The current value monitoring and holding operation is performed for at least one PWM cycle or more, and the peak value (maximum current value) and the bottom value (minimum current value) are respectively connected to the A / D converter 63 via terminals 66 and 67. Load with. Then, the current fluctuation range (= ripple value at start-up), which is the difference between the peak value and the bottom value, is measured (S74).

なお、PWM駆動される電流波形を余すところ無くA/D変換できるA/Dコンバータの場合には、ピークホールド回路71及びボトムホールド回路72を使用する必要は無く、PWM電流波形を1周期以上、連続して変換し、その中から、最大値・最小値を選択し、その差からリップル値を求めてもよい。   In the case of an A / D converter that can perform A / D conversion without leaving a PWM-driven current waveform, it is not necessary to use the peak hold circuit 71 and the bottom hold circuit 72, and the PWM current waveform is set to one cycle or more. It is possible to convert continuously, select the maximum value / minimum value from these, and obtain the ripple value from the difference.

起動時のリップル値が、予め設定された起動吸着を示す規定のリップル値と許容範囲内で、一致するか比較する(S75)。起動時のリップル値が規定のリップル値と一致する場合には(S75:YES)、プランジャは吸着状態にあると判断でき、S76以降の保持動作に移る。一方、起動時のリップル値が規定のリップル値と一致しない場合には(S75:NO)、100%定格電圧を0.2秒かけ、確実な吸着を期してから(S82,S83)、S71に戻って、再び上記の起動電流指令を出し、吸着確認シーケンスを行う。   A comparison is made as to whether or not the ripple value at the time of start-up matches a preset ripple value indicating start-up adsorption within a permissible range (S75). When the ripple value at the time of startup matches the specified ripple value (S75: YES), it can be determined that the plunger is in the suction state, and the operation proceeds to the holding operation after S76. On the other hand, when the ripple value at the start does not coincide with the specified ripple value (S75: NO), 100% rated voltage is applied for 0.2 seconds, and after secure suction (S82, S83), the process goes to S71. Returning, the above starting current command is issued again, and the adsorption confirmation sequence is performed.

S76以降の保持動作に移る場合は、保持電流指令電圧をPWMコントローラ70に出し、電流値を減少させる(S76)。検出抵抗R3に発生する検出電圧に基づいて平均電流値を監視し(S77)、保持電流値に達したなら(S78:YES)、ここで、検出抵抗R3に発生する検出電圧のリップル値の計測を行う。つまり、ピークホールド回路71とボトムホールド回路72にリセット指令を出し(S79)、それぞれ、電流値(検出電圧値)の監視ホールド動作を開始させる。PWM周期の少なくとも1サイクル以上、電流値(検出電圧値)の監視ホールド動作を行わせ、それぞれのピーク値(最大電流値又は最大電圧値)およびボトム値(最小電流値又は最小電圧値)を端子66,67を介してA/D変換器63で読み込ませる。そして、そのピーク値とボトム値の差である検出電圧の変動幅(=保持時の検出電圧のリップル値)を計測する(S80)。計測したリップル測定値が、予め設定された保持判別リップル値より小さければ(S81:YES)、保持動作を維持している(プランジャは吸着状態にある)として、S79へ戻り、再び、リップル値の監視を繰り返す。一方、リップル測定値が、予め設定された保持判別リップル値以上であれば(S81:NO)、異常復帰を発生した(プランジャは吸着状態に無い)と判断し、100%定格電圧を0.2秒かけ、確実な吸着を期してから(S82,S83)、S71へ戻り、再び、起動電流指令を出して吸着確認シーケンスを行う。そして、吸着確認後、保持動作に移る。   When shifting to the holding operation after S76, the holding current command voltage is output to the PWM controller 70 to decrease the current value (S76). The average current value is monitored based on the detection voltage generated in the detection resistor R3 (S77). If the holding current value is reached (S78: YES), the ripple value of the detection voltage generated in the detection resistor R3 is measured here. I do. That is, a reset command is issued to the peak hold circuit 71 and the bottom hold circuit 72 (S79), and a monitoring hold operation for the current value (detected voltage value) is started. Monitor and hold the current value (detected voltage value) for at least one PWM cycle, and each peak value (maximum current value or maximum voltage value) and bottom value (minimum current value or minimum voltage value) are connected The data is read by the A / D converter 63 via 66 and 67. Then, the fluctuation range of the detected voltage (= the ripple value of the detected voltage at the time of holding), which is the difference between the peak value and the bottom value, is measured (S80). If the measured ripple measurement value is smaller than the preset holding determination ripple value (S81: YES), the holding operation is maintained (the plunger is in the suction state), and the process returns to S79, and again the ripple value Repeat monitoring. On the other hand, if the measured ripple value is equal to or greater than the preset holding determination ripple value (S81: NO), it is determined that an abnormal return has occurred (the plunger is not in the attracted state), and the 100% rated voltage is 0.2. After a certain amount of time, a reliable suction is expected (S82, S83), the process returns to S71, and an activation current command is issued again to perform the suction confirmation sequence. Then, after confirming the suction, the operation moves to a holding operation.

マイコン62は、以上の処理を、上位装置からON信号を入力している間或いはそれを意味する電源が通電されている間、繰り返し行う。保持動作は、起動時より少ない電流で行われるため、消費電力の削減に大きな効果を上げる。また、異常復帰動作は、PWM制御時に検出抵抗R3に発生する検出電圧のリップル値に基づいて静的に行うため、例えば、電磁弁4が制御する流体が高い粘性を有する場合でも、プランジャの異常復帰を検知することが可能になり、電磁弁4の動作検知精度を高めることができる。換言すれば、電磁弁4の動作信頼性を保証することができる。更に、振動センサ等を設ける必要がないので、装置コストを安価にできる。   The microcomputer 62 repeats the above processing while the ON signal is input from the host device or while the power source that means it is energized. Since the holding operation is performed with a smaller current than that at the time of activation, a great effect is achieved in reducing power consumption. Further, since the abnormal return operation is statically performed based on the ripple value of the detection voltage generated in the detection resistor R3 during PWM control, for example, even if the fluid controlled by the solenoid valve 4 has high viscosity, The return can be detected, and the operation detection accuracy of the solenoid valve 4 can be improved. In other words, the operational reliability of the electromagnetic valve 4 can be guaranteed. Furthermore, since it is not necessary to provide a vibration sensor or the like, the apparatus cost can be reduced.

以上説明したように、本実施形態の電磁弁駆動装置61、電磁弁4、電磁弁駆動方法及び電磁弁駆動装置の駆動制御プログラムは、外部衝撃等により、保持電流を供給される電磁弁4が異常に弁閉することがある。通常、電磁弁4は、弁開状態時と弁閉状態に発生するインダクタンスが異なり、特定の回路においては、そのインダクタンスの影響を受けて、電磁弁4と直列に配置された検出抵抗R3に発生する検出電圧が変化する。この点に着目し、上記構成では、電磁弁4に保持電流を供給する場合に、検出抵抗にR3発生する検出電圧を監視し、検出電圧R3の変化により電磁弁4が正常に弁開しているか異常に弁閉しているかを検知する。このため、本実施形態の電磁弁駆動装置61、電磁弁4、電磁弁駆動方法及び電磁弁駆動装置の駆動制御プログラムは、プランジャの移動に伴う過渡現象を使用した検出方法(電流波形、プランジャの衝撃振動等)とは異なり、電磁弁4の動作状態を検出抵抗R3に発生する検出電圧の変化により静的定常的に検知するので、振動センサ等を電磁弁4に設ける必要がなく、ローコストで異常を迅速に検知できる。しかも、例えば電磁弁4が粘性の高い液体を制御し、弁閉時の衝撃が小さい場合でも、電磁弁4の異常な弁閉動作と正常な弁閉動作を検出電圧の変化により明確に判別するので、検知精度が高い。電磁弁4の異常が確認された場合には、電磁弁4に供給する電流を保持電流より増加させて電磁弁を弁開状態に瞬時に自動復帰させる。   As described above, the solenoid valve drive device 61, the solenoid valve 4, the solenoid valve drive method, and the drive control program for the solenoid valve drive device according to the present embodiment include the solenoid valve 4 to which a holding current is supplied due to an external impact or the like. The valve may close abnormally. Normally, the solenoid valve 4 has different inductances in the valve open state and in the valve closed state. In a specific circuit, the inductance is affected by the inductance and is generated in the detection resistor R3 arranged in series with the solenoid valve 4. The detected voltage changes. Focusing on this point, in the above configuration, when the holding current is supplied to the solenoid valve 4, the detection voltage generated at the detection resistor R3 is monitored, and the change in the detection voltage R3 causes the solenoid valve 4 to open normally. Detect whether the valve is closed abnormally. For this reason, the solenoid valve drive device 61, the solenoid valve 4, the solenoid valve drive method, and the drive control program for the solenoid valve drive device according to the present embodiment are based on the detection method (current waveform, plunger Unlike the shock vibration), the operation state of the solenoid valve 4 is detected statically and constantly by the change of the detection voltage generated in the detection resistor R3, so there is no need to provide a vibration sensor etc. in the solenoid valve 4 at low cost. Abnormalities can be detected quickly. Moreover, for example, even when the solenoid valve 4 controls a highly viscous liquid and the impact when the valve is closed is small, the abnormal valve closing operation and the normal valve closing operation of the solenoid valve 4 are clearly discriminated by the change in the detection voltage. So detection accuracy is high. When abnormality of the solenoid valve 4 is confirmed, the current supplied to the solenoid valve 4 is increased from the holding current, and the solenoid valve is automatically returned to the valve open state instantly.

よって、上記電磁弁駆動装置61、電磁弁4、電磁弁駆動方法及び電磁弁駆動装置の駆動制御プログラムによれば、プランジャ保持状態の検出精度を高めることができる。また、電磁弁4が保持電流供給時に正常に弁開する場合と異常に弁閉する場合とで検出抵抗R3に発生する検出電圧が変化することに着目して検出抵抗R3の変化により電磁弁4の動作状態を検知するので、振動センサ等を電磁弁に設ける必要がなく、安価である。   Therefore, according to the solenoid valve drive device 61, the solenoid valve 4, the solenoid valve drive method, and the drive control program for the solenoid valve drive device, the detection accuracy of the plunger holding state can be increased. Further, paying attention to the fact that the detection voltage generated in the detection resistor R3 changes depending on whether the solenoid valve 4 is normally opened or not when the holding current is supplied, the solenoid valve 4 is changed by the change of the detection resistor R3. Therefore, it is not necessary to provide a vibration sensor or the like in the solenoid valve, and it is inexpensive.

上記構成の電磁弁駆動装置61は、電磁弁4の弁開閉動作に伴って発生するインダクタンスの変化の影響を受けて、電磁弁4が保持電流を一定に供給されて弁開している場合と、電磁弁が保持電流を一定に供給された状態で異常に弁閉した場合とで、電磁弁4の下流側に配置される検出抵抗R3に発生する検出電圧のリップル値が異なる。この点に着目し、電磁弁駆動装置61は、電磁弁4に供給する電流を起動電流から保持電流に切り替えた後に検出電圧のリップル値を測定し、測定したリップル測定値を、電磁弁4に保持電流を一定に供給した場合に検出抵抗R3に発生する検出電圧の保持判別リップル値と比較する。リップル測定値が保持判別リップル値と一致する場合には正常と判断し、測定したリップル測定値が保持判別リップル値と一致しない場合には異常と判断する。このため、プランジャの移動に伴う過渡現象を使用した検出方法(電流波形、プランジャの衝撃振動等)とは異なり、電磁弁4の動作状態を検出抵抗R3に発生する検出電圧のリップル値により静的定常的に検知するので、振動センサ等を電磁弁に設ける必要がなく、ローコストで異常を迅速に検知できる。しかも、例えば電磁弁4が粘性の高い液体を制御し、弁閉時の衝撃が小さい場合でも、電磁弁4の異常な弁閉動作と正常な弁閉動作を検出電圧のリップル値により明確に判別するので、検知精度が高い。   The electromagnetic valve driving device 61 configured as described above is affected by the change in inductance generated by the opening / closing operation of the electromagnetic valve 4, and the electromagnetic valve 4 is supplied with a constant holding current and opened. The ripple value of the detection voltage generated in the detection resistor R3 arranged on the downstream side of the electromagnetic valve 4 differs depending on whether the electromagnetic valve is abnormally closed with the holding current supplied constantly. Focusing on this point, the solenoid valve drive device 61 measures the ripple value of the detected voltage after switching the current supplied to the solenoid valve 4 from the starting current to the holding current, and the measured ripple measurement value is sent to the solenoid valve 4. A comparison is made with the holding determination ripple value of the detection voltage generated in the detection resistor R3 when the holding current is supplied constant. When the measured ripple value matches the hold determination ripple value, it is determined to be normal, and when the measured ripple measurement value does not match the hold determination ripple value, it is determined to be abnormal. Therefore, unlike the detection method (current waveform, plunger impact vibration, etc.) using a transient phenomenon associated with the movement of the plunger, the operation state of the electromagnetic valve 4 is statically determined by the ripple value of the detection voltage generated in the detection resistor R3. Since it detects constantly, it is not necessary to provide a vibration sensor etc. in a solenoid valve, and abnormality can be detected rapidly at low cost. Moreover, for example, even when the solenoid valve 4 controls a highly viscous liquid and the impact when the valve is closed is small, the abnormal valve closing operation and the normal valve closing operation of the solenoid valve 4 are clearly discriminated by the ripple value of the detection voltage. Therefore, the detection accuracy is high.

(第7実施形態)
次に、本発明の第7実施形態について説明する。 図19は、本発明の第7実施形態に係り、電磁弁駆動装置61に記憶された学習プログラムのフローである。
第7実施形態では、制御データのない電磁弁4を接続する場合、制御手段2に、その電磁弁4の動作条件を学習させるためのプログラムを、第6実施形態で説明した電磁弁駆動装置61のマイコン62(図13参照)に記憶させたものである。
(Seventh embodiment)
Next, a seventh embodiment of the present invention will be described. FIG. 19 is a flowchart of a learning program stored in the solenoid valve driving device 61 according to the seventh embodiment of the present invention.
In the seventh embodiment, when an electromagnetic valve 4 without control data is connected, a program for causing the control means 2 to learn the operating conditions of the electromagnetic valve 4 is the electromagnetic valve driving device 61 described in the sixth embodiment. Are stored in the microcomputer 62 (see FIG. 13).

電磁弁4を接続状態とし、学習モード起動入力を入れると、制御手段2のマイコン62は、EEPROM7に記憶された図19に示す学習プログラムを実行する。マイコン62は、まず、定格電流以上の電流指令をPWMコントローラ70に出力し、駆動手段3を定格電圧駆動状態(駆動トランジスタ100%ON状態)とする(S91)。このとき検出抵抗R3に発生する検出電圧をA/D変換器63で読み込み、電磁弁4の定格電流値とし、記録する(S92)。   When the solenoid valve 4 is set in the connected state and the learning mode activation input is input, the microcomputer 62 of the control means 2 executes the learning program shown in FIG. 19 stored in the EEPROM 7. First, the microcomputer 62 outputs a current command equal to or higher than the rated current to the PWM controller 70, and sets the driving means 3 to the rated voltage driving state (driving transistor 100% ON state) (S91). At this time, the detection voltage generated in the detection resistor R3 is read by the A / D converter 63 and recorded as the rated current value of the solenoid valve 4 (S92).

マイコン62は、電流値0からS92で記録した定格電流値までを、均等に分割する(たとえば50分割)。そして、電流値が0になるまで、高い電流値から一定割合(例えば2%)で電流値を下降させるように、電流値指令をD/A変換器64からPWMコントローラ70に順に出す(S93,S94)。そして、各下降時電流値指令出力時に、マイコン62は、各下降電流値で定常制御動作状態(過渡現象を除いた)となったのを見計らい、ピークホールド回路71とボトムホールド回路72をリセットし(S95)、それぞれ検出抵抗R3に発生する検出電圧の監視ホールド動作を開始させる。すなわち、PWM周期の1サイクル以上、ピークホールド回路71とボトムホールド回路72に検出電圧の監視ホールド動作を行わせ、それぞれのピーク値とボトム値をA/D変換器63に読み込んで、ピーク値(最大電圧値)とボトム値(最小電圧値)の差(リップル値)を計測し、下降時電流値指令とリップル値とを関連付けて一時記録する(S95,S96,S97)。   The microcomputer 62 equally divides the current value from 0 to the rated current value recorded in S92 (for example, 50 divisions). Then, until the current value becomes 0, a current value command is sequentially issued from the D / A converter 64 to the PWM controller 70 so as to decrease the current value from the high current value at a constant rate (for example, 2%) (S93, S94). Then, at the time of each descending current value command output, the microcomputer 62 resets the peak hold circuit 71 and the bottom hold circuit 72 in anticipation of the steady control operation state (excluding transient phenomena) at each descending current value. (S95), the monitoring hold operation of the detection voltage generated in the detection resistor R3 is started. That is, at least one PWM cycle, the peak hold circuit 71 and the bottom hold circuit 72 perform a monitoring hold operation of the detected voltage, the respective peak value and bottom value are read into the A / D converter 63, and the peak value ( The difference (ripple value) between the maximum voltage value) and the bottom value (minimum voltage value) is measured, and the descent current value command and the ripple value are associated and temporarily recorded (S95, S96, S97).

S93〜S97の動作を繰り返すうちに、どこかの電流値において、プランジャの開放が発生する。さらに続け、電流値指令0まで行ったら、プランジャを確実に復帰状態とする(S94:YES、S98)。   While the operations of S93 to S97 are repeated, the plunger opens at some current value. If the current value command 0 is further continued, the plunger is surely returned (S94: YES, S98).

次に、下降時電流値と同じ電流値を持つ電流値指令を、低いほうから順に出し(S99)、それぞれの電流値でのリップル値rを上記と同様の方法(S95〜S97)で、計測し一時記録する(S100〜S102)。これを、定格電流直前の電流まで、続ける(S103)。すると、どこかの電流値において、プランジャの吸着が発生する。   Next, current value commands having the same current value as the current value at the time of descending are issued in order from the lowest (S99), and the ripple value r at each current value is measured by the same method (S95 to S97). Then, temporary recording is performed (S100 to S102). This is continued until the current immediately before the rated current (S103). Then, at some current value, adsorption of the plunger occurs.

プランジャの吸着の有無では、電磁弁4のソレノイド5の磁気抵抗が変わり、インダクタンスが、大きく変化する。例えば、あるDC24V用電磁弁では、非吸着時0.6H程度に対し、吸着時には、1.4Hにまで、インダクタンスは変わる。その変化により、図15及び図16に示すように検出電圧(電磁弁4に流れる電流)のリップル値rも変わる。電流を上昇させた場合と下降させた場合でリップル値rが大きく変わった電流領域(リップル値ヒステリシス領域)が、吸着状態と復帰状態の二つの状態を取りうるプランジャ動作ヒステリシス領域を表す。このヒステリシス領域より下の電流値(検出電圧)では、必ず復帰状態となり、このヒステリシス領域より上の電流値(検出電圧)では、必ず、吸着状態となる吸着領域となるが、学習条件と実際の使用条件では、振動・圧力・流量などの要素により、微妙に変動する。そのため、実際には、より安全側の条件で、余裕をもって使用することになる。このプランジャ動作ヒステリシス領域内では、二つの状態とも、一定電流値になるように駆動手段3を駆動させる場合であれば、同じデューティサイクルとなるが、それぞれ、リップル値rが異なる。よって、保持動作時にも、容易に吸着状態か異常復帰状態かを検出電圧のリップル値rに基づいて判別できる。   Depending on whether the plunger is attracted or not, the magnetic resistance of the solenoid 5 of the electromagnetic valve 4 changes and the inductance changes greatly. For example, in a certain DC24V solenoid valve, the inductance changes to about 1.4H at the time of adsorption, compared to about 0.6H at the time of non-adsorption. Due to the change, the ripple value r of the detection voltage (current flowing through the electromagnetic valve 4) also changes as shown in FIGS. A current region (ripple value hysteresis region) in which the ripple value r greatly changes between when the current is increased and when the current is decreased represents a plunger operation hysteresis region that can take two states, an adsorption state and a return state. If the current value (detection voltage) is below this hysteresis region, it will always be in the recovery state. If the current value (detection voltage) is above this hysteresis region, it will always be in the adsorption region. Under operating conditions, it varies slightly depending on factors such as vibration, pressure, and flow rate. Therefore, in actuality, it is used with a margin under more safe conditions. Within this plunger operation hysteresis region, if the driving means 3 is driven to have a constant current value in both states, the duty cycle is the same, but the ripple value r is different. Therefore, even during the holding operation, it can be easily determined based on the ripple value r of the detection voltage whether the suction state or the abnormal recovery state.

そこで、S97とS102で一時記録領域35に記憶したリップル値に基づいて、リップル値の異なるヒステリシス領域の上下限電流値を求める(S104)。そして、リップル値ヒステリシス領域の最も低い電流値を復帰電流値とする(S105)。そして、この復帰電流値に余裕値(例えば、定格電流の5%)を加算し、その値に近い、学習に使用した電流値を保持電流として記録、使用することにする(S106)。この記録した保持電流値が、ヒステリシス領域にある場合には、二つのリップル値を持つので、二つのリップル電流値の例えば中間値(平均値)を、保持判別値として記録、使用する(S107)。   Therefore, based on the ripple value stored in the temporary recording area 35 in S97 and S102, upper and lower limit current values of hysteresis areas having different ripple values are obtained (S104). Then, the lowest current value in the ripple value hysteresis region is set as the return current value (S105). Then, a margin value (for example, 5% of the rated current) is added to the return current value, and the current value used for learning close to that value is recorded and used as the holding current (S106). If the recorded holding current value is in the hysteresis region, it has two ripple values, and therefore, for example, an intermediate value (average value) of the two ripple current values is recorded and used as a holding determination value (S107). .

これにより、通常動作時には、上記学習プログラムで取得した保持判別リップル値より、プランジャ保持時に計測したリップル測定値が大きければ、プランジャが異常復帰を発生し、インダクタンスが減少状態にあると判別できる。また、プランジャ保持時に計測したリップル測定値が、上記学習プログラムで取得した保持判別リップル値以下であれば、プランジャが保持を維持できており、インダクタンスが大きい状態にあると判別できる。振動衝撃の多い環境では、それに応じた充分な余裕度を加算値として保持電流に与えるなど、余裕値を選択可能にしてもよい。尚、プランジャの保持に必要な最低電流が、保証対衝撃値等、別の要請から求められている場合は、それをデータとして与える。   Thus, during normal operation, if the measured ripple value measured when holding the plunger is larger than the hold determination ripple value acquired by the learning program, it can be determined that the plunger has returned to an abnormal state and the inductance is in a decreasing state. Further, if the measured ripple value at the time of holding the plunger is equal to or less than the holding determination ripple value acquired by the learning program, it can be determined that the plunger is maintained and the inductance is in a large state. In an environment where there is a lot of vibration shock, a margin value may be selectable, for example, a sufficient margin according to that is given to the holding current as an added value. If the minimum current required for holding the plunger is obtained from another request such as a guaranteed impact value, this is given as data.

そして、高電流域で電流上昇と下降で駆動周期が変わらなかった最も低い電流値、つまり、リップル値ヒステリシス領域の一つ上の学習電流値を吸着電流として記録する(S108)。この吸着電流に余裕値(例えば、定格電流の10%)を加算した値に近い、学習に使用した電流値を起動電流値として記録、使用する(S109)。そして、起動電流値のリップル値の例えば5%以内を、吸着判別リップル値として記録し、正常吸着の判別に使用する(S110)。以上により、マイコン62は学習プログラムの実行を終了する。   Then, the lowest current value in which the driving cycle does not change due to current rise and fall in the high current region, that is, the learning current value that is one level above the ripple value hysteresis region is recorded as the adsorption current (S108). The current value used for learning, which is close to a value obtained by adding a margin value (for example, 10% of the rated current) to this adsorption current, is recorded and used as the starting current value (S109). Then, for example, within 5% of the ripple value of the starting current value is recorded as an adsorption determination ripple value, and is used for determination of normal adsorption (S110). As described above, the microcomputer 62 ends the execution of the learning program.

リップル値の大小は、起動吸着時と起動非吸着時にも同様に存在する。そのため、吸着判別リップル値を用いて、起動時の吸着確認を行える。また、電流(電圧)リップル値でのプランジャ吸着・非吸着判別方式で、第2実施形態と同様に、定格電流より小さくした起動電流値を学習し、起動時の消費電力を削減することもできる。   The magnitude of the ripple value exists in the same manner at the time of start-up adsorption and at the time of start-up non-adsorption. Therefore, the suction confirmation at the time of starting can be performed using the suction discrimination ripple value. In addition, in the plunger adsorption / non-adsorption determination method based on the current (voltage) ripple value, as in the second embodiment, the activation current value smaller than the rated current can be learned to reduce the power consumption during activation. .

なお、起動時の消費電力削減にこだわらなければ、起動時は、吸着動作と吸着確認が目的であるので、定格電流の80%というような決め方でもよいし、短時間の100%通電する定格電流で吸着させ、適当な起動電流に落として、周期から吸着確認しても良い。   If power consumption is not reduced at the time of startup, since the purpose of suction operation and suction confirmation is at startup, it may be determined such as 80% of the rated current, or the rated current that is energized for 100% for a short time. It may be adsorbed by the method, and the adsorption may be confirmed from the cycle by dropping to an appropriate starting current.

以上説明したように、第7実施形態の電磁弁駆動装置61は、電磁弁4を確実に弁開状態に起動させることができる所定値から電流値0までを均等に分割して下降値を求め、電磁弁4に供給する電流値を、求めた下降値に従って下降させた場合に、マイコン62が測定する下降時リップル値を電流下降時の電流値に関連付けて一次記憶手段35に記憶する。そして、電磁弁4に供給する電流値を、ゼロから下降値と同じ値ずつ上昇させた場合に、マイコン62により測定される上昇時リップル値を電流上昇時の電流値に関連付けて一次記憶手段35に記憶する。そして、一次記憶手段35に記憶した下降時リップル値と上昇時リップル値とからリップル値の異なるヒステリシス領域の下限電流値を求め、求めた下限電流値に余裕値を加えて保持電流値を決定することにより、当該電磁弁4に適した保持電流値を学習する。よって、本実施形態の電磁弁駆動装置61によれば、個体差を考慮した保持電流値を電磁弁に供給して弁開状態を維持することができ、省エネ効果をより一層高めることができる。   As described above, the solenoid valve driving device 61 of the seventh embodiment equally calculates the fall value by dividing the current value 0 from the predetermined value that can reliably start the solenoid valve 4 into the valve open state. When the current value supplied to the electromagnetic valve 4 is lowered according to the obtained fall value, the drop ripple value measured by the microcomputer 62 is stored in the primary storage means 35 in association with the current value at the time of current drop. Then, when the current value supplied to the solenoid valve 4 is increased from zero by the same value as the decrease value, the rising ripple value measured by the microcomputer 62 is associated with the current value at the time of current increase, and the primary storage means 35. To remember. Then, a lower limit current value in a hysteresis region having a different ripple value is obtained from the falling ripple value and the rising ripple value stored in the primary storage means 35, and a holding current value is determined by adding a margin value to the obtained lower limit current value. Thus, the holding current value suitable for the electromagnetic valve 4 is learned. Therefore, according to the electromagnetic valve driving device 61 of the present embodiment, the holding current value considering individual differences can be supplied to the electromagnetic valve to maintain the valve open state, and the energy saving effect can be further enhanced.

本実施形態の電磁弁駆動装置61は、一次記憶領域35に記憶された下降時リップル値と上昇時リップル値とからリップル値の異なるヒステリシス領域の上限電流値を求め、求めた上限電流値の一つ大きい学習電流値に余裕値を加えて起動電流値を決定することにより、当該電磁弁4に適した起動電流値を学習する。よって、本実施形態の電磁弁駆動装置61によれば、起動時に電磁弁を弁開させる起動電流を個体差を考慮して定格電流より小さくし、省エネ効果をより一層高めることができる。   The solenoid valve driving device 61 of the present embodiment obtains the upper limit current value of the hysteresis region having different ripple values from the falling ripple value and the rising ripple value stored in the primary storage area 35, and obtains one of the obtained upper limit current values. The starting current value suitable for the solenoid valve 4 is learned by adding the margin value to the larger learning current value and determining the starting current value. Therefore, according to the solenoid valve drive device 61 of the present embodiment, the starting current for opening the solenoid valve at the time of starting can be made smaller than the rated current in consideration of individual differences, and the energy saving effect can be further enhanced.

(第8実施形態)
次に、本発明の第8実施形態について説明する。図20は、第8実施形態に係る電磁弁駆動装置81の回路図である。
図20に示す電磁弁駆動装置81は、第1実施形態の電磁弁駆動装置1が備えていたD/A変換器8を省略するように回路を構成している点が第1実施形態と相違する。ここでは、第1実施形態との相違点を中心に説明し、共通する点は図面に第1実施形態と同じ符号を付し、説明を適宜省略する。
(Eighth embodiment)
Next, an eighth embodiment of the present invention will be described. FIG. 20 is a circuit diagram of an electromagnetic valve driving device 81 according to the eighth embodiment.
The electromagnetic valve driving device 81 shown in FIG. 20 is different from the first embodiment in that a circuit is configured so as to omit the D / A converter 8 included in the electromagnetic valve driving device 1 of the first embodiment. To do. Here, differences from the first embodiment will be mainly described, and common points will be denoted by the same reference numerals as those in the first embodiment, and description thereof will be omitted as appropriate.

電磁弁駆動装置81は、抵抗R21,R22,R23が直列に設けられた配線が、マイコン用電源E2とマイコン82との間と、トランジスタTR3の下流側とに接続されている。抵抗R21,R22の間には、比較回路11を構成する抵抗R1が接続されている。トランジスタTR3は、ベースがマイコン82に接続され、エミッタが抵抗R22,R23の間に接続され、コレクタが検出抵抗R3と電源E1を接続する配線に接続されている。
尚、本実施形態では、マイコン82、比較回路11、抵抗R21〜R25、トランジスタTR3により「監視手段」が構成されている。
In the solenoid valve driving device 81, the wiring in which the resistors R21, R22, and R23 are provided in series is connected between the microcomputer power supply E2 and the microcomputer 82 and the downstream side of the transistor TR3. A resistor R1 constituting the comparison circuit 11 is connected between the resistors R21 and R22. The transistor TR3 has a base connected to the microcomputer 82, an emitter connected between the resistors R22 and R23, and a collector connected to a wiring connecting the detection resistor R3 and the power source E1.
In this embodiment, the microcomputer 82, the comparison circuit 11, the resistors R21 to R25, and the transistor TR3 constitute “monitoring means”.

このような電磁弁駆動装置81は、マイコン82がトランジスタTR3をOFFさせると、抵抗R21,R22,R23により接点M11にかかる電圧が規定される。一方、マイコン82がトランジスタTR3をONすると、抵抗R21,R22により接点M11にかかる電圧が規定される。よって、電磁弁駆動装置81は、マイコン82がトランジスタTR3をON/OFFさせることによりM11にかかる電圧を変化させ、コンパレータOPの基準電圧を変化させるので、第1実施形態のD/A変換器8を省略しても、起動電流値と保持電流値を制御することができる。電磁弁駆動装置81は、マイコン82がD/A変換器8を備えないため、起動電流値や保持電流値を学習できないが、安価なマイコン82を使用してローコストにできる。   In such a solenoid valve drive device 81, when the microcomputer 82 turns off the transistor TR3, the voltage applied to the contact M11 is defined by the resistors R21, R22, and R23. On the other hand, when the microcomputer 82 turns on the transistor TR3, the voltage applied to the contact M11 is defined by the resistors R21 and R22. Therefore, the electromagnetic valve drive device 81 changes the voltage applied to M11 by the microcomputer 82 turning ON / OFF the transistor TR3 and changes the reference voltage of the comparator OP. Therefore, the D / A converter 8 of the first embodiment. Even if is omitted, the starting current value and the holding current value can be controlled. Since the microcomputer 82 does not include the D / A converter 8, the solenoid valve driving device 81 cannot learn the starting current value and the holding current value, but can be made low-cost by using an inexpensive microcomputer 82.

尚、本発明は、上記実施形態に限定されることなく、色々な応用が可能である。
(1)例えば、上記実施形態では、電磁弁駆動装置の駆動制御プログラムや学習プログラムをEEPROM7に記憶したが、上位装置に電磁弁駆動装置の駆動制御プログラムや学習プログラムを記憶させ、電磁弁駆動装置1,31,41が上位装置から駆動指令を入力する際に電磁弁駆動装置の駆動制御プログラムをダウンロードするようにしても良い。また、上位装置に電磁弁駆動装置の駆動制御プログラムや学習プログラムを実行させ、電磁弁駆動装置の駆動制御プログラムの実行により作成された指令を電磁弁駆動装置1,31,41が入力して、制御手段2や駆動手段3を制御するようにしても良い。
(2)例えば、上記実施形態において、電流検出AD変換回路が電磁弁駆動装置1,31,41にある場合、定期的あるいは常時、ON起動時にあえて100%駆動を行い、その電流値を計測することで、ソレノイド5のコイル抵抗を求め、既知温度の抵抗値からの変化で、現在の電磁弁温度の推定を行い、種々の設定値に対し、温度補正を加えても良い。
(3)例えば、上記実施形態において、定格電流値100%を電磁弁4に供給して駆動させ、定格電流値100%から保持電流値までの電流値下降時間を計測し、インダクタンス計測を個々の電磁弁4について行ってもよい。
(4)上記第1,2実施形態では、プランジャの保持に必要な最低電流が、保証対衝撃値等、別の要請から求められている場合は、それをデータとして与え、マイコン6が取得する駆動波形と比較して電磁弁4の動作状態を検知するようにしても良い。
(5)電磁弁性能特性が限定できるなら、図1に示すD/A変換器8に変え、抵抗分圧とスイッチングトランジスタで、起動・保持電流の2値を設定でき、もっともローコストにできる。
(6)上記第6実施形態において、高速のA/D変換器63で、電流値波形を監視すれば、ピークホールド回路71ボトムホールド回路72は必須のものではない。
(7)上記第1実施形態では、定格電流駆動指令を出力して電磁弁4を起動させたが、起動電流は、定格電流より小さい電流であっても良い。
In addition, this invention is not limited to the said embodiment, Various application is possible.
(1) For example, in the above embodiment, the drive control program and learning program for the electromagnetic valve driving device are stored in the EEPROM 7, but the host device stores the drive control program and learning program for the electromagnetic valve driving device, and the electromagnetic valve driving device. The drive control program of the solenoid valve drive device may be downloaded when 1, 31, 41 inputs a drive command from the host device. Further, the solenoid valve driving device 1, 31, 41 is input to the host device by causing the solenoid valve driving device to execute a drive control program or a learning program, and to input a command created by executing the solenoid valve driving device drive control program. The control means 2 and the drive means 3 may be controlled.
(2) For example, in the above embodiment, when the current detection AD conversion circuit is in the solenoid valve drive device 1, 31, 41, 100% drive is performed at the time of ON activation periodically or always, and the current value is measured. Thus, the coil resistance of the solenoid 5 is obtained, the current solenoid valve temperature is estimated based on a change from the resistance value of the known temperature, and temperature correction may be applied to various set values.
(3) For example, in the above embodiment, the rated current value 100% is supplied to the solenoid valve 4 and driven, the current value falling time from the rated current value 100% to the holding current value is measured, and the inductance measurement is performed individually. You may carry out about the solenoid valve 4.
(4) In the first and second embodiments, when the minimum current required for holding the plunger is obtained from another request such as a guaranteed anti-impact value, it is given as data and obtained by the microcomputer 6. You may make it detect the operation state of the solenoid valve 4 compared with a drive waveform.
(5) If the performance characteristics of the solenoid valve can be limited, the binary value of the start / hold current can be set with the resistance voltage divider and the switching transistor instead of the D / A converter 8 shown in FIG.
(6) In the sixth embodiment, if the current value waveform is monitored by the high-speed A / D converter 63, the peak hold circuit 71 and the bottom hold circuit 72 are not essential.
(7) In the first embodiment, the solenoid valve 4 is activated by outputting a rated current drive command. However, the activation current may be smaller than the rated current.

1,31,36,41,51,61,81 電磁弁駆動装置
3 駆動手段
4 電磁弁
6,32,37,42,52,62,82 マイコン(監視手段、駆動波形取得手段、異常検知手段、報知手段、保持電流値制御手段、保持電流値学習手段、起動電流値学習手段、リップル値測定手段の一例)
R3 検出抵抗
LD1〜LD3 発光ダイオード(報知手段の一例)
1, 31, 36, 41, 51, 61, 81 Electromagnetic valve driving device 3 Driving means 4 Electromagnetic valve 6, 32, 37, 42, 52, 62, 82 Microcomputer (monitoring means, driving waveform acquisition means, abnormality detection means, An example of notification means, holding current value control means, holding current value learning means, starting current value learning means, ripple value measuring means)
R3 detection resistors LD1 to LD3 Light-emitting diode (an example of notification means)

Claims (12)

起動電流を供給して弁開状態になった電磁弁に、前記起動電流より小さい保持電流を供給することにより前記電磁弁の弁開状態を維持する電磁弁駆動装置において、
前記電磁弁と直列に配置され、前記電磁弁への通電電流を検出する検出抵抗と、
前記電磁弁に電流を供給する場合に、前記検出抵抗に発生する検出電圧を監視する監視手段と、
前記電磁弁に前記保持電流を供給している場合に、前記監視手段が監視する前記検出電圧の変化により、前記電磁弁が正常に弁開しているか、前記電磁弁が異常に弁閉したかを検知する異常検知手段と、
前記異常検知手段が異常を検知した場合に前記電磁弁に供給する電流を増加させて前記電磁弁を弁開状態に自動復帰させる自動復帰手段と、を有する
ことを特徴とする電磁弁駆動装置。
In the solenoid valve driving device that maintains the valve open state of the solenoid valve by supplying a holding current smaller than the start current to the solenoid valve that is in the valve open state by supplying the start current,
A detection resistor that is arranged in series with the solenoid valve and detects an energization current to the solenoid valve;
Monitoring means for monitoring a detection voltage generated in the detection resistor when supplying a current to the solenoid valve;
Whether the solenoid valve is opened normally or the solenoid valve is closed abnormally due to a change in the detection voltage monitored by the monitoring means when the holding current is supplied to the solenoid valve An anomaly detection means for detecting
An electromagnetic valve driving device comprising: automatic return means for automatically returning the electromagnetic valve to a valve open state by increasing a current supplied to the electromagnetic valve when the abnormality detection means detects an abnormality.
請求項1に記載する電磁弁駆動装置において、
前記監視手段は、
前記検出抵抗に発生する検出電圧と、目的とする電流値に調整された基準電圧とを比較し、前記検出電圧が前記基準電圧以下の場合には、前記電磁弁に電流を供給するように駆動し、前記検出電圧が前記基準電圧を超える場合には、駆動を停止して前記電磁弁に電流を供給しない駆動手段と、
前記駆動手段の駆動状態を電気信号により検知して駆動波形を取得する駆動波形取得手段と、を含み、
前記異常検知手段は、前記電磁弁が前記保持電流を供給された場合に前記駆動波形取得手段に取得される弁開状態時駆動波形と、前記保持電流を供給された場合に前記電磁弁が弁閉状態になった場合に前記駆動波形取得手段に取得される弁閉状態時駆動波形とが異なり、前記保持電流を前記電磁弁に供給した後に前記駆動波形取得手段が取得する駆動波形を前記弁開状態時駆動波形と一致するか否かを判断し、前記駆動波形が前記弁開状態時駆動波形と一致する場合には正常と判断し、前記駆動波形が前記弁開状態時駆動波形と一致しない場合には異常と判断するものである
ことを特徴とする電磁弁駆動装置。
In the electromagnetic valve drive device according to claim 1,
The monitoring means includes
The detection voltage generated in the detection resistor is compared with a reference voltage adjusted to a target current value, and when the detection voltage is equal to or lower than the reference voltage, the current is supplied to the solenoid valve. When the detected voltage exceeds the reference voltage, driving means that stops driving and does not supply current to the solenoid valve;
Drive waveform acquisition means for detecting a drive state of the drive means by an electric signal and acquiring a drive waveform,
The abnormality detection means includes a valve-open-time drive waveform acquired by the drive waveform acquisition means when the solenoid valve is supplied with the holding current, and a valve when the solenoid valve is supplied with the holding current. When the valve is in a closed state, the drive waveform acquired by the drive waveform acquisition unit is different from the drive waveform in the valve closed state, and the drive waveform acquired by the drive waveform acquisition unit after the holding current is supplied to the solenoid valve It is determined whether or not the drive waveform coincides with the open-state drive waveform. When the drive waveform matches the drive waveform during the valve-open state, it is determined to be normal, and the drive waveform matches the drive waveform during the valve-open state. An electromagnetic valve driving device characterized in that if it is not, it is judged as abnormal.
請求項2に記載する電磁弁駆動装置において、
前記保持電流を供給された前記電磁弁が弁開状態から弁閉動作する場合に前記駆動波形取得手段に取得される弁閉動作時のOFF時間が、前記弁開状態時駆動波形のOFF時間と異なるものであって、
前記異常検知手段は、前記保持電流を前記電磁弁に供給した後に前記駆動波形取得手段が取得する駆動波形のOFF時間を計測し、前記駆動波形のOFF時間が前記弁開状態時の駆動波形のOFF時間より長い場合にも異常を検知すること
を特徴とする電磁弁駆動装置。
In the electromagnetic valve drive device according to claim 2,
When the solenoid valve supplied with the holding current performs the valve closing operation from the valve open state, the OFF time during the valve closing operation acquired by the drive waveform acquisition means is the OFF time of the drive waveform during the valve open state. Is different,
The abnormality detection means measures an OFF time of the drive waveform acquired by the drive waveform acquisition means after supplying the holding current to the solenoid valve, and the OFF time of the drive waveform is the drive waveform when the valve is open. An electromagnetic valve driving device that detects an abnormality even when the time is longer than an OFF time.
請求項2又は請求項3に記載する電磁弁駆動装置において、
前記電磁弁を確実に弁開状態に起動させることができる所定値から電流値0までを均等に分割して下降値を求め、前記電磁弁に供給する電流値を前記下降値に従って下降させた場合に、前記駆動波形取得手段が取得する下降時駆動波形を電流下降時の電流値に関連付けて記憶する記憶手段と、
前記電磁弁に供給する電流値を、ゼロから前記下降値と同じ値ずつ上昇させた場合に、前記駆動波形取得手段により取得される駆動波形が前記下降時駆動波形と一致するか否かを判断し、一致しないと判断した場合に、現在測定している電流値に余裕値を加算して保持電流値を決定する保持電流値学習手段と、を有すること
を特徴とする電磁弁駆動装置。
In the solenoid valve drive device according to claim 2 or claim 3,
When the fall value is obtained by equally dividing the predetermined value from the predetermined value that can start the solenoid valve into the valve open state to the current value 0, and the current value supplied to the solenoid valve is lowered according to the fall value Storage means for storing the driving waveform at the time of descent acquired by the driving waveform acquisition means in association with the current value at the time of descent of current;
When the current value supplied to the solenoid valve is increased from zero by the same value as the decrease value, it is determined whether or not the drive waveform acquired by the drive waveform acquisition means matches the drive waveform at the time of decrease And a holding current value learning means for determining a holding current value by adding a margin value to a currently measured current value when it is determined that they do not coincide with each other.
請求項4に記載する電磁弁駆動装置において、
前記保持電流値学習手段が前記保持電流値を決定した後、更に、前記電磁弁に供給する電流値を前記下降値と同じ値で上昇させた場合に、前記駆動波形取得手段により取得される駆動波形が前記下降時駆動波形と一致するか否かを判断し、一致したと判断した場合に、現在測定している電流値に余裕値を加算して起動電流値を決定する起動電流値学習手段を有する
ことを特徴とする電磁弁駆動装置。
In the electromagnetic valve drive device according to claim 4,
After the holding current value learning means determines the holding current value, the drive waveform acquisition means obtains the drive when the current value supplied to the solenoid valve is further increased by the same value as the fall value. Starting current value learning means for determining whether or not the waveform matches the driving waveform at the time of lowering, and determining a starting current value by adding a margin value to the current value currently measured when it is determined that they match An electromagnetic valve driving device comprising:
請求項1に記載する電磁弁駆動装置において、
前記監視手段は、
PWM出力により前記電磁弁に電流を供給する回路を一定周期で開閉し、前記電磁弁に供給する電流の電流値を一定に制御する駆動手段と、
前記駆動手段が電流を一定に制御している状態で、前記検出抵抗に発生する検出電圧のリップル値を測定するリップル値測定手段と、を含み、
前記異常検知手段は、前記電磁弁が前記保持電流を一定に供給されて弁開している場合と、前記電磁弁が前記保持電流を一定に供給された状態で異常に弁閉した場合とで、前記検出抵抗に発生する検出電圧のリップル値が異なっており、前記リップル値測定手段が測定するリップル測定値が、前記電磁弁が前記保持電流を一定に供給されて弁開している場合に前記検出抵抗に発生する検出電圧の保持判別リップル値と一致するか否かを判断し、前記リップル測定値が前記保持判別リップル値と一致する場合には正常と判断し、前記リップル測定値が前記保持判別リップル値と一致しない場合には異常と判断するものである
ことを特徴とする電磁弁駆動装置。
In the electromagnetic valve drive device according to claim 1,
The monitoring means includes
A driving means for opening and closing a circuit for supplying current to the solenoid valve by a PWM output at a constant period, and controlling the current value of the current to be supplied to the solenoid valve to be constant;
A ripple value measuring means for measuring a ripple value of a detection voltage generated in the detection resistor in a state where the driving means controls the current to be constant,
The abnormality detection means includes a case where the electromagnetic valve is supplied with the holding current constant and the valve is opened, and a case where the electromagnetic valve is abnormally closed with the holding current supplied constant. The ripple value of the detection voltage generated in the detection resistor is different, and the ripple measurement value measured by the ripple value measuring means is when the solenoid valve is supplied with the holding current constant and the valve is opened. It is determined whether or not the holding determination ripple value of the detection voltage generated in the detection resistor matches, and when the ripple measurement value matches the holding determination ripple value, it is determined as normal, and the ripple measurement value is An electromagnetic valve driving device characterized in that an abnormality is determined when the holding determination ripple value does not match.
請求項6に記載する電磁弁駆動装置において、
前記電磁弁を確実に弁開状態に起動させることができる所定値から電流値0までを均等に分割して下降値を求め、前記電磁弁に供給する電流値を前記下降値に従って下降させた場合に、前記リップル値測定手段が測定する下降時リップル値を電流下降時の電流値に関連付けて記憶する第1記憶手段と、
前記電磁弁に供給する電流値を、ゼロから前記下降値と同じ値ずつ上昇させた場合に、前記リップル値測定手段により測定される上昇時リップル値を電流上昇時の電流値に関連付けて記憶する第2記憶手段と、
前記第1記憶手段に記憶された前記下降時リップル値と前記第2記憶手段に記憶された前記上昇時リップル値とからリップル値の異なるヒステリシス領域の下限電流値を求め、前記下限電流値に余裕値を加えて前記保持電流値を決定する保持電流値学習手段と、を有すること
を特徴とする電磁弁駆動装置。
In the electromagnetic valve drive device according to claim 6,
When the fall value is obtained by equally dividing the predetermined value from the predetermined value that can start the solenoid valve into the valve open state to the current value 0, and the current value supplied to the solenoid valve is lowered according to the fall value First storage means for storing the ripple value at the time of falling measured by the ripple value measuring means in association with the current value at the time of current drop;
When the current value supplied to the solenoid valve is increased from zero by the same value as the decreasing value, the rising ripple value measured by the ripple value measuring means is stored in association with the current value when the current increases. A second storage means;
A lower limit current value of a hysteresis region having a different ripple value is obtained from the falling ripple value stored in the first storage means and the rising ripple value stored in the second storage means, and a margin is provided for the lower limit current value. And a holding current value learning means for determining the holding current value by adding a value.
請求項7に記載する電磁弁駆動装置において、
前記第1記憶手段に記憶された前記下降時リップル値と前記第2記憶手段に記憶された前記上昇時リップル値とからリップル値の異なるヒステリシス領域の上限電流値を求め、前記上限電流値の一つ大きい学習電流値に余裕値を加えて起動電流値を決定する起動電流値学習手段を有する
ことを特徴とする電磁弁駆動装置。
In the electromagnetic valve drive device according to claim 7,
An upper limit current value in a hysteresis region having different ripple values is obtained from the falling ripple value stored in the first storage means and the rising ripple value stored in the second storage means, and one of the upper limit current values is obtained. An electromagnetic valve driving device comprising a starting current value learning means for determining a starting current value by adding a margin value to a larger learning current value.
請求項1乃至請求項8の何れか1つに記載する電磁弁駆動装置において、
前記異常検知手段が異常を検知したことを報知する報知手段を有する
ことを特徴とする電磁弁駆動装置。
In the electromagnetic valve drive device according to any one of claims 1 to 8,
An electromagnetic valve driving device comprising: a notifying means for notifying that the abnormality detecting means has detected an abnormality.
請求項1乃至請求項9の何れか1つに記載する電磁弁駆動装置を有することを特徴とする電磁弁。   An electromagnetic valve comprising the electromagnetic valve driving device according to any one of claims 1 to 9. 起動電流を供給して弁開状態になった電磁弁に、前記起動電流より小さい保持電流を供給することにより前記電磁弁の弁開状態を維持する電磁弁駆動方法において、
前記電磁弁に電流を供給する場合に、前記電磁弁と直列に配置されて前記電磁弁への通電電流を検出する検出抵抗に発生する検出電圧を監視する監視ステップと、
前記電磁弁に前記保持電流を供給している場合に、前記監視ステップにて監視する前記検出電圧の変化により、前記電磁弁が正常に弁開しているか、前記電磁弁が異常に弁閉したかを検知する異常検知ステップと、
前記異常検知ステップにて異常を検知した場合に前記電磁弁に供給する電流を増加させて前記電磁弁を弁開状態に自動復帰させる自動復帰ステップと、を有する
ことを特徴とする電磁弁駆動方法。
In the solenoid valve driving method of maintaining the valve open state of the solenoid valve by supplying a holding current smaller than the start current to the solenoid valve that is in the valve open state by supplying the startup current,
A monitoring step of monitoring a detection voltage generated in a detection resistor that is arranged in series with the electromagnetic valve and detects an energization current to the electromagnetic valve when supplying a current to the electromagnetic valve;
When the holding current is supplied to the solenoid valve, the solenoid valve is normally opened due to a change in the detection voltage monitored in the monitoring step, or the solenoid valve is abnormally closed. An anomaly detection step for detecting
An electromagnetic valve drive method comprising: an automatic return step for automatically returning the electromagnetic valve to a valve open state by increasing a current supplied to the electromagnetic valve when an abnormality is detected in the abnormality detection step. .
起動電流を供給して弁開状態になった電磁弁に、前記起動電流より小さい保持電流を供給することにより前記電磁弁の弁開状態を維持する電磁弁駆動装置の駆動制御プログラムにおいて、
コンピュータを、
前記電磁弁に電流を供給する場合に、前記電磁弁と直列に配置されて前記電磁弁への通電電流を検出する検出抵抗に発生する検出電圧を監視する監視手段と、
前記電磁弁に前記保持電流を供給している場合に、前記監視手段が監視する前記検出電圧の変化により、前記電磁弁が正常に弁開しているか、前記電磁弁が異常に弁閉したかを検知する異常検知手段と、
前記異常検知手段が異常を検知した場合に前記電磁弁に供給する電流を増加させて前記電磁弁を弁開状態に自動復帰させる自動復帰手段として、機能させる
ことを特徴とする電磁弁駆動装置の駆動制御プログラム。
In the drive control program of the solenoid valve driving device that maintains the valve open state of the solenoid valve by supplying a holding current smaller than the start current to the solenoid valve that is in the valve open state by supplying the start current,
Computer
Monitoring means for monitoring a detection voltage generated in a detection resistor that is arranged in series with the electromagnetic valve and detects a current flowing to the electromagnetic valve when supplying current to the electromagnetic valve;
Whether the solenoid valve is opened normally or the solenoid valve is closed abnormally due to a change in the detection voltage monitored by the monitoring means when the holding current is supplied to the solenoid valve An anomaly detection means for detecting
An electromagnetic valve drive device that functions as an automatic return means for automatically returning the electromagnetic valve to a valve open state by increasing a current supplied to the electromagnetic valve when the abnormality detection means detects an abnormality. Drive control program.
JP2010003497A 2010-01-11 2010-01-11 Solenoid valve drive device and solenoid valve Active JP5554573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010003497A JP5554573B2 (en) 2010-01-11 2010-01-11 Solenoid valve drive device and solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003497A JP5554573B2 (en) 2010-01-11 2010-01-11 Solenoid valve drive device and solenoid valve

Publications (2)

Publication Number Publication Date
JP2011141019A true JP2011141019A (en) 2011-07-21
JP5554573B2 JP5554573B2 (en) 2014-07-23

Family

ID=44457013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003497A Active JP5554573B2 (en) 2010-01-11 2010-01-11 Solenoid valve drive device and solenoid valve

Country Status (1)

Country Link
JP (1) JP5554573B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163475A (en) * 2013-02-27 2014-09-08 Honda Motor Co Ltd Drive control device of electromagnetic valve
WO2015015724A1 (en) * 2013-08-02 2015-02-05 株式会社デンソー Control device for high-pressure pump
WO2015015723A1 (en) * 2013-08-02 2015-02-05 株式会社デンソー Control device for high-pressure pump
JP2015521928A (en) * 2012-09-07 2015-08-03 コーニンクレッカ フィリップス エヌ ヴェ Milking system
KR20150104427A (en) * 2014-03-05 2015-09-15 엘지전자 주식회사 An examination equipment and a method thereof
JP2017031979A (en) * 2016-10-03 2017-02-09 株式会社デンソー Fuel injection control device and fuel injection system
JP2017075609A (en) * 2013-08-02 2017-04-20 株式会社デンソー High pressure pump control device
KR101745212B1 (en) 2015-12-17 2017-06-08 현대자동차주식회사 Method for controlling the purge of the fuel cell system for vehicle
JP2017190780A (en) * 2017-08-01 2017-10-19 株式会社デンソー Fuel injection control device and fuel injection system
WO2019044616A1 (en) * 2017-08-31 2019-03-07 川崎重工業株式会社 Solenoid valve identification device and control unit comprising same
JP2020051523A (en) * 2018-09-27 2020-04-02 Ckd株式会社 Self-holding solenoid valve
US10711666B1 (en) 2019-04-22 2020-07-14 Ford Global Technologies, Llc Methods and systems for cylinder valve deactivation
CN113013452A (en) * 2019-12-19 2021-06-22 未势能源科技有限公司 Control method and device for electromagnetic valve of air storage tank, fuel cell and vehicle
WO2021115634A3 (en) * 2019-12-12 2021-07-22 Eaton Intelligent Power Limited System and method for solenoid valve optimization and measurement of response deterioration
CN114609900A (en) * 2022-04-15 2022-06-10 中国兵器装备集团自动化研究所有限公司 Electromagnetic valve driving method and driving system based on PID control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945456A (en) * 2019-03-06 2019-06-28 广东美的制冷设备有限公司 Air conditioner washing module control circuit, method and air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320185A (en) * 1989-06-16 1991-01-29 Taiyo Ltd Solenoid valve
JPH08213231A (en) * 1995-02-02 1996-08-20 Tokyo Gas Co Ltd Operating state detecting device of solenoid
JPH1047138A (en) * 1996-08-01 1998-02-17 Hitachi Ltd Position detecting device of needle of electromagnetic actuator and detecting method therefor, intake air rate control device of internal combustion engine and control method therefor, and diagnostic method for automobile actuator
JPH1047140A (en) * 1996-08-01 1998-02-17 Hitachi Ltd Driving device of fuel injection valve for internal combustion engine and injector driving device
JP2004514581A (en) * 2000-11-22 2004-05-20 クノール−ブレムセ・ジステメ・フュール・ヌツファールツォイゲ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Device for controlling the brake valve
JP2005317612A (en) * 2004-04-27 2005-11-10 Kayaba Ind Co Ltd Apparatus and method for detecting plunger position in solenoid
JP2008304041A (en) * 2007-06-11 2008-12-18 Aisin Aw Co Ltd Faulty moving detecting device
JP2009014185A (en) * 2007-07-09 2009-01-22 Smc Corp Solenoid valve driving circuit and solenoid valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320185A (en) * 1989-06-16 1991-01-29 Taiyo Ltd Solenoid valve
JPH08213231A (en) * 1995-02-02 1996-08-20 Tokyo Gas Co Ltd Operating state detecting device of solenoid
JPH1047138A (en) * 1996-08-01 1998-02-17 Hitachi Ltd Position detecting device of needle of electromagnetic actuator and detecting method therefor, intake air rate control device of internal combustion engine and control method therefor, and diagnostic method for automobile actuator
JPH1047140A (en) * 1996-08-01 1998-02-17 Hitachi Ltd Driving device of fuel injection valve for internal combustion engine and injector driving device
JP2004514581A (en) * 2000-11-22 2004-05-20 クノール−ブレムセ・ジステメ・フュール・ヌツファールツォイゲ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Device for controlling the brake valve
JP2005317612A (en) * 2004-04-27 2005-11-10 Kayaba Ind Co Ltd Apparatus and method for detecting plunger position in solenoid
JP2008304041A (en) * 2007-06-11 2008-12-18 Aisin Aw Co Ltd Faulty moving detecting device
JP2009014185A (en) * 2007-07-09 2009-01-22 Smc Corp Solenoid valve driving circuit and solenoid valve

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9724453B2 (en) 2012-09-07 2017-08-08 Koninklijke Philips N.V. Breast pump system
JP2015521928A (en) * 2012-09-07 2015-08-03 コーニンクレッカ フィリップス エヌ ヴェ Milking system
US10143786B2 (en) 2012-09-07 2018-12-04 Koninklijke Philips N.V. Breast pump system
JP2014163475A (en) * 2013-02-27 2014-09-08 Honda Motor Co Ltd Drive control device of electromagnetic valve
WO2015015724A1 (en) * 2013-08-02 2015-02-05 株式会社デンソー Control device for high-pressure pump
WO2015015723A1 (en) * 2013-08-02 2015-02-05 株式会社デンソー Control device for high-pressure pump
JP2015031203A (en) * 2013-08-02 2015-02-16 株式会社デンソー Control device of high pressure pump
JP2015045322A (en) * 2013-08-02 2015-03-12 株式会社デンソー High pressure pump control device
US10330064B2 (en) 2013-08-02 2019-06-25 Denso Corporation Control device for high-pressure pump
JP2017075609A (en) * 2013-08-02 2017-04-20 株式会社デンソー High pressure pump control device
KR20150104427A (en) * 2014-03-05 2015-09-15 엘지전자 주식회사 An examination equipment and a method thereof
KR102206467B1 (en) * 2014-03-05 2021-01-21 엘지전자 주식회사 An examination equipment and a method thereof
KR101745212B1 (en) 2015-12-17 2017-06-08 현대자동차주식회사 Method for controlling the purge of the fuel cell system for vehicle
US10811709B2 (en) 2015-12-17 2020-10-20 Hyundai Motor Company Method of controlling purge of fuel cell system for vehicle
JP2017031979A (en) * 2016-10-03 2017-02-09 株式会社デンソー Fuel injection control device and fuel injection system
JP2017190780A (en) * 2017-08-01 2017-10-19 株式会社デンソー Fuel injection control device and fuel injection system
WO2019044616A1 (en) * 2017-08-31 2019-03-07 川崎重工業株式会社 Solenoid valve identification device and control unit comprising same
GB2579943A (en) * 2017-08-31 2020-07-08 Kawasaki Heavy Ind Ltd Electromagnetic valve identification device and control unit including same
JP2020051523A (en) * 2018-09-27 2020-04-02 Ckd株式会社 Self-holding solenoid valve
US10711666B1 (en) 2019-04-22 2020-07-14 Ford Global Technologies, Llc Methods and systems for cylinder valve deactivation
WO2021115634A3 (en) * 2019-12-12 2021-07-22 Eaton Intelligent Power Limited System and method for solenoid valve optimization and measurement of response deterioration
CN113013452A (en) * 2019-12-19 2021-06-22 未势能源科技有限公司 Control method and device for electromagnetic valve of air storage tank, fuel cell and vehicle
CN113013452B (en) * 2019-12-19 2022-07-19 未势能源科技有限公司 Control method and device for electromagnetic valve of air storage tank, fuel cell and vehicle
CN114609900A (en) * 2022-04-15 2022-06-10 中国兵器装备集团自动化研究所有限公司 Electromagnetic valve driving method and driving system based on PID control

Also Published As

Publication number Publication date
JP5554573B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5554573B2 (en) Solenoid valve drive device and solenoid valve
JP5309641B2 (en) Semiconductor integrated circuit for charge control
JP4908386B2 (en) Switching power supply device and driving method thereof
JP4912067B2 (en) Semiconductor integrated circuit and electronic device having the same
EP2563095A2 (en) Lighting device, headlamp lighting device, and headlamp unit and vehicle having same
CN102598869A (en) Lighting device, and headlight lighting device, headlight, and vehicle using same
JP2009136105A5 (en)
US7986149B2 (en) System and method for adaptive load fault detection
BR102019021292A2 (en) SYSTEM AND METHOD
US5821740A (en) DC-to-DC converter having fast over-current detection and associated methods
KR20130017024A (en) Led emitting device and driving method thereof
KR101981287B1 (en) Switching regulator
JP2018133330A (en) System and method for charging battery pack
KR101274590B1 (en) Limiited current circuit of digital inverter of lcd backlight
JP2017051054A (en) regulator
WO2022057400A1 (en) Led control circuit and led illumination system
JP5857260B2 (en) Lighting device, headlight lighting device, headlight device, and vehicle
JPH10333760A (en) Power circuit
JP3832053B2 (en) Discharge lamp lighting device
JP2009528008A (en) Step-up driver with minimum switching frequency
US20230124434A1 (en) Method to reduce overshoot in a voltage regulating power supply
JP4266594B2 (en) Voltage stabilization circuit
JP2005198401A5 (en)
JP2507558B2 (en) Thermal printer
JP4215778B2 (en) Accumulated charge discharge circuit in power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20121220

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20131018

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140529

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5554573

Country of ref document: JP