JP2011139089A - Method of manufacturing semiconductor substrate - Google Patents

Method of manufacturing semiconductor substrate Download PDF

Info

Publication number
JP2011139089A
JP2011139089A JP2011046659A JP2011046659A JP2011139089A JP 2011139089 A JP2011139089 A JP 2011139089A JP 2011046659 A JP2011046659 A JP 2011046659A JP 2011046659 A JP2011046659 A JP 2011046659A JP 2011139089 A JP2011139089 A JP 2011139089A
Authority
JP
Japan
Prior art keywords
sige
substrate
film
interface
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011046659A
Other languages
Japanese (ja)
Other versions
JP5830255B2 (en
Inventor
Shoji Akiyama
昌次 秋山
Yoshihiro Kubota
芳宏 久保田
Atsuo Ito
厚雄 伊藤
Koichi Tanaka
好一 田中
Makoto Kawai
信 川合
Yuuji Tobisaka
優二 飛坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2011046659A priority Critical patent/JP5830255B2/en
Publication of JP2011139089A publication Critical patent/JP2011139089A/en
Application granted granted Critical
Publication of JP5830255B2 publication Critical patent/JP5830255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor substrate for obtaining a high-quality Ge-based epitaxial film having a large area by a relatively simple method. <P>SOLUTION: In the manufacturing method, an SiGe film 11 is epitaxially grown on a main surface of an Si substrate 10 by a chemical vapor deposition method. Although a high-density defect is introduced into an SiGe epitaxial film 11 from an interface to the Si substrate 10, heat treatment is performed at 700 or 1,200°C to change a through dislocation 12 into a loop dislocation defect 12' near an Si substrate interface. Then, at least one main surface of the SiGe epitaxial film 11 on which an ion implantation layer is formed and a support substrate 20 is subjected to plasma treatment and ozone treatment for purposes of surface cleaning, surface activation, or the like, and both main surfaces are laminated for bonding. Further, an external impact is applied onto a bonding interface, the SiGe epitaxial film is separated along a hydrogen ion implantation interface 13 to obtain an SiGe thin film 14, and further a surface of the SiGe thin film 14 is subjected to final surface treatment (CMP polishing, or the like) to remove damage caused by hydrogen ion implantation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ゲルマニウム(Ge)やシリコンゲルマニウム(SiGe)などのゲルマニウム系エピタキシャル膜を異種基板上に備えた半導体基板の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor substrate provided with a germanium-based epitaxial film such as germanium (Ge) or silicon germanium (SiGe) on a heterogeneous substrate.

半導体デバイス中でのキャリア移動度を高めて処理速度を向上させる手法としては、SOI(Silicon on insulator)基板の利用が従来から知られているが、近年では、GeOI(Germanium on insulator)基板の利用が提案されている。その理由は、Ge結晶中のキャリア移動度はSi結晶と比較して電子移動度で約2倍、ホール移動度で約4倍と速く、高速動作の半導体デバイス設計に有利であるためである。   The use of SOI (Silicon on insulator) substrates is conventionally known as a method for improving the processing speed by increasing carrier mobility in semiconductor devices, but in recent years, the use of GeOI (Germanium on insulator) substrates has been known. Has been proposed. This is because the carrier mobility in the Ge crystal is about twice as fast as the electron mobility and about four times as high as the hole mobility compared to the Si crystal, which is advantageous for designing a semiconductor device operating at high speed.

Ge膜の異種基板上へのエピタキシャル成長としては、Si基板上にGe濃度を僅かずつ高めたSi1-xGex層を何層にも堆積し、最終的にSiを含有しないGe層を得る手法が知られている(例えば、非特許文献1参照)。この手法において、Si1-xGex層中のGe濃度を徐々に高めることとされているのは、SiとGeは格子定数が約4%異なるため、Ge膜を直接Si基板上にエピタキシャル成長させるとミスフィット転位と呼ばれる格子欠陥が導入されるため、このミスフィット転位の発生を抑制するためである。 Epitaxial growth of Ge film on heterogeneous substrate is a method of depositing a number of Si 1-x Ge x layers with slightly increasing Ge concentration on a Si substrate and finally obtaining a Ge layer that does not contain Si Is known (see, for example, Non-Patent Document 1). In this method, the Ge concentration in the Si 1-x Ge x layer is gradually increased because Si and Ge have a lattice constant of about 4% different, so that a Ge film is directly epitaxially grown on the Si substrate. This is because lattice defects called misfit dislocations are introduced to suppress the occurrence of misfit dislocations.

そして、このようにして得たGe層に水素イオンを打ち込み、酸化膜付きシリコンウェーハなどの支持基板と貼り合せを行い、400乃至600℃程度の温度範囲で熱処理を施すことで水素イオン注入界面でマイクロキャビティと呼ばれる微小な水素の空洞を発生させ、熱的に剥離を行い、GeOI基板を得るという手法が知られている。   Then, hydrogen ions are implanted into the Ge layer thus obtained, bonded to a support substrate such as a silicon wafer with an oxide film, and subjected to heat treatment in a temperature range of about 400 to 600 ° C. A technique is known in which a minute hydrogen cavity called a microcavity is generated and thermally exfoliated to obtain a GeOI substrate.

しかし、この手法では、Si1-xGexのエピタキシャル成長を何回も繰り返す必要があるために製造コストが高まり、何よりも、Geエピタキシャル層中に導入される格子欠陥を充分なレベルにまで減少させることは困難である。また、支持基板とGe層の貼り合せ界面の結合強度を増すための剥離後熱処理が施されることとなるが、その熱処理温度は800乃至900℃と比較的高温とされており、Geの融点が918℃であることを考えると、工業的生産方法として適する方法であるとは言い難い。 However, this method increases the manufacturing cost because it is necessary to repeat the epitaxial growth of Si 1-x Ge x many times, and above all, the lattice defects introduced into the Ge epitaxial layer are reduced to a sufficient level. It is difficult. Further, a post-peeling heat treatment is performed to increase the bond strength at the bonding interface between the support substrate and the Ge layer. The heat treatment temperature is relatively high, 800 to 900 ° C., and the melting point of Ge Is 918 ° C., it is difficult to say that this is a suitable method for industrial production.

尤も、エピタキシャル基板としてGe基板を用いれば上記のような問題は生じないが、Ge基板はその大口径化が極めて難しく、更にはGeが希少元素であるために極めて高コストな結果となるため、Ge基板の利用は現実的ではない。
R. People, “Physics and applications of GexSi1-x/Si strained layer structures,” IEEE Journal of Quantum Electronics, QE-22, 1696(1986). M. Halbwax et al., “UHV-CVD growth and annealing of thin fully relaxed Ge films on (001)Si,” Optical Materials, 27(2005), pp.822-825.
However, if a Ge substrate is used as an epitaxial substrate, the above-mentioned problem does not occur, but the Ge substrate is extremely difficult to increase in diameter, and further, since Ge is a rare element, resulting in extremely high cost, The use of a Ge substrate is not practical.
R. People, “Physics and applications of GexSi1-x / Si strained layer structures,” IEEE Journal of Quantum Electronics, QE-22, 1696 (1986). M. Halbwax et al., “UHV-CVD growth and annealing of thin fully relaxed Ge films on (001) Si,” Optical Materials, 27 (2005), pp.822-825.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、比較的簡便な手法により、高品質なGe系エピタキシャル膜を大面積で得る半導体基板の製造方法を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a semiconductor substrate manufacturing method for obtaining a high-quality Ge-based epitaxial film in a large area by a relatively simple technique. There is.

このような課題を解決するために、本発明の半導体基板の製造方法は、シリコン(Si)基板上にシリコンゲルマニウム(SiGe)膜を化学気相堆積法でエピタキシャル成長させる第1のステップと、前記SiGe膜に700乃至1200℃の温度範囲で熱処理を施すステップであって、該熱処理により前記SiGe膜の転位を前記Si基板との界面近傍に集める第2のステップと、前記SiGe膜の表面側から該SiGe膜中の所定の深さに水素イオンを注入する第3のステップと、前記SiGe膜および支持基板の少なくとも一方の主面に表面活性化処理を施す第4のステップと、前記SiGe膜と前記支持基板の主面同士を貼り合わせる第5のステップと、前記SiGe膜と前記支持基板の貼り合わせ界面に外部衝撃を付与して前記SiGe膜の水素イオン注入界面に沿ってSiGe結晶を剥離して前記支持基板の主面上にSiGe薄膜を形成する第6のステップと、を備えていることを特徴とする。   In order to solve such a problem, a semiconductor substrate manufacturing method of the present invention includes a first step of epitaxially growing a silicon germanium (SiGe) film on a silicon (Si) substrate by a chemical vapor deposition method, and the SiGe A step of heat-treating the film in a temperature range of 700 to 1200 ° C., the second step of collecting dislocations of the SiGe film in the vicinity of the interface with the Si substrate by the heat treatment, and the surface side of the SiGe film A third step of implanting hydrogen ions to a predetermined depth in the SiGe film; a fourth step of subjecting at least one main surface of the SiGe film and the support substrate to a surface activation process; the SiGe film and the A fifth step of bonding the main surfaces of the support substrates together, and applying an external impact to the bonding interface between the SiGe film and the support substrate A sixth step of forming a SiGe thin film on the main surface of the supporting substrate by peeling off the SiGe crystal along a hydrogen ion implanted boundary of iGe film, characterized in that it comprises.

好ましくは、前記SiGe膜のGe含有量がモル比で10%以上である。   Preferably, the Ge content of the SiGe film is 10% or more by molar ratio.

また、好ましくは、前記第3のステップは、前記水素イオンの注入前に、前記SiGe膜の表面粗さをRms値で0.5nm以下とする表面処理工程を備えている。   Preferably, the third step includes a surface treatment step of setting the surface roughness of the SiGe film to an Rms value of 0.5 nm or less before the hydrogen ion implantation.

前記表面処理工程は、例えば、CMP研磨で実行される。   The surface treatment process is performed by CMP polishing, for example.

前記第5のステップの貼り合わせは、100℃以上400℃以下の温度範囲で実行されることが好ましい。   The bonding in the fifth step is preferably performed in a temperature range of 100 ° C. or higher and 400 ° C. or lower.

前記支持基板は、例えば、酸化膜付きシリコンウェーハ、石英、ガラス、サファイア、炭化珪素(SiC)、アルミナ、窒化アルミニウムである。   The support substrate is, for example, a silicon wafer with an oxide film, quartz, glass, sapphire, silicon carbide (SiC), alumina, or aluminum nitride.

本発明によれば、大口径基板が得られるシリコンウェーハ等をエピタキシャル成長用基板として用い、この基板上にGe系結晶をエピタキシャル成長させて得られた膜を絶縁性の支持基板上に貼り合わせ法で転写することとしたので、低コストのGeOI基板やSGOI基板の提供が可能となる。   According to the present invention, a silicon wafer or the like from which a large-diameter substrate can be obtained is used as an epitaxial growth substrate, and a film obtained by epitaxially growing a Ge-based crystal on this substrate is transferred onto an insulating support substrate by a bonding method. Therefore, it is possible to provide a low-cost GeOI substrate or SGOI substrate.

以下に、図面を参照して、本発明の半導体基板製造プロセス例について説明する。   Hereinafter, an example of a semiconductor substrate manufacturing process of the present invention will be described with reference to the drawings.

なお、以下の実施例においては支持基板を主面に酸化膜を設けたシリコンウェーハとして説明するが、これに限らず、石英基板、ガラス基板、サファイア基板、炭化珪素(SiC)基板、アルミナ基板、窒化アルミニウム基板などであってもよい。   In the following examples, the support substrate is described as a silicon wafer provided with an oxide film on the main surface, but not limited thereto, a quartz substrate, a glass substrate, a sapphire substrate, a silicon carbide (SiC) substrate, an alumina substrate, An aluminum nitride substrate or the like may be used.

(GeOI基板)
図1(A)乃至(C)および図2(A)乃至(D)は、本発明の半導体基板の製造プロセス例を説明するための図で、本実施例では、GeOI基板の製造プロセス例について説明する。
(GeOI substrate)
1A to 1C and FIGS. 2A to 2D are diagrams for explaining an example of a manufacturing process of a semiconductor substrate of the present invention. In this embodiment, an example of a manufacturing process of a GeOI substrate is described. explain.

これらの図中、符号10はゲルマニウム(Ge)を化学気相堆積法(CVD法)でエピタキシャル成長させるためのシリコン(Si)基板である。このSi基板10は、例えば、CZ法(チョクラルスキ法)により育成された一般に市販されているSi基板であり、その導電型や比抵抗率などの電気特性値や結晶方位や結晶径は、本発明の方法で製造されるGeエピタキシャル膜が供されるデバイスの設計値やプロセス等に依存して適宜選択される。   In these drawings, reference numeral 10 denotes a silicon (Si) substrate for epitaxial growth of germanium (Ge) by chemical vapor deposition (CVD). This Si substrate 10 is a commercially available Si substrate grown by, for example, the CZ method (Czochralski method), and its electrical characteristics such as conductivity type and specific resistivity, crystal orientation, and crystal diameter are defined in the present invention. The Ge epitaxial film manufactured by this method is appropriately selected depending on the design value and process of the device provided.

このSi基板10の主面上に、水素ガスをキャリアガスとして、真空雰囲気中にゲルマン(GeH)の高純度ガスを導入してGeの膜をCVD法でエピタキシャル成長させる。このGeエピタキシャル膜11中にはSi基板10との界面から高密度の欠陥(貫通転位)12が導入されるが(図1(A))、このような貫通転位を含むGeエピタキシャル膜11に適当な熱処理を施して貫通転位12が運動するためのエネルギを付与すると、貫通転位12はSi基板界面近傍のループ転位状欠陥に変化する現象が知られている(非特許文献2参照)。 A Ge film is epitaxially grown on the main surface of the Si substrate 10 by CVD using a high-purity gas of germane (GeH 4 ) in a vacuum atmosphere using hydrogen gas as a carrier gas. High-density defects (threading dislocations) 12 are introduced into the Ge epitaxial film 11 from the interface with the Si substrate 10 (FIG. 1A), but suitable for the Ge epitaxial film 11 containing such threading dislocations. It is known that when energy for moving the threading dislocations 12 is applied by performing a proper heat treatment, the threading dislocations 12 change into loop dislocation defects near the Si substrate interface (see Non-Patent Document 2).

そこで、本発明では、Geエピタキシャル膜11中の転位をSi基板10との界面近傍に集める(図中の符号12´)ために、650乃至900℃(好ましくは、700乃至900℃)の温度範囲で熱処理を施すこととしている(図1(B))。なお、この熱処理時の雰囲気ガスは、窒素やアルゴンなどの不活性ガスまたは酸素ガスの何れか、若しくはこれらの混合ガスとする。   Therefore, in the present invention, a temperature range of 650 to 900 ° C. (preferably 700 to 900 ° C.) is used to collect dislocations in the Ge epitaxial film 11 near the interface with the Si substrate 10 (reference numeral 12 ′ in the figure). In this case, heat treatment is performed (FIG. 1B). Note that the atmosphere gas at the time of the heat treatment is either an inert gas such as nitrogen or argon, an oxygen gas, or a mixed gas thereof.

続いて、Geエピタキシャル膜11の表面側から水素イオンを注入し、Si基板10との界面近傍領域に水素イオン注入層を形成する(図1(C))。この水素イオン注入により、Geエピタキシャル膜11の表面から所定の深さ(平均イオン注入深さL)にイオン注入層(ダメージ層)が形成され、イオン注入界面13が形成される。   Subsequently, hydrogen ions are implanted from the surface side of the Ge epitaxial film 11 to form a hydrogen ion implanted layer in a region near the interface with the Si substrate 10 (FIG. 1C). By this hydrogen ion implantation, an ion implantation layer (damage layer) is formed at a predetermined depth (average ion implantation depth L) from the surface of the Ge epitaxial film 11, and an ion implantation interface 13 is formed.

この際のイオン注入条件は、どの程度の厚さのGe薄膜を剥離させるかに依存して決定されるが、例えば、平均イオン注入深さLを0.5μm以下とし、イオン注入条件を、ドーズ量1×1016〜5×1017atoms/cm、加速電圧50〜100keVなどとする。 The ion implantation conditions at this time are determined depending on the thickness of the Ge thin film to be peeled off. For example, the average ion implantation depth L is 0.5 μm or less, and the ion implantation conditions are the doses. The amount is 1 × 10 16 to 5 × 10 17 atoms / cm 2 , the acceleration voltage is 50 to 100 keV, and the like.

なお、Si基板10上にGeをエピタキシャル成長するに先立ち、予め膜厚50nm以下のSiGe混晶のバッファ層を成長させておくこととすると、更に低欠陥レベルのGe膜を得ることが可能である。このようなバッファ層は、Geエピタキシャル膜がコヒーレント成長するように、例えばGe0.88Si0.12などの組成とする。また、上記水素イオンの注入に先立ち、Geエピタキシャル膜11の表面粗さをRms値で0.5nm以下となるようにCMP研磨などの手法により表面処理を施しておくと、後の工程での貼り合わせの密着性が高まり好ましい。 If a SiGe mixed crystal buffer layer having a thickness of 50 nm or less is grown in advance prior to epitaxial growth of Ge on the Si substrate 10, a Ge film having a lower defect level can be obtained. Such a buffer layer has a composition such as Ge 0.88 Si 0.12 so that the Ge epitaxial film grows coherently. In addition, prior to the implantation of hydrogen ions, if surface treatment is performed by a method such as CMP polishing so that the surface roughness of the Ge epitaxial film 11 is 0.5 nm or less in terms of Rms value, bonding in a later step will be performed. It is preferable because the adhesion of the alignment is increased.

このようにしてイオン注入層を形成したGeエピタキシャル膜11と、後にハンドルウエーハとなる絶縁性の支持基板20の少なくとも一方の主面(接合面)に、表面清浄化や表面活性化などを目的としたプラズマ処理やオゾン処理を施す(図2(A))。なお、このような表面処理は、接合面となる表面の有機物除去や表面上のOH基を増大させて表面活性化を図るなどの目的で行われるものであり、Geエピタキシャル膜11と支持基板20の双方の接合面に処理を施す必要は必ずしもなく、何れか一方の接合面にのみ施すこととしてもよい。   For the purpose of surface cleaning or surface activation on at least one main surface (bonding surface) of the Ge epitaxial film 11 in which the ion-implanted layer is formed in this way and the insulating support substrate 20 to be a handle wafer later. The plasma treatment and ozone treatment are performed (FIG. 2A). Such a surface treatment is performed for the purpose of removing the organic substances on the surface to be the bonding surface or increasing the OH group on the surface to achieve surface activation. The Ge epitaxial film 11 and the support substrate 20 are used. It is not always necessary to perform the treatment on both of the joint surfaces, and the treatment may be performed only on one of the joint surfaces.

このような表面処理が施されたGeエピタキシャル膜11と支持基板20の主面を接合面として密着させて貼り合わせる(図2(B))。上述したように、Geエピタキシャル膜11と支持基板20の少なくとも一方の主面(接合面)は、プラズマ処理やオゾン処理などにより表面処理が施されて活性化しているために、室温の貼り合わせでも後工程での機械的剥離や機械研磨に十分耐え得るレベルの接合強度を得ることができる。従って、いわゆる「SOITEC法」などで必要とされる高温熱処理(1000℃前後)を施す必要がない。   The Ge epitaxial film 11 subjected to such a surface treatment and the main surface of the support substrate 20 are adhered and bonded together as a bonding surface (FIG. 2B). As described above, since at least one main surface (bonding surface) of the Ge epitaxial film 11 and the support substrate 20 is activated by being subjected to surface treatment by plasma treatment, ozone treatment, or the like, even at the bonding at room temperature. Bonding strength at a level that can sufficiently withstand mechanical peeling and mechanical polishing in the subsequent process can be obtained. Therefore, it is not necessary to perform a high-temperature heat treatment (around 1000 ° C.) required by the so-called “SOITEC method”.

尤も、より高い貼り合せ強度をもたせたいような場合には、100℃以上400℃以下の温度で貼り合わせることとしてもよく、一旦室温で貼り合わせた後に100℃以上400℃以下の温度範囲での加熱処理を施すこととしてもよい。本発明で上記の熱処理温度が400℃以下と設定される理由は、400℃を超える温度で熱処理を施すと、水素イオン注入界面でマイクロキャビティと呼ばれる微小な空洞が発生し、剥離後のGe薄膜の表面荒れにつながるためである。   However, when it is desired to have a higher bonding strength, the bonding may be performed at a temperature of 100 ° C. or higher and 400 ° C. or lower, and after bonding at room temperature, heating in a temperature range of 100 ° C. or higher and 400 ° C. or lower is possible. It is good also as processing. The reason why the heat treatment temperature is set to 400 ° C. or lower in the present invention is that when heat treatment is performed at a temperature exceeding 400 ° C., a minute cavity called a microcavity is generated at the hydrogen ion implantation interface, and the Ge thin film after peeling is formed. This leads to rough surface.

なお、支持基板20が石英基板である場合には、この熱処理温度の上限値を350℃とすることが好ましい。これは、Siと石英との熱膨張係数差と当該熱膨張係数差に起因する歪量、およびこの歪量とSi基板10ならびに石英基板の厚みを考慮したものである。Si基板10と石英基板の厚みが概ね同程度である場合、Siの熱膨張係数(2.33×10−6)と石英の熱膨張係数(0.6×10−6)の間に大きな差異があるために、350℃を超える温度で熱処理を施した場合には、両基板間の剛性差に起因して、熱歪によるクラックや接合面における剥離などが生じたり、極端な場合にはSi基板や石英基板が割れてしまうということが生じ得る。このため、熱処理温度の上限を350℃と選択し、より好ましくは100〜300℃の温度範囲で熱処理を施す。 When the support substrate 20 is a quartz substrate, the upper limit value of the heat treatment temperature is preferably set to 350 ° C. This is in consideration of the difference in thermal expansion coefficient between Si and quartz, the amount of strain resulting from the difference in thermal expansion coefficient, and the amount of strain and the thickness of the Si substrate 10 and the quartz substrate. When the thicknesses of the Si substrate 10 and the quartz substrate are approximately the same, there is a large difference between the thermal expansion coefficient of Si (2.33 × 10 −6 ) and the thermal expansion coefficient of quartz (0.6 × 10 −6 ). Therefore, when heat treatment is performed at a temperature exceeding 350 ° C., cracks due to thermal strain, peeling at the joint surface, etc. may occur due to the difference in rigidity between the two substrates. It may occur that the substrate or the quartz substrate is broken. For this reason, the upper limit of the heat treatment temperature is selected to be 350 ° C., and more preferably heat treatment is performed in a temperature range of 100 to 300 ° C.

続いて、貼り合わせ界面に外部衝撃を加え、水素イオン注入界面13に沿ってGeエピタキシャル膜の剥離を行ってGe薄膜14を得(図2(C))、さらにこのGe薄膜14の表面に最終表面処理(CMP研磨等)を施して水素イオン注入起因のダメージを除去すれば、Ge薄膜14をその表面に有するGeOI基板が得られる(図2(D))。   Subsequently, an external impact is applied to the bonding interface, and the Ge epitaxial film is peeled along the hydrogen ion implantation interface 13 to obtain a Ge thin film 14 (FIG. 2C). When surface treatment (CMP polishing or the like) is performed to remove damage caused by hydrogen ion implantation, a GeOI substrate having a Ge thin film 14 on its surface can be obtained (FIG. 2D).

(SGOI基板)
本実施例は、SGOI基板の製造方法のプロセス例である。なお、基本的なプロセスは実施例1と同様であるので、再度、図1(A)乃至(C)および図2(A)乃至(D)を参照しつつ説明する。本実施例では、図中の符号11はシリコンゲルマニウム(SiGe)を化学気相堆積法(CVD法)でエピタキシャル成長させて得られたSiGeエピタキシャル膜である。
(SGOI substrate)
The present embodiment is a process example of a method for manufacturing an SGOI substrate. Since the basic process is the same as that of the first embodiment, the description will be given with reference to FIGS. 1A to 1C and FIGS. 2A to 2D again. In this embodiment, reference numeral 11 in the figure is a SiGe epitaxial film obtained by epitaxially growing silicon germanium (SiGe) by chemical vapor deposition (CVD).

このSiGeエピタキシャル膜11中にも、Si基板10との界面から高密度の欠陥(貫通転位)12が導入されるが(図1(A))、SiGeエピタキシャル膜11中の転位をSi基板10との界面近傍に集める(図中の符号12´)ために、650乃至1200℃(好ましくは、700乃至1200℃)の温度範囲で熱処理を施すこととしている(図1(B))。なお、この熱処理時の雰囲気ガスは、窒素やアルゴンなどの不活性ガスまたは酸素ガスの何れか、若しくはこれらの混合ガスとする。   High density defects (threading dislocations) 12 are also introduced into the SiGe epitaxial film 11 from the interface with the Si substrate 10 (FIG. 1A), but the dislocations in the SiGe epitaxial film 11 are exchanged with the Si substrate 10. In order to collect in the vicinity of the interface (reference numeral 12 'in the figure), heat treatment is performed in a temperature range of 650 to 1200 ° C. (preferably 700 to 1200 ° C.) (FIG. 1B). Note that the atmosphere gas at the time of the heat treatment is either an inert gas such as nitrogen or argon, an oxygen gas, or a mixed gas thereof.

続いて、SiGeエピタキシャル膜11の表面側から水素イオンを注入してSi基板10との界面近傍領域に水素イオン注入層を形成し(図1(C))、SiGeエピタキシャル膜11の表面から所定の深さ(平均イオン注入深さL)にイオン注入界面13を形成する。   Subsequently, hydrogen ions are implanted from the surface side of the SiGe epitaxial film 11 to form a hydrogen ion implanted layer in a region near the interface with the Si substrate 10 (FIG. 1C), and a predetermined amount is formed from the surface of the SiGe epitaxial film 11. The ion implantation interface 13 is formed at a depth (average ion implantation depth L).

なお、Si基板10との界面近傍領域での転位発生レベルを低く抑えるために、SiGeエピタキシャル膜の組成をGe含有量がモル比で10%以上となるように設定することが好ましい。また、既に実施例1で説明したように、上記水素イオンの注入に先立ち、SiGeエピタキシャル膜11の表面粗さをRms値で0.5nm以下となるようにCMP研磨などの手法により表面処理を施しておくと、後の工程での貼り合わせの密着性が高まり好ましい。   In order to keep the level of dislocation generation in the region near the interface with the Si substrate 10 low, the composition of the SiGe epitaxial film is preferably set so that the Ge content is 10% or more in terms of a molar ratio. Further, as already described in Example 1, prior to the implantation of hydrogen ions, surface treatment is performed by a technique such as CMP so that the surface roughness of the SiGe epitaxial film 11 is 0.5 nm or less in terms of Rms. It is preferable that the adhesiveness of the bonding in the subsequent process is increased.

このようにしてイオン注入層を形成したSiGeエピタキシャル膜11と、後にハンドルウエーハとなる絶縁性の支持基板20の少なくとも一方の主面(接合面)に、表面清浄化や表面活性化などを目的としたプラズマ処理やオゾン処理を施し(図2(A))、主面同士を密着させて貼り合わせる(図2(B))。   For the purpose of surface cleaning, surface activation, etc. on at least one main surface (bonding surface) of the SiGe epitaxial film 11 in which the ion-implanted layer is formed in this way and the insulating support substrate 20 to be a handle wafer later. The plasma treatment and the ozone treatment are performed (FIG. 2A), and the main surfaces are bonded together (FIG. 2B).

なお、より高い貼り合せ強度をもたせたいような場合には、100℃以上400℃以下の温度で貼り合わせることとしてもよく、一旦室温で貼り合わせた後に100℃以上400℃以下の温度範囲での加熱処理を施すこととしてもよいことは上述のとおりである。   When it is desired to have a higher bonding strength, the bonding may be performed at a temperature of 100 ° C. or higher and 400 ° C. or lower, and once the bonding is performed at room temperature, the heating is performed in a temperature range of 100 ° C. or higher and 400 ° C. or lower. The processing may be performed as described above.

続いて、貼り合わせ界面に外部衝撃を加え、水素イオン注入界面13に沿ってSiGeエピタキシャル膜の剥離を行ってSiGe薄膜14を得(図2(C))、さらにこのSiGe薄膜14の表面に最終表面処理(CMP研磨等)を施して水素イオン注入起因のダメージを除去すれば、SiGe薄膜14をその表面に有するSGOI基板が得られる(図2(D))。   Subsequently, external impact is applied to the bonding interface, the SiGe epitaxial film is peeled along the hydrogen ion implantation interface 13 to obtain a SiGe thin film 14 (FIG. 2C), and finally the surface of the SiGe thin film 14 is formed. When surface treatment (CMP polishing or the like) is performed to remove damage caused by hydrogen ion implantation, an SGOI substrate having the SiGe thin film 14 on its surface can be obtained (FIG. 2D).

本発明は、比較的簡便な手法により、高品質なGe系エピタキシャル膜を大面積で有する半導体基板の提供を可能とする。   The present invention makes it possible to provide a semiconductor substrate having a high-quality Ge-based epitaxial film with a large area by a relatively simple technique.

本発明の半導体基板の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor substrate of this invention. 本発明の半導体基板の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor substrate of this invention.

10 Si基板
11 GeまたはSiGeエピタキシャル膜
12 欠陥
13 イオン注入界面
14 GeまたはSiGe薄膜
20 支持基板
10 Si substrate 11 Ge or SiGe epitaxial film 12 Defect 13 Ion implantation interface 14 Ge or SiGe thin film 20 Support substrate

Claims (6)

シリコン(Si)基板上にシリコンゲルマニウム(SiGe)膜を化学気相堆積法でエピタキシャル成長させる第1のステップと、
前記SiGe膜に700乃至1200℃の温度範囲で熱処理を施すステップであって、該熱処理により前記SiGe膜の転位を前記Si基板との界面近傍に集める第2のステップと、
前記SiGe膜の表面側から該SiGe膜中の所定の深さに水素イオンを注入する第3のステップと、
前記SiGe膜および支持基板の少なくとも一方の主面に表面活性化処理を施す第4のステップと、
前記SiGe膜と前記支持基板の主面同士を貼り合わせる第5のステップと、
前記SiGe膜と前記支持基板の貼り合わせ界面に外部衝撃を付与して前記SiGe膜の水素イオン注入界面に沿ってSiGe結晶を剥離して前記支持基板の主面上にSiGe薄膜を形成する第6のステップと、
を備えていることを特徴とする半導体基板の製造方法。
A first step of epitaxially growing a silicon germanium (SiGe) film on a silicon (Si) substrate by chemical vapor deposition;
Performing a heat treatment on the SiGe film in a temperature range of 700 to 1200 ° C., and collecting dislocations of the SiGe film in the vicinity of the interface with the Si substrate by the heat treatment;
A third step of implanting hydrogen ions from the surface side of the SiGe film to a predetermined depth in the SiGe film;
A fourth step of performing a surface activation treatment on at least one main surface of the SiGe film and the support substrate;
A fifth step of bonding the SiGe film and the main surfaces of the support substrate together;
An external impact is applied to the bonding interface between the SiGe film and the support substrate to peel the SiGe crystal along the hydrogen ion implantation interface of the SiGe film, thereby forming a SiGe thin film on the main surface of the support substrate. And the steps
A method for manufacturing a semiconductor substrate, comprising:
前記SiGe膜のGe含有量がモル比で10%以上である請求項1に記載の半導体基板の製造方法。 The method for manufacturing a semiconductor substrate according to claim 1, wherein a Ge content of the SiGe film is 10% or more by molar ratio. 前記第3のステップは、前記水素イオンの注入前に、前記SiGe膜の表面粗さをRms値で0.5nm以下とする表面処理工程を備えている請求項1又は2に記載の半導体基板の製造方法。 3. The semiconductor substrate according to claim 1, wherein the third step includes a surface treatment step in which the surface roughness of the SiGe film is set to 0.5 nm or less in terms of Rms before the hydrogen ions are implanted. Production method. 前記表面処理工程は、CMP研磨で実行される請求項3に記載の半導体基板の製造方法。 The method for manufacturing a semiconductor substrate according to claim 3, wherein the surface treatment step is performed by CMP polishing. 前記第5のステップの貼り合わせは、100℃以上400℃以下の温度範囲で実行される請求項1乃至4の何れか1項に記載の半導体基板の製造方法。 The semiconductor substrate manufacturing method according to claim 1, wherein the bonding in the fifth step is performed in a temperature range of 100 ° C. or more and 400 ° C. or less. 前記支持基板は、酸化膜付きシリコンウェーハ、石英、ガラス、サファイア、炭化珪素(SiC)、アルミナ、窒化アルミニウムであることを特徴とする請求項1乃至5の何れか1項に記載の半導体基板の製造方法。 6. The semiconductor substrate according to claim 1, wherein the support substrate is a silicon wafer with an oxide film, quartz, glass, sapphire, silicon carbide (SiC), alumina, or aluminum nitride. Production method.
JP2011046659A 2011-03-03 2011-03-03 Manufacturing method of semiconductor substrate Active JP5830255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046659A JP5830255B2 (en) 2011-03-03 2011-03-03 Manufacturing method of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011046659A JP5830255B2 (en) 2011-03-03 2011-03-03 Manufacturing method of semiconductor substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007029484A Division JP2008198656A (en) 2007-02-08 2007-02-08 Method of manufacturing semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2011139089A true JP2011139089A (en) 2011-07-14
JP5830255B2 JP5830255B2 (en) 2015-12-09

Family

ID=44350137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046659A Active JP5830255B2 (en) 2011-03-03 2011-03-03 Manufacturing method of semiconductor substrate

Country Status (1)

Country Link
JP (1) JP5830255B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200080A (en) * 1996-11-15 1998-07-31 Canon Inc Manufacturing method of semiconductor member
JP2004507084A (en) * 2000-08-16 2004-03-04 マサチューセッツ インスティテュート オブ テクノロジー Manufacturing process of semiconductor products using graded epitaxial growth
JP2004510350A (en) * 2000-09-29 2004-04-02 インターナショナル・ビジネス・マシーンズ・コーポレーション Fabrication of relaxed SiGe layer on insulator
WO2006012544A2 (en) * 2004-07-22 2006-02-02 The Board Of Trustees Of The Leland Stanford Junior University Germanium substrate-type materials and approach therefor
WO2006031247A2 (en) * 2004-09-13 2006-03-23 International Business Machines Corporation Method of creating defect free high ge content (25%) sige-on-insulator (sgoi) substrates using wafer bonding techniques
JP2006120782A (en) * 2004-10-20 2006-05-11 Shin Etsu Handotai Co Ltd Manufacturing method of semiconductor wafer
JP2006140453A (en) * 2004-11-10 2006-06-01 Sharp Corp Formation of low-defect germanium film by direct wafer bonding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200080A (en) * 1996-11-15 1998-07-31 Canon Inc Manufacturing method of semiconductor member
JP2004507084A (en) * 2000-08-16 2004-03-04 マサチューセッツ インスティテュート オブ テクノロジー Manufacturing process of semiconductor products using graded epitaxial growth
JP2004510350A (en) * 2000-09-29 2004-04-02 インターナショナル・ビジネス・マシーンズ・コーポレーション Fabrication of relaxed SiGe layer on insulator
WO2006012544A2 (en) * 2004-07-22 2006-02-02 The Board Of Trustees Of The Leland Stanford Junior University Germanium substrate-type materials and approach therefor
WO2006031247A2 (en) * 2004-09-13 2006-03-23 International Business Machines Corporation Method of creating defect free high ge content (25%) sige-on-insulator (sgoi) substrates using wafer bonding techniques
JP2008512868A (en) * 2004-09-13 2008-04-24 インターナショナル・ビジネス・マシーンズ・コーポレーション Method for producing defect-free high Ge content SiGe-on-insulator (SGOI) substrates using wafer bonding technology
JP2006120782A (en) * 2004-10-20 2006-05-11 Shin Etsu Handotai Co Ltd Manufacturing method of semiconductor wafer
JP2006140453A (en) * 2004-11-10 2006-06-01 Sharp Corp Formation of low-defect germanium film by direct wafer bonding

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6009008373; R. R. LIETEN et al.: 'Growth of GaN on Ge(111) by molecular beam epitaxy' Applied Physics Letters Vol.89, 2006, p.252118-1〜252118-3 *
JPN6010069418; 中津留順子他: '「極薄SiGeバッファー層を用いたSi(100)基板上へのGeヘテロエピタキシャル成長」' キヤノンアネルバ技報 vol. 12, 2006, pp. 24-28 *

Also Published As

Publication number Publication date
JP5830255B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
US7855127B2 (en) Method for manufacturing semiconductor substrate
JP6650463B2 (en) Method of manufacturing high resistivity semiconductor-on-insulator wafer with charge trapping layer
TWI758133B (en) Method of preparing a multilayer structure
JP7206366B2 (en) High resistivity semiconductor-on-insulator wafer and manufacturing method
JP7470233B2 (en) Radio Frequency Silicon-on-Insulator Wafer Platform with Superior Performance, Stability and Manufacturability
JP2008153411A (en) Manufacturing method of soi substrate
JPH11307747A (en) Soi substrate and production thereof
KR20070059157A (en) Semiconductor wafer manufacturing method
TWI699832B (en) A method of manufacturing silicon germanium-on-insulator
TWI450366B (en) Semiconductor substrate manufacturing method
TWI437644B (en) Semiconductor substrate manufacturing method
JP5019852B2 (en) Method for manufacturing strained silicon substrate
JP6111678B2 (en) Manufacturing method of GeOI wafer
JP5830255B2 (en) Manufacturing method of semiconductor substrate
JP2016508291A (en) Low temperature layer transfer method for manufacturing multilayer semiconductor devices
JP4943820B2 (en) Method of manufacturing a GOI (Geon Insulator) substrate
JP2012243957A (en) Manufacturing method for bonded soi wafer
JP2008263010A (en) Method for manufacturing soi substrate
JP2007250676A (en) Manufacturing method of laminated substrate of dissimilar material
WO2010147081A1 (en) Method for manufacturing ge film-provided soi substrate, and ge film-rpovided soi substrate
JP5031190B2 (en) Manufacturing method of semiconductor wafer having strained Si layer
JP2005109464A (en) Laminated wafer manufacturing method and laminated wafer
JP2011138956A (en) Method of manufacturing silicon semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141117

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R150 Certificate of patent or registration of utility model

Ref document number: 5830255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150