JP4943820B2 - Method of manufacturing a GOI (Geon Insulator) substrate - Google Patents

Method of manufacturing a GOI (Geon Insulator) substrate Download PDF

Info

Publication number
JP4943820B2
JP4943820B2 JP2006305655A JP2006305655A JP4943820B2 JP 4943820 B2 JP4943820 B2 JP 4943820B2 JP 2006305655 A JP2006305655 A JP 2006305655A JP 2006305655 A JP2006305655 A JP 2006305655A JP 4943820 B2 JP4943820 B2 JP 4943820B2
Authority
JP
Japan
Prior art keywords
epitaxial film
substrate
based epitaxial
manufacturing
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006305655A
Other languages
Japanese (ja)
Other versions
JP2008120627A (en
Inventor
昌次 秋山
芳宏 久保田
厚雄 伊藤
好一 田中
信 川合
優二 飛坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006305655A priority Critical patent/JP4943820B2/en
Publication of JP2008120627A publication Critical patent/JP2008120627A/en
Application granted granted Critical
Publication of JP4943820B2 publication Critical patent/JP4943820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Element Separation (AREA)
  • Recrystallisation Techniques (AREA)

Description

本発明は、ゲルマニウム(Ge)やSiGe混晶などのゲルマニウム系エピタキシャル膜の成長方法に関する。   The present invention relates to a method for growing a germanium-based epitaxial film such as germanium (Ge) or SiGe mixed crystal.

近年、有用な半導体材料としてゲルマニウム(Ge)が再び脚光を浴びている。その理由は、Ge結晶中のキャリア移動度はシリコン(Si)と比較して電子移動度で約2倍、ホール移動度で約4倍と速く、高速動作の半導体デバイス設計に有利であるためである。また、光デバイス用材料としてみた場合にも、Siと比較して、1.6μm以下の波長で高い吸収係数を有するため、太陽電池用材料や、1.55μm帯の光通信用受光素子の材料としても有望である。   In recent years, germanium (Ge) has attracted attention again as a useful semiconductor material. The reason is that the carrier mobility in the Ge crystal is about twice as fast as that of silicon (Si) in electron mobility and about four times in hole mobility, which is advantageous for designing a semiconductor device operating at high speed. is there. Also, when viewed as an optical device material, it has a high absorption coefficient at a wavelength of 1.6 μm or less compared to Si, so that it is a material for solar cells and a light receiving element for optical communication in the 1.55 μm band. As promising.

しかし、GeはSiと異なり、大口径の(単結晶)基板を得ることが極めて困難であること、Geが希少な元素であることなどの難点もある。このような背景の下に、Siウェーハ上にGe濃度を少しずつ変化させた(高めた)Si1-xGex層を何層にも堆積させ、最終的にGe層をエピ成長させる手法も提案されている(例えば、非特許文献1)。しかしながら、このような手法では、エピタキシャル成長を何度も繰り返す必要があり、得られるGe結晶は極めてコストの高いものとならざるを得ない。 However, Ge differs from Si in that it is extremely difficult to obtain a large-diameter (single crystal) substrate and that Ge is a rare element. Against this background, there is also a method of depositing a number of Si 1-x Ge x layers with a slightly changed (enhanced) Ge concentration on the Si wafer and finally epi-growing the Ge layer. It has been proposed (for example, Non-Patent Document 1). However, in such a method, it is necessary to repeat the epitaxial growth many times, and the resulting Ge crystal has to be extremely expensive.

また、近年では、Siウェーハ上にGeを直接エピタキシャル成長を行って、そのGeエピタキシャル膜に熱処理を加えて転位欠陥を低減する方法も提案されている(非特許文献2)。しかし、この方法によって得られたGeエピタキシャル膜の欠陥密度は、依然として高いものであることが知られている。
R. People, "Physics and applications of GexSi1-x/Si strained layer structures," IEEE Journal of Quantum Electronics, QE-22, 1696(1986). Luan et. al., "High efficiency photodetectors based on high quality epitaxial germanium grown on silicon substrate" Optical Materials, vol.17, pp.71-73, 2001. M. Halbwax et al., "UHV-CVD growth and annealing of thin fully relaxed Ge films on (001)Si," Optical Materials, 27(2005), pp.822-825.
In recent years, a method has also been proposed in which Ge is directly epitaxially grown on a Si wafer and heat treatment is applied to the Ge epitaxial film to reduce dislocation defects (Non-Patent Document 2). However, it is known that the defect density of the Ge epitaxial film obtained by this method is still high.
R. People, "Physics and applications of GexSi1-x / Si strained layer structures," IEEE Journal of Quantum Electronics, QE-22, 1696 (1986). Luan et. Al., "High efficiency specifics based on high quality epitaxial germanium grown on silicon substrate" Optical Materials, vol.17, pp.71-73, 2001. M. Halbwax et al., "UHV-CVD growth and annealing of thin fully relaxed Ge films on (001) Si," Optical Materials, 27 (2005), pp.822-825.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、比較的簡便な手法により、高品質なGe系エピタキシャル膜を大面積で得る手法を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a technique for obtaining a high-quality Ge-based epitaxial film in a large area by a relatively simple technique.

本発明は、このような課題を解決するために、本発明のゲルマニウム系エピタキシャル膜の成長方法は、シリコン(Si)基板上にゲルマニウム(Ge)系エピタキシャル膜を化学気相堆積法で成長させるステップAと、前記Ge系エピタキシャル膜に700乃至900℃の温度範囲で第1の熱処理を施すステップBと、前記Ge系エピタキシャル膜の表面側からGeをイオン注入するステップCと、前記イオン注入後のGe系エピタキシャル膜に700乃至900℃の温度範囲で第2の熱処理を施すステップDとを備えている。   In order to solve such problems, the present invention provides a method for growing a germanium-based epitaxial film according to the present invention, comprising a step of growing a germanium (Ge) -based epitaxial film on a silicon (Si) substrate by a chemical vapor deposition method. A, a step B of performing a first heat treatment on the Ge-based epitaxial film in a temperature range of 700 to 900 ° C., a step C of implanting Ge from the surface side of the Ge-based epitaxial film, and a step after the ion implantation And a step D of performing a second heat treatment on the Ge-based epitaxial film in a temperature range of 700 to 900 ° C.

好ましくは、前記ステップAは、膜厚50nm以下のSiGe混晶のバッファ層を予め成長させるサブステップを備えている。   Preferably, the step A includes a sub-step of previously growing a SiGe mixed crystal buffer layer having a thickness of 50 nm or less.

また、好ましくは、前記第1および第2の熱処理時の雰囲気ガスの少なくとも一方が、不活性ガスまたは酸素ガスの何れか若しくはこれらの混合ガスである。   Preferably, at least one of the atmospheric gases during the first and second heat treatments is either an inert gas or an oxygen gas, or a mixed gas thereof.

さらに、前記イオン注入時のドーズ量は、1×1015以上1×1017atoms/cm2以下とすることが好ましい。 Furthermore, the dose during the ion implantation is preferably 1 × 10 15 or more and 1 × 10 17 atoms / cm 2 or less.

本発明のGOI(Ge on Insulator)基板の製造方法は、上述の方法で得られたGe系エピタキシャル膜の表面側から水素イオンを注入する第1のステップと、前記Ge系エピタキシャル膜および絶縁性の支持基板の少なくとも一方の主面に表面活性化処理を施す第2のステップと、前記Ge系エピタキシャル膜と前記支持基板の主面同士を100℃以上400℃以下の温度で貼り合わせる第3のステップと、前記Ge系エピタキシャル膜と支持基板の貼り合わせ界面に外部衝撃を付与して前記Ge系エピタキシャル膜の水素イオン注入界面に沿ってGe系結晶を剥離して前記支持基板の主面上にGe系薄膜を形成する第4のステップとを備えている。   A method for manufacturing a GOI (Ge on Insulator) substrate according to the present invention includes a first step of implanting hydrogen ions from the surface side of a Ge-based epitaxial film obtained by the above-described method, the Ge-based epitaxial film, and an insulating material. A second step of subjecting at least one main surface of the support substrate to a surface activation process; and a third step of bonding the Ge-based epitaxial film and the main surfaces of the support substrate to each other at a temperature of 100 ° C. or higher and 400 ° C. or lower. And applying an external impact to the bonding interface between the Ge-based epitaxial film and the support substrate to peel off the Ge-based crystal along the hydrogen ion implantation interface of the Ge-based epitaxial film to form Ge on the main surface of the support substrate. And a fourth step of forming a system thin film.

本発明によれば、基板として大口径なものが得られるシリコンを用い、この基板上にGe系結晶をエピタキシャル成長させ、イオン注入法を利用して表面領域の単結晶性を維持しつつ基板との界面近傍領域をアモルファス化させ、熱処理を施すことでGeエピタキシャル膜全体を再結晶化(単結晶化)することとしたので、比較的簡便な手法により、高品質なGe系エピタキシャル膜を大面積で得ることが可能となる。   According to the present invention, a silicon having a large diameter is used as a substrate, a Ge-based crystal is epitaxially grown on the substrate, and the single crystal property of the surface region is maintained using an ion implantation method. Since the entire region of the Ge epitaxial film is recrystallized (single crystallized) by amorphizing the region near the interface and applying heat treatment, a high-quality Ge-based epitaxial film can be formed in a large area using a relatively simple method. Can be obtained.

また、上述の方法で得られたGe系エピタキシャル膜を絶縁性の支持基板上に貼り合わせ法で転写することとしたので、低コストのGOI基板の提供が可能となる。   In addition, since the Ge-based epitaxial film obtained by the above method is transferred onto the insulating support substrate by the bonding method, a low-cost GOI substrate can be provided.

以下に、Ge系エピタキシャル膜をGe膜とする実施例により、本発明のプロセス例について説明するが、Ge膜に限らずSiGe混晶膜であっても同様のプロセスで実施可能である。   In the following, an example of the process of the present invention will be described with reference to an example in which a Ge-based epitaxial film is a Ge film. However, the present invention is not limited to a Ge film, and a SiGe mixed crystal film can be used in the same process.

図1(A)乃至(E)は、本発明のゲルマニウム系エピタキシャル膜の成長方法を説明するための図である。これらの図中、符号10はゲルマニウム(Ge)を化学気相堆積法(CVD法)でエピタキシャル成長させるためのシリコン(Si)基板である。このSi基板10は、例えば、CZ法(チョクラルスキ法)により育成された一般に市販されているSi基板であり、その導電型や比抵抗率などの電気特性値や結晶方位や結晶径は、本発明の方法で製造されるGeエピタキシャル膜が供されるデバイスの設計値やプロセス等に依存して適宜選択される。   1A to 1E are views for explaining a method for growing a germanium-based epitaxial film according to the present invention. In these drawings, reference numeral 10 denotes a silicon (Si) substrate for epitaxial growth of germanium (Ge) by chemical vapor deposition (CVD). This Si substrate 10 is a commercially available Si substrate grown by, for example, the CZ method (Czochralski method), and its electrical characteristics such as conductivity type and specific resistivity, crystal orientation, and crystal diameter are defined in the present invention. The Ge epitaxial film manufactured by this method is appropriately selected depending on the design value and process of the device provided.

このSi基板10の主面上に、水素ガスをキャリアガスとして、真空雰囲気中にゲルマン(GeH4)の高純度ガスを導入してGeの膜をCVD法でエピタキシャル成長させる。このGeエピタキシャル膜11中にはSi基板10との界面から高密度の欠陥(貫通転位)12が導入されるが(図1(A))、このような貫通転位を含むGeエピタキシャル膜11に適当な熱処理を施して貫通転位12が運動するためのエネルギを付与すると、貫通転位12はSi基板界面近傍のループ転位状欠陥に変化する現象が知られている(非特許文献3参照)。 A Ge film is epitaxially grown on the main surface of the Si substrate 10 by a CVD method using hydrogen gas as a carrier gas and introducing a high-purity germanium (GeH 4 ) gas in a vacuum atmosphere. High-density defects (threading dislocations) 12 are introduced into the Ge epitaxial film 11 from the interface with the Si substrate 10 (FIG. 1A), but suitable for the Ge epitaxial film 11 containing such threading dislocations. It is known that when energy for moving the threading dislocations 12 is applied by performing a proper heat treatment, the threading dislocations 12 change into loop dislocation defects near the Si substrate interface (see Non-Patent Document 3).

そこで、本発明では、Geエピタキシャル膜11に700乃至900℃の温度範囲で熱処理を施すこととしている(図1(B))。なお、この熱処理時の雰囲気ガスは、窒素やアルゴンなどの不活性ガスまたは酸素ガスの何れか、若しくはこれらの混合ガスとする。   Therefore, in the present invention, the Ge epitaxial film 11 is subjected to heat treatment in a temperature range of 700 to 900 ° C. (FIG. 1B). Note that the atmosphere gas at the time of the heat treatment is either an inert gas such as nitrogen or argon, an oxygen gas, or a mixed gas thereof.

続いて、Geエピタキシャル膜11の表面側から、例えばドーズ量1×1015〜1×1017atoms/cm2で、Geをイオン注入をおこなう(図1(c))。このGeイオン注入により、Geエピタキシャル膜表面領域の単結晶性を維持しつつ、Si基板10との界面近傍のGeエピタキシャル膜11のGe結合状態が崩れてアモルファス領域13が形成されることとなる(図1(D))。 Subsequently, Ge is ion-implanted from the surface side of the Ge epitaxial film 11 at a dose of 1 × 10 15 to 1 × 10 17 atoms / cm 2 , for example (FIG. 1C). By this Ge ion implantation, the Ge bonding state of the Ge epitaxial film 11 in the vicinity of the interface with the Si substrate 10 is broken and the amorphous region 13 is formed while maintaining the single crystallinity of the Ge epitaxial film surface region ( FIG. 1D).

これに続いて、700乃至900℃の温度範囲で第2の熱処理を施すと、Geエピタキシャル膜11の表面付近の単結晶部分が種となり、アモルファス領域13が単結晶化する(図1(E))。なお、この熱処理時の雰囲気ガスは、窒素やアルゴンなどの不活性ガスまたは酸素ガスの何れか、若しくはこれらの混合ガスとする。このようにして得られたGeエピタキシャル膜11は、貫通転位、ループ転位ともにその密度が低く、高品質なGe膜である。   Subsequently, when a second heat treatment is performed in a temperature range of 700 to 900 ° C., the single crystal portion near the surface of the Ge epitaxial film 11 becomes a seed, and the amorphous region 13 becomes a single crystal (FIG. 1E). ). Note that the atmosphere gas at the time of the heat treatment is either an inert gas such as nitrogen or argon, an oxygen gas, or a mixed gas thereof. The thus obtained Ge epitaxial film 11 is a high-quality Ge film having a low density of both threading dislocations and loop dislocations.

なお、Si基板上にGeをエピタキシャル成長するに先立ち、予め膜厚50nm以下のSiGe混晶のバッファ層を成長させておくこととすると、更に低欠陥レベルのGe膜を得ることが可能である。このようなバッファ層は、Geエピタキシャル膜がコヒーレント成長するように、例えばGe0.88Si0.12などの組成とする。 If a SiGe mixed crystal buffer layer having a film thickness of 50 nm or less is grown in advance prior to epitaxial growth of Ge on the Si substrate, a Ge film having a lower defect level can be obtained. Such a buffer layer has a composition such as Ge 0.88 Si 0.12 so that the Ge epitaxial film can be coherently grown.

本実施例は、本発明のゲルマニウムエピタキシャル膜の成長方法で得られたGeエピタキシャル膜を用いてGOI(Ge on Insulator)基板を製造する方法に関する。   The present embodiment relates to a method for manufacturing a GOI (Ge on Insulator) substrate using a Ge epitaxial film obtained by the method for growing a germanium epitaxial film of the present invention.

図2は、本発明のGOI基板の製造方法を説明するための図で、図2(A)に図示された基板は、実施例1で作製されたGeエピタキシャル膜11を主面に備えるSi基板10である。   FIG. 2 is a diagram for explaining a method of manufacturing a GOI substrate according to the present invention. The substrate shown in FIG. 2A is a Si substrate having the Ge epitaxial film 11 produced in Example 1 as a main surface. 10.

先ず、Geエピタキシャル膜11の表面側から水素イオンを注入し、Si基板10との界面近傍領域に水素イオン注入層を形成する(図2(A))。この水素イオン注入により、Geエピタキシャル膜11の表面から所定の深さ(平均イオン注入深さL)にイオン注入層(ダメージ層)14が形成され、イオン注入界面15が形成される。   First, hydrogen ions are implanted from the surface side of the Ge epitaxial film 11 to form a hydrogen ion implanted layer in a region near the interface with the Si substrate 10 (FIG. 2A). By this hydrogen ion implantation, an ion implantation layer (damage layer) 14 is formed at a predetermined depth (average ion implantation depth L) from the surface of the Ge epitaxial film 11, and an ion implantation interface 15 is formed.

この際のイオン注入条件は、どの程度の厚さのGe薄膜を剥離させるかに依存して決定されるが、例えば、平均イオン注入深さLを0.5μm以下とし、イオン注入条件を、ドーズ量1×1016〜5×1017atoms/cm2、加速電圧50〜100keVなどとする。 The ion implantation conditions at this time are determined depending on the thickness of the Ge thin film to be peeled off. For example, the average ion implantation depth L is 0.5 μm or less, and the ion implantation conditions are the doses. The amount is 1 × 10 16 to 5 × 10 17 atoms / cm 2 , the acceleration voltage is 50 to 100 keV, and the like.

このようにしてイオン注入層14を形成したGeエピタキシャル膜11と、後にハンドルウエーハとなる絶縁性の支持基板20の少なくとも一方の主面(接合面)に、表面清浄化や表面活性化などを目的としたプラズマ処理やオゾン処理を施す(図2(B))。なお、このような表面処理は、接合面となる表面の有機物除去や表面上のOH基を増大させて表面活性化を図るなどの目的で行われるものであり、Geエピタキシャル膜11と支持基板20の双方の接合面に処理を施す必要は必ずしもなく、何れか一方の接合面にのみ施すこととしてもよい。   For the purpose of surface cleaning, surface activation, etc. on at least one main surface (bonding surface) of the Ge epitaxial film 11 in which the ion implantation layer 14 is formed in this way and the insulating support substrate 20 to be a handle wafer later. The plasma treatment and ozone treatment described above were performed (FIG. 2B). Such a surface treatment is performed for the purpose of removing the organic substances on the surface to be the bonding surface or increasing the OH group on the surface to achieve surface activation. The Ge epitaxial film 11 and the support substrate 20 are used. It is not always necessary to perform the treatment on both of the joint surfaces, and the treatment may be performed only on one of the joint surfaces.

このような表面処理が施されたGeエピタキシャル膜11と支持基板20の主面を接合面として密着させ、100℃以上400℃以下の温度で熱処理を施して貼り合わせる(図2(C))。上述したように、Geエピタキシャル膜11と支持基板20の少なくとも一方の主面(接合面)は、プラズマ処理やオゾン処理などにより表面処理が施されて活性化しているために、上述の比較的低温の熱処理でも、後工程での機械的剥離や機械研磨に十分耐え得るレベルの接合強度を得ることができる。なお、より高い貼り合せ強度をもたせたいような場合には、必要に応じて、貼り合わせ後に一旦100℃未満の温度とし、再度、Geエピタキシャル膜11と支持基板20を貼り合わせた状態で100℃以上400℃以下の温度の熱処理が繰り返される。   The Ge epitaxial film 11 subjected to such surface treatment and the main surface of the support substrate 20 are brought into close contact with each other as a bonding surface, and heat treatment is performed at a temperature of 100 ° C. or higher and 400 ° C. or lower (FIG. 2C). As described above, since at least one main surface (bonding surface) of the Ge epitaxial film 11 and the support substrate 20 is activated by being subjected to surface treatment by plasma treatment, ozone treatment, or the like, the relatively low temperature described above. Even in this heat treatment, it is possible to obtain a bonding strength of a level that can sufficiently withstand mechanical peeling and mechanical polishing in the subsequent process. When it is desired to give higher bonding strength, if necessary, the temperature is once lower than 100 ° C. after bonding, and the Ge epitaxial film 11 and the support substrate 20 are bonded again to 100 ° C. or higher. The heat treatment at a temperature of 400 ° C. or lower is repeated.

本発明で上記の熱処理温度が400℃以下と設定される理由は、400℃を超える温度で熱処理を施すと、水素イオン注入界面でマイクロキャビティと呼ばれる微小な空洞が発生し、これが熱的に剥離する現象が生じる結果、剥離後のGe薄膜の表面荒れや基板割れにつながるためである。   The reason why the above heat treatment temperature is set to 400 ° C. or lower in the present invention is that when heat treatment is performed at a temperature exceeding 400 ° C., a minute cavity called a microcavity is generated at the hydrogen ion implantation interface, and this is thermally separated. This is because, as a result of this phenomenon, surface roughness of the Ge thin film after peeling and substrate cracking are caused.

なお、支持基板20が石英基板である場合には、この熱処理温度の上限値を350℃とすることが好ましい。これは、Siと石英との熱膨張係数差と当該熱膨張係数差に起因する歪量、およびこの歪量とSi基板10ならびに石英基板20の厚みを考慮したものである。Si基板10と石英基板20の厚みが概ね同程度である場合、Siの熱膨張係数(2.33×10-6)と石英の熱膨張係数(0.6×10-6)の間に大きな差異があるために、350℃を超える温度で熱処理を施した場合には、両基板間の剛性差に起因して、熱歪によるクラックや接合面における剥離などが生じたり、極端な場合にはSi基板や石英基板が割れてしまうということが生じ得る。このため、熱処理温度の上限を350℃と選択し、より好ましくは100〜300℃の温度範囲で熱処理を施す。 When the support substrate 20 is a quartz substrate, the upper limit value of the heat treatment temperature is preferably set to 350 ° C. This is in consideration of the difference in thermal expansion coefficient between Si and quartz, the amount of strain resulting from the difference in thermal expansion coefficient, and the amount of strain and the thickness of the Si substrate 10 and the quartz substrate 20. When the thicknesses of the Si substrate 10 and the quartz substrate 20 are approximately the same, there is a large difference between the thermal expansion coefficient of Si (2.33 × 10 −6 ) and the thermal expansion coefficient of quartz (0.6 × 10 −6 ). Due to the difference, when heat treatment is performed at a temperature exceeding 350 ° C., cracks due to thermal strain or peeling at the joint surface may occur due to the difference in rigidity between the two substrates. It may occur that the Si substrate or the quartz substrate is broken. For this reason, the upper limit of the heat treatment temperature is selected to be 350 ° C., and more preferably heat treatment is performed in a temperature range of 100 to 300 ° C.

続いて、貼り合わせ界面に外部衝撃を加え、水素イオン注入界面15に沿ってGeエピタキシャル膜の剥離を行ってGe薄膜16を得(図2(D))、さらにこのGe薄膜16の表面に最終表面処理(CMP研磨等)を施して水素イオン注入起因のダメージを除去すれば、Ge薄膜16をその表面に有するGOI基板が得られる(図2(E))。   Subsequently, external impact is applied to the bonding interface, and the Ge epitaxial film is peeled along the hydrogen ion implantation interface 15 to obtain a Ge thin film 16 (FIG. 2D). If a surface treatment (CMP polishing or the like) is performed to remove damage caused by hydrogen ion implantation, a GOI substrate having a Ge thin film 16 on its surface can be obtained (FIG. 2E).

本発明は、比較的簡便な手法により、高品質なGe系エピタキシャル膜を大面積で得ることを可能とする。   The present invention makes it possible to obtain a high-quality Ge-based epitaxial film with a large area by a relatively simple technique.

本発明のゲルマニウム系エピタキシャル膜の成長方法を説明するための図である。It is a figure for demonstrating the growth method of the germanium type epitaxial film of this invention. 本発明のGOI基板の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the GOI board | substrate of this invention.

符号の説明Explanation of symbols

10 Si基板
11 Geエピタキシャル膜
12 欠陥
13 Geアモルファス領域
14 イオン注入層
15 イオン注入界面
16 Ge薄膜
20 支持基板
DESCRIPTION OF SYMBOLS 10 Si substrate 11 Ge epitaxial film 12 Defect 13 Ge amorphous region 14 Ion implantation layer 15 Ion implantation interface 16 Ge thin film 20 Support substrate

Claims (5)

シリコン(Si)基板上にゲルマニウム(Ge)系エピタキシャル膜を化学気相堆積法で成長させるステップAと、
前記Ge系エピタキシャル膜に700乃至900℃の温度範囲で第1の熱処理を施すステップBと、
前記Ge系エピタキシャル膜の表面側からGeをイオン注入するステップCと、
前記イオン注入後のGe系エピタキシャル膜に700乃至900℃の温度範囲で第2の熱処理を施すステップDと、
を備えているエピタキシャル膜の成長方法により得られたGe系エピタキシャル膜の表面側から水素イオンを注入する第1のステップと、
前記Ge系エピタキシャル膜および絶縁性の支持基板の少なくとも一方の主面に表面活性化処理を施す第2のステップと、
前記Ge系エピタキシャル膜と前記支持基板の主面同士を100℃以上400℃以下の温度で貼り合わせる第3のステップと、
前記Ge系エピタキシャル膜と支持基板の貼り合わせ界面に外部衝撃を付与して前記Ge系エピタキシャル膜の水素イオン注入界面に沿ってGe系結晶を剥離して前記支持基板の主面上にGe系薄膜を形成する第4のステップと、
を備えている、GOI(Ge on Insulator)基板の製造方法。
A step A of growing a germanium (Ge) -based epitaxial film on a silicon (Si) substrate by chemical vapor deposition;
Applying a first heat treatment to the Ge-based epitaxial film in a temperature range of 700 to 900 ° C .;
Step C of ion-implanting Ge from the surface side of the Ge-based epitaxial film;
Applying a second heat treatment to the Ge-based epitaxial film after the ion implantation in a temperature range of 700 to 900 ° C .;
A first step of implanting hydrogen ions from the surface side of the Ge-based epitaxial film obtained by the epitaxial film growth method comprising:
A second step of performing a surface activation process on at least one main surface of the Ge-based epitaxial film and the insulating support substrate;
A third step of bonding the Ge-based epitaxial film and the main surfaces of the support substrate to each other at a temperature of 100 ° C. or higher and 400 ° C. or lower;
An external impact is applied to the bonding interface between the Ge-based epitaxial film and the support substrate, the Ge-based crystal is peeled along the hydrogen ion implantation interface of the Ge-based epitaxial film, and a Ge-based thin film is formed on the main surface of the support substrate. A fourth step of forming
A method of manufacturing a GOI (Ge on Insulator) substrate.
前記ステップAは、膜厚50nm以下のSiGe混晶のバッファ層を予め成長させるサブステップを備えている請求項1に記載のGOI基板の製造方法。 2. The method of manufacturing a GOI substrate according to claim 1, wherein the step A includes a sub-step of previously growing a SiGe mixed crystal buffer layer having a thickness of 50 nm or less . 前記第1の熱処理時の雰囲気ガスが、不活性ガスまたは酸素ガスの何れか若しくはこれらの混合ガスである請求項1又は2に記載のGOI基板の製造方法。 3. The method of manufacturing a GOI substrate according to claim 1, wherein the atmosphere gas at the time of the first heat treatment is either an inert gas, an oxygen gas, or a mixed gas thereof . 前記第2の熱処理時の雰囲気ガスが、不活性ガスまたは酸素ガスの何れか若しくはこれらの混合ガスである請求項1乃至3の何れか1項に記載のGOI基板の製造方法。 The method for manufacturing a GOI substrate according to any one of claims 1 to 3, wherein the atmosphere gas at the time of the second heat treatment is any one of an inert gas and an oxygen gas, or a mixed gas thereof . 前記イオン注入時のドーズ量が、1×1015以上1×1017atoms/cm以下である請求項1乃至4の何れか1項に記載のGOI基板の製造方法。 5. The method of manufacturing a GOI substrate according to claim 1, wherein a dose during the ion implantation is 1 × 10 15 or more and 1 × 10 17 atoms / cm 2 or less .
JP2006305655A 2006-11-10 2006-11-10 Method of manufacturing a GOI (Geon Insulator) substrate Active JP4943820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006305655A JP4943820B2 (en) 2006-11-10 2006-11-10 Method of manufacturing a GOI (Geon Insulator) substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305655A JP4943820B2 (en) 2006-11-10 2006-11-10 Method of manufacturing a GOI (Geon Insulator) substrate

Publications (2)

Publication Number Publication Date
JP2008120627A JP2008120627A (en) 2008-05-29
JP4943820B2 true JP4943820B2 (en) 2012-05-30

Family

ID=39505784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305655A Active JP4943820B2 (en) 2006-11-10 2006-11-10 Method of manufacturing a GOI (Geon Insulator) substrate

Country Status (1)

Country Link
JP (1) JP4943820B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236211B1 (en) 2008-08-27 2013-02-25 소이텍 Methods of fabricating semiconductor structures or devices using layers of semiconductor material having selected or controlled lattice parameters

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703293B2 (en) * 2002-07-11 2004-03-09 Sharp Laboratories Of America, Inc. Implantation at elevated temperatures for amorphization re-crystallization of Si1-xGex films on silicon substrates
US6972247B2 (en) * 2003-12-05 2005-12-06 International Business Machines Corporation Method of fabricating strained Si SOI wafers
EP1801854B1 (en) * 2004-09-24 2015-06-24 Shin-Etsu Handotai Co., Ltd. Method for manufacturing semiconductor wafer
JP4617820B2 (en) * 2004-10-20 2011-01-26 信越半導体株式会社 Manufacturing method of semiconductor wafer
JP2006140187A (en) * 2004-11-10 2006-06-01 Shin Etsu Handotai Co Ltd Method of manufacturing semiconductor wafer

Also Published As

Publication number Publication date
JP2008120627A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
US7855127B2 (en) Method for manufacturing semiconductor substrate
JP4446424B2 (en) Method for manufacturing relaxed SiGe substrate
EP1995788B1 (en) Method for manufacturing substrate for photoelectric conversion element
US7226504B2 (en) Method to form thick relaxed SiGe layer with trench structure
US6100165A (en) Method of manufacturing semiconductor article
US6780796B2 (en) Method of forming relaxed SiGe layer
US7615471B2 (en) Method for producing a tensioned layer on a substrate, and a layer structure
TWI282117B (en) High-quality SGOI by oxidation near the alloy melting temperature
KR20070059157A (en) Semiconductor wafer manufacturing method
WO2007024277A2 (en) Method of transferring a thin crystalline semiconductor layer
TWI699832B (en) A method of manufacturing silicon germanium-on-insulator
JP2006080510A (en) METHOD OF FORMING RELAXATION Si1-XGeX (0<X<1) LAYER WITH HIGH Ge CONTENT BY IMPLANTING BORON OR HELIUM, AND SILICON WITH HYDROGEN
JP5465830B2 (en) Manufacturing method of bonded substrate
JP2004103805A (en) Semiconductor substrate, method of manufacturing the same and semiconductor device
JP4943820B2 (en) Method of manufacturing a GOI (Geon Insulator) substrate
JP5019852B2 (en) Method for manufacturing strained silicon substrate
JP2010251523A (en) Method of manufacturing partial soi wafer
JP5830255B2 (en) Manufacturing method of semiconductor substrate
WO2010147081A1 (en) Method for manufacturing ge film-provided soi substrate, and ge film-rpovided soi substrate
JP2007250676A (en) Manufacturing method of laminated substrate of dissimilar material
KR100738459B1 (en) Method of fabricating Germanium-On-Insulator Substrate Using A SOI substrate
KR20060056955A (en) Stressed semiconductor-on-insulator structure resistant to high-temperature stress
JP3352196B2 (en) Method of manufacturing bonded substrate and method of manufacturing semiconductor substrate
JP2005109464A (en) Laminated wafer manufacturing method and laminated wafer
JP2003282471A (en) Method for manufacturing semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Ref document number: 4943820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3