JP2011138771A5 - - Google Patents

Download PDF

Info

Publication number
JP2011138771A5
JP2011138771A5 JP2010290336A JP2010290336A JP2011138771A5 JP 2011138771 A5 JP2011138771 A5 JP 2011138771A5 JP 2010290336 A JP2010290336 A JP 2010290336A JP 2010290336 A JP2010290336 A JP 2010290336A JP 2011138771 A5 JP2011138771 A5 JP 2011138771A5
Authority
JP
Japan
Prior art keywords
oxide
zinc oxide
insulator
zno
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010290336A
Other languages
Japanese (ja)
Other versions
JP2011138771A (en
Filing date
Publication date
Priority claimed from DE200910055397 external-priority patent/DE102009055397A1/en
Application filed filed Critical
Publication of JP2011138771A publication Critical patent/JP2011138771A/en
Publication of JP2011138771A5 publication Critical patent/JP2011138771A5/ja
Pending legal-status Critical Current

Links

Description

さらに、このUV線を吸収する手段は金属酸化物を有するのが有利である。有利に、この場合、酸化チタン(TiO2)及び/又は酸化亜鉛(ZnO)が使用される。この両方の材料はUV線を有効に吸収し、適当なドーピングによって導電性特性を有することができる。さらに、この両方の酸化物は、燃焼室条件で極めて安定性である。従って、酸化チタン又は酸化亜鉛を用いて、絶縁体の電気的絶縁耐力を高めるために記載された方法の何れも可能である。第一に、焼結プロセスの前にこの酸化物を酸化アルミニウム中に分散させることができる。第二に、この酸化物を絶縁体の表面の少なくとも一部に集中させ、それによりUV保護層を形成させることができる。第三に、この酸化物をドーピングし、それにより絶縁体の表面の少なくとも一部上に導電性の保護層を形成させることができる。 Furthermore, the means for absorbing UV radiation advantageously comprises a metal oxide. In this case, titanium oxide (TiO 2 ) and / or zinc oxide (ZnO) are preferably used. Both materials effectively absorb UV radiation and can have conductive properties by appropriate doping. Furthermore, both of these oxides are extremely stable at combustion chamber conditions. Thus, any of the methods described for increasing the electrical dielectric strength of an insulator using titanium oxide or zinc oxide is possible. First, the oxide can be dispersed in the aluminum oxide prior to the sintering process. Second, the oxide can be concentrated on at least part of the surface of the insulator, thereby forming a UV protection layer. Third, the oxide can be doped, thereby forming a conductive protective layer on at least a portion of the surface of the insulator.

さらに、本発明は、最初に酸化アルミニウム(Al23)からなるベースを焼結させ、引き続き酸化亜鉛(ZnO)からなるUV保護層を、絶縁体の表面の少なくとも一部に焼き付ける、酸化アルミニウム(Al23)をベースとするセラミック絶縁体の製造方法に関する。この酸化亜鉛は、その低い蒸発温度に基づき、有利に付加的燃焼工程で<1300℃の温度で焼き付けられる。本発明によるセラミック絶縁体との関連で記載されたこの有利な実施態様は、酸化亜鉛を有するセラミック絶縁体の製造方法にも相応して有利に適用される。有利に、酸化アルミニウム(Al23)からなるベースは、1530℃〜1730℃の間で、特に1610℃〜1650℃の間で焼結され、酸化亜鉛(ZnO)は1300℃未満で焼き付けられる。 Furthermore, the present invention provides an aluminum oxide that first sinters a base made of aluminum oxide (Al 2 O 3 ) and then bakes a UV protective layer made of zinc oxide (ZnO) onto at least part of the surface of the insulator. The present invention relates to a method for producing a ceramic insulator based on (Al 2 O 3 ). This zinc oxide is baked at a temperature of <1300 ° C., preferably in an additional combustion step, based on its low evaporation temperature. This advantageous embodiment described in the context of the ceramic insulator according to the invention is also advantageously applied correspondingly to a method for producing a ceramic insulator with zinc oxide. Advantageously, the base made of aluminum oxide (Al 2 O 3 ) is sintered between 1530 ° C. and 1730 ° C., in particular between 1610 ° C. and 1650 ° C., and zinc oxide (ZnO) is baked below 1300 ° C. .

有利な実施態様の場合に、酸化アルミニウムに関する酸化チタンの割合は0.01〜2質量%、特に0.01〜1質量%、特に0.4〜0.8質量%である。有利に、酸化アルミニウムに関する酸化亜鉛の割合は0.01〜2質量%、特に0.01〜1質量%、特に0.01〜0.5質量%である。 In a preferred embodiment, the proportion of titanium oxide with respect to aluminum oxide is 0.01 to 2% by weight, in particular 0.01 to 1% by weight, in particular 0.4 to 0.8% by weight. Advantageously, the proportion of zinc oxide with respect to aluminum oxide is 0.01 to 2% by weight, in particular 0.01 to 1% by weight, in particular 0.01 to 0.5% by weight.

Claims (2)

前記手段は、酸化チタン(TiO2)及び/又は酸化亜鉛(ZnO)を有することを特徴とする、請求項6記載のセラミック絶縁体。 The ceramic insulator according to claim 6, wherein the means comprises titanium oxide (TiO 2 ) and / or zinc oxide (ZnO). まず、酸化アルミニウム(Al23)からなるベースを焼結させ、引き続き、酸化亜鉛(ZnO)からなるUV保護層(11)を、前記絶縁体(2)の表面の少なくとも一部に焼き付ける、請求項17記載の製造方法。 First, a base made of aluminum oxide (Al 2 O 3 ) is sintered, and subsequently a UV protective layer (11) made of zinc oxide (ZnO) is baked on at least a part of the surface of the insulator (2). The manufacturing method according to claim 17.
JP2010290336A 2009-12-30 2010-12-27 Ceramic insulator, especially, ceramic insulator using aluminum oxide as base, and its manufacturing method Pending JP2011138771A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009055397.5 2009-12-30
DE200910055397 DE102009055397A1 (en) 2009-12-30 2009-12-30 Ceramic insulator for use in spark plug in direct injection engine, has UV-protection layer absorbing UV-radiation and comprising thickness that ranges from forty to sixty micrometers, where insulator is designed based on aluminum oxide

Publications (2)

Publication Number Publication Date
JP2011138771A JP2011138771A (en) 2011-07-14
JP2011138771A5 true JP2011138771A5 (en) 2011-09-01

Family

ID=44312465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010290336A Pending JP2011138771A (en) 2009-12-30 2010-12-27 Ceramic insulator, especially, ceramic insulator using aluminum oxide as base, and its manufacturing method

Country Status (3)

Country Link
JP (1) JP2011138771A (en)
CN (1) CN102185256B (en)
DE (1) DE102009055397A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013203566A1 (en) * 2013-03-01 2014-09-04 Robert Bosch Gmbh spark plug
JP6631201B2 (en) 2014-12-08 2020-01-15 株式会社デンソー Ignition device and method for producing superhydrophilic film used therein
CN107408795A (en) 2015-01-29 2017-11-28 弗拉明集团知识产权有限责任公司 Spark plug insulator with ant-scaling coating and for making the minimum method of fouling
CN107248698B (en) * 2017-06-29 2019-01-01 宋天顺 A kind of resistor type spark plug
DE102019126831A1 (en) 2018-10-11 2020-04-16 Federal-Mogul Ignition Llc SPARK PLUG

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2857639B2 (en) * 1988-02-19 1999-02-17 日本特殊陶業株式会社 High alumina insulator for spark plug
JP3447102B2 (en) * 1994-03-17 2003-09-16 東燃ゼネラル石油株式会社 Method for producing transparent UV-absorbing ceramic film
CA2287241A1 (en) * 1998-02-27 1999-09-02 Ngk Spark Plug Co., Ltd. Spark plug, alumina insulator for spark plug, and method of manufacturing the same
JP2007042656A (en) * 1998-05-22 2007-02-15 Ngk Spark Plug Co Ltd Spark plug and its manufacturing method
BR9902148A (en) * 1998-05-22 1999-12-28 Ngk Spark Plug Co Spark plug and its manufacturing method.
JP4474724B2 (en) * 1999-05-24 2010-06-09 株式会社デンソー Lead-free glaze and spark plug
DE102005062115A1 (en) * 2005-12-23 2007-06-28 Robert Bosch Gmbh Glow, ignition or heating element for combustion and/or heating devices, especially glow plugs, spark plugs or heaters has highly stable corrosion protection layer comprising mixture of SiO2 and other material

Similar Documents

Publication Publication Date Title
JP2011138771A5 (en)
JP6571590B2 (en) Multilayer ceramic capacitor
JP6751131B2 (en) Multilayer device and method for manufacturing a multilayer device
JP2012502503A5 (en)
TW201225317A (en) Method for producing solar cell and film-producing device
Zhang et al. Achieving ultrahigh dielectric breakdown strength in MgO-based ceramics by composite structure design
TW201212052A (en) ZnO Varistor utilized in high temperature
Wang et al. Low‐Temperature Sintering and Electric Properties of Pb 0.99 (Zr 0.95 Ti 0.05) 0.98 Nb 0.02 O 3 Ferroelectric Ceramics with CuO Additive
JP2013038377A (en) Conductive paste for internal electrode of multilayer ceramic electronic component and multilayer ceramic electronic component using the same
CN107021751A (en) A kind of high-potential gracient arrester zinc oxide piezoresistor ceramic
WO2014148585A1 (en) Thermal switch, temperature adjustment structure, and battery pack
JP2011138771A (en) Ceramic insulator, especially, ceramic insulator using aluminum oxide as base, and its manufacturing method
CN103608881A (en) Ceramic powder, semiconductor ceramic capacitor and method for manufacturing same
JPWO2005085154A1 (en) Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same
JP6554267B2 (en) Solid ion capacitor
TW200932703A (en) Dielectric ceramic composition and method of production thereof
JP6621170B2 (en) PTC thermistor member and PTC thermistor element
JPWO2014181525A1 (en) PTC thermistor member
JP6172772B2 (en) Solid ion capacitor
TW200900371A (en) Method for manufacturing piezoelectric ceramic
JP4139354B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
KR102206961B1 (en) Solid electrolyte, method for manufacturing the same, and all solid state rechargeable lithium battery including the same
JP6075457B2 (en) Ceramic green sheet, multilayer ceramic capacitor manufacturing method, and multilayer ceramic capacitor
JP2013147418A5 (en)
KR101531083B1 (en) Multi layer ceramic condenser