JP2011133368A - Container for sample treatment, and analysis method for impurities in sample using the container - Google Patents

Container for sample treatment, and analysis method for impurities in sample using the container Download PDF

Info

Publication number
JP2011133368A
JP2011133368A JP2009293431A JP2009293431A JP2011133368A JP 2011133368 A JP2011133368 A JP 2011133368A JP 2009293431 A JP2009293431 A JP 2009293431A JP 2009293431 A JP2009293431 A JP 2009293431A JP 2011133368 A JP2011133368 A JP 2011133368A
Authority
JP
Japan
Prior art keywords
container
sample
sample processing
processing container
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009293431A
Other languages
Japanese (ja)
Inventor
Shinkichi Hashimoto
眞吉 橋本
Shusuke Yamada
修輔 山田
Yoshinori Harada
美徳 原田
Kazuyoshi Arai
一喜 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009293431A priority Critical patent/JP2011133368A/en
Publication of JP2011133368A publication Critical patent/JP2011133368A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a container for dissolving a sample surface layer part and dipping an analysis sample into dissolving liquid, and efficiently recovering dissolving liquid containing analysis impurities, and to provide an analysis method which uses the container. <P>SOLUTION: The container 1 for sample treatment includes fine projections 2, 3 on a container inner wall and a container bottom so that a solid sample does not adhere to the whole surface, namely, to the side surface in the container or to the bottom surface in the container and thereby allows uniform contact of the dissolving liquid with the sample surface. The container is also provided with a fine liquid reservoir 4 for efficiently recovering the dissolving liquid. It is preferable that a material of the container 1 for sample treatment be fluororesin and preferably, have a concentration below 1 ppb for each metal element in an elution test. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は試料中の不純物を定量分析するために供される容器及びその容器を用いた分析方法に関する。   The present invention relates to a container provided for quantitative analysis of impurities in a sample and an analysis method using the container.

石英ガラスはその耐熱性や光透過性から現在,光学分野をはじめとして半導体製造分野など種々の分野で使用されている。特に、半導体製造関連分野においてはその高純度、耐薬品性ゆえにCVD(Chemical Vapor Deposition)の反応容器、石英ボート、洗浄容器、洗浄槽などに使用される。さらに、この石英ガラスは太陽電池用のSi単結晶引き上げ用のるつぼとしても使用されている。   Quartz glass is currently used in various fields including the optical field and semiconductor manufacturing field because of its heat resistance and light transmittance. In particular, in the field of semiconductor manufacturing, it is used for CVD (Chemical Vapor Deposition) reaction vessels, quartz boats, washing vessels, washing tanks and the like because of its high purity and chemical resistance. Further, this quartz glass is also used as a crucible for pulling up a Si single crystal for solar cells.

石英ガラス中に金属不純物が多いときは、製品の方にこの不純物が拡散し,歩留まりを下げてしまうため、CVDの反応容器、石英ボートなどに使用する場合、石英ガラスは高純度であることが望ましく、石英ガラス中に含まれている不純物の量を定量する必要がある。   When there are many metal impurities in quartz glass, these impurities diffuse into the product and lower the yield. Therefore, when used in CVD reaction vessels, quartz boats, etc., quartz glass may be of high purity. Desirably, it is necessary to quantify the amount of impurities contained in the quartz glass.

石英ガラス中に含まれている不純物の量を定量する方法としては、容器のなかに石英ガラス等の試料を浸漬してこれを溶かす酸を注入し、石英ガラス表面の一部を溶解させて、この溶解液を回収して分析を行うのが一般的である。   As a method of quantifying the amount of impurities contained in the quartz glass, a sample such as quartz glass is immersed in a container and an acid is dissolved to dissolve the sample, and a part of the quartz glass surface is dissolved. In general, the lysate is collected and analyzed.

例えば、特許文献1には試料溶解治具とそれを用いたシリコン基板上のアルミニウム合金薄膜中の不純物分析方法が開示されている。これはシリコン基板の片面を容器内底に密着させ、容器内部の外周側にU字状の溝を設けて溶解液を回収している。これを原子吸光法で定量する。しかし、この方法ではシリコン基板の裏面に溶解液が回りこんでしまい、分析データの誤差が大きくなるという問題があった。   For example, Patent Document 1 discloses a sample melting jig and a method for analyzing impurities in an aluminum alloy thin film on a silicon substrate using the jig. In this method, one side of the silicon substrate is brought into close contact with the inner bottom of the container, and a U-shaped groove is provided on the outer peripheral side inside the container to collect the solution. This is quantified by atomic absorption. However, this method has a problem in that the solution flows around the back surface of the silicon substrate, resulting in a large error in analysis data.

また、シリコンウエーハ表面の分析方法として、シリコンウエーハに分析治具を真空吸着する方法が特許文献2に開示されているが、この方法ではシリコンウエーハ表面が平滑である間は分析治具が吸着しているが、表面が荒れ始めると液漏れ等の不具合が生じる。   Further, as a method for analyzing the surface of a silicon wafer, Patent Document 2 discloses a method in which an analysis jig is vacuum-adsorbed on a silicon wafer. In this method, the analysis jig is adsorbed while the surface of the silicon wafer is smooth. However, when the surface starts to become rough, problems such as liquid leakage occur.

特開平11−118684号公報Japanese Patent Laid-Open No. 11-118684

特開平08−005526号公報Japanese Patent Laid-Open No. 08-005526

本発明は、試料中に含まれる不純物を高感度で分析することができる容器及びそれを用いた分析方法を提供するものであり、容器からの汚染が極めて少ないことを特徴とする。   The present invention provides a container capable of analyzing impurities contained in a sample with high sensitivity and an analysis method using the same, and is characterized by extremely low contamination from the container.

本発明は、試料が容器内側面にも容器内底面にも一面全体で密着しないように、容器内壁および容器底に微小な突起部を有する試料処理用容器に関するものである。   The present invention relates to a sample processing container having minute protrusions on the inner wall of the container and the bottom of the container so that the sample does not adhere to the entire inner surface of the container or the bottom surface of the container.

本発明の容器は、試料が容器内側面及び容器内底面に一面全体で密着しないように容器内壁および容器底に微小な突起部を有しているため、溶解液が試料表面と均質に接することが可能となる。   The container of the present invention has minute protrusions on the inner wall and the bottom of the container so that the sample does not adhere to the entire inner surface and bottom surface of the container. Is possible.

容器内壁および容器底に微小な突起部は、試料が容器内側面及び容器内底面に一面全体で密着しないのであれば、個数やその形状は特に制限されない。固体試料との接触面積が小さく、安定に保持できる点から、容器内壁の微小な突起部はそれぞれの面に1〜4個あることが好ましく、容器底の微小な突起部は3〜8個あることが好ましい。   The number and shape of minute protrusions on the inner wall and the bottom of the container are not particularly limited as long as the sample does not adhere to the entire inner surface and bottom surface of the container. From the point that the contact area with the solid sample is small and can be stably held, it is preferable that there are 1 to 4 minute protrusions on the inner surface of the container, and 3 to 8 minute protrusions on the bottom of the container. It is preferable.

容器内壁の突起部の突き出し距離は0.5〜3mm、容器内底面の突起部の高さは0.5〜3mmであることが好ましい。突起部同士の間隔は、2〜5cmであることが好ましい。   The protrusion distance of the protrusion on the inner wall of the container is preferably 0.5 to 3 mm, and the height of the protrusion on the bottom surface of the container is preferably 0.5 to 3 mm. It is preferable that the space | interval of protrusion parts is 2-5 cm.

また、本発明の容器からは、容器からの金属溶出・汚染を避けるために、耐酸性樹脂で製造されることが必要である。耐酸性樹脂としては、例えばフッ素樹脂、ポリプロピレンなどが挙げられる。可塑剤、難燃材の酸溶出が無い点から、フッ素樹脂であることが特に好ましい。   Moreover, in order to avoid metal elution and contamination from a container, it is necessary to manufacture with the acid-resistant resin from the container of this invention. Examples of the acid resistant resin include fluororesin and polypropylene. In view of the absence of acid elution of the plasticizer and flame retardant, a fluororesin is particularly preferable.

フッ素樹脂のなかでも、最高使用温度(200〜260℃)、吸水率(0.01% 24hr)、耐酸性(超優秀:過酷な条件下でも侵されない)を勘案して、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(PFEP)が好適である。   Among fluororesins, polytetrafluoroethylene (200 to 260 ° C.), water absorption (0.01% 24 hr), acid resistance (super excellent: not affected even under severe conditions) PTFE), perfluoroalkoxyalkanes (PFA), perfluoroethylene propene copolymer (PFEP) are preferred.

なお、本発明の容器の材質は、予め酸溶液中で煮沸するなどの酸処理をした後の、溶出試験ですべての金属元素の濃度が1ppb未満であることが好ましい。すなわち、25重量%フッ酸水溶液と1重量%硝酸混合溶液を容器内に注入し、24時間保持した後にその混合溶液を、1ppbを定量限界とする分析方法を用いて分析しても、Li、Na、K、Rb等のIa族元素、Mg、Ca、Sr等のIIa族元素およびTi、Cr、Mn、Fe、Co、Ni、Cu等の遷移金属元素が検出されないことが好ましい。   In addition, as for the material of the container of this invention, it is preferable that the density | concentration of all the metal elements is less than 1 ppb by the elution test after performing acid treatments, such as boiling in an acid solution previously. That is, a 25 wt% hydrofluoric acid aqueous solution and a 1 wt% nitric acid mixed solution are poured into a container, and after holding for 24 hours, the mixed solution is analyzed using an analysis method with a quantitative limit of 1 ppb. It is preferable that Group Ia elements such as Na, K and Rb, Group IIa elements such as Mg, Ca and Sr and transition metal elements such as Ti, Cr, Mn, Fe, Co, Ni and Cu are not detected.

容器の大きさは特に制限されないが、縦6〜10cm、横6〜10cm、高さ2〜5cmであることが取り扱い上、容易である点から好ましい。また、内部の形状についても特に制限はないが、測定試料であるガラス板を保持した際に溶解液が石英ガラス板上下で移動できる程度の隙間があることが好ましく、縦5〜9cm、横5〜9cm、深さ1〜4cmであることが取り扱い上、容易であるため好ましい。   The size of the container is not particularly limited, but is preferably 6 to 10 cm in length, 6 to 10 cm in width, and 2 to 5 cm in height from the viewpoint of easy handling. Further, although there is no particular limitation on the internal shape, it is preferable that there is a gap that allows the solution to move up and down the quartz glass plate when holding the glass plate as the measurement sample. It is preferable that it is ˜9 cm and the depth is 1 to 4 cm because it is easy to handle.

また、本発明では溶解液を効率よく回収するための微小な液溜めを設けることが好ましい。液溜めの位置は特に制限されないが、溶解液の回収が最も容易であるため、容器の角部に設けることが特に好ましい。   In the present invention, it is preferable to provide a small liquid reservoir for efficiently recovering the solution. The position of the liquid reservoir is not particularly limited, but is particularly preferably provided at the corner of the container because the solution can be most easily recovered.

更に本発明では、石英ガラスの単位面積あたりの溶解液量が0.1〜0.3mL/cmになるように、容器底の形状を設計することが好ましい。使用する溶解液を必要十分量にすることで、分析精度が高まるからである。 Furthermore, in this invention, it is preferable to design the shape of a container bottom so that the amount of solution per unit area of quartz glass may be 0.1-0.3 mL / cm < 2 >. This is because the analysis accuracy is improved by making the necessary amount of the solution to be used.

また、長時間のエッチング時は溶解液の蒸発を防止するための容器蓋を設けることが好ましい。   Further, it is preferable to provide a container lid for preventing evaporation of the solution during long-time etching.

容器蓋の形状は特に制限されないが、耐酸性で容易に割れないことが好ましい。また、容器蓋の材質は容器に使用される材質と同様の性質をもったものであれば特に制限はないが、透明性のあるパーフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン・パーフルオロジオキソールコポリマー(PTFE/PDD)であることが好ましい。   The shape of the container lid is not particularly limited, but is preferably acid resistant and not easily broken. The material of the container lid is not particularly limited as long as it has the same properties as the material used for the container. However, transparent perfluoroalkoxyalkane (PFA), polytetrafluoroethylene perfluorodiode is used. A xol copolymer (PTFE / PDD) is preferred.

本発明の試料処理用容器は、耐酸性樹脂製のものを使用するため容器からの汚染が極めて少なく、正味の試料中の不純物を溶解液に溶かすことができるため、試料中に含まれる不純物を高感度で分析することができる。   Since the sample processing container of the present invention is made of an acid-resistant resin, there is very little contamination from the container, and the impurities in the net sample can be dissolved in the solution. It can be analyzed with high sensitivity.

本発明に係わる試料処理容器の斜め上方から眺めた図である。It is the figure seen from diagonally upward of the sample processing container concerning this invention. 本発明に係わる試料処理容器に石英ガラス試料を挿入したときの斜め上方から眺めた図である。It is the figure seen from diagonally upward when a quartz glass sample is inserted in the sample processing container concerning this invention. 本発明で実施した容器の中央断面図である。It is a center sectional view of the container implemented with the present invention. 本発明で実施した容器の平面図である。It is a top view of the container implemented by this invention. 原子吸光法で定量した石英ガラス深さ方向のCu濃度である。It is the Cu concentration in the quartz glass depth direction determined by the atomic absorption method.

本発明において定量分析の対象となる石英ガラス試料の大きさは容器に挿入できる大き   In the present invention, the size of the quartz glass sample to be quantitatively analyzed is large enough to be inserted into the container.

さであれば問題ないが、辺の長さが20〜100mm、厚みが1〜2mmの薄い石英ガラス板が取り扱いやすい点からも好ましい。また、厚みが1〜2mmであれば金属不純物の拡散が全方向から進むため、ガラス板全てが浸漬していてもほとんど誤差なく金属不純物濃度を測定することができる。 If there is no problem, a thin quartz glass plate having a side length of 20 to 100 mm and a thickness of 1 to 2 mm is preferable from the viewpoint of easy handling. Further, if the thickness is 1 to 2 mm, the diffusion of metal impurities proceeds from all directions, so that the metal impurity concentration can be measured with almost no error even when all the glass plates are immersed.

石英ガラス板への金属不純物の拡散については、石英ガラス製匣鉢の中に石英ガラス板を入れ、金属粉末等の金属拡散源を石英ガラス板の周りに配置して、石英炉心管を有する電気炉中に石英ガラス製匣鉢を挿入し、任意の温度で任意の時間保持することで内部に金属を拡散させることができる。   For the diffusion of metal impurities into the quartz glass plate, the quartz glass plate is placed in a quartz glass bowl, a metal diffusion source such as metal powder is placed around the quartz glass plate, and an electric furnace having a quartz furnace core tube is provided. By inserting a quartz glass sagger in the furnace and holding it at an arbitrary temperature for an arbitrary time, the metal can be diffused inside.

また、本発明において使用する溶解液はフッ化水素酸単独あるいはフッ化水素酸と硝酸、塩酸、硫酸等の強酸との混合溶液が使用できる。通常は、分析時のピークの干渉の無いフッ酸と硝酸の混合用液を用いることが望ましい。ここで溶解液の純度はフッ化水素酸については超微量分析用(for Ultratrace Analysis)50%濃度、金属不純物濃度が10ppt(pg/g)未満(ICP/MS、一部GF−AAS)のようになるべく超高純度のものが好ましい。同様に硝酸についても超微量分析用(for Ultratrace Analysis)70%濃度、金属不純物濃度が10ppt(pg/g)未満のようになるべく超高純度のものが好ましい。また、希釈用の水は比抵抗18MΩ・cm以上の超純水(RO膜、混床型イオン交換樹脂2回、UF膜、0.1μmメンブレインフィルター処理水)を用いることが好ましい。   The solution used in the present invention may be hydrofluoric acid alone or a mixed solution of hydrofluoric acid and a strong acid such as nitric acid, hydrochloric acid or sulfuric acid. Usually, it is desirable to use a mixture of hydrofluoric acid and nitric acid that does not interfere with peaks during analysis. Here, the purity of the solution is 50% for ultra trace analysis, and the metal impurity concentration is less than 10 ppt (pg / g) (ICP / MS, partly GF-AAS) for hydrofluoric acid. Ultra high purity is preferable. Similarly, nitric acid is preferably ultra-pure as much as possible for ultra trace analysis (70%) and metal impurity concentration of less than 10 ppt (pg / g). The dilution water is preferably ultrapure water (RO membrane, mixed bed ion exchange resin twice, UF membrane, 0.1 μm membrane filter treated water) having a specific resistance of 18 MΩ · cm or more.

試料の表面をその溶解液で溶解する場合、溶解液は必要十分で多すぎないことが肝要である。溶解液の量を必要十分量にすることで、分析精度が高まるからである。石英ガラス板上面からの溶解液面までの高さが0.1〜2mmとなるようにすることが好ましい。   When the surface of the sample is dissolved with the dissolution solution, it is important that the dissolution solution is not necessary and sufficient. This is because the analysis accuracy is increased by making the amount of the lysate necessary and sufficient. It is preferable that the height from the upper surface of the quartz glass plate to the dissolved liquid surface is 0.1 to 2 mm.

また、エッチング時間が比較的短い場合(2分〜59分)は、溶解液の蒸発は無視できるが、エッチング時間が長い場合は(1時間〜1日)、溶解液の蒸発は無視できないので、上述した容器の上に容器蓋をしてほぼ密閉状態にするのが良い。   Further, when the etching time is relatively short (2 minutes to 59 minutes), the evaporation of the solution can be ignored, but when the etching time is long (1 hour to 1 day), the evaporation of the solution cannot be ignored. It is preferable that a container lid is placed on the above-described container so that the container is almost sealed.

溶解液によるエッチング終了後、不純物が溶解している溶解液を回収する。   After the etching with the solution is completed, the solution in which the impurities are dissolved is collected.

本発明において石英ガラス薄板試料中の不純物定量分析はフレームレス原子吸光法、ICP−AES(誘導結合プラズマ発光分光分析)、ICP−MS(誘導結合プラズマ質量分析法)、フレーム原子吸光法が好適に使用される。容器からの不純物溶出が1ppbもないので、各不純物の定量限界1ppbで分析可能である。   In the present invention, flameless atomic absorption, ICP-AES (inductively coupled plasma emission spectrometry), ICP-MS (inductively coupled plasma mass spectrometry), and flame atomic absorption are suitable for quantitative analysis of impurities in quartz glass thin plate samples. used. Since there is no 1 ppb of impurity elution from the container, analysis is possible with a quantification limit of 1 ppb for each impurity.

以下、実施例を示し、本発明を更に詳細に説明するが、本発明は実施例になんら限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated in detail, this invention is not limited to an Example at all.

試料として、50mm×50mm×1mmの光学研磨した石英ガラス薄板を用いた。同試料を100mm×120mm×60mmの、蓋付き石英ガラス製匣鉢の中に入れ、CuO粉末をCu拡散源として試料の周りに配置した。Cu拡散源は試料に直接接することのないようにし、試料は石英ガラス製ブロックに立て掛けて配置した。   As a sample, an optically polished quartz glass thin plate of 50 mm × 50 mm × 1 mm was used. The sample was placed in a quartz glass bowl with a lid of 100 mm × 120 mm × 60 mm, and CuO powder was placed around the sample as a Cu diffusion source. The Cu diffusion source was not in direct contact with the sample, and the sample was placed against a quartz glass block.

直径180mmの石英炉心管を有する電気炉中に、試料を内部に配置した石英ガラス製匣鉢を挿入し、1050℃・24時間に保ち、試料内部に銅を拡散させた。   Into an electric furnace having a quartz furnace core tube having a diameter of 180 mm, a quartz glass sagger having a sample disposed therein was inserted and maintained at 1050 ° C. for 24 hours to diffuse copper into the sample.

クラス1000のクリーンルーム中のクラス100に保ったクリーンドラフト中において、本発明の、予め硝酸で煮沸処理し、25wt%フッ酸―1wt%硝酸混合溶液に対する不純物溶出が1ppb以下になる状態のテフロン(登録商標)製容器(外形85mm×85mm×30mm、内側の穴の形状53mm×53mm×深さ20mm)に試料を挿入した。溶解液は超微量分析用試薬と超純水を用いて25%フッ酸と1%硝酸の混酸を調製した。この溶解液を2.4mL定量ピペッターで3回滴下した。   In a clean draft kept in class 100 in a class 1000 clean room, Teflon (registered) according to the present invention is in a state where the impurity elution with respect to a mixed solution of 25 wt% hydrofluoric acid-1 wt% nitric acid is 1 ppb or less. The sample was inserted into a container made of (trademark) (outside diameter 85 mm × 85 mm × 30 mm, inner hole shape 53 mm × 53 mm × depth 20 mm). As the lysis solution, a mixed acid of 25% hydrofluoric acid and 1% nitric acid was prepared using an ultra-trace analysis reagent and ultrapure water. This solution was dropped three times with a 2.4 mL fixed pipettor.

試料上面から0.3mm上まで溶解液を入れ、試料全体を浸漬させた。エッチング時間を2、4、8、16、32、60、120分と変化させ、各々の設定時間エッチング後、その溶解液を微小な液溜めから定量ピペッターで吸い取り、5mLの容器に注入した。不純物汚染のないように、この容器はクライオバイアル(凍結保存用チューブ)、本体PP(ポリプロピレン)、蓋PE(ポリエチレン)、放射線滅菌済み、無細胞毒性、ノンパイロジェンの市販品を用いた。   The solution was poured from the upper surface of the sample to 0.3 mm above, and the entire sample was immersed. The etching time was changed to 2, 4, 8, 16, 32, 60, and 120 minutes. After etching for each set time, the solution was sucked from a small liquid reservoir with a fixed pipettor and poured into a 5 mL container. The container used was a cryovial (a cryopreservation tube), a main body PP (polypropylene), a lid PE (polyethylene), a radiation-sterilized, non-toxic, non-pyrogen commercial product so as not to contaminate impurities.

Cuの定量にはグラファイトファーネス原子吸光法を用いた。図6に原子吸光法で定量した石英ガラス深さ方向のCu濃度を示す。プロット同士の連結にはエラーファンクション(誤差関数)を用いた。本発明の容器と分析方法によって石英ガラス深さ方向に拡散したCu原子を1ppbの定量限界まで正確に定量することができた。   Graphite furnace atomic absorption method was used for determination of Cu. FIG. 6 shows the Cu concentration in the depth direction of the quartz glass determined by the atomic absorption method. An error function was used to connect the plots. With the container and analysis method of the present invention, Cu atoms diffused in the quartz glass depth direction could be accurately quantified to the limit of 1 ppb.

石英ガラス中の微量金属の深さ方向を1ppbレベルまで濃度分析できる.また、同様の手法によってシリコンウェーハ中の微量金属の深さ方向濃度分析にも適用できる。   It is possible to analyze the concentration of trace metals in quartz glass down to the level of 1 ppb. In addition, it can be applied to the analysis of the concentration of trace metals in the silicon wafer in the depth direction by the same method.

1.試料処理用容器
2.容器内底面にある微小な突起部
3.容器内側面にある微小な突起部
4.溶液を回収するための微小な液溜め
5.石英ガラス試料
1. Sample processing container 2. A small protrusion on the bottom of the container. 3. Small protrusions on the inner surface of the container 4. A small reservoir for collecting the solution. Quartz glass sample

Claims (7)

試料中の不純物量を、試料を溶解して測定するために使用される試料処理用容器であって、試料が容器内側面にも容器内底面にも一面全体で密着しないように、容器内壁および容器底に微小な突起部を有する試料処理用容器。 A sample processing container used for measuring the amount of impurities in a sample by dissolving the sample, and the inner wall of the container and the inner surface of the container so that the sample does not adhere to the inner surface of the container or the bottom surface of the container. A sample processing container having a minute protrusion on the container bottom. 試料の表面成分が溶解した溶液を回収するための微小な液溜めを少なくとも1個以上有する請求項1記載の試料処理用容器。 The sample processing container according to claim 1, further comprising at least one minute liquid reservoir for recovering a solution in which a surface component of the sample is dissolved. 高純度フッ素樹脂製であることを特徴とする請求項1または2のいずれかに記載の試料処理用容器。 3. The sample processing container according to claim 1, wherein the sample processing container is made of a high-purity fluororesin. エッチングされる石英ガラスの単位面積あたりの溶解液量が0.1〜0.3mL/cmになるように設計された内部形状である事を特徴とする請求項1〜3のいずれかに記載の試料処理用容器。 The internal shape designed so that the amount of solution per unit area of quartz glass to be etched is 0.1 to 0.3 mL / cm 2. Sample processing container. Ia族元素、IIa族元素および遷移金属元素の含有量が1ppb以下であることを特徴とする請求項1〜4のいずれかに記載の試料処理用容器。 5. The sample processing container according to claim 1, wherein the content of the group Ia element, the group IIa element, and the transition metal element is 1 ppb or less. エッチング中は溶解液の蒸発を防止するための容器蓋を有する事を特徴とする請求項1〜5のいずれかに記載の試料処理用容器。 6. The sample processing container according to claim 1, further comprising a container lid for preventing evaporation of the solution during etching. 請求項1〜6のいずれかに記載の試料処理用容器を用いて、試料中の微量不純物をフレームレス原子吸光法によって分析する方法。 A method for analyzing trace impurities in a sample by flameless atomic absorption spectrometry using the sample processing container according to claim 1.
JP2009293431A 2009-12-24 2009-12-24 Container for sample treatment, and analysis method for impurities in sample using the container Pending JP2011133368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293431A JP2011133368A (en) 2009-12-24 2009-12-24 Container for sample treatment, and analysis method for impurities in sample using the container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293431A JP2011133368A (en) 2009-12-24 2009-12-24 Container for sample treatment, and analysis method for impurities in sample using the container

Publications (1)

Publication Number Publication Date
JP2011133368A true JP2011133368A (en) 2011-07-07

Family

ID=44346257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293431A Pending JP2011133368A (en) 2009-12-24 2009-12-24 Container for sample treatment, and analysis method for impurities in sample using the container

Country Status (1)

Country Link
JP (1) JP2011133368A (en)

Similar Documents

Publication Publication Date Title
JP3051023B2 (en) Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
EP0137409B1 (en) Resolution device for semiconductor thin films
JP2011236084A (en) Method for evaluating impurities of silicon single crystal
US8815107B2 (en) Method of etching surface layer portion of silicon wafer and method of analyzing metal contamination of silicon wafer
JP2011133368A (en) Container for sample treatment, and analysis method for impurities in sample using the container
JP2004335954A (en) Method for collecting metal impurities from silicon substrate
JP3804864B2 (en) Impurity analysis method
JP3688593B2 (en) Method for analyzing impurities in silicon materials
JP3414976B2 (en) Impurity analysis sample container and sample storage member used therein
JP6885287B2 (en) Impurity analysis method for quartz crucible
JP3890047B2 (en) Method for analyzing metal in quartz and jig for analysis
JP2013115261A (en) Recovery method of impurity on semiconductor substrate surface and quantitative analysis method for impurity
JP5028238B2 (en) Method and apparatus for measuring metal contaminants
JP3754350B2 (en) Semiconductor substrate analysis method and analyzer
JP4204434B2 (en) Method and apparatus for recovering object to be measured around wafer
JP7350632B2 (en) Analysis methods and kits
JPWO2015182670A1 (en) Method of collecting sample for analysis and use thereof
JPH1137992A (en) Method for analyzing surface layer of silicon wafer
JP7303662B2 (en) Method for analyzing metal impurities on the surface of polycrystalline silicon chunks
JP5152860B2 (en) Surface analysis method for quartz glass products
JP4849117B2 (en) Method for detecting Cu concentration in silicon substrate
JPH085526A (en) Jig for sampling solution sample
US8021623B2 (en) Examination method and examination assistant device for quartz product of semiconductor processing apparatus
JP2022100047A (en) Impurity analysis method and liquid chemical container used for the same
JPH08148536A (en) Sampling cap and production thereof