JP2011133317A - Displacement measurement apparatus - Google Patents

Displacement measurement apparatus Download PDF

Info

Publication number
JP2011133317A
JP2011133317A JP2009292466A JP2009292466A JP2011133317A JP 2011133317 A JP2011133317 A JP 2011133317A JP 2009292466 A JP2009292466 A JP 2009292466A JP 2009292466 A JP2009292466 A JP 2009292466A JP 2011133317 A JP2011133317 A JP 2011133317A
Authority
JP
Japan
Prior art keywords
measured
stylus
displacement
magnet
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009292466A
Other languages
Japanese (ja)
Inventor
Goji Koyama
剛司 小山
Shoji Sasaki
昌二 佐々木
Hitoshi Morikawa
仁司 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Machine Systems Corp
Original Assignee
Koyo Machine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Machine Industries Co Ltd filed Critical Koyo Machine Industries Co Ltd
Priority to JP2009292466A priority Critical patent/JP2011133317A/en
Publication of JP2011133317A publication Critical patent/JP2011133317A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a displacement measurement apparatus for correctly measuring a relative displacement of a second to be measured section to a first to be measured section even if the displacement of the second to be measured object is rapidly changed in a time axis. <P>SOLUTION: The displacement measurement apparatus includes a sensor body section 31 fixed to an outer shaft (the first to be measured section) 11, a stylus section 32 retractable to the sensor body section 31, and a driven means for causing the stylus section 32 to be driven to an inner shaft (the second to be measured section ) 12, and measures the relative displacement of the inner shaft 12 to the outer shaft 11 by detecting the retraction quantity of the stylus section 32 to the sensor body section 31. The stylus section 32 is retractably held without being elastically biased to the sensor body section 31. The stylus section 32 is driven to the inner shaft 12 by causing an iron contactor (a section to be held) 42 provided on the side of the stylus section 32 to be sucked to a magnet (a holding section) 35 provided on the side of the inner shaft 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、第1被測定部に対する第2被測定部の相対変位を測定するための変位測定装置に関するものである。   The present invention relates to a displacement measuring device for measuring a relative displacement of a second measured part with respect to a first measured part.

第1被測定部に対する第2被測定部の相対変位を測定する変位測定装置には、従来は特許文献1に記載されているようなダイヤルゲージ等の変位センサが一般に用いられていた。この種の変位センサは、第1被測定部に固定されるセンサ本体部と、このセンサ本体部に対して出退可能な触針部と、この触針部をセンサ本体部に対して軸方向外向きに弾性付勢して第2被測定部に圧着させることにより触針部を第2被測定部に従動させるバネ部材とを備え、センサ本体部に対する触針部の出退量を検出することにより、第1被測定部に対する第2被測定部の相対変位を測定するように構成されている。   Conventionally, a displacement sensor such as a dial gauge described in Patent Document 1 is generally used for a displacement measuring apparatus that measures the relative displacement of the second measured part with respect to the first measured part. This type of displacement sensor includes a sensor main body fixed to the first measured part, a stylus that can be moved back and forth with respect to the sensor main body, and an axial direction of the stylus with respect to the sensor main body. And a spring member that causes the stylus part to follow the second measured part by elastically urging outward and pressing the second measured part, and detects the amount of withdrawal of the stylus part relative to the sensor body part. Accordingly, the relative displacement of the second measured part with respect to the first measured part is measured.

特開2005−300319号公報JP-A-2005-300319

従来のダイヤルゲージ等の変位センサは、上述したように、バネ部材により触針部を第2被測定部に圧着させることにより触針部を第2被測定部に従動させるようになっているため、例えば第1被測定部に対して第2被測定部が高速で振動する場合など、第2被測定部の変位が時間軸に対して急激に変化するような場合には、触針部を第2被測定部の動作に正確に追随させることができず、正確な測定結果を得られない場合があった。また、例えば第2被測定部に所定の駆動力をかけて変位を測定する場合、バネ力が駆動力の一部となって測定結果に悪影響を与えることも考えられる。   As described above, a conventional displacement sensor such as a dial gauge is configured to cause the stylus part to follow the second measured part by pressing the stylus part to the second measured part with a spring member. For example, when the displacement of the second measured part changes rapidly with respect to the time axis, such as when the second measured part vibrates at high speed with respect to the first measured part, the stylus part is In some cases, it is impossible to accurately follow the operation of the second measured part, and an accurate measurement result cannot be obtained. Further, for example, when measuring a displacement by applying a predetermined driving force to the second measured part, it is conceivable that the spring force becomes a part of the driving force and adversely affects the measurement result.

本発明は、このような従来の問題点に鑑みてなされたものであり、第1被測定部に対して第2被測定部が高速で振動する場合など、第2被測定部の変位が時間軸に対して急激に変化するような場合であっても、触針部を第2被測定部の動作に正確に追随させて第1被測定部に対する第2被測定部の相対変位を正確に測定することが可能な変位測定装置を提供することを目的とする。   The present invention has been made in view of such conventional problems, and the displacement of the second measured part is time-dependent, such as when the second measured part vibrates at high speed with respect to the first measured part. Even in the case of a sudden change with respect to the axis, the stylus part accurately follows the operation of the second measured part to accurately determine the relative displacement of the second measured part with respect to the first measured part. An object of the present invention is to provide a displacement measuring device capable of measuring.

本発明は、第1被測定部に固定されるセンサ本体部と、該センサ本体部に対して出退可能な触針部と、該触針部を第2被測定部に従動させる従動手段とを備え、前記センサ本体部に対する前記触針部の出退量を検出することにより前記第1被測定部に対する前記第2被測定部の相対的な変位を測定する変位測定装置において、前記触針部は前記センサ本体部に対して弾性付勢されることなく出退自在に保持されており、前記従動手段は、前記第2被測定部側又は前記触針部側に設けられた保持部と、前記触針部側又は前記第2被測定部側に設けられ且つ前記保持部により保持される被保持部とで構成されている。   The present invention includes a sensor main body fixed to the first measured part, a stylus part that can be moved in and out of the sensor main part, and a follower that moves the stylus part to follow the second measured part. A displacement measuring apparatus for measuring a relative displacement of the second measured part with respect to the first measured part by detecting an amount of withdrawal of the stylus part with respect to the sensor main body part. The part is held so as to be freely withdrawn and retracted without being elastically biased with respect to the sensor body part, and the follower means includes a holding part provided on the second measured part side or the stylus part side. And a held part that is provided on the stylus part side or the second measured part side and is held by the holding part.

本発明によれば、第2被測定部の変位が時間軸に対して急激に変化するような場合であっても、触針部を第2被測定部の動作に正確に追随させることができ、また触針部を弾性付勢していないためにその力が第2被測定部への駆動力の一部となって測定結果に悪影響を与えることもなく、第1被測定部に対する第2被測定部の相対変位を正確に測定することが可能である。   According to the present invention, even when the displacement of the second measured part changes suddenly with respect to the time axis, the stylus part can accurately follow the operation of the second measured part. In addition, since the stylus part is not elastically biased, the force becomes a part of the driving force to the second measured part and does not adversely affect the measurement result, and the second against the first measured part. It is possible to accurately measure the relative displacement of the part to be measured.

本発明の一実施形態を示す変位測定装置の全体側面図及び正面図である。It is the whole side view and front view of the displacement measuring device which show one Embodiment of this invention. 被測定物の一例としての伸縮自在シャフトの一部断面図である。It is a partial sectional view of a telescopic shaft as an example of an object to be measured. 変位センサの一部断面図である。It is a partial cross section figure of a displacement sensor. 触針部の先端側の分解断面図である。It is an exploded sectional view of the tip side of a stylus part. 被測定物に対する変位センサと磁石の装着状態を示す斜視図である。It is a perspective view which shows the mounting state of the displacement sensor and magnet with respect to a to-be-measured object. 被測定物に対する変位センサと磁石の装着状態を示す平面断面図である。It is a top sectional view showing the mounting state of the displacement sensor and magnet to the object to be measured. 本実施形態の変位測定装置による変位測定結果(a)及び従来の変位測定装置による変位測定結果(b)の一例である。It is an example of the displacement measurement result (a) by the displacement measuring device of this embodiment, and the displacement measurement result (b) by the conventional displacement measuring device.

以下、本発明の実施形態を図面に基づいて詳述する。図1〜図7は、本発明の一実施形態を例示している。本実施形態に係る変位測定装置1は、伸縮自在シャフト等の被測定物2の捩り方向の変位(ガタ)を測定するためのもので、図1に示すように、被測定物2を保持する被測定物保持部3、この被測定物保持部3により保持された被測定物2に対して所定のパターンでトルクを作用させる駆動部4、被測定物2の捩り方向の変位を測定する変位センサ5、駆動部4の駆動制御処理や変位センサ5の測定値に基づくポスト処理等の各種制御処理を行う制御部6、この制御部6に対して各種設定入力等を行うキーボード、操作盤等の操作入力部7、制御部6から出力される測定結果等の各種情報を表示する表示部8等を備え、装置台9上に搭載されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1-7 illustrate one embodiment of the present invention. The displacement measuring apparatus 1 according to the present embodiment is for measuring the displacement (backlash) in the torsional direction of an object 2 to be measured such as a telescopic shaft, and holds the object 2 to be measured as shown in FIG. A measured object holding unit 3, a drive unit 4 for applying a torque in a predetermined pattern to the measured object 2 held by the measured object holding unit 3, and a displacement for measuring a torsional direction displacement of the measured object 2 A control unit 6 that performs various control processes such as a drive control process of the sensor 5 and the drive unit 4 and a post process based on a measurement value of the displacement sensor 5, a keyboard that performs various setting inputs to the control unit 6, an operation panel The operation input unit 7 and the display unit 8 for displaying various information such as measurement results output from the control unit 6 are mounted on the apparatus base 9.

被測定物2の一例である伸縮自在シャフトは、図2に示すように、円筒状に形成された外軸(第1被測定部)11と、同じく円筒状に形成され且つ外軸11内に嵌合する内軸 (第2被測定部)12と、外軸11及び内軸12の端部に夫々設けられた一対の自在継手13,14とを備えている。外軸11の内周面側及び内軸12の外周面側には、夫々スプライン歯11a,12aが多数形成されており、これらが互いに噛み合うことにより、外軸11と内軸12とは軸方向摺動自在且つトルク伝達可能に連結されている。   As shown in FIG. 2, the telescopic shaft, which is an example of the device under test 2, has an outer shaft (first device to be measured) 11 formed in a cylindrical shape, and is also formed in a cylindrical shape and within the outer shaft 11. An inner shaft (second measured portion) 12 to be fitted and a pair of universal joints 13 and 14 provided at the outer shaft 11 and the end of the inner shaft 12 are provided. A large number of spline teeth 11a and 12a are formed on the inner peripheral surface side of the outer shaft 11 and the outer peripheral surface side of the inner shaft 12, respectively. By engaging these, the outer shaft 11 and the inner shaft 12 are in the axial direction. It is connected so as to be slidable and capable of transmitting torque.

被測定物保持部3は、例えば上下に配置された一対の駆動側チャック15及び固定側チャック16と、被測定物2の大きさ等に応じて駆動側チャック15と固定側チャック16との少なくとも一方、例えば固定側チャック16の位置を調整する位置調整手段17とを備えている。駆動側チャック15は、被測定物2の上端側を駆動部4からの駆動力を伝達可能な状態で保持するもので、例えば装置台9上に立設された支持プレート18の前面側に駆動部4等を介して下向きに支持されており、本実施形態ではこの駆動側チャック15に被測定物2の内軸12側の自在継手14(図2)が固定されている。   The object-to-be-measured holding unit 3 includes, for example, a pair of driving side chuck 15 and fixed side chuck 16 arranged above and below, and at least the driving side chuck 15 and the stationary side chuck 16 according to the size of the object to be measured 2. On the other hand, for example, a position adjusting means 17 for adjusting the position of the fixed side chuck 16 is provided. The driving side chuck 15 holds the upper end side of the DUT 2 in a state where the driving force from the driving unit 4 can be transmitted. For example, the driving side chuck 15 is driven to the front side of the support plate 18 erected on the apparatus base 9. The universal joint 14 (FIG. 2) on the inner shaft 12 side of the device under test 2 is fixed to the drive side chuck 15 in this embodiment.

固定側チャック16は、被測定物2の下端側を回転不能に保持するもので、例えば支持プレート18の前面側に昇降可能に支持された昇降台19上に上向きに固定されており、本実施形態ではこの固定側チャック16に被測定物2の外軸11側の自在継手13が固定されている。なお、昇降台19は、送りねじ機構等よりなる位置調整手段17を介して支持プレート18上に支持されており、例えば手動でハンドル20を操作することによりその高さ位置を調整可能となっている。   The fixed side chuck 16 holds the lower end side of the DUT 2 in a non-rotatable manner. For example, the fixed side chuck 16 is fixed upward on a lifting platform 19 supported so as to be movable up and down on the front side of the support plate 18. In the embodiment, the universal joint 13 on the outer shaft 11 side of the DUT 2 is fixed to the fixed chuck 16. The lift 19 is supported on the support plate 18 via a position adjusting means 17 such as a feed screw mechanism, and the height position thereof can be adjusted by manually operating the handle 20, for example. Yes.

駆動部4は、例えば被測定物保持部3の上部側に配置されており、支持プレート18の前側に駆動軸21aを下向きにした状態で装着されたモータ21、このモータ21と駆動側チャック15との間に上下方向に配置された伝達軸22、例えば伝達軸22の回転変位を測定するエンコーダ23、例えば伝達軸22におけるトルクを測定するトルクセンサ24等を備えている。   The drive unit 4 is disposed, for example, on the upper side of the measurement object holding unit 3. The motor 21 is mounted on the front side of the support plate 18 with the drive shaft 21 a facing downward, and the motor 21 and the drive side chuck 15. And a transmission shaft 22 disposed in the vertical direction, for example, an encoder 23 for measuring the rotational displacement of the transmission shaft 22, for example, a torque sensor 24 for measuring torque in the transmission shaft 22, and the like.

伝達軸22は、その上端側がモータ21の駆動軸21aに対して例えばカップリング25を介して一体に連結され、下端側が駆動側チャック15に固定されており、モータ21の正逆両方向の駆動力(トルク)が、この伝達軸22、駆動側チャック15等を介して被測定物2に伝達されるようになっている。なお、カップリング25は、過負荷時に駆動軸21aと伝達軸22との間のトルク伝達を切断するトルクリミッタとしての機能を有している。   The transmission shaft 22 has an upper end that is integrally connected to a drive shaft 21 a of the motor 21 via, for example, a coupling 25, and a lower end that is fixed to the drive side chuck 15. (Torque) is transmitted to the DUT 2 via the transmission shaft 22 and the drive side chuck 15. The coupling 25 has a function as a torque limiter that cuts off torque transmission between the drive shaft 21a and the transmission shaft 22 during overload.

モータ21は、被測定物2に例えば所定値のトルクを正逆両方向に所定周期で繰り返し作用させるように、例えばエンコーダ23、トルクセンサ24等の測定値に基づく制御部6の制御により正逆両方向に駆動されるようになっている。   The motor 21 is controlled in the forward / reverse direction by controlling the control unit 6 based on the measured values of the encoder 23, the torque sensor 24, etc., for example, so as to repeatedly apply a predetermined value of torque to the device under test 2 in the forward / reverse direction with a predetermined period. To be driven.

変位センサ5は、例えば一般的な差動トランス方式を採用した接触式変位センサで、図3等に示すように、センサ本体部31と、このセンサ本体部31の軸方向一端側に出退自在に装着された触針部32とを備え、図5等に示すように、センサ本体部31がセンサホルダ33により被測定物2の外軸11に固定され、触針部32は、磁石ホルダ34により被測定物2の内軸12に固定された磁石35に吸着されて内軸12の捩り方向の動作に従動するようになっている。   The displacement sensor 5 is, for example, a contact-type displacement sensor that employs a general differential transformer system. As shown in FIG. 3 and the like, the displacement sensor 5 can freely move in and out of one end side in the axial direction of the sensor body 31. As shown in FIG. 5 and the like, the sensor main body 31 is fixed to the outer shaft 11 of the object to be measured 2 by the sensor holder 33, and the stylus 32 is connected to the magnet holder 34. Thus, the magnet 35 is attracted to the magnet 35 fixed to the inner shaft 12 of the object 2 to be measured and follows the operation of the inner shaft 12 in the twisting direction.

センサ本体部31は、図3に示すように例えば略円筒状の筐体36と、この筐体36の内面に沿って配置される1次コイル37a及びその軸方向両側に配置される一対の2次コイル37bと、筐体36内に設けられ且つ触針部32を軸方向の1又は複数箇所で軸方向褶動自在に保持する軸受部38とを備えている。また、触針部32は、可動鉄心39を備えたシャフト部40と、このシャフト部40の先端側に絶縁ピン41を介して装着された接触子42とを備え、シャフト部40の後端側がセンサ本体部31内に挿入され、軸受部38を介して軸方向出退自在に保持されている。   As shown in FIG. 3, the sensor main body 31 includes, for example, a substantially cylindrical housing 36, a primary coil 37a disposed along the inner surface of the housing 36, and a pair of 2 disposed on both sides in the axial direction. A secondary coil 37b and a bearing portion 38 provided in the housing 36 and holding the stylus portion 32 so as to be axially swingable at one or a plurality of locations in the axial direction are provided. Further, the stylus part 32 includes a shaft part 40 having a movable iron core 39 and a contact 42 attached to the front end side of the shaft part 40 via an insulating pin 41, and the rear end side of the shaft part 40 is It is inserted into the sensor main body 31 and is held so as to be able to move in and out in the axial direction via a bearing 38.

センサ本体部31側の1次コイル37aを交流で励磁すると、触針部32の出退動作に伴う可動鉄心39の移動により、その可動鉄心39と2つの2次コイル37bとの位置関係に応じて2次コイル37bに交流電圧が発生するため、その電圧に基づいて触針部32の出退量、即ち変位を測定することができる。なお、本実施形態の変位センサ5は、センサ本体部31に対して触針部32を例えば突出方向に弾性付勢するバネ部材等は備えておらず、触針部32はセンサ本体部31に対して出退方向に移動自在である。   When the primary coil 37a on the sensor main body 31 side is excited with an alternating current, the movement of the movable core 39 accompanying the movement of the stylus part 32 causes the movement of the movable core 39 according to the positional relationship between the movable core 39 and the two secondary coils 37b. Since an AC voltage is generated in the secondary coil 37b, the amount of movement of the stylus part 32, that is, the displacement can be measured based on the voltage. Note that the displacement sensor 5 of this embodiment does not include a spring member or the like that elastically biases the stylus part 32 in the protruding direction, for example, with respect to the sensor main body part 31. On the other hand, it can move freely in the direction of withdrawal.

接触子42は、例えば鉄製(強磁性体の一例)で、図4に示すように先端側が例えば略半球状に形成され、後端側に例えば着脱用の雄ねじ部43が設けられている。絶縁ピン41は、ナイロンその他の非磁性体材料により例えば円柱状に形成されており、シャフト部40と接触子42との間に、それらシャフト部40と接触子42とが互いに接触しないように着脱自在に装着されている。   The contact 42 is made of, for example, iron (an example of a ferromagnetic material), and has a tip side formed in, for example, a substantially hemispherical shape, as shown in FIG. 4, and a detachable male screw portion 43, for example, provided on the rear end side. The insulating pin 41 is formed in, for example, a cylindrical shape from nylon or other non-magnetic material, and is attached and detached between the shaft portion 40 and the contact 42 so that the shaft portion 40 and the contact 42 do not contact each other. It is installed freely.

即ちこの絶縁ピン41は、図4に示すようにその両端側に例えばタップ穴にヘリサートが挿入されることにより雌ねじ部44,45が互いに貫通しないように形成され、更に後端側の雌ねじ部44にはスタッドボルト46が装着されて雄ねじ部47が形成されており、この後端側の雄ねじ部47がシャフト部40の先端側に形成された雌ねじ部48にねじ込まれることによりシャフト部40に着脱自在に固定され、また先端側の雌ねじ部45に接触子42側の雄ねじ部43がねじ込まれることにより接触子42を着脱自在に保持している。   That is, as shown in FIG. 4, the insulating pin 41 is formed so that the female screw portions 44 and 45 are not penetrated from each other by inserting, for example, a helicate into the tap hole at both ends, and the female screw portion 44 on the rear end side. A stud bolt 46 is attached to form a male threaded portion 47, and the male threaded portion 47 on the rear end side is screwed into a female threaded portion 48 formed on the front end side of the shaft portion 40, so that the shaft portion 40 can be attached and detached. The contactor 42 is detachably held by being screwed into the female screw part 45 on the distal end side and the male screw part 43 on the contactor 42 side.

この変位センサ5を外軸11に固定するセンサホルダ33は、図5及び図6に示すように、例えば互いに平行な第1,第2アーム部51a,51bの一端側が連結部51cにより一体に連結されて略コの字型に形成されたクランプ本体51と、第1アーム部51aの内面側に固定され且つ第2アーム部51bとの対向面側に例えばV溝52aが形成されたクランプブロック52と、先端部をクランプブロック52に対向させるように第2アーム部51bに螺着されたクランプボルト53と、例えば第1アーム部51aの先端側に設けられ且つ変位センサ5のセンサ本体部31を着脱自在に保持するセンサ保持部54とを備え、クランプブロック52とクランプボルト53とで外軸11を挟持することにより外軸11に着脱自在に固定されている。変位センサ5は、このセンサホルダ33により、図6に示すように外軸11の軸心に垂直な面内で且つセンサ軸心が外軸11の軸心と交差しない状態で保持される。   As shown in FIGS. 5 and 6, the sensor holder 33 for fixing the displacement sensor 5 to the outer shaft 11, for example, one end side of the first and second arm portions 51a and 51b parallel to each other is integrally connected by a connecting portion 51c. The clamp main body 51 formed in a substantially U-shape and the clamp block 52 fixed to the inner surface side of the first arm portion 51a and formed with, for example, a V groove 52a on the opposite surface side of the second arm portion 51b. A clamp bolt 53 screwed to the second arm portion 51b so that the tip portion faces the clamp block 52, and a sensor main body 31 of the displacement sensor 5 provided on the tip side of the first arm portion 51a, for example. A sensor holding portion 54 that is detachably held, and is detachably fixed to the outer shaft 11 by sandwiching the outer shaft 11 between the clamp block 52 and the clamp bolt 53. . The displacement sensor 5 is held by the sensor holder 33 in a plane perpendicular to the axis of the outer shaft 11 and the sensor axis not intersecting the axis of the outer shaft 11 as shown in FIG.

また、磁石35を内軸12に固定する磁石ホルダ34は、図5に示すように、例えば互いに平行な第1,第2アーム部55a,55bの一端側が連結部55cにより一体に連結されて略コの字型に形成されたクランプ本体55と、第1アーム部55aの内面側に固定され且つ第2アーム部55bとの対向面側に例えばV溝56aが形成されたクランプブロック56と、先端部をクランプブロック56に対向させるように第2アーム部55bに螺着されたクランプボルト57と、例えば第1アーム部55aに固定された磁石保持アーム58とを備え、クランプブロック56とクランプボルト57とで内軸12を挟持することにより内軸12に着脱自在に固定されている。磁石保持アーム58は、例えば第1アーム部55aから内軸12に略平行に突設されており、その先端側に磁石35が装着されている。   In addition, as shown in FIG. 5, the magnet holder 34 for fixing the magnet 35 to the inner shaft 12 is substantially formed by integrally connecting one end sides of the first and second arm portions 55a and 55b parallel to each other by a connecting portion 55c. A clamp body 55 formed in a U-shape, a clamp block 56 fixed on the inner surface side of the first arm portion 55a and formed with, for example, a V-groove 56a on the surface facing the second arm portion 55b, and a tip A clamp bolt 57 screwed to the second arm portion 55b so that the portion faces the clamp block 56, and a magnet holding arm 58 fixed to the first arm portion 55a, for example, and the clamp block 56 and the clamp bolt 57 The inner shaft 12 is sandwiched between the inner shaft 12 and the inner shaft 12 so as to be detachable. For example, the magnet holding arm 58 protrudes from the first arm portion 55a substantially parallel to the inner shaft 12, and the magnet 35 is mounted on the tip side thereof.

これらセンサホルダ33と磁石ホルダ34とは、図6に示すように変位センサ5の触針部32がその可動範囲の例えば略中間にある状態で接触子42が磁石35に接触(吸着)するように、互いの装着高さ及び角度が調整される。これにより、変位センサ5のセンサ本体部31がセンサホルダ33を介して外軸11に固定され、変位センサ5の触針部32は、磁石ホルダ34により内軸12に固定された磁石35に吸着されて内軸12に従動するため、変位センサ5により外軸11に対する内軸12の捩り方向の相対変位を測定することができる。   As shown in FIG. 6, the sensor holder 33 and the magnet holder 34 are arranged such that the contact 42 contacts (adsorbs) the magnet 35 in a state where the stylus portion 32 of the displacement sensor 5 is, for example, approximately in the middle of its movable range. In addition, the mounting height and angle of each other are adjusted. Thereby, the sensor main body 31 of the displacement sensor 5 is fixed to the outer shaft 11 via the sensor holder 33, and the stylus portion 32 of the displacement sensor 5 is attracted to the magnet 35 fixed to the inner shaft 12 by the magnet holder 34. Since the inner shaft 12 is driven, the displacement sensor 5 can measure the relative displacement of the inner shaft 12 in the torsional direction with respect to the outer shaft 11.

また、触針部32は、可動鉄心39が設けられたシャフト部40と鉄製の接触子42との間に非磁性体よりなる絶縁ピン41が配置されているため、変位センサ5が磁気を利用する差動トランス方式を採用しているにも拘わらず、磁石35の磁気が測定結果に及ぼす悪影響を排除できる。更に、接触子42の先端部は略半球状に形成されており、図6に示すように磁石35の端面35aに対して例えば略一点で接触するようになっているため、外軸11に対して内軸12が捩り方向に相対的に変位することにより、磁石35の端面35aと触針部32の軸心とのなす角度が微妙に変化するにも拘わらず、その影響を受けることなく常に正確な変位測定が可能である。   Moreover, since the stylus part 32 has an insulating pin 41 made of a non-magnetic material between the shaft part 40 provided with the movable iron core 39 and the iron contactor 42, the displacement sensor 5 uses magnetism. In spite of adopting the differential transformer system, the adverse effect of the magnet 35 on the measurement result can be eliminated. Furthermore, the tip of the contact 42 is formed in a substantially hemispherical shape, and as shown in FIG. 6, for example, is brought into contact with the end surface 35 a of the magnet 35 at approximately one point. Even if the inner shaft 12 is relatively displaced in the torsional direction, the angle formed by the end surface 35a of the magnet 35 and the axis of the stylus portion 32 changes slightly, but it is always unaffected. Accurate displacement measurement is possible.

なお、このように外軸11に対して内軸12が捩り方向に相対的に変位したとき、センサ本体部31に対する触針部32の相対的な軌跡は実際には円弧状になるが、変位センサ5により得られる測定値は直線変位となる。しかしながらそれらの差は僅かであるため、例えば被測定物2の捩り方向のガタの角度を測定する際には、「円弧の長さ=直線の長さ」とみなし、変位センサ5による測定値(直線変位)と、被測定物2と変位センサ5との軸心間距離とに基づいて三角関数を用いて算出することができる。   When the inner shaft 12 is displaced relative to the outer shaft 11 in the torsional direction in this way, the relative locus of the stylus portion 32 with respect to the sensor body portion 31 is actually an arc shape. The measured value obtained by the sensor 5 is a linear displacement. However, since the difference between them is slight, for example, when measuring the backlash angle in the torsional direction of the DUT 2, it is considered that “the length of the arc = the length of the straight line”, and the measured value by the displacement sensor 5 ( Linear displacement) and the distance between the axes of the DUT 2 and the displacement sensor 5 can be calculated using a trigonometric function.

図7(a)は、本実施形態の変位測定装置1により、被測定物2に対して正逆一定範囲のトルクを一定周期で作用させた場合の、外軸11に対する内軸12の捩り方向の変位測定結果を示しており、横軸が変位センサ5による測定変位、縦軸がトルク入力値となっている。また、図7(b)は、図7(a)に対して、変位センサのみをバネ部材が内蔵された従来の変位センサに変更した場合の変位測定結果を示している。この図7(b)で用いた従来の変位センサは、触針部がバネ部材により突出方向に弾性付勢されており、そのバネ力により触針部を内軸12側の所定部位に圧着させることにより触針部を内軸12に従動させているものとする。   FIG. 7A shows the torsional direction of the inner shaft 12 relative to the outer shaft 11 when the displacement measuring apparatus 1 according to the present embodiment applies a constant range of torque to the device under test 2 at a constant period. The displacement measurement results are shown, with the horizontal axis representing the measured displacement by the displacement sensor 5 and the vertical axis representing the torque input value. FIG. 7B shows a displacement measurement result when only the displacement sensor is changed to a conventional displacement sensor with a built-in spring member, compared to FIG. 7A. In the conventional displacement sensor used in FIG. 7B, the stylus portion is elastically biased in the protruding direction by a spring member, and the stylus portion is pressed against a predetermined portion on the inner shaft 12 side by the spring force. Thus, it is assumed that the stylus part is driven by the inner shaft 12.

図7(a),(b)共に、波形は図中に示す矢印の方向に描かれるが、従来の変位センサを用いた図7(b)では、トルクの方向が反転した直後の波形に、縦軸と平行な部分、即ちトルクが変動しているにも拘わらず測定変位が変動していない部分(P及びQ)が現れている。これは、図7(b)の場合には触針部がバネ部材によって内軸12側に圧着されているため、その測定力(バネ部材による付勢力、センサ本体部と触針部との間の摩擦力等)が大きく、内軸12側の変位の急変に触針部が追随できていないためであると考えられる。   7 (a) and 7 (b), the waveform is drawn in the direction of the arrow shown in the figure, but in FIG. 7 (b) using the conventional displacement sensor, the waveform immediately after the direction of the torque is reversed, A portion parallel to the vertical axis, that is, a portion (P and Q) where the measured displacement does not change although the torque changes appears. In the case of FIG. 7B, since the stylus part is crimped to the inner shaft 12 side by the spring member, the measurement force (the urging force by the spring member, between the sensor main body part and the stylus part). This is presumably because the stylus part cannot follow the sudden change in displacement on the inner shaft 12 side.

なお、変位センサの測定力は、静止状態から動き出す瞬間に最も大きくなるため(最大静止摩擦力>動摩擦力)、測定力が0でない従来の変位センサを用いた場合には、図7 (b)のP,Q部のような縦軸に平行な部分は必ず現れる。従って、従来の変位センサを用いた測定では、変位が急変したような測定結果が得られた場合、それが実際の変位によるものなのか、センサの測定力の影響によるものなのかを判別することができない。   Note that the measurement force of the displacement sensor is greatest at the moment when it starts to move from the stationary state (maximum static friction force> dynamic friction force). Therefore, when a conventional displacement sensor having a measurement force of 0 is used, FIG. A portion parallel to the vertical axis, such as P and Q portions, always appears. Therefore, in the measurement using a conventional displacement sensor, if a measurement result with a sudden change in the displacement is obtained, determine whether it is due to the actual displacement or the influence of the measuring force of the sensor. I can't.

それに対して本実施形態の変位測定装置1による図7(a)では、トルクの方向が反転した直後の波形についても、縦軸と平行な部分は現れておらず、トルクの変動に応じて測定変位が常に変化している。これは、本実施形態の変位測定装置1では触針部を磁石で内軸12側に吸着させて従動させていることにより、内軸12側の変位の急変にも触針部が的確に追随できているためであると考えられる。また、本実施形態の変位センサ5は差動トランス式であるため、触針部32とセンサ本体部31との間に発生する摩擦力は極小であり、それによって触針部32の追随性がより向上している。このように、本発明に係る変位センサでは測定力による測定結果への悪影響が排除されるため、実際に変位が急変するような測定についても正確に行うことが可能である。   On the other hand, in FIG. 7A by the displacement measuring apparatus 1 of the present embodiment, the portion immediately parallel to the vertical axis does not appear even in the waveform immediately after the direction of the torque is reversed, and the measurement is performed according to the variation of the torque. The displacement is constantly changing. This is because in the displacement measuring apparatus 1 of the present embodiment, the stylus part accurately follows the sudden change in the displacement on the inner shaft 12 side by attracting the stylus part to the inner shaft 12 side with a magnet. It is thought that it is because it is made. Further, since the displacement sensor 5 of the present embodiment is a differential transformer type, the frictional force generated between the stylus part 32 and the sensor main body part 31 is minimal, whereby the followability of the stylus part 32 is reduced. It is more improved. As described above, in the displacement sensor according to the present invention, since the adverse effect on the measurement result due to the measuring force is eliminated, it is possible to accurately perform the measurement in which the displacement actually changes suddenly.

以上説明したように、本実施形態の変位測定装置1では、変位センサ5の触針部32がセンサ本体部31に対して弾性付勢されることなく出退自在に保持されており、内軸(第2被測定部)12側に設けられた磁石(保持部)35と、触針部32側に設けられ且つ磁石(保持部)35によって吸着保持される鉄製の接触子42とで構成される従動手段により触針部32を内軸(第2被測定部)12に従動させているため、内軸12の変位が時間軸に対して急激に変化するような場合であっても、触針部32を内軸12の動作に正確に追随させて外軸11に対する内軸12の相対変位を正確に測定することが可能である。   As described above, in the displacement measuring apparatus 1 according to the present embodiment, the stylus part 32 of the displacement sensor 5 is held so as to be freely retracted without being elastically biased with respect to the sensor main body part 31. (Second measured part) It is composed of a magnet (holding part) 35 provided on the 12 side and an iron contactor 42 provided on the stylus part 32 side and attracted and held by the magnet (holding part) 35. Since the stylus part 32 is driven by the follower means to follow the inner shaft (second measured part) 12, even if the displacement of the inner shaft 12 changes rapidly with respect to the time axis, It is possible to accurately measure the relative displacement of the inner shaft 12 with respect to the outer shaft 11 by causing the needle portion 32 to accurately follow the operation of the inner shaft 12.

また、触針部32を弾性付勢するバネ部材を設けていないため、そのバネ力が入力トルクの一部となって測定結果に悪影響を及ぼすこともない。しかも、従来の一般的な変位センサからバネ部材を除去すると共に接触子42を鉄製とし、その接触子42が当接する相手方を磁石で構成するだけでよいため、コストを低く抑えることができ、また装置が大型化することもないという利点もある。   Further, since the spring member for elastically urging the stylus portion 32 is not provided, the spring force does not become a part of the input torque and does not adversely affect the measurement result. In addition, since the spring member is removed from the conventional general displacement sensor and the contact 42 is made of iron and the other party with which the contact 42 abuts only needs to be made of a magnet, the cost can be kept low. There is also an advantage that the apparatus is not increased in size.

しかも、変位センサ5の触針部32と内軸(第2被測定部)12側とを磁石で接続しているため、測定時の作業性が向上すると共に、変位センサ5の破損等を防止できる。即ち、ワーク取り替え時に変位センサ5の触針部32を第2被測定部から容易に切り離すことができるため、測定間の作業性が向上し、サイクルタイムの減少が期待されると共に、被測定物の着脱作業中に変位センサ5の触針部32に異常な負荷が作用することがなく、変位センサ5の破損等を防止できる。   Moreover, since the stylus part 32 of the displacement sensor 5 and the inner shaft (second measured part) 12 side are connected by a magnet, workability during measurement is improved and damage to the displacement sensor 5 is prevented. it can. That is, when the workpiece is replaced, the stylus part 32 of the displacement sensor 5 can be easily separated from the second measured part, so that the workability between measurements is improved and the cycle time is expected to be reduced. An abnormal load does not act on the stylus part 32 of the displacement sensor 5 during the attaching / detaching operation of the sensor, and the displacement sensor 5 can be prevented from being damaged.

また、鉄製の接触子42は、非磁性体よりなる絶縁ピン41を介して触針部32の先端側に固定されているため、磁気を利用する差動トランス方式の変位センサ5を採用しているにも拘わらず、磁石35の磁気が測定結果に及ぼす悪影響を排除できる。更に、接触子42の先端部は略半球状に形成されており、磁石35の端面35aに対して例えば略一点で接触するようになっているため、外軸11に対して内軸12が捩り方向に相対的に変位することにより、磁石35の端面35aと触針部32の軸心とのなす角度が微妙に変化するにも拘わらず、その影響を受けることなく常に正確な変位測定が可能である。   Further, since the iron contact 42 is fixed to the distal end side of the stylus part 32 via an insulating pin 41 made of a non-magnetic material, a differential transformer type displacement sensor 5 using magnetism is employed. Nevertheless, the adverse effect of the magnet 35 on the measurement results can be eliminated. Furthermore, the tip of the contact 42 is formed in a substantially hemispherical shape, and comes into contact with the end surface 35 a of the magnet 35 at, for example, a substantially single point, so that the inner shaft 12 is twisted with respect to the outer shaft 11. By relatively displacing in the direction, accurate displacement measurement is always possible without being affected by the slight change in the angle between the end surface 35a of the magnet 35 and the axis of the stylus 32. It is.

以上、本発明の実施形態について例示したが、本発明はこの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。例えば、実施形態では伸縮自在シャフトを被測定物とし、その外軸(第1被測定部)11に対する内軸(第2被測定部)12の捩り方向の相対変位を測定する例を示したが、捩り方向以外の相対変位を測定対象としてもよい。例えば、実施形態と同じ伸縮自在シャフトを被測定物とし、その外軸(第1被測定部)11に対する内軸(第2被測定部)12の伸縮方向の相対変位を測定対象としてもよい。   As mentioned above, although embodiment of this invention was illustrated, this invention is not limited to this embodiment, A various change is possible in the range which does not deviate from the meaning of this invention. For example, in the embodiment, an example has been shown in which the telescopic shaft is the object to be measured, and the relative displacement in the twist direction of the inner shaft (second measured portion) 12 with respect to the outer shaft (first measured portion) 11 is measured. The relative displacement other than the torsional direction may be measured. For example, the same telescopic shaft as in the embodiment may be a measurement object, and the relative displacement in the expansion / contraction direction of the inner shaft (second measured portion) 12 with respect to the outer shaft (first measured portion) 11 may be measured.

本発明に係る変位測定装置では、変位センサ5の設置方向に拘わらず触針部32を第2被測定部の動きに追随させることができるため、例えば触針部32が上向きとなるように配置する等、被測定物の種類等に応じて変位センサ5を任意の向きに配置することが可能である。また、本発明の変位測定装置は触針部の追随性が良いため、変位測定全般に対応可能であり、常時摺動部や振動部の他、スティックスリップの測定、物体の動き出し時の変位測定や動き出しのタイミングの測定も可能である。また、低荷重で変位するワークの変位測定にも有効である。   In the displacement measuring apparatus according to the present invention, since the stylus part 32 can follow the movement of the second measured part regardless of the installation direction of the displacement sensor 5, for example, the stylus part 32 is arranged to face upward. For example, the displacement sensor 5 can be arranged in any direction according to the type of the object to be measured. In addition, since the displacement measuring device of the present invention has good followability of the stylus part, it is compatible with general displacement measurement. In addition to constantly sliding parts and vibrating parts, measurement of stick-slip, displacement measurement when an object starts to move It is also possible to measure the timing of movement. It is also effective for measuring the displacement of a workpiece that is displaced with a low load.

変位センサは差動トランス式のものに限らず、磁化したスケールとその磁気を感知するスライドセンサー部とを有するマグネスケールや、エンコーダ、干渉計等を用いたものを採用してもよい。それらのうち、例えばマグネスケールによる変位センサは、差動トランス式の変位センサと同様に触針部とセンサ本体部との間に発生する摩擦力が非常に小さいため、触針部の追随性が良く理想的である。   The displacement sensor is not limited to the differential transformer type, and may be a magnet scale having a magnetized scale and a slide sensor unit that senses the magnetism, an encoder, an interferometer, or the like. Among them, for example, a displacement sensor using a magnescale has a very small frictional force generated between the stylus part and the sensor main body, like the differential transformer type displacement sensor. Well ideal.

触針部を第2被測定部に従動させる従動手段として、実施形態では内軸(第2被測定部)12側に磁石35を固定し、触針部32側の接触子42を鉄製(強磁性体)とした例を示したが、例えば触針部側の接触子を磁石とし、第2被測定部側に強磁性体よりなる当接板を固定してもよい。もちろん、強磁性体は鉄に限られるものではない。また、接触子42とシャフト部40との間に配置する非磁性体についてもナイロンに限られるものではない。なお、磁気の影響を受けない方式の変位センサを用いる場合には、接触子とシャフト部との間に非磁性体を介在させる必要はない。   In the embodiment, a magnet 35 is fixed to the inner shaft (second measured portion) 12 side and the contact 42 on the stylus portion 32 side is made of iron (strong) as driven means for moving the stylus portion to the second measured portion. Although an example of a magnetic body) has been shown, for example, a contact on the stylus part side may be a magnet, and a contact plate made of a ferromagnetic material may be fixed on the second measured part side. Of course, the ferromagnetic material is not limited to iron. Further, the non-magnetic material disposed between the contact 42 and the shaft portion 40 is not limited to nylon. When using a displacement sensor that is not affected by magnetism, it is not necessary to interpose a non-magnetic material between the contact and the shaft portion.

また、実施形態では接触子42の先端部を略半球状に形成し、磁石35の端面35aに対して例えば略一点で接触するように構成したが、接触子42の先端部を尖形としてもよい。また、磁石35の先端部を略半球状又は尖形とし、接触子42側の端面を平面に形成してもよいし、磁石35と接触子42の両方を略半球状又は尖形としてもよい。   In the embodiment, the tip of the contact 42 is formed in a substantially hemispherical shape so as to contact the end surface 35a of the magnet 35 at, for example, approximately one point, but the tip of the contact 42 may be pointed. Good. Further, the tip of the magnet 35 may be substantially hemispherical or pointed, and the end face on the contact 42 side may be formed flat, or both the magnet 35 and the contact 42 may be substantially hemispherical or pointed. .

また、磁石と強磁性体との組み合わせと同じく、触針部と第2被測定部との一方側に設けられた保持部により他方側に設けられた被保持部を吸着させる従動手段としては、静電気力を利用するもの、バキュームを利用するもの等が考えられ、また吸着と類似の方法として粘着物を利用するもの等が考えられる。但し、静電気力を利用するものについてはノイズの影響が懸念され、バキュームを利用するものは真空回路を設ける必要からコスト高となり、また粘着物を利用するものについては粘着力が一定でないなどの問題がある。また、吸着以外の方法を利用する従動手段として、コレットチャック、3つ爪チャック、ダイヤフラムチャック等の各種チャック装置を用いてもよい。なお、コレットチャック等のように、保持部として磁石を用いないものについては、接触子とシャフト部との間に非磁性体を配置する必要はない。   Further, as with the combination of the magnet and the ferromagnetic material, as the follower means for attracting the held portion provided on the other side by the holding portion provided on one side of the stylus portion and the second measured portion, Those using electrostatic force, those using vacuum, and the like can be considered, and those using an adhesive as a method similar to adsorption can be considered. However, there is a concern about the influence of noise for those that use electrostatic force, and those that use vacuum are expensive due to the need to provide a vacuum circuit, and those that use adhesives are not adhesive. There is. In addition, as a follower that uses a method other than suction, various chuck devices such as a collet chuck, a three-claw chuck, and a diaphragm chuck may be used. In the case of a magnet that does not use a magnet, such as a collet chuck, it is not necessary to dispose a non-magnetic material between the contact and the shaft portion.

変位センサのセンサ本体部を第1被測定部に固定するホルダ、及び強磁性体等の被保持部又は磁石等の保持部を第2被測定部に固定するホルダについては、被測定物の種類等に応じて適切な構成を採用すればよい。   For the holder for fixing the sensor main body of the displacement sensor to the first measured part and the holder for holding the held part such as a ferromagnetic or the holding part such as a magnet to the second measured part, the type of the measured object An appropriate configuration may be employed according to the above.

1 変位測定装置
11 外軸(第1被測定部)
12 内軸(第2被測定部)
31 センサ本体部
32 触針部
35 磁石(保持部)
42 接触子(強磁性体,被保持部)
41 絶縁ピン(非磁性体)
1 Displacement measuring device 11 Outer shaft (first measured part)
12 Inner shaft (second measured part)
31 Sensor body part 32 Stylus part 35 Magnet (holding part)
42 Contact (ferromagnet, held part)
41 Insulation pin (non-magnetic material)

Claims (5)

第1被測定部に固定されるセンサ本体部と、該センサ本体部に対して出退可能な触針部と、該触針部を第2被測定部に従動させる従動手段とを備え、前記センサ本体部に対する前記触針部の出退量を検出することにより前記第1被測定部に対する前記第2被測定部の相対的な変位を測定する変位測定装置において、前記触針部は前記センサ本体部に対して弾性付勢されることなく出退自在に保持されており、前記従動手段は、前記第2被測定部側又は前記触針部側に設けられた保持部と、前記触針部側又は前記第2被測定部側に設けられ且つ前記保持部により保持される被保持部とで構成されていることを特徴とする変位測定装置。 A sensor main body fixed to the first measured part; a stylus part that can be moved back and forth with respect to the sensor main part; and a follower that moves the stylus part to follow the second measured part; In the displacement measuring device that measures the relative displacement of the second measured part with respect to the first measured part by detecting the amount of movement of the stylus part with respect to the sensor main body part, the stylus part is the sensor. The main body is held so as to be freely retractable without being elastically urged, and the follower includes a holding part provided on the second measured part side or the stylus part side, and the stylus A displacement measuring apparatus comprising: a portion to be held or a portion to be held, which is provided on a portion side or the second portion to be measured and held by the holding portion. 前記保持部は前記被保持部を吸着により保持するように構成されていることを特徴とする請求項1に記載の変位測定装置。 The displacement measuring apparatus according to claim 1, wherein the holding unit is configured to hold the held portion by suction. 前記保持部と前記被保持部とが磁石とこの磁石に吸着される強磁性体とで構成されていることを特徴とする請求項2に記載の変位測定装置。 The displacement measuring device according to claim 2, wherein the holding unit and the held unit are configured by a magnet and a ferromagnetic material attracted to the magnet. 前記磁石又は前記強磁性体は、非磁性体を介して前記触針部の先端側に固定されていることを特徴とする請求項3に記載の変位測定装置。 The displacement measuring apparatus according to claim 3, wherein the magnet or the ferromagnetic body is fixed to a distal end side of the stylus part via a non-magnetic body. 前記磁石と前記強磁性体とが略一点で接触するようにそれらの少なくとも一方の先端側が尖形又は略球面に形成されていることを特徴とする請求項3又は4に記載の変位測定装置。 5. The displacement measuring device according to claim 3, wherein at least one tip side of each of the magnet and the ferromagnetic material is formed in a pointed shape or a substantially spherical surface so that the magnet and the ferromagnetic material are in contact with each other at substantially one point.
JP2009292466A 2009-12-24 2009-12-24 Displacement measurement apparatus Pending JP2011133317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009292466A JP2011133317A (en) 2009-12-24 2009-12-24 Displacement measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009292466A JP2011133317A (en) 2009-12-24 2009-12-24 Displacement measurement apparatus

Publications (1)

Publication Number Publication Date
JP2011133317A true JP2011133317A (en) 2011-07-07

Family

ID=44346217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009292466A Pending JP2011133317A (en) 2009-12-24 2009-12-24 Displacement measurement apparatus

Country Status (1)

Country Link
JP (1) JP2011133317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020501168A (en) * 2016-11-29 2020-01-16 ヘルムート・フィッシャー・ゲーエムベーハー・インスティテュート・フューア・エレクトロニク・ウント・メステクニク Measuring device, measuring arrangement and method for determining a measuring signal while moving an indenter into a specimen surface
KR102638426B1 (en) * 2023-04-07 2024-02-21 한전케이피에스 주식회사 Support device for measuring deflection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0177913U (en) * 1987-11-12 1989-05-25
JPH0814939A (en) * 1994-07-01 1996-01-19 Nippondenso Co Ltd Noncontact direct-acting displacement sensor
JPH09210610A (en) * 1996-01-30 1997-08-12 Noble Sangyo Kk High-frequency excitation differential transformer for preventing influence of external magnetism and metal, etc.
JP2008241509A (en) * 2007-03-28 2008-10-09 Jtekt Corp Device for measuring amount of movement of rolling body
JP2010117139A (en) * 2008-11-11 2010-05-27 Mitsubishi Heavy Ind Ltd Contact type displacement gauge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0177913U (en) * 1987-11-12 1989-05-25
JPH0814939A (en) * 1994-07-01 1996-01-19 Nippondenso Co Ltd Noncontact direct-acting displacement sensor
JPH09210610A (en) * 1996-01-30 1997-08-12 Noble Sangyo Kk High-frequency excitation differential transformer for preventing influence of external magnetism and metal, etc.
JP2008241509A (en) * 2007-03-28 2008-10-09 Jtekt Corp Device for measuring amount of movement of rolling body
JP2010117139A (en) * 2008-11-11 2010-05-27 Mitsubishi Heavy Ind Ltd Contact type displacement gauge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020501168A (en) * 2016-11-29 2020-01-16 ヘルムート・フィッシャー・ゲーエムベーハー・インスティテュート・フューア・エレクトロニク・ウント・メステクニク Measuring device, measuring arrangement and method for determining a measuring signal while moving an indenter into a specimen surface
JP7200118B2 (en) 2016-11-29 2023-01-06 ヘルムート・フィッシャー・ゲーエムベーハー・インスティテュート・フューア・エレクトロニク・ウント・メステクニク Measuring device, measuring arrangement and method for determining a measuring signal during penetrating movement of an indenter on a specimen surface
KR102638426B1 (en) * 2023-04-07 2024-02-21 한전케이피에스 주식회사 Support device for measuring deflection

Similar Documents

Publication Publication Date Title
JP6593131B2 (en) Shape measuring device
KR101065442B1 (en) A 3 module integrated type wear tester
JP4417338B2 (en) Overpin diameter measuring device
JP6011486B2 (en) Material testing machine
US7528561B2 (en) Linear drive apparatus
JP5854249B1 (en) Shape measuring device
JP3153111B2 (en) Manually operated CMM
JP2011133317A (en) Displacement measurement apparatus
JP2007240339A (en) Linearly moving dimension measuring device
JP4896062B2 (en) Non-contact displacement sensor jig
JP3420327B2 (en) Touch signal probe
CN111670334B (en) Surface shape measuring machine
JP2016161502A (en) Height gauge
JP2007240418A (en) Hardness tester
EP1679160A1 (en) Origin adjusting device of industrial robot
CN108195698B (en) Indentation depth measuring device
JPH07208905A (en) Contact-type displacement sensor and work measuring instrument using the sensor
CN219641912U (en) Probe supporting device
CN219551425U (en) Ball screw clearance measuring device
JP5235143B2 (en) Sheave surface distance measuring device
JP7038308B2 (en) Surface shape measuring machine
JP2007183129A (en) Hardness meter
JP3863388B2 (en) Touch signal probe
JP2023126611A (en) Shape measurement device
JPS61219820A (en) Digital display type measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121010

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527