JP5235143B2 - Sheave surface distance measuring device - Google Patents

Sheave surface distance measuring device Download PDF

Info

Publication number
JP5235143B2
JP5235143B2 JP2009015427A JP2009015427A JP5235143B2 JP 5235143 B2 JP5235143 B2 JP 5235143B2 JP 2009015427 A JP2009015427 A JP 2009015427A JP 2009015427 A JP2009015427 A JP 2009015427A JP 5235143 B2 JP5235143 B2 JP 5235143B2
Authority
JP
Japan
Prior art keywords
sheave
distance
measuring
pulley
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009015427A
Other languages
Japanese (ja)
Other versions
JP2010175279A (en
Inventor
淳 波多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2009015427A priority Critical patent/JP5235143B2/en
Publication of JP2010175279A publication Critical patent/JP2010175279A/en
Application granted granted Critical
Publication of JP5235143B2 publication Critical patent/JP5235143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Description

本発明は、無段変速機のプライマリプーリの固定シーブとセカンダリプーリの固定シーブとの間の距離を測定するシーブ面間距離測定装置に関する。   The present invention relates to a sheave surface distance measuring device that measures a distance between a fixed sheave of a primary pulley and a fixed sheave of a secondary pulley of a continuously variable transmission.

自動車の変速機は、手動変速機(MT)や自動変速機(AT)のような段階的に変速比を切り替えるもののほか、変速比を無段階に連続して切り替えることができる無段変速機(CVT)がある。   The transmission of an automobile is not only a manual transmission (MT) or an automatic transmission (AT) that switches the gear ratio stepwise, but also a continuously variable transmission that can continuously switch the gear ratio (stepless). CVT).

図5に、無段変速機の一構成例を示す。この無段変速機100は、動力発生側(エンジン側)につなげられたプライマリプーリ10と、動力伝達側(デファレンシャル側)につなげられセカンダリプーリ20と、これらの間に掛け渡されたベルト30とを主に備える。エンジンからプライマリプーリ10に伝えられた動力は、ベルト30を介して所定のプーリ比で変速され、セカンダリプーリ20に伝達される。   FIG. 5 shows a configuration example of a continuously variable transmission. The continuously variable transmission 100 includes a primary pulley 10 connected to a power generation side (engine side), a secondary pulley 20 connected to a power transmission side (differential side), and a belt 30 stretched between them. Is mainly provided. The power transmitted from the engine to the primary pulley 10 is shifted at a predetermined pulley ratio via the belt 30 and transmitted to the secondary pulley 20.

プライマリプーリ10は、プーリ軸11と、プーリ軸11から外径に突出し、プーリ軸11と一体に設けられた固定シーブ12と、プーリ軸11の外周面に嵌合した可動シーブ13とを備える。可動シーブ13は、プーリ軸11に対して軸方向に移動可能に設けられる。固定シーブ12および可動シーブ13には、プーリ軸11方向で互いに対向した円すい面状のシーブ面12a・13aが形成され、これらのシーブ面12a・13aの間にベルト30が配される。   The primary pulley 10 includes a pulley shaft 11, a fixed sheave 12 that protrudes from the pulley shaft 11 to the outer diameter and is provided integrally with the pulley shaft 11, and a movable sheave 13 that is fitted to the outer peripheral surface of the pulley shaft 11. The movable sheave 13 is provided so as to be movable in the axial direction with respect to the pulley shaft 11. The fixed sheave 12 and the movable sheave 13 are formed with conical sheave surfaces 12a and 13a facing each other in the direction of the pulley shaft 11, and a belt 30 is disposed between the sheave surfaces 12a and 13a.

セカンダリプーリ20は、プライマリプーリ10とおよそ同様の構成を成し、車体側に固定されたプーリ軸21と、プーリ軸21から外径に突出し、プーリ軸21と一体に設けられた固定シーブ22と、プーリ軸21の外周面に嵌合した可動シーブ23とを備える。可動シーブ23は、プーリ軸21に対して軸方向に移動可能に設けられる。固定シーブ22および可動シーブ23には、プーリ軸21方向で互いに対向した円すい面状のシーブ面22a・23aが形成され、これらのシーブ面22a・23aの間にベルト30が配される。セカンダリ側(以下、「S側」と略す。)の固定シーブ22および可動シーブ23は、プライマリ側(以下、「P側」と略す。)の固定シーブ12および可動シーブ13と、プーリ軸方向で反転した位置関係にある。   The secondary pulley 20 has substantially the same configuration as the primary pulley 10, a pulley shaft 21 fixed to the vehicle body side, a fixed sheave 22 that protrudes from the pulley shaft 21 to the outer diameter, and is provided integrally with the pulley shaft 21. And a movable sheave 23 fitted to the outer peripheral surface of the pulley shaft 21. The movable sheave 23 is provided so as to be movable in the axial direction with respect to the pulley shaft 21. The fixed sheave 22 and the movable sheave 23 are formed with conical surface sheave surfaces 22a and 23a facing each other in the pulley shaft 21 direction, and the belt 30 is disposed between the sheave surfaces 22a and 23a. The fixed sheave 22 and the movable sheave 23 on the secondary side (hereinafter abbreviated as “S side”) and the fixed sheave 12 and the movable sheave 13 on the primary side (hereinafter abbreviated as “P side”) and the pulley shaft direction. It is in a reversed positional relationship.

このような無段変速機100において、図6に示すように、ベルト30のP側をプライマリプーリ10の外径部に捲回すると共に、S側をセカンダリプーリ20の小径部に捲回すると、プーリ比が大きい状態(すなわち高出力状態)となる。一方、これとは逆に、図7に示すように、ベルト30のP側をプライマリプーリ10の小径部に捲回すると共に、S側をセカンダリプーリ20の大径部に捲回すると、プーリ比が小さい状態(すなわち高速回転状態)となる。   In such a continuously variable transmission 100, as shown in FIG. 6, when the P side of the belt 30 is wound around the outer diameter portion of the primary pulley 10 and the S side is wound around the small diameter portion of the secondary pulley 20, The pulley ratio becomes large (that is, a high output state). On the other hand, when the belt 30 is wound around the small diameter portion of the primary pulley 10 and the S side is wound around the large diameter portion of the secondary pulley 20 as shown in FIG. Is small (that is, a high-speed rotation state).

図6に白抜き矢印で示すように、P側の可動シーブ13及びS側の可動シーブ23を軸方向に移動させることにより、ベルト30を径方向に移動させてプーリ比を無段階に変えることができる。このとき、一方の可動シーブのみを移動させると、ベルト30が余ったり足りなくなったりするので、両可動シーブ13・23を連動させて、ベルト30に一定に張力を加えるようにしている。   As indicated by white arrows in FIG. 6, the pulley ratio is continuously changed by moving the belt 30 in the radial direction by moving the movable sheave 13 on the P side and the movable sheave 23 on the S side in the axial direction. Can do. At this time, if only one of the movable sheaves is moved, the belt 30 becomes excessive or insufficient. Therefore, the movable sheaves 13 and 23 are interlocked to apply a constant tension to the belt 30.

このようにプーリ比を変えるとき、ベルト30と各シーブ面との摩擦等の影響により、ベルト30は、P側端部の軸方向位置とS側端部の軸方向位置とが少しズレた状態で走行する。このズレは、例えば、両固定シーブのシーブ面間距離を測定し、この測定値に応じて適当な厚さのシム40をセカンダリプーリ20の支持ベアリング24とケース50との間に挿入してシーブ面間距離を微調整することにより、修正することができる。   When the pulley ratio is changed in this way, the belt 30 is slightly displaced from the axial position of the P-side end and the axial position of the S-side end due to the influence of friction between the belt 30 and each sheave surface. Drive on. For example, the displacement is measured by measuring the distance between the sheave surfaces of the two fixed sheaves, and inserting a shim 40 having an appropriate thickness between the support bearing 24 of the secondary pulley 20 and the case 50 according to the measured value. It can be corrected by finely adjusting the inter-surface distance.

このとき、シーブ面間距離は正確に測定する必要がある。従来のシーブ面間距離の測定方法は、固定シーブのシーブ面の間に様々な厚さのブロックゲージを挿入し、シーブ面間にピッタリ入るブロックゲージの厚さをシーブ面間の距離として測定していた。しかし、シーブ面はテーパ状の曲面であるため、シーブ面間でブロックゲージを安定させることは困難である。このため、測定に時間がかかると共に、測定者ごとの測定値のバラつきが大きいという問題があった。   At this time, it is necessary to accurately measure the distance between the sheave surfaces. The conventional method for measuring the distance between sheave surfaces is to insert a block gauge of various thicknesses between the sheave surfaces of the fixed sheave, and measure the thickness of the block gauge that fits between the sheave surfaces as the distance between the sheave surfaces. It was. However, since the sheave surface is a tapered curved surface, it is difficult to stabilize the block gauge between the sheave surfaces. For this reason, there existed a problem that measurement took time and the variation of the measured value for every measurer was large.

例えば、特許文献1に示されているシーブ面間距離測定装置は、測定手段(電気マイクロメータ)を有する装置本体を、両プーリの固定シーブのシーブ面間に挿入することで、シーブ面間距離を測定している。   For example, a sheave surface distance measuring device disclosed in Patent Document 1 is a distance between sheave surfaces by inserting a device body having a measuring means (electric micrometer) between sheave surfaces of fixed sheaves of both pulleys. Is measuring.

特開2000−221026号公報JP 2000-2221026 A

しかし、テーパ面状のシーブ面間の距離を測定するには、図8に示すように、各固定シーブ12・22のシーブ面12a・22aの母線が互いに平行となる箇所において、両母線と直交する方向で距離を測定する必要があり、このような状態で装置本体を位置決めすることは容易ではない。上記特許文献1の装置では、装置本体の基準点をS側の固定シーブのシーブ面に当接させると共に、装置本体の基準点と反対側に設けられた2個の接触子を突出させてP側の固定シーブのシーブ面に当接させることで、装置本体を位置決めしている。この場合、接触子を突出させる工程が必要となるため、工数が増えて作業効率が悪い。また、接触子を突出させるシリンダ等の駆動手段を設ける必要があるため、装置が大型化することとなる。さらに、装置本体を正確に位置決めするには、2個の接触子の突出量を全く同じにする必要があるが、このためには、装置本体や接触子を高精度に設計すると共に、接触子を突出させる駆動手段を高精度に制御する必要があるため、設備の高コスト化を招くこととなる。   However, in order to measure the distance between the tapered sheave surfaces, as shown in FIG. 8, at the locations where the bus bars of the sheave surfaces 12a and 22a of the fixed sheaves 12 and 22 are parallel to each other, they are orthogonal to both bus bars. Therefore, it is not easy to position the apparatus main body in such a state. In the apparatus of Patent Document 1, the reference point of the apparatus main body is brought into contact with the sheave surface of the fixed sheave on the S side, and two contacts provided on the opposite side of the reference point of the apparatus main body are protruded to make P The apparatus main body is positioned by contacting the sheave surface of the fixed sheave on the side. In this case, since a process for projecting the contact is required, the number of steps is increased and the work efficiency is poor. Moreover, since it is necessary to provide driving means such as a cylinder for projecting the contact, the apparatus becomes large. Further, in order to accurately position the apparatus main body, it is necessary to make the protruding amounts of the two contacts exactly the same. For this purpose, the apparatus main body and the contactor are designed with high accuracy, and the contactor Since it is necessary to control the drive means for projecting with high accuracy, the cost of the equipment is increased.

本発明の課題は、無段変速機のP側の固定シーブのシーブ面とS側の固定シーブのシーブ面との距離を、簡易且つ高精度に測定することにある。   An object of the present invention is to easily and accurately measure the distance between the sheave surface of the P-side fixed sheave and the S-side fixed sheave of the continuously variable transmission.

前記課題を解決するために、本発明は、無段変速機におけるプライマリプーリ及びセカンダリプーリの固定シーブのシーブ面間距離を測定するための装置であって、一方のプーリのプーリ軸の外周面と嵌合するガイド部材と、ガイド部材に取付けられ、シーブ面と当接する基準面を有する装置本体と、装置本体に設けられ、シーブ面間の距離を測定する測定手段とを備え、ガイド部材を前記プーリ軸の外周面に嵌合させた状態で、装置本体の基準面が、一方のシーブ面の母線に沿って該シーブ面と当接するようにしたシーブ面間距離測定装置を提供するものである。   In order to solve the above problems, the present invention is an apparatus for measuring a distance between sheave surfaces of a fixed sheave of a primary pulley and a secondary pulley in a continuously variable transmission, and an outer peripheral surface of a pulley shaft of one pulley A guide member to be fitted; an apparatus main body having a reference surface attached to the guide member and contacting the sheave surface; and a measuring means provided on the apparatus main body for measuring a distance between the sheave surfaces. Provided is a sheave surface distance measuring device in which a reference surface of a device body is in contact with the sheave surface along a generatrix of one sheave surface in a state of being fitted to an outer peripheral surface of a pulley shaft. .

このように、本発明のシーブ面間距離測定装置では、プーリ軸の外周面にガイド部材を嵌合させた状態で、装置本体の基準面が固定シーブのシーブ面の母線に沿って該シーブ面に当接するようにしている。従って、ガイド部材をプーリ軸の外周面に嵌合させるだけで、シーブ面の母線を基準として測定方向を定めた状態で、装置本体を位置決めすることができる。これにより、測定時間を短縮できると共に、測定者ごとのバラつきを小さくすることができる。また、装置本体の位置決めにシリンダ等の駆動手段を用いる必要がないため、装置の小型化を図ることができる。   As described above, in the sheave surface distance measuring device according to the present invention, in a state where the guide member is fitted to the outer peripheral surface of the pulley shaft, the reference surface of the device body is along the generatrix of the sheave surface of the fixed sheave. It is trying to contact. Therefore, the apparatus main body can be positioned in a state where the measurement direction is determined with reference to the generatrix of the sheave surface only by fitting the guide member to the outer peripheral surface of the pulley shaft. Thereby, while being able to shorten measurement time, the variation for every measurer can be made small. Further, since it is not necessary to use a driving means such as a cylinder for positioning the apparatus main body, the apparatus can be miniaturized.

例えば、図9に示すように、装置本体3の基準面4aがシーブ面22aの母線と平行となっていない場合でも、装置本体3をガイド部材2に回動可能に取付けておけば、装置本体3を図中の矢印方向に回動させることにより、装置本体3の基準面4aを母線に沿ってシーブ面に当接させることができる(図10参照)。   For example, as shown in FIG. 9, even if the reference surface 4a of the apparatus main body 3 is not parallel to the generatrix of the sheave surface 22a, the apparatus main body 3 can be rotated by being attached to the guide member 2. By rotating 3 in the direction of the arrow in the figure, the reference surface 4a of the apparatus body 3 can be brought into contact with the sheave surface along the generatrix (see FIG. 10).

測定手段として、被測定物との距離を非接触で測定する測定器を用いれば、短時間で正確に被測定物との距離を測定することができる。このような非接触式の測定器は、被測定面が平面である場合は適しているが、シーブ面のような曲面の場合は適しておらず、測定精度が低下する恐れがある。そこで、測定手段に、基準面と直交する方向でスライド可能なフロート部を設け、このフロート部の一方の端部を他方のシーブ面と当接可能とすると共に、フロート部の他方の端部を平坦面とし、この平坦面との距離を非接触式の測定器で測定するようにした。これにより、曲面状のシーブ面を、フロート部を介して平坦面に変換し、この平坦面を被測定面として非接触式の測定器で測定することができるため、測定精度を高めることができる。   If a measuring instrument that measures the distance to the object to be measured without contact is used as the measuring means, the distance to the object to be measured can be accurately measured in a short time. Such a non-contact type measuring device is suitable when the surface to be measured is a flat surface, but is not suitable when the surface to be measured is a curved surface such as a sheave surface, and there is a possibility that the measurement accuracy may be lowered. Therefore, the measurement means is provided with a float portion that can slide in a direction perpendicular to the reference surface, and one end portion of the float portion can be brought into contact with the other sheave surface, and the other end portion of the float portion is A flat surface was used, and the distance from the flat surface was measured with a non-contact type measuring instrument. As a result, the curved sheave surface can be converted into a flat surface via the float portion, and the flat surface can be measured with a non-contact type measuring instrument as a surface to be measured, so that the measurement accuracy can be increased. .

以上のように、本発明によれば、無段変速機のP側の固定シーブとS側の固定シーブとのシーブ面間距離を、簡易且つ高精度に測定することができる。   As described above, according to the present invention, the distance between sheave surfaces of the P-side fixed sheave and the S-side fixed sheave of the continuously variable transmission can be measured easily and with high accuracy.

シーブ面間距離測定装置の斜視図である。It is a perspective view of the distance measurement apparatus between sheave surfaces. シーブ面間距離測定装置を無段変速機のプーリ軸に嵌合させた状態を示す断面図である。It is sectional drawing which shows the state which fitted the sheave surface distance measuring apparatus to the pulley shaft of a continuously variable transmission. 図2の拡大図である。FIG. 3 is an enlarged view of FIG. 2. シーブ面間距離測定装置の回転角θと、測定器とフロート部との間の距離Dとの関係を示すグラフである。It is a graph which shows the relationship between rotation angle (theta) of the distance measuring apparatus between sheave surfaces, and distance D between a measuring device and a float part. 無段変速機の断面図である。It is sectional drawing of a continuously variable transmission. プーリ比が高出力状態である無段変速機の断面図である。It is sectional drawing of the continuously variable transmission whose pulley ratio is a high output state. プーリ比が高速回転状態である無段変速機の断面図である。It is sectional drawing of the continuously variable transmission whose pulley ratio is a high-speed rotation state. シーブ面間距離Aを示す断面図である。It is sectional drawing which shows the distance A between sheave surfaces. 装置本体を、基準面が母線と平行でない状態でシーブ面に当接させた状態を示す断面図である。It is sectional drawing which shows the state which contact | abutted the apparatus main body to the sheave surface in the state in which the reference plane is not parallel to a generatrix. 装置本体を、母線に沿ってシーブ面に当接させた状態を示す断面図である。It is sectional drawing which shows the state which contact | abutted the apparatus main body to the sheave surface along the bus-line.

本発明の一実施形態に係るシーブ面間距離測定装置1(以下、「測定装置1」と略す。)は、図1に示すように、ガイド部材2と、ガイド部材2に取付けられた装置本体3とを備える。この測定装置1は、図2に示すように、無段変速機100のシーブ面間距離の測定に使用されるものであり、一方のプーリ軸(本実施形態では、S側のプーリ軸21)から可動シーブを取り外し、このプーリ軸21にガイド部材2を嵌合して使用される。   A sheave surface distance measuring device 1 (hereinafter, abbreviated as “measuring device 1”) according to an embodiment of the present invention includes a guide member 2 and an apparatus main body attached to the guide member 2, as shown in FIG. 3. As shown in FIG. 2, the measuring device 1 is used for measuring the distance between sheave surfaces of the continuously variable transmission 100. One pulley shaft (the pulley shaft 21 on the S side in this embodiment) The movable sheave is removed from the pulley shaft, and the guide member 2 is fitted to the pulley shaft 21 for use.

ガイド部材2は、一方のプーリ軸(本実施形態ではS側のプーリ軸21)に嵌合する円筒部2aと、円筒部2aから外径へ向けて延びた支持部2bとを有する。支持部2bは、円筒部2aをプーリ軸21に嵌合させた状態で、固定シーブ22のシーブ面22aの母線方向とおよそ平行な方向に延びている。   The guide member 2 has a cylindrical portion 2a fitted to one pulley shaft (S-side pulley shaft 21 in this embodiment) and a support portion 2b extending from the cylindrical portion 2a toward the outer diameter. The support portion 2 b extends in a direction approximately parallel to the generatrix direction of the sheave surface 22 a of the fixed sheave 22 in a state where the cylindrical portion 2 a is fitted to the pulley shaft 21.

装置本体3は、図3に示すように、基部4と、基部4に固定された測定器5と、基部4に対してスライド可能に取付けられたフロート部6とを有する。基部4は、側面視で略コの字型を成し、ガイド部材2の支持部2bにピン7を介して回動可能に取付けられる支持部4aと、支持部から突出した測定器取付部4bおよびフロート取付部4cと、S側の固定シーブ22のシーブ面22aと当接する基準面4dとを有する。フロート取付部4cには、フロート部6を挿入するための取付穴4c1が形成され、この取付穴4c1は、基準面4dと直交する方向に貫通して形成される。ガイド部材2の支持部2bと基部4との間には、スプリング8が配され、これにより基部4がピン7を中心に回動するように付勢される。図示例では、基部4の基準面4dの基端側(プーリ軸21側)をシーブ面22aに押し付ける側に付勢される。   As shown in FIG. 3, the apparatus main body 3 includes a base portion 4, a measuring instrument 5 fixed to the base portion 4, and a float portion 6 that is slidably attached to the base portion 4. The base 4 has a substantially U-shape when viewed from the side, and includes a support 4a that is rotatably mounted on the support 2b of the guide member 2 via a pin 7, and a measuring instrument mounting 4b that protrudes from the support. And a float mounting portion 4c and a reference surface 4d that contacts the sheave surface 22a of the S-side fixed sheave 22. An attachment hole 4c1 for inserting the float part 6 is formed in the float attachment part 4c, and the attachment hole 4c1 is formed so as to penetrate in a direction orthogonal to the reference surface 4d. A spring 8 is disposed between the support portion 2 b and the base portion 4 of the guide member 2, and thereby the base portion 4 is urged to rotate around the pin 7. In the illustrated example, the base end side (pulley shaft 21 side) of the reference surface 4d of the base portion 4 is urged toward the side pressed against the sheave surface 22a.

測定器5は、測定面5aと対向する被測定物(本実施形態ではフロート部6)との距離を非接触で測定するものであり、例えば、金属製の被測定物に近づいたときに内部に発生する誘導電流により、被測定物との距離を検出するものである。測定器5は、図示は省略するが、発振部、検出部、及び出力部を有するアンプを介してモニタ等の表示部に接続され、測定器5による測定結果が表示部に表示される。   The measuring device 5 measures the distance between the measurement object 5a and the object to be measured (float portion 6 in the present embodiment) in a non-contact manner. For example, when the measuring instrument 5 approaches a metal object, The distance to the object to be measured is detected by the induced current generated in the circuit. Although not shown, the measuring device 5 is connected to a display unit such as a monitor through an amplifier having an oscillation unit, a detection unit, and an output unit, and the measurement result by the measuring device 5 is displayed on the display unit.

フロート部6は、金属材料で形成され、軸部6aと、軸部6aの端部に設けられた頭部6bとを有する。基部4の基準面4dと直交する方向でスライド可能に設けられる。具体的には、軸部6aが基部4の取付穴4c1に挿入されると共に、頭部6bと基部4との間にスプリング9が配される。このスプリング9の弾性力により、フロート部6の頭部6bをP側の固定シーブ12のシーブ面12aに押し付ける側に付勢することができる。また、軸部6aの端部6a1は平坦面であり、測定器5の測定面5aと平行であり、且つ、対向している。測定器5およびフロート部6を上記のように配置することで、測定面5aと直交する方向、すなわち基部4の基準面4dと直交する方向において、測定面5aとフロート部6の端部6a1との間の距離を測定することができる。   The float part 6 is formed of a metal material, and includes a shaft part 6a and a head part 6b provided at an end of the shaft part 6a. The base 4 is provided so as to be slidable in a direction perpendicular to the reference surface 4d. Specifically, the shaft portion 6 a is inserted into the mounting hole 4 c 1 of the base portion 4, and the spring 9 is disposed between the head portion 6 b and the base portion 4. Due to the elastic force of the spring 9, the head 6 b of the float portion 6 can be biased toward the side pressed against the sheave surface 12 a of the P-side fixed sheave 12. Further, the end portion 6a1 of the shaft portion 6a is a flat surface, is parallel to the measuring surface 5a of the measuring instrument 5, and faces the measuring surface 5a. By disposing the measuring instrument 5 and the float portion 6 as described above, the measurement surface 5a and the end portion 6a1 of the float portion 6 are arranged in a direction orthogonal to the measurement surface 5a, that is, a direction orthogonal to the reference surface 4d of the base portion 4. The distance between can be measured.

上記構成の測定装置1によるシーブ面間距離の測定方法を、以下に説明する。   A method for measuring the distance between sheave surfaces by the measuring apparatus 1 having the above configuration will be described below.

まず、S側のプーリ軸21から可動シーブ23を取り外した状態で、このプーリ軸21の外周面にガイド部材2の円筒部2aを嵌挿する。そして、装置本体3の基部4の基準面4dを、S側の固定シーブ22のシーブ面22aに当接させる。このとき、装置本体3がピン7を中心に回動することにより、装置本体3の基準面4dをシーブ面22aの母線に沿って当接させることができる。上記のように、測定器による測定方向は基準面4dと直交する方向であるため、基準面4dをシーブ面22aの母線に沿って当接させることで、この母線と直交する方向を測定方向とすることができる。すなわち、ガイド部材2をプーリ軸21に嵌合させるだけで、測定器5による測定方向がシーブ面22aの母線と直交する方向となるように、装置本体3を位置決めすることができる。   First, with the movable sheave 23 removed from the S-side pulley shaft 21, the cylindrical portion 2 a of the guide member 2 is fitted into the outer peripheral surface of the pulley shaft 21. Then, the reference surface 4 d of the base portion 4 of the apparatus body 3 is brought into contact with the sheave surface 22 a of the S-side fixed sheave 22. At this time, the apparatus main body 3 rotates around the pin 7 so that the reference surface 4d of the apparatus main body 3 can be brought into contact with the generatrix of the sheave surface 22a. As described above, since the measurement direction by the measuring instrument is a direction orthogonal to the reference surface 4d, the direction orthogonal to the generatrix is defined as the measurement direction by bringing the reference surface 4d into contact with the generatrix of the sheave surface 22a. can do. That is, only by fitting the guide member 2 to the pulley shaft 21, the apparatus main body 3 can be positioned so that the measurement direction by the measuring instrument 5 is perpendicular to the generatrix of the sheave surface 22a.

この状態で、測定装置1をプーリ軸21周りに回転させ、両固定シーブ12・22のシーブ面12a・22aの間に装置本体3を通過させる。測定装置1を回転させる間、測定器5により、測定面5aとフロート部6の端部6a1との間の距離Dを測定する。このとき、フロート部6の端部6a1が平坦面であるため、非接触式の測定器5でも正確に距離を測定することができる。   In this state, the measuring device 1 is rotated around the pulley shaft 21, and the device main body 3 is passed between the sheave surfaces 12a and 22a of the fixed sheaves 12 and 22. While the measuring device 1 is rotated, the distance D between the measuring surface 5 a and the end 6 a 1 of the float unit 6 is measured by the measuring instrument 5. At this time, since the end portion 6a1 of the float portion 6 is a flat surface, even the non-contact type measuring device 5 can accurately measure the distance.

図4に、測定結果の一例として、測定装置1の回転角度θと、測定器5の測定面5aとフロート部6の端部6a1との距離Dとの関係を示す。測定装置1を回転させ始めてからフロート部6の頭部6bがシーブ面12aに当接するまでの間は、フロート部6は上下しないため、測定面5aとフロート部6の端部6a1との距離は変わらない(図4の領域B1)。フロート部6の頭部6bがシーブ面12aに当接すると、フロート部6が徐々に押し下げられ、シーブ面間の最短距離部を通過した後、フロート部6がスプリング8の弾性力で押し上げられ、フロート部6の頭部6bがシーブ面12aに押し付けられる(図4の領域B2)。その後、フロート部6の頭部6bがシーブ面12aから離隔すると、フロート部6は上下しないため、測定面5aとフロート部6の端部6a1との距離は変わらない(図4の領域B3)。   FIG. 4 shows a relationship between the rotation angle θ of the measuring device 1 and the distance D between the measuring surface 5a of the measuring instrument 5 and the end 6a1 of the float portion 6 as an example of the measurement result. Since the float 6 does not move up and down after the measurement apparatus 1 starts rotating until the head 6b of the float 6 contacts the sheave surface 12a, the distance between the measurement surface 5a and the end 6a1 of the float 6 is It does not change (area B1 in FIG. 4). When the head portion 6b of the float portion 6 contacts the sheave surface 12a, the float portion 6 is gradually pushed down, and after passing through the shortest distance portion between the sheave surfaces, the float portion 6 is pushed up by the elastic force of the spring 8, The head 6b of the float part 6 is pressed against the sheave surface 12a (region B2 in FIG. 4). Thereafter, when the head portion 6b of the float portion 6 is separated from the sheave surface 12a, the float portion 6 does not move up and down, so the distance between the measurement surface 5a and the end portion 6a1 of the float portion 6 does not change (region B3 in FIG. 4).

図4に示すように、領域B1における極小値D1が、測定面5aとフロート部6の端部6a1との距離の最小値である。このD1の値に基づいて、両固定シーブ12・22のシーブ面12a・22a間の距離を求めることができる。すなわち、上記の極小値D1と、基部4の測定器取付部4bおよび測定器5の厚さHと、フロート部6の長さLとを合計した値が、シーブ面12a・22a間の距離Aとなる(A=D1+H+L)。   As shown in FIG. 4, the minimum value D1 in the region B1 is the minimum value of the distance between the measurement surface 5a and the end portion 6a1 of the float portion 6. Based on the value of D1, the distance between the sheave surfaces 12a and 22a of the fixed sheaves 12 and 22 can be obtained. That is, the total value of the minimum value D1, the thickness H of the measuring instrument mounting portion 4b and measuring instrument 5 of the base portion 4, and the length L of the float portion 6 is the distance A between the sheave surfaces 12a and 22a. (A = D1 + H + L).

本発明は上記の実施形態に限られない。例えば、上記の実施形態では、装置本体3がガイド部材2に回動可能に取付けられているが、ガイド部材2とプーリ軸21との嵌合精度や、ガイド部材2に対する装置本体3の基準面4dの角度が高精度に設定されていれば、装置本体3にガイド部材2を回動しないように固定したり、あるいはこれらを一体に形成してもよい。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the apparatus main body 3 is rotatably attached to the guide member 2, but the fitting accuracy between the guide member 2 and the pulley shaft 21, and the reference surface of the apparatus main body 3 with respect to the guide member 2 If the angle 4d is set with high accuracy, the guide member 2 may be fixed to the apparatus main body 3 so as not to rotate, or these may be integrally formed.

また、上記の実施形態では、フロート部6を介してシーブ間距離を測定する場合を示しているが、例えば曲面でも測定可能な測定器であれば、フロート部6を省略し、測定器5で測定面5aとP側のシーブ面12aとの距離を直接測定することもできる。この場合、測定器5をP側のシーブ面12aに近接させた位置に配し、測定面5aとシーブ面12aとを、測定器5による測定が可能な程度に近接させておくことが望ましい。   Further, in the above embodiment, the case where the distance between sheaves is measured via the float unit 6 is shown. However, for example, if the measuring device can measure even a curved surface, the float unit 6 is omitted, and the measuring device 5 It is also possible to directly measure the distance between the measurement surface 5a and the P-side sheave surface 12a. In this case, it is desirable to place the measuring device 5 at a position close to the P-side sheave surface 12a, and to keep the measuring surface 5a and the sheave surface 12a as close as possible to allow measurement by the measuring device 5.

また、上記の実施形態では、測定装置1のガイド部材2をS側のプーリ軸21に嵌合する場合を示しているが、これとは逆にP側のプーリ軸11に嵌合して使用してもよい。   In the above embodiment, the guide member 2 of the measuring device 1 is fitted to the pulley pulley 21 on the S side. On the contrary, the guide member 2 is fitted to the pulley shaft 11 on the P side. May be.

1 シーブ面間距離測定装置
2 ガイド部材
3 装置本体
4 基部
4d 基準面
5 測定器
6 フロート部
10 プライマリプーリ
11 プーリ軸
12 固定シーブ
12a シーブ面
13 可動シーブ
20 セカンダリプーリ
21 プーリ軸
22 固定シーブ
22a シーブ面
23 可動シーブ
100 無段変速機
DESCRIPTION OF SYMBOLS 1 Sheave surface distance measuring apparatus 2 Guide member 3 Apparatus main body 4 Base part 4d Reference surface 5 Measuring device 6 Float part 10 Primary pulley 11 Pulley shaft 12 Fixed sheave 12a Sheave surface 13 Movable sheave 20 Secondary pulley 21 Pulley shaft 22 Fixed sheave 22a Sheave Surface 23 Movable sheave 100 continuously variable transmission

Claims (3)

無段変速機におけるプライマリプーリ及びセカンダリプーリの固定シーブのシーブ面間距離を測定するための装置であって、
一方のプーリのプーリ軸の外周面と嵌合するガイド部材と、ガイド部材に取付けられ、シーブ面と当接する基準面を有する装置本体と、装置本体に設けられ、シーブ面間の距離を測定する測定手段とを備え、ガイド部材を前記プーリ軸の外周面に嵌合させた状態で、装置本体の基準面が、一方のシーブ面の母線に沿って該シーブ面と当接するようにしたシーブ面間距離測定装置。
A device for measuring a distance between sheave surfaces of a fixed sheave of a primary pulley and a secondary pulley in a continuously variable transmission,
A guide member that fits to the outer peripheral surface of the pulley shaft of one pulley, a device main body that is attached to the guide member and has a reference surface that comes into contact with the sheave surface, and a distance provided between the sheave surfaces that is provided in the device main body. And a sheave surface in which the reference surface of the apparatus main body is in contact with the sheave surface along the generatrix of one sheave surface in a state where the guide member is fitted to the outer peripheral surface of the pulley shaft. Distance measuring device.
装置本体をガイド部材に回動可能に取付けた請求項1記載のシーブ面間距離測定装置。   The apparatus for measuring a distance between sheave surfaces according to claim 1, wherein the apparatus main body is rotatably attached to the guide member. 前記測定手段が、基準面と直交する方向でスライド可能なフロート部と、フロート部との距離を非接触で測定する測定器とを有し、フロート部の一方の端部を他方のシーブ面と当接可能とすると共に、フロート部の他方の端部を平坦面とし、この平坦面との距離を測定器で測定するようにした請求項1又は2記載のシーブ面間距離測定装置。   The measuring means has a float part slidable in a direction perpendicular to the reference plane, and a measuring instrument for measuring the distance between the float part in a non-contact manner, and one end of the float part is defined as the other sheave surface. The inter-sheave surface distance measuring device according to claim 1 or 2, wherein the abutment is possible and the other end of the float portion is a flat surface, and the distance from the flat surface is measured by a measuring instrument.
JP2009015427A 2009-01-27 2009-01-27 Sheave surface distance measuring device Expired - Fee Related JP5235143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009015427A JP5235143B2 (en) 2009-01-27 2009-01-27 Sheave surface distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009015427A JP5235143B2 (en) 2009-01-27 2009-01-27 Sheave surface distance measuring device

Publications (2)

Publication Number Publication Date
JP2010175279A JP2010175279A (en) 2010-08-12
JP5235143B2 true JP5235143B2 (en) 2013-07-10

Family

ID=42706410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015427A Expired - Fee Related JP5235143B2 (en) 2009-01-27 2009-01-27 Sheave surface distance measuring device

Country Status (1)

Country Link
JP (1) JP5235143B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004236B (en) * 2015-07-22 2018-01-30 神龙汽车有限公司 A kind of preceding face detection sample rack location structure and detection method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684303U (en) * 1993-05-11 1994-12-02 三井石油化学工業株式会社 Measuring device between crank arms
JP3518387B2 (en) * 1999-01-29 2004-04-12 日産自動車株式会社 Sheave surface distance measuring device for continuously variable transmission

Also Published As

Publication number Publication date
JP2010175279A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP4632962B2 (en) Coaxiality / perpendicularity measuring apparatus and method
KR101065442B1 (en) A 3 module integrated type wear tester
US20100145517A1 (en) Robot mechanism for nondestructive aging evaluation of cable
US20150260608A1 (en) Backlash measurement device and backlash measurement method
JP5235143B2 (en) Sheave surface distance measuring device
US20110072675A1 (en) Belt rib wear gauge
CN108318347B (en) Paper or cardboard short distance compressive strength testing arrangement
JP2011149788A (en) Shaft-center adjustment device of material testing machine
EP3708950B1 (en) Linear drive mechanism and shape measuring machine
JP5287139B2 (en) Holding jig for effective screw diameter measurement
EP1972831A2 (en) Continuously variable transmission and manufacturing method
JP2009115591A (en) Method and apparatus for inspecting power transmission chain
JP2005140534A (en) Method for measuring slack of chain for power transmission
JP4616547B2 (en) Parallelism measuring apparatus and parallelism determining method
JP2011117810A (en) Offset-amount confirmation instrument
JP2011133317A (en) Displacement measurement apparatus
JP3674755B2 (en) Pulley load measuring method and pulley load measuring device
JP2006308339A (en) Belt load measuring apparatus
JP5113665B2 (en) Eddy current flaw detection sensor jig and eddy current flaw detection sensor
KR102218360B1 (en) Device for measuring alignment status between pulleys
JP4655440B2 (en) Apparatus and method for measuring straightness of endless metal belt
CN211504000U (en) Measuring device and calibration structure of turbine helical angle
KR101714080B1 (en) Apparatus and method for measuring tiltable maximum angle of constant velocity joint for vehicle
JP2007298302A (en) Belt hardness measuring tool, and measuring method of belt hardness using it
JP2007256115A (en) Pulley for measuring belt tension

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees