JP2007240339A - Linearly moving dimension measuring device - Google Patents
Linearly moving dimension measuring device Download PDFInfo
- Publication number
- JP2007240339A JP2007240339A JP2006063561A JP2006063561A JP2007240339A JP 2007240339 A JP2007240339 A JP 2007240339A JP 2006063561 A JP2006063561 A JP 2006063561A JP 2006063561 A JP2006063561 A JP 2006063561A JP 2007240339 A JP2007240339 A JP 2007240339A
- Authority
- JP
- Japan
- Prior art keywords
- slide shaft
- arm member
- measurement
- shaft member
- pressing means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- A Measuring Device Byusing Mechanical Method (AREA)
Abstract
Description
本発明は、測定プローブを直線上で摺動させつつ被測定物に接触させて当該被測定物の所望部位についての寸法を計測する直動式寸法計測装置に関するものである。 The present invention relates to a direct-acting dimension measuring apparatus that measures a dimension of a desired part of a measurement object by bringing the measurement probe into contact with the measurement object while sliding on a straight line.
一般に被測定物の直径等を計測する寸法計測装置には、接触式のものと非接触式のものとがあるが、接触式のものは通常、非接触式のものに比べ、耐環境性に優れており、且つ、油膜などが付着した被測定物に対しても誤計測が少ないため、寸法計測において高い信頼を得ている。かかる接触式の寸法計測装置は、更に測定プローブを円弧状に動作させる回動支承式のものと測定プローブを直線上で動作させる直動支承方式のものとに大別される。 In general, there are two types of dimension measuring devices that measure the diameter of the object to be measured, such as contact type and non-contact type, but contact type is usually more environmentally resistant than non-contact type. It is excellent and has high reliability in dimensional measurement because there are few erroneous measurements even on an object to be measured to which an oil film adheres. Such contact-type dimension measuring devices are further roughly classified into a rotary support type that moves the measurement probe in an arc shape and a linear movement type that moves the measurement probe on a straight line.
このうち回転支承式のものは、直動支承方式に比べ、測定プローブの駆動抵抗が小さく低操作荷重での駆動が可能であるものの、測定プローブが円弧状に動作することから、被測定物の寸法変化と測定プローブの動作とが直線的比例関係とはならず、幅広い測定レンジのものには対応が困難である。然るに、幅広い測定レンジに対応させる必要がある計測工程においては、従来より、直動支承方式の寸法計測装置(直動式寸法計測装置)が多く使用されており、特に自動化工程に適用すべく、モータ等の駆動源の駆動により測定プローブを直線上で摺動させつつ被測定物に接触させて寸法計測し得るものが使用されるに至っている。尚、かかる先行技術は、文献公知発明に係るものでないため、記載すべき先行技術文献情報はない。 Of these, the rotary bearing type has a smaller driving resistance of the measurement probe than the direct acting type and can be driven with a low operating load. The dimensional change and the operation of the measurement probe do not have a linear proportional relationship, and it is difficult to cope with a wide measurement range. However, in the measurement process that needs to be compatible with a wide range of measurement, a dimension measuring device of the linear motion support system (linear motion dimension measuring device) has been used in the past, especially in order to apply to the automated process, A device capable of measuring a dimension by contacting a measurement object while sliding a measurement probe on a straight line by driving a drive source such as a motor has been used. In addition, since this prior art does not relate to the literature known invention, there is no prior art document information to be described.
しかしながら、上記従来の直動式寸法計測装置においては、幅広い測定レンジに対応し得るものの、回動支承式のものに比べ、測定プローブの駆動抵抗が大きくなることから、当該測定プローブの被測定物に対する接触圧が大きくなってしまう不具合があった。しかして、被測定物に対する接触圧が大きいと、測定プローブの撓みや被測定物に形成された微小陥没等に起因する計測誤差が大きくなってしまい、装置の信頼性が低下してしまうという問題があった。 However, although the above-mentioned conventional linear motion type dimension measuring apparatus can cope with a wide range of measurement, since the driving resistance of the measurement probe is larger than that of the rotation support type, the object to be measured of the measurement probe is There has been a problem that the contact pressure against becomes large. Therefore, if the contact pressure on the object to be measured is large, the measurement error due to the bending of the measurement probe or the minute depression formed on the object to be measured becomes large, and the reliability of the apparatus is lowered. was there.
また、多くの直動支承方式においては、測定プローブが先端に取り付けられたアーム部材と、測定プローブの摺動方向に延設されたボールネジ等の摺動軸と、該摺動軸にアーム部材を摺動自在に連結して支承させる軸受とを具備したものが一般的であるが、幅広い測定レンジを確保するには当該アーム部材を比較的長く設定して、測定プローブの接触位置から摺動軸の軸心までの寸法を大きくする必要がある。その場合、軸受におけるクリアランス(摺動のためにアーム部材基端側との間で必要なクリアランス)に起因するガタは、比較的長尺なアーム部材を介して測定プローブに伝わることとなるため、増幅されて大きなものとなり、計測誤差を生じさせる原因となる。 Further, in many linear motion support systems, an arm member with a measurement probe attached to the tip, a slide shaft such as a ball screw extending in the sliding direction of the measurement probe, and an arm member on the slide shaft It is common to have a bearing that is slidably connected and supported. However, in order to ensure a wide measurement range, the arm member is set to be relatively long, and the slide shaft is moved from the contact position of the measurement probe. It is necessary to increase the dimension up to the shaft center. In that case, since the play caused by the clearance in the bearing (clearance required between the base end side of the arm member for sliding) is transmitted to the measurement probe via the relatively long arm member, When amplified, it becomes large and causes measurement errors.
更に、測定プローブを駆動させるための操作駆動荷重と、測定プローブが被測定物に接触した際の接触部からの反力とによりアーム部材にモーメントが生じることから、当該アーム部材先端(測定プローブが取り付けられた側)での撓みが大きくなる傾向にあり、上述したガタと相まって、測定プローブの摺動に複雑なヒステリシスを生じさせる原因ともなっている。この場合、寸法計測装置全体としての繰り返し精度が低下してしまうという問題がある。 Furthermore, a moment is generated in the arm member due to the operation driving load for driving the measurement probe and the reaction force from the contact portion when the measurement probe contacts the object to be measured. There is a tendency for the deflection on the attached side) to increase, and in combination with the above-mentioned play, this causes a complicated hysteresis in the sliding of the measurement probe. In this case, there is a problem that the repetition accuracy of the entire dimension measuring apparatus is lowered.
本発明は、このような事情に鑑みてなされたもので、幅広い測定レンジを維持しつつ測定プローブの被測定物に対する接触圧を低減させるとともに、測定プローブの撓み及びガタを減少させてヒステリシスを低減させ、繰り返し精度を向上させることができる直動式寸法計測装置を提供することにある。 The present invention has been made in view of such circumstances, and reduces the contact pressure of the measurement probe against the object to be measured while maintaining a wide measurement range, and reduces the deflection and backlash of the measurement probe to reduce hysteresis. It is another object of the present invention to provide a direct-acting dimension measuring device that can improve the repeatability.
請求項1記載の発明は、測定プローブを直線上で摺動させつつ被測定物に接触させて当該被測定物の所望部位についての寸法を計測する直動式寸法計測装置において、先端に前記測定プローブが固定されたアーム部材と、該アーム部材の基端側に固定され、軸心が前記測定プローブの摺動方向に延びたスライド軸部材と、前記測定プローブの被測定物との接触位置から前記スライド軸部材の軸心までの長さより大きな離間寸法を有しつつ前記スライド軸部材の両端部を支持するとともに、当該スライド軸部材をその軸方向に摺動自在に支承する一対の軸受と、所定の弾性部材を介して前記アーム部材を押圧することにより当該アーム部材を前記スライド軸部材と共に摺動させ、前記測定プローブを被測定物に接触させ得る押圧手段とを備えたことを特徴とする。 According to the first aspect of the present invention, there is provided a linear motion type dimension measuring apparatus for measuring a dimension of a desired part of the measurement object by sliding the measurement probe on a straight line and contacting the measurement object. From the contact position between the arm member to which the probe is fixed, the slide shaft member that is fixed to the base end side of the arm member and whose axis extends in the sliding direction of the measurement probe, and the object to be measured of the measurement probe A pair of bearings that support both ends of the slide shaft member while having a separation dimension larger than the length to the shaft center of the slide shaft member, and slidably support the slide shaft member in the axial direction; A pressing unit that presses the arm member through a predetermined elastic member to slide the arm member together with the slide shaft member and to bring the measurement probe into contact with the object to be measured; And wherein the door.
請求項2記載の発明は、請求項1記載の直動式寸法計測装置、前記アーム部材は、左右一対配設されるとともに、一方のアーム部材の基端側に固定されたスライド軸部材に他方のアーム部材の基端側が連結され、その連結部には当該スライド軸部材の摺動を許容しつつ他方のアーム部材を支持する支持部材が形成されたことを特徴とする。 According to a second aspect of the present invention, the linear dimension measuring apparatus according to the first aspect, wherein the arm member is provided in a pair of left and right, and the other is a slide shaft member fixed to the base end side of one arm member. The base end side of the arm member is connected, and a support member that supports the other arm member while allowing the slide shaft member to slide is formed at the connecting portion.
請求項3記載の発明は、請求項1又は請求項2記載の直動式寸法計測装置において、前記押圧手段の前記アーム部材に対する接近を検知する検知手段を具備するとともに、当該検知手段による検知に基づき、前記押圧手段による押圧動作を停止させることを特徴とする。 According to a third aspect of the present invention, in the linear motion type dimension measuring apparatus according to the first or second aspect of the present invention, the linear movement type dimension measuring apparatus includes a detection unit that detects the approach of the pressing unit to the arm member, and the detection unit detects the approach. Based on this, the pressing operation by the pressing means is stopped.
請求項1の発明によれば、押圧手段が所定の弾性部材を介してアーム部材を押圧することにより測定プローブを被測定物に接触させ得るので、幅広い測定レンジを維持しつつ測定プローブの被測定物に対する接触圧を低減させることができる。同時に、スライド軸部材の両端部を摺動自在としつつ支持する軸受が、測定プローブの被測定物との接触位置からスライド軸部材の軸心までの長さより大きな離間寸法を有して配設されているので、測定プローブの撓み及びガタを減少させてヒステリシスを低減させ、繰り返し精度を向上させることができる。 According to the first aspect of the present invention, the pressing means can press the arm member via the predetermined elastic member to bring the measuring probe into contact with the object to be measured, so that the measuring probe can be measured while maintaining a wide measuring range. The contact pressure with respect to an object can be reduced. At the same time, bearings that support both ends of the slide shaft member while being slidable are arranged with a separation dimension larger than the length from the contact position of the measurement probe to the object to be measured to the axis of the slide shaft member. Therefore, it is possible to reduce the deflection and backlash of the measurement probe to reduce the hysteresis and improve the repeatability.
請求項2の発明によれば、一方のアーム部材の基端側に固定されたスライド軸部材に他方のアーム部材の基端側が連結され、その連結部には当該スライド軸部材の摺動を許容しつつ他方のアーム部材を支持する支持部材が形成されているので、支持部材にてアーム部材のスライド軸部材に対する回転方向の動作を規制することができ、両アーム部材の支持をより確実に行わせることができるとともに、支持部材をスライド軸部材とは別個の部材に形成させたものに比べ、直動型寸法計測装置全体を小型化することができる。
According to the invention of
請求項3の発明によれば、押圧手段のアーム部材に対する接近を検知する検知手段を具備するとともに、当該検知手段による検知に基づき、押圧手段による押圧動作を停止させるので、測定プローブが被測定物に接触した時点を正確に把握して押圧手段による押圧を即座に停止させることができる。
According to the invention of
以下、本発明の実施形態について図面を参照しながら具体的に説明する。
本実施形態に係る直動式寸法計測装置は、測定プローブを直線上で摺動させつつ被測定物に接触させて当該被測定物の所望部位についての寸法(具体的には外径)を計測するためのもので、図1及び図2に示すように、台部1と、本体部6と、台部1上に配設された下面固定部2と、本体部6に対して上下動可能に配設された可動部3と、該可動部3に配設された上面固定部4と、計測部5とから主に構成されている。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
The linear motion type dimension measuring apparatus according to this embodiment measures a dimension (specifically, an outer diameter) of a desired part of the measurement object by bringing the measurement probe into contact with the measurement object while sliding on a straight line. As shown in FIGS. 1 and 2, the
下面固定部2及び上面固定部4には、被測定物としてのワークWの下面及び上面に当接し得る突起部2a、4aがそれぞれ形成されている。そして、下面固定部2の突起部2aにワークWを載置させた状態で可動部3を下降させることにより、上面固定部4の突起部4aをワークWの上面に当接させ、当該ワークWを上下から挟持して固定し得るよう構成されている。
The lower
計測部5は、上述の如く固定されたワークWの外径を計測するための部位で、図3及び図4に示すように、左右一対のアーム部材8a、8bと、上下一対のスライド軸部材9a、9bと、軸受10a〜10dと、押圧手段11a、11bと、弾性部材としてのコイルスプリング12と、モータMにて回転可能なボールネジ13と、一対のリニアゲージS1、S2(図1参照)とから主に構成されている。
The
アーム部材8a、8bは、先端に測定プローブ7a、7bがそれぞれ固定されつつ図中左右方向へ直線的に摺動して互いに近接又は離間し得るもので、左側のアーム部材8a(以下、左側アーム部材8aと呼ぶ)の内側面にはリニアゲージS2の作動子S2a先端が当接するとともに、右側のアーム部材8b(以下、右側アーム部材8bと呼ぶ)の内側面にはリニアゲージS1の作動子S1a先端が当接するよう構成されている。しかして、リニアゲージS1及びS2の測定値に基づき、測定プローブ7a、7bの離間寸法を検出し得るようになっている。
The
また、左側アーム部材8aの基端側は、下側のスライド軸部材9b(以下、第2スライド軸部材9bと呼ぶ)に対して固定部材17を介して固定されるとともに、上側のスライド軸部材9a(以下、第1スライド軸部材9aと呼ぶ)に対して支持部材15を介し摺動自在に連結されている。一方、右側アーム部材8bの基端側は、第1スライド軸部材9aに対して固定部材14を介して固定されるとともに、第2スライド軸部材9bに対して支持部材16を介し摺動自在に連結されている。
Further, the base end side of the
これら第1スライド軸部材9a及び第2スライド軸部材9bは、軸心が測定プローブ7a、7bの摺動方向(図中、左右方向)に延びた長尺状部材から成り、両端部が軸受10a、10b及び10c、10dにて支持されるとともに、それぞれが左右方向に摺動自在とされている。即ち、軸受10a〜10dは、第1スライド軸部材9a及び第2スライド軸部材9bをその軸方向に摺動自在に支承し得るよう構成されており、これにより、第2スライド軸部材9bは、測定プローブ7aを有した左側アーム部材8aと一体化され、当該左側アーム部材8aと共に左右方向へ摺動可能とされるとともに、第1スライド軸部材9aは、測定プローブ7bを有した右側アーム部材8bと一体化され、当該右側アーム部材8bと共に左右方向へ摺動可能とされているのである。
The first
ここで、図5に示すように、測定プローブ7a、7bのワークWとの接触位置から第1スライド軸部材9a及び第2スライド軸部材9bの軸心までの長さt1よりも、軸受10a、10b(10c及び10dも同様)の離間寸法t2の方が大きくなるよう設定されている。これにより、軸受10a〜10dにて支持された第1スライド軸部材9a及び第2スライド軸部材9bに生じてしまうガタの測定プローブ7a、7bに対する影響を極力小さくすることができ、当該測定プローブ7a、7bの撓み及びガタを減少させてヒステリシスを低減させ、繰り返し精度を向上させることができる。
Here, as shown in FIG. 5, the
然るに、第2スライド軸部材9bが左側アーム部材8aと共に摺動しても、支持部材16がその摺動を許容しつつ右側アーム部材8bの基端側を支持する一方、第1スライド軸部材9aが右側アーム部材8bと共に摺動しても、支持部材15がその摺動を許容しつつ左側アーム部材8aの基端側を支持するよう構成されている。即ち、一方のアーム部材の基端側に固定されたスライド軸部材に他方のアーム部材の基端側が連結され、その連結部には当該スライド軸部材の摺動を許容しつつ他方のアーム部材を支持する支持部材が形成されているのである。
However, even if the second
押圧手段11a、11bは、コイルスプリング12、12を介して左側アーム部材8a及び右側アーム部材8bを押圧することにより、これら左側アーム部材8a及び右側アーム部材8bを第2スライド軸部材9b及び第1スライド軸部材9aと共に摺動させ、測定プローブ7a、7bを互いに近接させるためのものである。押圧手段11a、11bは、その基端がボールネジ13と連結され、モータMの回転駆動力が伝達されて左右に移動し得るようになっており、互いに近接する過程で左側アーム部材8a及び右側アーム部材8bを押圧して、これらも近接させ得るよう構成されている。
The pressing means 11a and 11b press the
コイルスプリング12は、押圧手段11a、11bからアーム部材8a、8bに亘って挿通されたボルトBの外周に配設されており、当該押圧手段11a、11bとアーム部材8a、8bとの間に介在したものである。かかるボルトBは、先端がアーム部材8a、8bに固定され、基端の頭部が押圧手段11a、11bに位置するよう配設されたもので、押圧手段11a、11bのアーム部材8a、8bに対する図3の状態からの更なる離間を規制する一方、近接は許容し、コイルスプリング12を介した押圧を可能としている。
The
従って、左側押圧手段11a及び右側押圧手段11bが弾性部材としてのコイルスプリング12を介して左側アーム部材8a及び右側アーム部材8bを押圧することにより測定プローブ7a、7bをワークWの側面に接触させ得るので、コイルスプリング12の弾力により当該測定プローブ7a、7bをワークWに対して極めてソフトに接触させることができ、幅広い測定レンジを維持しつつ測定プローブ7a、7bのワークWに対する接触圧を低減させることができる。
Therefore, the measurement probes 7a and 7b can be brought into contact with the side surface of the workpiece W by the left pressing means 11a and the right pressing means 11b pressing the
ボールネジ13は、モータMの出力軸と連結され、当該モータMの駆動により回転されるものであり、左側の押圧手段11a(以下、左側押圧手段11aという)の基端及び右側の押圧手段11b(以下、右側押圧手段11bという)の基端と連結されているとともに、左側押圧手段11aとの連結部位と右側押圧手段11bとの連結部位とでは外周のネジが逆に形成されている。これにより、モータMを正転駆動させれば、左側押圧手段11aと右側押圧手段11bとが近接する方向に移動し、当該モータMを逆転駆動させれば、左側押圧手段11aと右側押圧手段11bとが離間する方向に移動することとなる。
The ball screw 13 is connected to the output shaft of the motor M and is rotated by driving the motor M. The ball screw 13 is rotated by the drive of the motor M, and the proximal end of the left
また、左側押圧手段11aには、フォトセンサ19が形成されるとともに、左側アーム部材8aから左側押圧手段11aに向かって延設部18が延設されている。これらフォトセンサ19と延設部18とは、本発明における検知手段を構成するもので、左側押圧手段11aが左側アーム部材8aに近接すると、フォトセンサ19による光の送受が遮られ、当該近接を検知し得るよう構成されている。
Further, a
具体的には、左側押圧手段11aがコイルスプリング12を介して左側アーム部材8aを押圧して摺動させる過程で、測定プローブ7aがワークWの外周面に当接すると、左側アーム部材8aは静止して左側押圧手段11aがコイルスプリング12を圧縮つつ近接することとなるので、延設部18が図7の状態から図8の状態となり、発光素子19aから照射された光hを受光素子19bが受光しなくなる。
Specifically, in the process in which the left pressing means 11a presses and slides the
かかる光hの遮断の検知信号をモータMの駆動制御部に送り、当該モータMを瞬時に停止させるのである。尚、同様の検知手段が右側押圧手段11b及び右側アーム部材8bに形成されており、当該右側押圧手段11bの右側アーム部材8bに対する近接を検知し得るようになっている。これにより、測定プローブ7a、7bがワークWに接触した時点を正確に把握して左側押圧手段11a、右側押圧手段11bによる押圧を即座に停止させることができるので、当該測定プローブ7a、7bのワークWに対するソフトな接触を維持させることができる。
The detection signal for blocking the light h is sent to the drive control unit of the motor M, and the motor M is stopped instantaneously. Similar detection means are formed on the right pressing means 11b and the
次に、上記直動式寸法計測装置における作用について説明する。
まず、図3及び図4に示すように、測定プローブ7a、7bを十分に離間させた状態にてワークWを突起部2a、4aで挟持して固定させておく。かかる状態でモータMを正転駆動させると、左側押圧手段11aが図中右方向へ、右側押圧手段11bが図中左方向へ移動するので、それぞれがコイルスプリング12を介して左側アーム部材8a、右側アーム部材8bを押圧することとなる。
Next, the operation of the linear motion type dimension measuring apparatus will be described.
First, as shown in FIGS. 3 and 4, the workpiece W is sandwiched and fixed between the
これら左側アーム部材8aは、左側押圧手段11aで押圧されることにより、第2スライド軸部材9bと共に右方向へ摺動するとともに、その基端が支持部材15にて右側アーム部材8bの摺動に伴う第1スライド軸部材9aの摺動を許容(第1スライド軸部材9aとは連動しない)しつつ支持される一方、右側アーム部材8bは、右側押圧手段11bで押圧されることにより、第1スライド軸部材9aと共に摺動するとともに、その基端が支持部材16にて左側部材8aの摺動に伴う第2スライド軸部材9bの摺動を許容(第2スライド軸部材9bとは連動しない)しつつ支持される。
These
これにより、支持部材15、16にて左側アーム部材8a及び右側アーム部材8bの第1スライド軸部材9a、9bに対する回転方向の動作を規制することができ、両アーム部材8a、8bの支持をより確実に行わせることができるとともに、支持部材15、16をスライド軸部材9a、9bとは別個の部材に形成させたものに比べ、直動型寸法計測装置全体を小型化することができる。言い換えるならば、第1スライド部材9aは、左側アーム部材8aのスライド部としての機能と、右側アーム部材8bの回転規制としての機能との両者を兼用し得るとともに、第2スライド部材9bは、右側アーム部材8bのスライド部としての機能と、左側アーム部材8aの回転規制としての機能との両者を兼用し得るのである。
As a result, the
然るに、左側アーム部材8aの摺動と共にリニアゲージS2の作動子S2aが変位する一方、右側アーム部材8bの摺動と共にリニアゲージS1の作動子S1aが変位し、これらの変位を計測し得るようになっている。しかして、右側アーム部材8a及び左側アーム部材8bが押圧されて摺動し、互いに近接する過程において、図5及び図6で示すように、ワークWの両側面に測定プローブ7a、7bが接触すると、延設部18及びフォトセンサ19とから成る検知手段が検知し、モータMを停止させる。
However, the actuator S2a of the linear gauge S2 is displaced with the sliding of the
すなわち、ワークWに測定プローブ7a、7bに接触すると、左側アーム部材8a及び右側アーム部材8bが静止する一方、左側押圧手段11a及び右側押圧手段11bがコイルスプリング12を圧縮しつつ左側アーム部材8a及び右側アーム部材8bに接近し始め、図8に示すように、延設部18がフォトセンサ19における発光素子19aと受光素子19bとの間に介在することとなる。
That is, when the
この延設部18による介在で、発光素子19aから照射された光hを受光素子19bが受光しなくなると、測定プローブ7a、7bがワークWに接触したと把握できるので、その時点でモータMの駆動が停止され、左側押圧手段11a及び右側押圧手段11bによる押圧動作が停止することとなる。従って、測定プローブ7a、7bがワークWに接触したにも関わらず押圧手段11a、11bによる押圧が継続され、接触圧が過大となってしまうのを確実に回避することができる。
If the
こうしてモータMが停止した時点の左側アーム部材8aと右側アーム部材8bの変位をリニアゲージS1及びS2にて計測し、これに基づき各測定プローブ7a、7bのワークWの接触点間の寸法を把握すれば、ワークWの外径を検出することができる。外径を検出した後は、モータMを逆転駆動させ、押圧手段11a、11bを離間させると、ボルトBによりアーム部材8a、8bも離間し、初期位置まで戻って待機状態とされる。尚、押圧手段11a、11bが初期位置となったことを検知するセンサ(不図示)を設け、当該初期位置となった時点でモータMを停止させるよう構成するのが好ましい。
Thus, the displacement of the
本実施形態によれば、押圧手段11a、11bがコイルスプリング12を介してアーム部材8a、8bを押圧することにより測定プローブ7a、7bをワークWに接触させ得るとともに、スライド軸部材9a、9bの両端部を摺動自在としつつ支持する軸受10a〜10dが、測定プローブ7a、7bのワークWとの接触位置からスライド軸部材9a、9bの軸心までの長さt1より大きな離間寸法t2を有して配設されているので、幅広い測定レンジを維持しつつ測定プローブ7a、7bのワークWに対する接触圧を低減させることができると同時に、測定プローブ7a、7bの撓み及びガタを減少させてヒステリシスを低減させ、繰り返し精度を向上させることができる。
According to this embodiment, the
以上、本実施形態について説明したが、本発明はこれに限定されるものではなく、例えば延設部18及びフォトセンサ19とから成る検知手段に代え、測定プローブ7a、7bがワークWに接触したことを検知し得る他の検知手段(接触式或いは非接触式であってもよい)としてもよい。また、押圧手段11a、11bは、モータM及びボールネジ13にて駆動されているが、他の汎用的な駆動機構を用いるようにしてもよい。
Although the present embodiment has been described above, the present invention is not limited to this. For example, the measurement probes 7a and 7b are in contact with the workpiece W instead of the detection means including the extending
更に、本実施形態においては、コイルスプリングを介して押圧手段11a、11bがアーム部材8a、8bを押圧しているが、かかるコイルスプリングに代えて他の弾性部材(弾力に富んだゴムや樹脂等)としてもよい。尚、本実施形態いおいては、ワークWを床面に対して上下方向に固定して測定部5による測定を行っているが、当該ワークWを水平方向に固定するよう構成してもよい。
Further, in the present embodiment, the pressing means 11a and 11b press the
押圧手段が弾性部材を介してアーム部材を押圧することにより測定プローブを被測定物に接触させ得るとともに、スライド軸部材の両端部を摺動自在としつつ支持する軸受が、測定プローブの被測定物との接触位置からスライド軸部材の軸心までの長さより大きな離間寸法を有して配設された直動式寸法計測装置であれば、外観形状が異なるもの或いは他の機能が付加されたもの等にも適用することができる。 The measurement probe can be brought into contact with the object to be measured by pressing the arm member via the elastic member, and a bearing that supports both ends of the slide shaft member while being slidable is the object to be measured of the measurement probe. As long as it is a direct-acting dimensional measuring device that is arranged with a separation dimension larger than the length from the contact position to the axis of the slide shaft member, one with a different external shape or with other functions added The present invention can also be applied.
1 台部
2 下面固定部
3 可動部
4 上面固定部
5 計測部
6 本体部
7a、7b 測定プローブ
8a、8b アーム部材
9a、9b スライド軸部材
10a〜10d 軸受
11a、11b 押圧手段
12 コイルスプリング(弾性部材)
13 ボールネジ
14、17 固定部材
15、16 支持部材
18 延設部(検知手段)
19 フォトセンサ(検知手段)
S1、S2 リニアゲージ
M モータ
W ワーク(被測定物)
DESCRIPTION OF
13
19 Photosensor (detection means)
S1, S2 Linear gauge M Motor W Workpiece (Measurement object)
Claims (3)
先端に前記測定プローブが固定されたアーム部材と、
該アーム部材の基端側に固定され、軸心が前記測定プローブの摺動方向に延びたスライド軸部材と、
前記測定プローブの被測定物との接触位置から前記スライド軸部材の軸心までの長さより大きな離間寸法を有しつつ前記スライド軸部材の両端部を支持するとともに、当該スライド軸部材をその軸方向に摺動自在に支承する一対の軸受と、
所定の弾性部材を介して前記アーム部材を押圧することにより当該アーム部材を前記スライド軸部材と共に摺動させ、前記測定プローブを被測定物に接触させ得る押圧手段と、
を備えたことを特徴とする直動式寸法計測装置。 In a direct-acting dimension measuring device that measures a dimension of a desired part of the measurement object by contacting the measurement object while sliding the measurement probe on a straight line,
An arm member having the measurement probe fixed to the tip;
A slide shaft member fixed to the base end side of the arm member and having an axial center extending in the sliding direction of the measurement probe;
While supporting both ends of the slide shaft member while having a separation dimension larger than the length from the contact position of the measurement probe to the object to be measured to the axis of the slide shaft member, the slide shaft member is supported in the axial direction. A pair of bearings slidably supported on the
A pressing means capable of sliding the arm member together with the slide shaft member by pressing the arm member via a predetermined elastic member, and bringing the measurement probe into contact with the object to be measured;
A linear dimension measuring device characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006063561A JP2007240339A (en) | 2006-03-09 | 2006-03-09 | Linearly moving dimension measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006063561A JP2007240339A (en) | 2006-03-09 | 2006-03-09 | Linearly moving dimension measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007240339A true JP2007240339A (en) | 2007-09-20 |
Family
ID=38586024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006063561A Pending JP2007240339A (en) | 2006-03-09 | 2006-03-09 | Linearly moving dimension measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007240339A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101251007B1 (en) * | 2011-07-27 | 2013-04-04 | 한국생산기술연구원 | Device for measuring shape deviations of a cylindrical workpiece and Controlling Method for the same |
CN104296639A (en) * | 2014-08-29 | 2015-01-21 | 苏州创丰精密五金有限公司 | Product cylindricity inspection jig |
WO2015097919A1 (en) * | 2013-12-27 | 2015-07-02 | 株式会社 東京テクニカル | Over-ball diameter measurement device |
JP2015190769A (en) * | 2014-03-27 | 2015-11-02 | 日本精工株式会社 | Device and method for measuring dimension |
CN106441021A (en) * | 2016-11-24 | 2017-02-22 | 郑州艾莫弗信息技术有限公司 | Rotating shaft diameter sleeving detection tool for motor producing line |
CN106908682A (en) * | 2015-12-22 | 2017-06-30 | 昆山万盛电子有限公司 | Slidingtype probe tester and method |
JP2017146150A (en) * | 2016-02-16 | 2017-08-24 | 中国電力株式会社 | Pipe inspection jig and inspection method using the same |
KR102424323B1 (en) * | 2021-07-13 | 2022-07-25 | 주식회사 배터리파워솔루션 | Device for measuring diameter of cylindrical object |
-
2006
- 2006-03-09 JP JP2006063561A patent/JP2007240339A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101251007B1 (en) * | 2011-07-27 | 2013-04-04 | 한국생산기술연구원 | Device for measuring shape deviations of a cylindrical workpiece and Controlling Method for the same |
WO2015097919A1 (en) * | 2013-12-27 | 2015-07-02 | 株式会社 東京テクニカル | Over-ball diameter measurement device |
JP2015190769A (en) * | 2014-03-27 | 2015-11-02 | 日本精工株式会社 | Device and method for measuring dimension |
CN104296639A (en) * | 2014-08-29 | 2015-01-21 | 苏州创丰精密五金有限公司 | Product cylindricity inspection jig |
CN106908682B (en) * | 2015-12-22 | 2023-08-04 | 昆山万盛电子有限公司 | Sliding type probe testing device and method |
CN106908682A (en) * | 2015-12-22 | 2017-06-30 | 昆山万盛电子有限公司 | Slidingtype probe tester and method |
JP2017146150A (en) * | 2016-02-16 | 2017-08-24 | 中国電力株式会社 | Pipe inspection jig and inspection method using the same |
CN106441021A (en) * | 2016-11-24 | 2017-02-22 | 郑州艾莫弗信息技术有限公司 | Rotating shaft diameter sleeving detection tool for motor producing line |
KR102424323B1 (en) * | 2021-07-13 | 2022-07-25 | 주식회사 배터리파워솔루션 | Device for measuring diameter of cylindrical object |
KR20230011252A (en) * | 2021-07-13 | 2023-01-20 | 주식회사 배터리파워솔루션 | Device for measuring diameter of cylindrical object |
KR20230011253A (en) * | 2021-07-13 | 2023-01-20 | 주식회사 배터리파워솔루션 | Device for measuring diameter of cylindrical object |
KR102592151B1 (en) * | 2021-07-13 | 2023-10-23 | 주식회사 배터리파워솔루션 | Device for measuring diameter of cylindrical object |
KR102623327B1 (en) * | 2021-07-13 | 2024-01-11 | 주식회사 배터리파워솔루션 | Device for measuring diameter of cylindrical object |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4417338B2 (en) | Overpin diameter measuring device | |
JP2007240339A (en) | Linearly moving dimension measuring device | |
JP5288110B2 (en) | Angle measuring instrument | |
CN101142461B (en) | Measurement probe | |
US10507560B2 (en) | Apparatus movable by a coordinate measuring machine for positioning a measuring instrument with respect to a workpiece | |
JP5124579B2 (en) | Surface sensing device | |
US9829303B2 (en) | Shape measuring apparatus | |
JP5306132B2 (en) | Concentricity measuring device | |
JP6983588B2 (en) | Measuring instrument, collision evacuation mechanism used for it, and collision evacuation method | |
US4752166A (en) | Probing device | |
US6487897B1 (en) | Detector for surface texture measuring instrument | |
EP3382327B1 (en) | Compact coordinate measurement machine configuration with large working volume relative to size | |
JP2011085404A (en) | Detector and measuring device | |
US7231725B2 (en) | Probing pin and probe system equipped therewith | |
JP5371532B2 (en) | CMM | |
JP4449146B2 (en) | Plate thickness measuring device | |
WO2017144692A1 (en) | Follower device and checking method for measuring the profile of a workpiece | |
JP3784273B2 (en) | Work shape measuring sensor and work shape measuring device | |
CN115950330A (en) | Dimension measuring device | |
JPH0587502A (en) | Touch probe | |
TWI700477B (en) | Tool test device | |
US20190277615A1 (en) | Measurement apparatus | |
JP2006313102A (en) | Shape measuring system | |
JP7218415B2 (en) | Measuring instrument, collision avoidance method, machine tool, and work processing method | |
JP3787721B2 (en) | Method for detecting reference point of contact in measuring head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081127 |
|
A131 | Notification of reasons for refusal |
Effective date: 20081209 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20090403 Free format text: JAPANESE INTERMEDIATE CODE: A02 |