JP2007183129A - Hardness meter - Google Patents

Hardness meter Download PDF

Info

Publication number
JP2007183129A
JP2007183129A JP2006000522A JP2006000522A JP2007183129A JP 2007183129 A JP2007183129 A JP 2007183129A JP 2006000522 A JP2006000522 A JP 2006000522A JP 2006000522 A JP2006000522 A JP 2006000522A JP 2007183129 A JP2007183129 A JP 2007183129A
Authority
JP
Japan
Prior art keywords
push needle
fixing member
hardness meter
spring
leaf springs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006000522A
Other languages
Japanese (ja)
Inventor
Tadashi Mitsuhashi
正 三ツ橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2006000522A priority Critical patent/JP2007183129A/en
Publication of JP2007183129A publication Critical patent/JP2007183129A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hardness meter capable of measuring the measuring surface of a measuring target with high precision, without being affected by the surface state of the measuring surface. <P>SOLUTION: The hardness meter is constituted, by bringing the tip of a press needle into contact with the measuring surface of the measuring target to calculate the hardness of the measuring surface from the depth of the cavity formed in the measuring target and equipped with a fixing member 10 for holding the press needle fixing member 15 for holding the press needle 16 so as to move the same along the axial line of the press needle 16 and a pair of leaf springs 1a and 1b, arranged in opposed relationship at a definite interval so as to hold the fixing member 10. The leaf springs 1a and 1b have central spring parts 3 and both side spring parts 4a and 4b positioned on both sides of the central spring parts 3, and the center points 7 of the central spring parts 3 are fixed to the press needle fixing member 15, while the center points 8a and 8b of both side springs 4a and 4b are respectively fixed to the fixing member 10 and a pair of leaf springs 1a and 1b are arranged so that the straight lines passing the center points 7, 8a and 8b of the respective spring parts mutually form substantially 90°. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属材料等の硬いものではなく、ゴム、プラスチックス等の工業製品や例えば肌、筋肉、果実、食品等の医療、健康、食品産業において利用する硬さ測定器に関する。特に、押針を被測定物に当接させて測定を行なう接触式の硬さ計であって、押針を板バネによって保持する機構を備えた硬さ計に関するものである。   The present invention relates to an industrial product such as rubber and plastics, not a hard material such as a metal material, and a hardness measuring instrument used in medical, health and food industries such as skin, muscle, fruit and food. In particular, the present invention relates to a contact-type hardness meter that performs measurement by bringing a push needle into contact with an object to be measured, and relates to a hardness meter provided with a mechanism that holds the push needle with a leaf spring.

硬さ測定値に対応する押針変位を検出する手段としては、電子式あるいはデジタル式のものでは、光学式リニアゲージを用いたものが知られている(例えば、特許文献1参照。)。また、ゴム硬度計のバネ荷重装置として片持ち梁状の板バネ、あるいはループ状の板バネ、あるいは短冊形の細長板を2枚平行に配した板バネを用い、この板バネの表面に歪ゲージを貼り付けて板バネ表面の伸縮を検出することで、押針の変位を検出する方式も公知である(例えば、特許文献2〜3参照。)。   As a means for detecting the displacement of the push needle corresponding to the hardness measurement value, an electronic or digital type using an optical linear gauge is known (for example, see Patent Document 1). In addition, as a spring load device for the rubber hardness tester, a cantilever plate spring, a loop plate spring, or a plate spring in which two strip-shaped elongated plates are arranged in parallel is used. A method of detecting the displacement of the push needle by attaching a gauge and detecting the expansion and contraction of the surface of the leaf spring is also known (see, for example, Patent Documents 2 to 3).

特許文献1の光学式リニアゲージを用いる方式は、次の構造を有する。一方向に移動可能なスピンドルが備えられ、このスピンドルには格子が形成されたガラススケールが取り付けられる。このガラススケール上の格子に対向して隙間をなす位置で、先のガラススケール上の格子と同様の格子が形成された固定スケールと受光素子が本体に固定され、この受光素子に対向してガラススケールを挟んだ位置に発光素子が本体に固定される。そして、スピンドルと本体間には、ガラススケールが固定スケールに対して正しい位置に保てるように、回り止めピンが取り付いた構造をしている。   The method using the optical linear gauge of Patent Document 1 has the following structure. A spindle movable in one direction is provided, and a glass scale having a lattice is attached to the spindle. A fixed scale on which a lattice similar to the lattice on the previous glass scale is formed and a light receiving element are fixed to the body at a position facing the lattice on the glass scale, and the glass is opposed to the light receiving element. The light emitting element is fixed to the main body at a position across the scale. And, between the spindle and the main body, there is a structure in which a detent pin is attached so that the glass scale can be kept in a correct position with respect to the fixed scale.

特許文献2に片持ち梁状の板バネ、あるいはループ状の板バネを用いる方式は、次の構造を有する。支持部材の一端が本体に固定され、この支持部材の他端にはループ状の板ばねが取り付けられる。このループ状の板バネに押針が取り付けられ、押針がループ板バネを介して本体より吊り下げられた構造をしている。   The method using a cantilever-shaped leaf spring or a loop-shaped leaf spring in Patent Document 2 has the following structure. One end of the support member is fixed to the main body, and a loop-shaped leaf spring is attached to the other end of the support member. A push needle is attached to the loop-shaped leaf spring, and the push needle is suspended from the main body via the loop leaf spring.

特許文献3における硬さ計の短冊形の板バネを用いたバネ荷重機構について図5を用いて説明する。2つの平行な長孔を形成して3つに区分してなる両側バネ部150aと中央バネ部150bを有した板バネ150であって、この板バネ150の両側バネ部150aの一部が支持部材151に取り付けられ、2枚の板バネ150が隙間を成して平行に同一方向に配置している。そして2枚の板バネ間の中央バネ部150bの面には、連結部材152が配され、上側の中央バネ部150bとはネジ156によって固定され、下側の中央バネ部150bとは押針支持部材153によって固定され、押針支持部材153の一方の端面には押針154が取り付けられる。そして上側の板バネ150の両側バネ部150aの上面には固定部材155が取り付けられ、固定部材155の一部が図示していない硬さ計本体に固定される。そして板バネ150の中央バネ部150b上に歪みゲージ160が張り付けられ、中央バネ部150b表面の伸縮を検出することで、押針の変位を求める構造をしている。   A spring load mechanism using a strip-shaped leaf spring of a hardness meter in Patent Document 3 will be described with reference to FIG. A leaf spring 150 having a two-sided spring portion 150a and a central spring portion 150b formed by dividing two into three parallel long holes, a part of the both-side spring portion 150a of the leaf spring 150 being supported Attached to the member 151, two leaf springs 150 are arranged in parallel and in the same direction with a gap therebetween. A connecting member 152 is disposed on the surface of the central spring portion 150b between the two leaf springs. The connecting member 152 is fixed to the upper central spring portion 150b with a screw 156, and the lower central spring portion 150b is supported by a push needle. The push needle 154 is attached to one end surface of the push needle support member 153 that is fixed by the member 153. And the fixing member 155 is attached to the upper surface of the both-side spring part 150a of the upper leaf | plate spring 150, and a part of fixing member 155 is fixed to the hardness meter main body which is not shown in figure. And the strain gauge 160 is stuck on the central spring part 150b of the leaf | plate spring 150, and it has the structure which calculates | requires the displacement of a push needle by detecting the expansion-contraction of the central spring part 150b surface.

特開昭61−4942号(第7頁、図3)JP 61-4942 (Page 7, FIG. 3) 特開平1−284734号(第6頁、図3)JP-A-1-284734 (6th page, FIG. 3) 特開2001−50882号(第5頁、図2)JP 2001-50882 (5th page, FIG. 2)

特許文献1の光学式リニアゲージを用いる方式では、変位検出用の可動部として一定方
向に移動するスピンドルと、このスピンドルを保持する軸受けが必要であり、さらにスピンドルの変位を検出するリニアゲージの移動側ガラススケールを正しい位置に保持するための回り止めピンなども必要である。これらはいずれも本体ケースなどの固定部と摺動あるいは噛み合う形で接触し、作動時の摩擦によりやがて摩耗する。
The method using the optical linear gauge disclosed in Patent Document 1 requires a spindle that moves in a fixed direction as a movable part for detecting displacement, and a bearing that holds the spindle, and further moves the linear gauge that detects the displacement of the spindle. A detent pin or the like for holding the side glass scale in the correct position is also required. All of them come into contact with a fixed part such as a main body case in a sliding or meshing manner, and eventually wear due to friction during operation.

そのため、摩耗そのものによるガタツキ及び変位検出誤差だけでなく、汚損によって摩擦力が著しく増大し、この摩擦力が原因となってスピンドルに連結された硬さ計のバネ荷重装置の力が押針先端に伝達されず、被測定物を変形させるべき押針先端の力に大きな誤差を生じることになる。   For this reason, not only the rattling and displacement detection errors due to the wear itself, but also the frictional force increases significantly due to contamination, and this frictional force causes the force of the spring load device of the hardness meter connected to the spindle to be applied to the tip of the needle. A large error is generated in the force at the tip of the push needle which is not transmitted and should deform the object to be measured.

一方、特許文献2の片持ち梁状の板バネ、あるいはループ状の板バネに押針を吊り下げた構造では、摩擦及び摩耗の問題は生じないが、いずれも押針が固定部から中間を拘束されていないため、押針先端はかなり自由に横方向にも動いてしまう。更に、片持ち梁状の板バネでは、押針先端に垂直上向きの力だけが作用した場合でも、その先端は円弧状に動くので、上下の動きと同時に横方向にも動き、しかも押針の先端面は傾くことになる。このような挙動は硬度計本来の動きから外れ、測定上の誤差となる。   On the other hand, in the structure in which the push needle is suspended from the cantilever-shaped leaf spring or the loop-like leaf spring of Patent Document 2, there is no problem of friction and wear. Since it is not restrained, the tip of the push needle moves in the lateral direction fairly freely. Furthermore, with a cantilever-shaped leaf spring, even when only a vertical upward force is applied to the tip of the push needle, the tip moves in an arc shape, so that it moves in the horizontal direction simultaneously with the up and down movement, and the push needle The tip surface is inclined. Such behavior deviates from the original movement of the hardness meter, resulting in measurement errors.

また、特許文献3の短冊形の細長板を2枚平行に配した板バネを押針の軸線に対して垂直に配した構造では、上述した押針の挙動は抑えられるが、被測定物の押針の接触面の形状によって生じる横方向の力の作用に対する抗力は作用を受ける方向で異なることになる。従って、測定器に対して被測定物をその測定点を基準に回転させ、同一箇所を測定した場合に、厳密には被測定物の硬さ値に差を生じることになる。   Further, in the structure in which the leaf spring in which two strip-shaped elongated plates of Patent Document 3 are arranged in parallel is arranged perpendicular to the axis of the push needle, the behavior of the push needle described above can be suppressed, but the measurement object The resistance against the action of the lateral force caused by the shape of the contact surface of the push needle will differ depending on the direction of the action. Therefore, when the object to be measured is rotated with respect to the measuring instrument with reference to the measurement point, and the same part is measured, strictly speaking, a difference occurs in the hardness value of the object to be measured.

そして、上述した種々の板バネ構造において、板バネの平面には歪ゲージが貼り付けられ、押針の位置に応じ変形した板ばねの撓み量を歪みゲージで捉えることで押針の変位を求める構成では、押針先端に僅かな横方向の力が働いても板バネの表面に歪が生じ、歪ゲージはこれを押針先端の上下方向の変位による歪と区別せずに検出してしまう。また、押針の変位は、板バネの撓みによる歪み量から間接的に求められるため、測定上の誤差となる。   In the various leaf spring structures described above, a strain gauge is attached to the flat surface of the leaf spring, and the displacement of the push needle is obtained by capturing the amount of deflection of the leaf spring deformed according to the position of the push needle with the strain gauge. In the configuration, even if a slight lateral force acts on the tip of the push needle, the surface of the leaf spring is distorted, and the strain gauge detects this without distinguishing it from the strain caused by the vertical displacement of the tip of the push needle. . Further, since the displacement of the push needle is indirectly obtained from the amount of distortion caused by the bending of the leaf spring, it becomes a measurement error.

以上から、上記のような光学式リニアゲージを用いた方式では、機構部分の摩擦や摩耗による変位検出誤差が発生し、測定上の誤差を生じる問題がある。片持ち梁状の板バネやループ状の板バネを用いた方式においては、押針先端の横移動による誤差が発生し、この場合にも測定上の誤差を生じる問題がある。また、短冊形の細長板を2枚平行に配した板バネを押針の軸線に対して垂直に配した方式においては、横方向の力の作用に対する抗力は作用を受ける方向により異なり、この場合にも測定上の誤差を生じるという問題がある。   From the above, in the method using the optical linear gauge as described above, there is a problem that a displacement detection error due to friction and wear of the mechanism portion occurs, resulting in a measurement error. In the method using a cantilever-like plate spring or a loop-like plate spring, an error due to the lateral movement of the tip of the push needle occurs, and in this case, there is a problem that an error in measurement occurs. In addition, in the method in which a leaf spring in which two strip-shaped elongated plates are arranged in parallel is arranged perpendicular to the axis of the push needle, the resistance to the action of the lateral force differs depending on the direction of the action, in this case However, there is a problem that an error in measurement occurs.

本発明の目的は上記従来技術の問題点を解決し、被測定物の測定面の面状態に影響されずに高精度の測定が可能な硬さ計を提供することである。   An object of the present invention is to solve the above-described problems of the prior art and to provide a hardness meter capable of measuring with high accuracy without being affected by the surface state of the measurement surface of the object to be measured.

上記の課題を解決し、目的を達成するため、本発明にかかる硬さ計は、押針と、該押針を保持する押針固定部材と、該押針固定部材を押針軸線に沿って移動可能に保持する固定部材と、該固定部材を挟んで一定の間隔を設けて対向配置される一対の板バネと、該一対の板バネの間に配置され押針の変位を検出する位置検出部とを備え、押針の先端を被測定物に接触させ押針と被測定物との相対的な位置変化による位置検出部の変位に基づき被測定物の硬さを求める硬さ計であって、板バネは中央バネ部と該中央バネ部の両側に位置する両側バネ部とを有し、中央バネ部の中心点が押針固定部材に固定され、両側バネの中心点が固定部材にそれぞれ固定され、かつ一対の板バネは各々のバネ部の中心点を通る直線
が互いに略90度をなすように配置されていることを特徴とするものである。
In order to solve the above problems and achieve the object, a hardness meter according to the present invention includes a push needle, a push needle fixing member that holds the push needle, and the push needle fixing member along the push needle axis. A fixed member that is movably held, a pair of leaf springs that are opposed to each other with a fixed interval across the fixed member, and a position detection that is disposed between the pair of leaf springs to detect displacement of the push needle A hardness meter that obtains the hardness of the object to be measured based on the displacement of the position detection unit caused by the relative position change between the push needle and the object to be measured. The leaf spring has a center spring portion and both side spring portions located on both sides of the center spring portion, the center point of the center spring portion is fixed to the push needle fixing member, and the center point of the both side springs is fixed to the fixing member. Each pair of leaf springs is fixed so that the straight lines passing through the center point of each spring portion form approximately 90 degrees with each other. And it is characterized in that it is location.

この構成により、押針の軸方向に対する垂直な横方向からの力に対しては、軸受けやガイド機構のような摺合的な位置保持手段を用いることなく、一対の板バネが強い剛性を持った部材として働き、押針先端の横方向の動きはほとんど生じることがない。更に、被測定物の押針の接触面の形状によって生じる横方向の力の作用に対する抗力は、少なくとも板バネの支持点がある4方向からの作用に対しては同一の抗力を備えていることになる。その結果、測定誤差のない高精度の硬さ計を提供することができる。   With this configuration, the pair of leaf springs has strong rigidity against the force from the lateral direction perpendicular to the axial direction of the push needle without using a sliding position holding means such as a bearing or a guide mechanism. Acting as a member, there is almost no lateral movement of the tip of the push needle. Furthermore, the resistance against the action of the lateral force generated by the shape of the contact surface of the push needle of the object to be measured has at least the same resistance against the action from the four directions where the support points of the leaf springs are present. become. As a result, it is possible to provide a highly accurate hardness meter free from measurement errors.

そして、押針軸線方向に極めて小さな荷重から与えることができるので、正確で再現性のある測定結果を得ることができる。   And since it can give from a very small load to the needle axis direction, an accurate and reproducible measurement result can be obtained.

また、位置検出部は、押針軸線上又はその近傍に位置すると共に、一対の板バネ間の略中央位置に設けられることを特徴とするものである。   Further, the position detection unit is located on or near the needle axis, and is provided at a substantially central position between the pair of leaf springs.

この構成により、押針が横方向の力を受けた場合に、押針やこれに連なるリンク部材は一対の板バネ間の中心位置を基点にして動かされるので、位置検出部を構成する能動部の横方向への変動は最小に抑えられる。その結果、測定誤差の少ない高精度の硬さ計を提供することができる。   With this configuration, when the push needle receives a lateral force, the push needle and the link member connected to the push needle are moved based on the center position between the pair of leaf springs. Variation in the horizontal direction is minimized. As a result, it is possible to provide a highly accurate hardness meter with little measurement error.

また、位置検出部は、差動トランスまたはホール素子を用いた磁電変換式であることを特徴とするものである。   The position detection unit is a magnetoelectric conversion type using a differential transformer or a Hall element.

この構成により、押針の軸線方向の変位量を直接的に求められるため、測定誤差の少ない高精度の硬さ計を提供することができる。   With this configuration, since the displacement amount of the push needle in the axial direction can be directly obtained, a highly accurate hardness meter with little measurement error can be provided.

本発明によれば、押針の軸方向に対する垂直な横方向からの力に対しては、軸受けやガイド機構のような摺合的な位置保持手段を用いることなく、一対の板バネが強い剛性を持った部材として働き、押針先端の横方向の動きはほとんど生じることがない。その結果、測定誤差がなく、高精度の測定が可能な硬さ計を提供することができる。   According to the present invention, a pair of leaf springs has a strong rigidity against a force from a lateral direction perpendicular to the axial direction of the push needle without using a sliding position holding means such as a bearing or a guide mechanism. It works as a holding member, and there is almost no lateral movement of the tip of the push needle. As a result, it is possible to provide a hardness meter that can measure with high accuracy without any measurement error.

以下に添付図面を参照して、本発明にかかる硬さ計の好適な実施形態を詳細に説明する。図1、図2、図3は、本発明の第1の実施形態における硬さ計を示す図で、図4は第2の実施形態における硬さ計を示す図である。なお、以下の実施形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。   Exemplary embodiments of a hardness meter according to the present invention will be described below in detail with reference to the accompanying drawings. 1, 2, and 3 are diagrams showing a hardness meter in the first embodiment of the present invention, and FIG. 4 is a diagram showing the hardness meter in the second embodiment. Note that, in the following description of the embodiment and the accompanying drawings, the same reference numerals are given to the same components, and duplicate descriptions are omitted.

(第1の実施形態)
図1は本実施形態における硬さ計のバネ荷重機構を示す斜視図、図2は本実施形態における硬さ計のバネ荷重機構を示す分解斜視図、図3は本実施形態における硬さ計のバネ荷重機構板の板バネを示し、図3(a)は平面図、図3(b)は側面を示すと共に板バネの変形状態を示す図である。図1、図2に示すように、本実施形態における硬さ計のバネ荷重機構は、押針16と、押針16を保持する押針固定部材15と、押針固定部材15を押針軸線に沿って移動可能に保持する固定部材10と、固定部材10を挟んで一定の間隔を設けて対向配置される一対の板バネ1a、1bと、一対の板バネ1a、1bの間に配置され、押針16の変位を検出する位置検出部20とを備えている。一対の板バネ1a、1bはそれぞれ中央バネ部3と中央バネ部3の両側に位置する両側バネ部4a、4bとを有し、中央バネ部3の中心点7がリンク部材13を介して押針固定部材15に固定され、両側バネ4a、4bの中心点8a、8bが支持部材11を介して固定部材10にそれぞれ固定
されている。さらに、この一対の板バネ1a、1bは各々のバネ部3、4a、4bの中心点7、8a、8bを通る直線A、Bが互いに略90度をなすように配置されている。このように構成されたバネ荷重機構が図示しない硬さ計本体に内蔵して固定され硬さ計として動作を成すものである。本実施形態における硬さ計は押針16の先端を被測定物に接触させ押針16と被測定物との相対的な位置変化による位置検出部20の変位に基づき被測定物の硬さを求めるものである。
(First embodiment)
FIG. 1 is a perspective view showing a spring load mechanism of a hardness meter in the present embodiment, FIG. 2 is an exploded perspective view showing a spring load mechanism of the hardness meter in the present embodiment, and FIG. 3 is a diagram of the hardness meter in the present embodiment. FIG. 3A is a plan view, FIG. 3B is a view showing a side surface and a deformed state of the leaf spring. FIG. As shown in FIGS. 1 and 2, the spring load mechanism of the hardness meter according to the present embodiment includes a push needle 16, a push needle fixing member 15 that holds the push needle 16, and a push needle fixing member 15. Are disposed between the pair of leaf springs 1a and 1b, the pair of leaf springs 1a and 1b, which are arranged to be opposed to each other with a fixed gap therebetween. And a position detector 20 for detecting the displacement of the push needle 16. Each of the pair of leaf springs 1a and 1b has a central spring portion 3 and both spring portions 4a and 4b located on both sides of the central spring portion 3, and the central point 7 of the central spring portion 3 is pushed through the link member 13. It is fixed to the needle fixing member 15, and the center points 8 a and 8 b of the springs 4 a and 4 b are respectively fixed to the fixing member 10 via the support member 11. Further, the pair of leaf springs 1a and 1b are arranged such that the straight lines A and B passing through the center points 7, 8a and 8b of the spring portions 3, 4a and 4b form approximately 90 degrees. The thus configured spring load mechanism is built in and fixed to a hardness meter body (not shown) and operates as a hardness meter. The hardness meter in the present embodiment makes the tip of the push needle 16 contact the object to be measured, and determines the hardness of the object to be measured based on the displacement of the position detection unit 20 due to the relative position change between the push needle 16 and the object to be measured. It is what you want.

次に、本実施形態の硬さ計におけるバネ荷重機構に用いる板バネの形状及び変形について説明する。なお、板バネ1aと板バネ1bとは同一形状であるため纏めて説明する。図3に示すように、板バネ1a、1bは、薄板で長方形を成しており、その長手方向に平行して延びる対称配置された一対の長孔2a、2bを有している。長孔2a、2bを境に3つに区分してなる中央バネ部3と両側バネ部4a、4bとが形成されている。中央バネ部3は一対の長孔2a、2bの間に設けられ、両側バネ部4aは長孔2aの外側に、両側バネ部4bは長孔2bの外側に設けられている。また、中心バネ部3の中心点7の位置に固定用の孔5が形成され、両側バネ部4a、4bの中心点8a、8bの位置には、それぞれ固定用の孔6a、6bが形成されている。   Next, the shape and deformation of the leaf spring used for the spring load mechanism in the hardness meter of this embodiment will be described. The leaf spring 1a and the leaf spring 1b have the same shape and will be described together. As shown in FIG. 3, the leaf springs 1a and 1b are thin plates and have a rectangular shape, and have a pair of symmetrically arranged long holes 2a and 2b extending in parallel with the longitudinal direction thereof. A central spring part 3 and two side spring parts 4a and 4b, which are divided into three parts at the long holes 2a and 2b, are formed. The central spring portion 3 is provided between the pair of long holes 2a and 2b, the double-side spring portions 4a are provided outside the long holes 2a, and the double-side spring portions 4b are provided outside the long holes 2b. Further, a fixing hole 5 is formed at the position of the center point 7 of the center spring part 3, and fixing holes 6a and 6b are formed at the positions of the center points 8a and 8b of the both side spring parts 4a and 4b, respectively. ing.

次に、このように形成した板バネ1a、1bの変形状態について説明する。板バネ1a、1bの2つの両側バネ部4a、4bの中心点8a、8bを固定点とし、中央バネ部3の中心点7を可動点とし、中央バネ部3の中心点7に図3(b)に示すように矢印の方向の力を加えると一点鎖線で示したような変形が生じる。力が矢印Cの方向に加わる場合には、2つの両側バネ部4a、4bは中心点8a、8bを基点としてその長手方向の両端部の平面が矢印Cの方向に湾曲した形状となり、中央バネ部3はその長手方向の両端部の平面を基点として中心点7を頂点とする凸型に湾曲した形状となる。一方、力が矢印Dの方向に加わる場合には、2つの両側バネ部4a、4bは中心点8a、8bを基点としてその長手方向の両端部の平面が矢印Dの方向に湾曲した形状となり、中央バネ部3はその長手方向の両端部の平面を基点として中心点7を底点とする凹型に湾曲した形状となる。   Next, the deformation | transformation state of the leaf | plate springs 1a and 1b formed in this way is demonstrated. The center points 8a and 8b of the two springs 4a and 4b of the leaf springs 1a and 1b are fixed points, the center point 7 of the center spring part 3 is a movable point, and the center point 7 of the center spring part 3 is shown in FIG. When a force in the direction of the arrow is applied as shown in b), deformation as shown by the alternate long and short dash line occurs. When a force is applied in the direction of arrow C, the two side spring portions 4a and 4b have a shape in which the planes at both ends in the longitudinal direction are curved in the direction of arrow C with the center points 8a and 8b as the base points. The portion 3 has a shape curved in a convex shape with the center point 7 as a vertex with the planes at both ends in the longitudinal direction as the base point. On the other hand, when a force is applied in the direction of arrow D, the two side spring portions 4a, 4b have a shape in which the planes at both ends in the longitudinal direction are curved in the direction of arrow D with the center points 8a, 8b as the base points. The central spring portion 3 has a concave curved shape with the plane at both ends in the longitudinal direction as the base point and the center point 7 as the bottom point.

固定部材10は、角部4箇所に面取りを施して中心位置に孔21が設けられた平板状の長方形を成し、孔21を中心にして円周上に90度間隔で等距離の位置に4つの雌ネジ部22が形成されている。固定部材10の雌ネジ22には、支持部材11の一方の端面に形成されている雄ネジが係合され、支持部材11は、固定部材10の両平面に夫々2つずつその中心位置を基準にして同一線上の位置に取り付けられる。また、支持部材11の他方の端面に形成されている雌ネジ部には板バネ1a、1bの孔6a、6bを通してネジ12が取り付けられ、板バネ1a、1bが支持部材11に固定される。   The fixing member 10 is formed into a flat rectangular shape with chamfered corners at four corners and provided with a hole 21 at the center, and is equidistant at 90 ° intervals on the circumference with the hole 21 as the center. Four female screw portions 22 are formed. A male screw formed on one end surface of the support member 11 is engaged with the female screw 22 of the fixing member 10, and the support member 11 is based on the center position of each of the two planes of the fixing member 10. Are attached to the same line. A screw 12 is attached to the female screw portion formed on the other end surface of the support member 11 through the holes 6a and 6b of the plate springs 1a and 1b, and the plate springs 1a and 1b are fixed to the support member 11.

また、固定部材10の中心位置に設ける孔21には板バネ1a、1b同士を繋ぐためのリンク部材13が配置され、リンク部材13の一端には調整部材25が設けられ、この調整部材25に雄ネジが形成されている。この雄ネジ部を一方の板バネ1aの中央バネ部3の孔5に通して、一方の板バネ1aとリンク部材13の一端とをナット14によって係合し固定する。リンク部材13の他端にはコア支持部材23が設けられ、このコア支持部材23に雌ネジが形成されている。また、押針支持部材15の一方の端部には雄ネジ部が形成されている。この押針支持部材15の雄ネジ部を他方の板バネ1bの孔5に通してコア支持部材23の雌ネジ部に係合し固定する。このようにして、リンク部材13は、板バネ1a、1bの平面に対して垂直に取り付けられ、2枚の板バネ1a、1bが共動するように構成されている。   A link member 13 for connecting the leaf springs 1a and 1b to each other is disposed in the hole 21 provided at the center position of the fixing member 10, and an adjustment member 25 is provided at one end of the link member 13. A male screw is formed. The male screw portion is passed through the hole 5 of the central spring portion 3 of one leaf spring 1a, and the one leaf spring 1a and one end of the link member 13 are engaged and fixed by a nut 14. A core support member 23 is provided at the other end of the link member 13, and a female screw is formed on the core support member 23. A male thread portion is formed at one end of the push needle support member 15. The male screw portion of the push needle support member 15 is passed through the hole 5 of the other leaf spring 1b and engaged with and fixed to the female screw portion of the core support member 23. In this way, the link member 13 is attached perpendicularly to the plane of the leaf springs 1a and 1b, and is configured such that the two leaf springs 1a and 1b co-operate.

位検出器20は、一方の板バネ1aと他方の板バネ1bとから略等しい距離に設けられており、位置検出器20の受動部は、固定部材10に取り付けられており、位置検出器20の能動部は、リンク部材13上の位置検出器20の受動部に対応する位置に配置されて
押針16の動きに連動している。
The position detector 20 is provided at a substantially equal distance from the one leaf spring 1a and the other leaf spring 1b. The passive portion of the position detector 20 is attached to the fixed member 10, and the position detector 20 is provided. The active part is arranged at a position corresponding to the passive part of the position detector 20 on the link member 13 and interlocked with the movement of the push needle 16.

また、位置検出器20の外筒部は固定部材10の中心に形成された孔21に接着によって取り付けられている。位置検出器20の受動部には、差動トランスを形成する2つのコイル20aが内蔵されている。差動トランスの2つのコイル20aは、図示しない回路部より交流電圧が印加された励磁状態でコア20bが移動すると、2つのコイル20aのリアクタンスが変化して、コア20bの移動量に応じた出力電圧が得られる。   The outer cylinder portion of the position detector 20 is attached to a hole 21 formed at the center of the fixing member 10 by adhesion. The passive part of the position detector 20 incorporates two coils 20a that form a differential transformer. When the core 20b moves in an excited state in which an AC voltage is applied from a circuit unit (not shown), the reactance of the two coils 20a changes, and the two coils 20a of the differential transformer change according to the amount of movement of the core 20b. A voltage is obtained.

押針支持部材15は固定部材10の平面に対して鉛直方向に配置され、押針固定部材15の一方の端部は他方の板バネ1bを挟んでコア支持部材23に固定され、他方の端部には、被測定物に当接する押針16が着脱可能に取り付けられている。押針16は図示しない被測定物の形状や硬さ等に応じて最適なものに交換可能なようになっている。   The push needle support member 15 is arranged in a vertical direction with respect to the plane of the fixing member 10, and one end portion of the push needle fixing member 15 is fixed to the core support member 23 with the other leaf spring 1b interposed therebetween, and the other end. A push needle 16 that contacts the object to be measured is detachably attached to the portion. The push needle 16 can be replaced with an optimum one according to the shape and hardness of the object to be measured (not shown).

また、リンク部材13に設けられている調整部材25とコア支持部材23との間にはコア20bとコア固定部材24とが配置されている。コア支持部材23の雌ネジ部の反対側に設ける凹部(図示せず)には、磁性材料のコア20bの一端が係合し、コア20bはコア固定部材24とコア支持部材23に挟まれて固定される。さらにコア固定部材24が調整部材25にそれぞれに形成されたネジによって結合される。このようにして結合されたコア20bと、コア支持部材23と、コア固定部材24と、調整部材25とによってリンク部材13が形成されている。   A core 20 b and a core fixing member 24 are disposed between the adjustment member 25 and the core support member 23 provided on the link member 13. A recess (not shown) provided on the opposite side of the female threaded portion of the core support member 23 is engaged with one end of the core 20b of magnetic material, and the core 20b is sandwiched between the core fixing member 24 and the core support member 23. Fixed. Further, the core fixing member 24 is coupled to the adjustment member 25 by screws formed respectively. The link member 13 is formed by the core 20 b, the core support member 23, the core fixing member 24, and the adjustment member 25 that are combined in this manner.

このようにして、リンク部材13によって板バネ1a、1b同士が強固に連結され、押針16に加わった力の伝達が効率的になされ、繰り返し安定した測定が可能となる。   In this way, the leaf springs 1a and 1b are firmly connected by the link member 13, the force applied to the push needle 16 is efficiently transmitted, and repeated and stable measurements are possible.

この構成により、板バネ1a、1bは押針16の軸線方向でバネ定数の低い変位量の大きな変形が可能となり、押針16の軸線方向に沿って動作することが可能となり、横方向の力に対しては板バネ1a、1bのバネ部の平面が強い剛性を持った部材として働き、軸受けやガイド機構のような摺合的な位置保持手段を用いることなく、押針16の軸線方向に極めて小さな荷重から与えることができ、正確で再現性のある測定結果を得ることができる。   With this configuration, the leaf springs 1a and 1b can be deformed in a large displacement amount with a low spring constant in the axial direction of the push needle 16, and can operate along the axial direction of the push needle 16 to achieve a lateral force. In contrast, the flat surfaces of the spring portions of the leaf springs 1a and 1b work as members having strong rigidity, and without using sliding position holding means such as bearings or guide mechanisms, It can be applied from a small load, and accurate and reproducible measurement results can be obtained.

また、押針16の軸線方向の変位量を直接的に求めることができる。更に、押針16が横方向の力を受けた場合に、押針16やこれに連なるリンク部材13は板バネ1a、1b間の略等しい距離の位置を基点にして動かされるので、位置検出部20を構成する能動部の上下方向の変動を抑えることができる。その結果、測定誤差のない高精度の硬さ計を提供することができる。   Further, the displacement amount of the push needle 16 in the axial direction can be directly obtained. Further, when the push needle 16 receives a lateral force, the push needle 16 and the link member 13 connected to the push needle 16 are moved based on the positions of the substantially equal distances between the leaf springs 1a and 1b. The fluctuation in the vertical direction of the active part constituting 20 can be suppressed. As a result, it is possible to provide a highly accurate hardness meter free from measurement errors.

以上述べたように第1の実施形態におけるバネ荷重機構は、図示しない硬さ計本体に内蔵して固定されて硬さ計として動作を成すものである。押針16の先端を図示しない被測定物の表面に当接し、更に硬さ計本体が所定距離だけ被測定物側に押し下げられると、硬度、即ち被測定物面の窪みにくさに応じて押針16が相対的に持ち上げられる。   As described above, the spring load mechanism in the first embodiment is built in and fixed to a hardness meter body (not shown) and operates as a hardness meter. When the tip of the push needle 16 is brought into contact with the surface of the object to be measured (not shown) and the hardness meter body is pushed down to the object to be measured by a predetermined distance, the pressing according to the hardness, that is, the depression of the surface of the object to be measured. The needle 16 is lifted relatively.

そして、図3で示したように板バネ1a、1bの中央バネ部3と両側バネ部4a、4bに撓みが生じ、その撓みに応じて図1に示す押針16に連なる位置検出器20を構成する能動部であるコア20bの位置が、位置検出器20を構成する受動部であるコイル20aの位置に対して変位するため、位置検出器20の出力が変化する。その出力が適当な増幅回路において増幅され、かつ適当な表示計において硬度として表示される。   Then, as shown in FIG. 3, the center spring part 3 and the two side spring parts 4a and 4b of the leaf springs 1a and 1b are bent, and the position detector 20 connected to the push needle 16 shown in FIG. Since the position of the core 20b which is an active part constituting the position is displaced with respect to the position of the coil 20a which is a passive part constituting the position detector 20, the output of the position detector 20 changes. The output is amplified in a suitable amplifier circuit and displayed as hardness on a suitable indicator.

(第2の実施形態)
図4は本発明の第2の実施形態を示す斜視図である。この第2の実施形態では、位置検出部とリンク部材とが第1の実施形態とは異なる形態を示す。図4に示すように、本実施
形態におけるリンク部材としての支持軸101の一端には雄ネジが形成されており、第1の実施形態と同様に、この支持軸101の雄ネジ部を一方の板バネ1aにおける中央バネ部の孔に通して、一方の板バネ1aと支持軸101の一端とをナットによって係合し固定する。支持軸101の他端には雌ネジが形成されており、押針支持部材15の一方の端部に形成されている雄ネジ部を他方の板バネ1bの孔に通して支持軸101の雌ネジに係合し固定する。このようにして、支持軸101は、板バネ1a、1bの平面に対して垂直に取り付けられ、2枚の板バネ1a、1bが共動するように構成されている。
(Second Embodiment)
FIG. 4 is a perspective view showing a second embodiment of the present invention. In the second embodiment, the position detection unit and the link member are different from the first embodiment. As shown in FIG. 4, a male screw is formed at one end of the support shaft 101 as a link member in the present embodiment, and the male screw portion of the support shaft 101 is connected to one end as in the first embodiment. One leaf spring 1a and one end of the support shaft 101 are engaged and fixed by a nut through a hole in the central spring portion of the leaf spring 1a. A female screw is formed at the other end of the support shaft 101, and the male screw portion formed at one end of the push needle support member 15 is passed through the hole of the other leaf spring 1b to receive the female screw of the support shaft 101. Engage with and fix the screw. In this way, the support shaft 101 is attached perpendicularly to the plane of the leaf springs 1a and 1b, and the two leaf springs 1a and 1b are configured to move together.

位置検出部110は、ホール素子100と磁石103と磁石保持部材102とを備えている。ホール素子100は、固定部材10の板バネ1bと対向する平面に、直接または図示しない保持部材を介して取り付けられている。また、磁石保持部材102は支持軸101に固定されており、磁石保持部材102には、円筒状の磁石103が固定されている。磁石103は、その円筒中心軸が支持軸101の軸線方向と平行を成す向きで、かつ磁石103の円筒中心とホール素子100の検出部中心が揃う位置に配置されている。さらに、磁石103のホール素子100側の端面と、ホール素子100の端面(モールド面)とは一定の間隙を持たせて対向配置されている。   The position detection unit 110 includes a hall element 100, a magnet 103, and a magnet holding member 102. The Hall element 100 is attached to a plane facing the leaf spring 1b of the fixing member 10 directly or via a holding member (not shown). The magnet holding member 102 is fixed to the support shaft 101, and a cylindrical magnet 103 is fixed to the magnet holding member 102. The magnet 103 is arranged such that its cylindrical central axis is parallel to the axial direction of the support shaft 101 and the cylindrical center of the magnet 103 and the detection unit center of the Hall element 100 are aligned. Further, the end surface of the magnet 103 on the Hall element 100 side and the end surface (mold surface) of the Hall element 100 are arranged to face each other with a certain gap.

このように構成された位置検出部110によれば、押針16がその軸線方向に移動することにより、磁石103とホール素子100の間の隙間の距離が変化し、隙間に対する磁束密度の変化によってホール出力電圧が変化する。この変化によって、押針16の変位量を直接的に検出することができる。その結果、測定誤差のない高精度の硬さ計を提供することができる。   According to the position detection unit 110 configured in this way, the distance between the magnet 103 and the Hall element 100 changes due to the movement of the push needle 16 in the axial direction, and the change in the magnetic flux density with respect to the gap causes the change. Hall output voltage changes. By this change, the displacement amount of the push needle 16 can be directly detected. As a result, it is possible to provide a highly accurate hardness meter free from measurement errors.

以上述べたように第2の実施形態におけるバネ荷重機構は、第1の実施形態と同様に、図示しない硬さ計本体に内蔵して固定されて動作を成すものである。押針16の先端を図示しない被測定物の表面に当接し、更に硬さ計本体が所定距離だけ被測定物側に押し下げられると、硬度、即ち被測定物面の窪みにくさに応じて押針16が相対的に持ち上げられる。   As described above, the spring load mechanism in the second embodiment is built in and fixed to a hardness meter main body (not shown) as in the first embodiment. When the tip of the push needle 16 is brought into contact with the surface of the object to be measured (not shown) and the hardness meter body is pushed down to the object to be measured by a predetermined distance, the pressing according to the hardness, that is, the depression of the surface of the object to be measured. The needle 16 is lifted relatively.

そして、図3で示したように板バネ1a、1bの中央バネ部3と両側バネ部4a、4bに撓みを生じ、その撓みに応じて図4に示す押針16に連なる位置検出器110を構成する能動部である磁石103の位置が、位置検出器110を構成する受動部であるホール素子100の位置に対して変位するため、位置検出器110の出力が変化する。その出力が適当な増幅回路において増幅され、かつ適当な表示計において硬度として表示される。   Then, as shown in FIG. 3, the center spring portion 3 and the side spring portions 4a and 4b of the leaf springs 1a and 1b are bent, and the position detector 110 connected to the push needle 16 shown in FIG. Since the position of the magnet 103 which is an active part constituting the position is displaced with respect to the position of the Hall element 100 which is a passive part constituting the position detector 110, the output of the position detector 110 is changed. The output is amplified in a suitable amplifier circuit and displayed as hardness on a suitable indicator.

本発明の第1の実施形態である硬さ計を示す斜視図である。It is a perspective view which shows the hardness meter which is the 1st Embodiment of this invention. 本発明の第1の実施形態である硬さ計を示す分解斜視図である。It is a disassembled perspective view which shows the hardness meter which is the 1st Embodiment of this invention. 本発明の硬さ計のバネ形状及び変形を示す2面図である。It is a 2nd view which shows the spring shape and deformation | transformation of the hardness meter of this invention. 本発明の第2の実施形態である硬さ計を示す斜視図である。It is a perspective view which shows the hardness meter which is the 2nd Embodiment of this invention. 従来技術の硬さ計を示す斜視図である。It is a perspective view which shows the hardness meter of a prior art.

符号の説明Explanation of symbols

1a、1b 板バネ
2a、2b 長孔
3 中央バネ部
4a、4b 両側バネ部
5、6a、6b、21 孔
7、8a、8b 中心点
10 固定部材
11 支持部材
12 ネジ
13 リンク部材
14 ナット
15 押針固定部材
16 押針
20、110 位置検出器
20a コイル
20b コア
22 雌ネジ
23 コア支持部材
24 コア固定部材
25 調整部材
100 ホール素子
101 支持軸
102 磁石保持部材
103 磁石


1a, 1b Leaf spring 2a, 2b Long hole 3 Central spring part 4a, 4b Both-side spring part 5, 6a, 6b, 21 Hole 7, 8a, 8b Center point 10 Fixing member 11 Support member 12 Screw 13 Link member 14 Nut 15 Push Needle fixing member 16 Needles 20, 110 Position detector 20a Coil 20b Core 22 Female screw 23 Core support member 24 Core fixing member 25 Adjustment member 100 Hall element 101 Support shaft 102 Magnet holding member 103 Magnet


Claims (3)

押針と、該押針を保持する押針固定部材と、該押針固定部材を押針軸線に沿って移動可能に保持する固定部材と、該固定部材を挟んで一定の間隔を設けて対向配置される一対の板バネと、該一対の板バネの間に配置され前記押針の変位を検出する位置検出部とを備え、前記押針の先端を被測定物に接触させ前記押針と被測定物との相対的な位置変化による前記位置検出部の変位に基づき被測定物の硬さを求める硬さ計であって、前記板バネは中央バネ部と該中央バネ部の両側に位置する両側バネ部とを有し、前記中央バネ部の中心点が前記押針固定部材に固定され、前記両側バネの中心点が前記固定部材にそれぞれ固定され、かつ前記一対の板バネは各々のバネ部の中心点を通る直線が互いに略90度をなすように配置されていることを特徴とする硬さ計。 A push needle, a push needle fixing member that holds the push needle, a fixing member that holds the push needle fixing member so as to be movable along the push needle axis, and a fixed interval across the fixing member A pair of leaf springs disposed; and a position detection unit disposed between the pair of leaf springs to detect displacement of the push needle, wherein the tip of the push needle is brought into contact with an object to be measured; A hardness meter that obtains the hardness of the object to be measured based on the displacement of the position detection unit due to a relative position change with the object to be measured, wherein the leaf spring is positioned on both sides of the central spring part and the central spring part. A center point of the central spring part is fixed to the push needle fixing member, a center point of the both side springs is fixed to the fixing member, and the pair of leaf springs The straight lines passing through the center point of the spring part are arranged so as to form approximately 90 degrees with each other. Hardness meter that. 前記位置検出は、前記押針軸線上又はその近傍に位置すると共に、前記一対の板バネ間の略中央位置に設けられていることを特徴とする請求項1に記載の硬さ計。 2. The hardness meter according to claim 1, wherein the position detection is located on or near the push needle axis and is provided at a substantially central position between the pair of leaf springs. 前記位置検出は、差動トランスまたはホール素子を用いた磁電変換式であることを特徴とする請求項1または2に記載の硬さ計。

3. The hardness meter according to claim 1, wherein the position detection is a magnetoelectric conversion type using a differential transformer or a hall element.

JP2006000522A 2006-01-05 2006-01-05 Hardness meter Pending JP2007183129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000522A JP2007183129A (en) 2006-01-05 2006-01-05 Hardness meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000522A JP2007183129A (en) 2006-01-05 2006-01-05 Hardness meter

Publications (1)

Publication Number Publication Date
JP2007183129A true JP2007183129A (en) 2007-07-19

Family

ID=38339363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000522A Pending JP2007183129A (en) 2006-01-05 2006-01-05 Hardness meter

Country Status (1)

Country Link
JP (1) JP2007183129A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228372A (en) * 2013-05-22 2014-12-08 株式会社島津製作所 Indenter unit and hardness testing machine
CN114252362A (en) * 2021-12-02 2022-03-29 北京建筑大学 Biaxial loading fretting wear testing machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228372A (en) * 2013-05-22 2014-12-08 株式会社島津製作所 Indenter unit and hardness testing machine
CN114252362A (en) * 2021-12-02 2022-03-29 北京建筑大学 Biaxial loading fretting wear testing machine
CN114252362B (en) * 2021-12-02 2024-03-19 北京建筑大学 Double-shaft loading fretting wear testing machine

Similar Documents

Publication Publication Date Title
JP6593131B2 (en) Shape measuring device
JP2008185358A (en) Flatness measuring instrument
JP6011486B2 (en) Material testing machine
JP2002062124A (en) Length measuring device
JP4747029B2 (en) Hardness tester
JP4764638B2 (en) measuring device
CN102506688A (en) Resistance strain thickness measuring device and measurement method thereof
JP5854249B1 (en) Shape measuring device
JP2007183129A (en) Hardness meter
US4291466A (en) Transducer for measuring workpieces
JP2007085823A (en) Hardness meter
JP2014048234A (en) Apparatus and method for measuring gap
CN111664323B (en) Assembly with a main carrier, an intermediate carrier arranged on the main carrier and a scale arranged on the intermediate carrier
JP2004198350A (en) Thickness meter
JP6593862B2 (en) Height gauge
JP2007240418A (en) Hardness tester
KR20010077406A (en) High sensitive displacement measuring system using Linear Variable Differential Transformer
JP2001050882A (en) Rubber hardness meter with improved spring load mechanism
JP2022091495A (en) Caliper gauge
JP2015025777A (en) Measurement device
JP2008002820A (en) Dimension measuring instrument
CN108195698B (en) Indentation depth measuring device
JP3609271B2 (en) Displacement measuring device
TW202126983A (en) Low-cost compact micro-displacement sensor
CN208270363U (en) A kind of high-precision extensometer marking apparatus