JP4064011B2 - Rubber hardness tester with improved spring loading mechanism - Google Patents

Rubber hardness tester with improved spring loading mechanism Download PDF

Info

Publication number
JP4064011B2
JP4064011B2 JP22418899A JP22418899A JP4064011B2 JP 4064011 B2 JP4064011 B2 JP 4064011B2 JP 22418899 A JP22418899 A JP 22418899A JP 22418899 A JP22418899 A JP 22418899A JP 4064011 B2 JP4064011 B2 JP 4064011B2
Authority
JP
Japan
Prior art keywords
spring
push needle
rubber hardness
load mechanism
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22418899A
Other languages
Japanese (ja)
Other versions
JP2001050882A (en
Inventor
好平 明石
Original Assignee
有限会社エラストロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社エラストロン filed Critical 有限会社エラストロン
Priority to JP22418899A priority Critical patent/JP4064011B2/en
Publication of JP2001050882A publication Critical patent/JP2001050882A/en
Application granted granted Critical
Publication of JP4064011B2 publication Critical patent/JP4064011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は改良されたバネ荷重機構を備えたゴム硬度計に関するものである。
【0002】
【従来の技術】
JISK6253等で規定されているゴム硬度計(デュロメータ)において、硬さ測定値に対応する押針変位を検出する手段としては、機械式のものではダイヤルゲージ機構を用いた変位拡大機構が一般的であり、電子式あるいはデジタル式のものでは、光学式リニアゲージを用いたものが知られている(特開昭60─102540号公報、特開昭61─4942号公報)。またゴム硬度計のバネ荷重装置として片持ち梁状の板バネ、あるいはループ状の板バネを用い、この板バネの表面に歪ゲージを張りつけて板バネ表面の伸縮を検出することで、押針の変位を検出する方式も公知である(特開平1─284734号公報)。
【0003】
しかしながら、上記のようなダイヤルゲージ機構や光学式リニアゲージを用いた方式では、機構部分の摩擦や摩耗による変位検出誤差が発生し、片持ち梁状の板バネやループ状の板バネを用いた方式においては押針先端の横移動による誤差が発生するという問題がある。
【0004】
まず、ダイヤルゲージ機構を用いる方式では、変位検出用の可動部として一定方向に移動するスピンドルと、このスピンドルを保持する軸受けが必要であり、さらにスピンドルの変位を拡大機構に伝達するためのラック・ピニオン機構やその機構のための回り止めピンなども必要である。これらはいずれも本体ケースなどの固定部と摺動あるいは噛み合う形で接触し、作動時の摩擦によりやがて摩耗するため、摩耗そのものによるガタツキ及び変位検出誤差だけでなく、汚損によって摩擦力が著しく増大し、この摩擦力が原因となってスピンドルに連結された硬度計のバネ荷重装置の力が押針先端に伝達されず、試料を変形させるべき押針先端の力に大きな誤差を生じることになる。
【0005】
また、光学式リニアゲージを用いたものでも、スピンドルの軸受けとともに、リニアゲージの移動側ガラススケールを正しい位置に保持するための回り止めピンが必要であり、これらも作動時に摩擦を生じて上記と同様の誤差原因及び誤動作を招来することになる。
【0006】
一方、片持ち梁状の板バネ、あるいはループ状の板バネに歪ゲージを張りつけて変位を測定する方式では、固定部から押針先端までに軸受けや擦れ合い部がなく、摩擦及び摩耗の問題は生じないが、いずれも押針が固定部から中間を拘束されることなく、いわば吊り下げられた構造であるため、先端はかなり自由に横方向にも動いてしまう。このような動作状態はJISK6253等で規定された硬度計としての本来の動きから外れるだけでなく、押針先端に僅かな横方向の力が働いても板バネの表面に歪が生じ、歪ゲージはこれを押針先端の上下方向の変位による歪と区別せずに変位として検出してしまう。
【0007】
また、片持ち梁状の板バネでは、押針先端に垂直上向きの力だけが作用した場合でも、その先端は円弧状に動くので、上下の動きと同時に横方向にも動き、しかも押針の先端面は傾くことになる。このような挙動もまた硬度計本来の動きから外れ、測定上の誤差となる。
【0008】
【発明が解決しようとする課題】
本発明の目的は、押針とそれに連結された可動部と固定部との間に機械的接触及びそれに伴う摩擦がなく、しかも押針先端が横方向に揺動することのないバネ荷重機構と変位検出機構を備えたゴム硬度計を提供することである。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、本発明のゴム硬度計は、押針の先端を垂直にゴム面にあてがい、この押針を直接又は間接的に自由端部で支持したバネ荷重機構の基端部を所定距離だけ前記ゴム面に接近させたとき、前記押針の先端によりゴム面に生じた窪みの深さからゴム硬度を求めるようにしたゴム硬度計において、
前記押針自体又は押針支持部材の前記先端から押針軸線に沿って後方に第1及び第2の距離だけ退いた二つの位置を、前記バネ荷重機構の自由端部による前記押針のための第1及び第2の支持位置とし、
前記バネ荷重機構は、主要部が長方形の板バネにおいて、その板バネの両側辺に沿い且つ平行して延びる対称配置スリットを形成する一対の長孔を有することにより両側バネ部と中央バネ部を区分してなる2枚の前記板バネを、前記押針のための第1及び第2の支持位置の間隔に対応する間隔で平行に維持し、各板バネの両側バネ部の各中間位置と、中央バネ部の中間位置のいずれか一方を前記バネ荷重機構の基端部としてゴム硬度計本体に関連固定するとともに、他方の中間位置を前記バネ荷重機構の自由端部として前記押針のための第1及び第2の支持位置の各々に接合したことを特徴とするものである。
【0010】
上記の構造において、各板バネの両側バネ部又は中央バネ部の中間位置は、それらバネ部の両端に対しては上下方向にのみ変位可能な板バネ素子となり、両側バネ部と中央バネ部は互いに板バネ部分で連なっているため、バネ荷重機構の自由端部とした両側又は中央バネ部の中間位置は、基端部である他方のバネ部の中間位置に対し、結局、上下方向にのみ変位することが可能となる。すなわち、前後左右の力に対しては、軸受けやガイド機構のような摺合的な位置保持手段を用いることなく、2枚の組み合わされた板バネが強い剛性を持った部材として働き、押針先端の前後左右方向の動きはほとんど生じない。
【0011】
【発明の実施の形態】
図1は、本発明のバネ荷重機構に用いる板バネの平面形状を示すもので、実質上短冊形の細長板バネ片から形成された板バネ1には、その両側辺2、2に沿って平行に延びる対称配置された一対の長孔3を有する。この長孔3は両側バネ部4と中央バネ部5を区分するスリットを形成する。側辺2、2の各中間位置にはタブ6が連設され、これらのタブ周辺を3辺に含めた板バネ1両側部の中間正方形領域の中心に取り付け用の余裕孔7が形成される。中央バネ部5の中間位置にも取り付け用の余裕孔8が形成される。結局、板バネ1の形状は中央バネ部5の余裕孔8を中心として前後及び左右対称に仕上げられている。
【0012】
図2は上記の板バネを2枚、バネ荷重機構として押針に連結した構造を3面から見たものである。この場合、板バネ1a及び1bは上下に間隔をおいて、それらの両側バネ部、及び中央バネ部を対応するスペーサにより保持される。これらのスペーサは、それぞれ両側保持部材9及び中央保持部材10の一部をなしている。両側保持部材9は図2Cにおいて明らかな通り、上部ヨーク9a、一対のスペーサ9b、及び角座金9cからなっており、上部ヨーク9aの両脚部と一対のスペーサ9bの上端面との間に板バネ1aの両側中間部を挟み、さらに前記一対のスペーサ9bの下端面と角座金9cとの間に板バネ1bの両側中間部を挟んだものである。ヨーク9a両脚部の貫通ネジ孔及びスペーサ9bの貫通余裕孔には、それぞれ上部取り付けボルト11a及び下部取り付けボルト11bを、上方及び下方から挿入して前述した板バネの余裕孔7(図1)を貫通せしめることにより、これらの板バネ1a、1bを等間隔で平行に保持したものである。
【0013】
中央保持部材10は図2B及びCにおいて明らかな通り、上部座金10a、中央スペーサ10b、及び角形ナット10cからなり、上部座金10aと中央スペーサ10bの上端面との間に板バネ1aの中央部を挟み、さらにスペーサ10bの下端面と角形ナット10cとの間に板バネ1bの中央部を挟んだものである。スペーサ10bの貫通余裕孔と角形ナット10cには、上部座金10aを通じて上方より長ボルト12を挿入することにより、中央保持部材10を板バネ1a、1bとともに固定する。図2Bからよく理解できる通り、角形ナット10cには両翼部が形成され、常時はその裏面(ナット下端面)10eが、同図において部分的に示した硬度計ケーシングの下端軸孔部13の内部孔縁に当接・支持されるようになっている。
【0014】
角形ナット10cの下方から突出した長ボルト12の比較的長い先端部には内周ネジを有する押針用ジョイント管14の上部が係合する。ジョイント管14は前述した下端軸孔部13を遊通し、常時はその下端部が硬度計ケーシングの最下端部(図示せず)にほぼ対応した位置を占める。ジョイント管14内において長ネジ12以下の内周ネジには、押針15の本体ネジ部15aが挿入・固定され、ジョイント管14下端から露出した押針側のネジ部15a先端には、ナット16が係合してジョイント管14との係合状態を締結する。かくして、中央保持部材10、長ボルト12、ジョイント管14及びナット16は、一体となって押針15の支持部材を構成する。そして、中央保持部材10における座金10a/スペーサ10b間の位置は、押針先端からその軸方向に第1の距離だけ後退した板バネ1a自由端部による押針のための第1の支持位置となり、スペーサ10b/角形ナット16間の位置は押針先端から軸方向に第2の距離だけ後退した板バネ1b自由端部による押針のための第2の支持位置となる。
【0015】
上述した板バネ1a、1bと両側保持部材9及びジョイント管14を介して押針15を保持した中央保持部材10からなるバネ荷重機構は、板バネ1a、1bが平坦な定常状態において中央保持部材10の角形ナット10cが硬度計ケーシングの下端軸孔部13に当接・支持され、同部材10の下方移動、従って板バネの中央バネ部5の下向き凸型の湾曲は生じない。しかしながら、押針15が硬度計ケーシング、従って両側保持部材9に対して上向きに加圧されたときは、図2Bに仮想線で示すように、その加圧に任せて板バネ1a、1bにおける中央バネ部5の上向き凸型の湾曲、従って押針15が相対的に持ち上げられることを妨げられるものではない。この中央バネ部5の上向き凸型の湾曲は、両側バネ部4との接続部である板バネ両端を持ち上げつつ生ずるので、当該バネ部4は上向き凹型の湾曲を生ずるが、各板バネ1a、1bの一面性及び上下配置の結果として横方向の歪みは殆ど生じない。
【0016】
図3〜図5は前述したバネ荷重機構を収容した硬度計ケーシングの上面、側面、横断面をそれぞれ破断面又は半断面を合わせて示す図である。ケーシング本体17は、両側保持部材9の幅に対応する室内幅と深さ、及び板バネ1a、1bの長さに対応する室内長さを有する直方体の箱状をなし、上部取り付けボルト11aにより両側保持部材のヨーク9a両脚部を保持した蓋18を被せ、これを側縁ボルト19(図3)により固定保持することにより、バネ荷重機構の全体を収容保持するものである。
【0017】
前述したケーシングの下端軸孔部13は、ケーシング本体の底板部17aの中央部から下方に突出した大ボス部17bの貫通ネジ孔20に下方よりねじ込まれる本体部と、そのねじ込み先端側において中央保持部材10の角形ナット10cを支持する小ボス部13a、及びそのねじ込み後端側から前記大ボス部17bの厚みにほぼ対応する範囲において下方に突出する外径縮小部13bを有するネジブロックからなり、そのねじ込み位置を調整することによって板バネ1a、1bにバイアス撓みを与え、押針15にかかる初期荷重を設定するものである。但し、図4及び図5に示す状態は、中央保持部材10に支持された板バネ1a、1bの中央バネ部5が、両側バネ部4、4と同一の水平面内に維持されたゼロバイアス状態であり、押針15への初期荷重はゼロである。
【0018】
外径縮小部13bの外周と貫通ネジ孔20の内周(ネジ面)との間には十分な厚みの環状空間が形成され、貫通ネジ孔20の内周には中空部21aを有するプラグヘッド21の先端部における外周ネジ21bがネジ係合し、外径縮小部13bの外周はプラグヘッド21の中空部21aを形成する内周面に余裕を持って対応する。プラグヘッド21の下端面部中央には、押針15及びネジ部15aの配置及び通過を許容する中央孔を有し、ネジ部15aを締結したナット16はプラグヘッド21の中空部21a内に位置する。
【0019】
特に図3から明らかなとおり、例えば、板バネ1aの中央バネ部5において、長手方向の中間(バネ荷重機構取り付け位置)よりも少しだけ右側に寄った位置に歪ゲージ22が張りつけられる。板バネの撓み量と各表面の歪みはその位置ごとに比例するため、歪ゲージ位置は撓み変位を生ずる限り何処でもよいことになり、前述のとおり2枚の板バネ1a、1bの平行維持作用と相まって板バネ面方向の歪も殆ど生じないが、押針15先端に強い横方向の力が働いて板バネ表面に歪みが生ずる恐れのあるときは、2個、4個又は6個等の歪ゲージを板バネ上に前後左右対照的に配置すると、これらの歪ゲージの出力の横方向成分が互いに相殺し、誤差への影響を微小に抑えることができる。なお、変位測定手段としては歪ゲージの外種々のものが存在するが、例えば、非接触の変位測定手段として渦電式センサがある。
【0020】
下側の板バネ1bには、スリット3が存在する範囲内においてこの板バネに交差する上下2枚の架橋板からなる位置調整自在なバネ定数調整機構23が、スリット内に位置するビス24により板バネ1bを挟んで固定されるようになっている。バネ定数調整機構23が締結・固定されると、板バネはこの機構より外側では撓まなくなり、その位置に応じて異なったバネ定数を発揮することになる。図示しないが、図3及び図4に示す硬度計の左側においても同様な調整機構を配置し、左右対称的に調整すべきである。
【0021】
以上述べた実施例の硬度計は、被検ゴム(図示せず)の表面に押針15の先端を垂直にあてがい、プラグヘッド21の先端面が同ゴム面に当たるまで押し下げられると、ゴム硬度、即ちゴム面の窪みにくさに応じて押針15が相対的に持ち上げられ、図2で示したように板バネ1a、1bの撓みを生じ、その撓みに応じた歪ゲージ22の出力が適当な増幅回路において増幅され、かつ適当な表示計においてゴム硬度として表示される。
【0022】
【発明の効果】
以上述べた通り、本発明によれば2枚の板バネを主体とする改良されたバネ荷重機構を用い、可動部と固定部との間の機械的接触とそれに伴う摩擦がなく、かつ押針先端が横方向に揺動しないゴム硬度計を提供するものである。
【図面の簡単な説明】
【図1】本発明のゴム硬度計に用いる板バネの平面形状の一例を示す平面図である。
【図2】図1の板バネを2枚用いた本発明のバネ荷重機構の実施例を示す平面図(A)、縦断面(B)、及び一部側面を含む中央横断面図(C)である。
【図3】本発明のバネ荷重機構を含むゴム硬度計の一部破断及び断面を含む平面図である。
【図4】図3に示したゴム硬度計の一部破断及び縦断面を含む側面図である。
【図5】左半部を図4のA−A矢視断面とし、右半部を図4のB−B矢視断面として示した断面図である。
【符号の説明】
1 板バネ
3 長孔
4 両側バネ部
5 中央バネ部
6 タブ
7、8 余裕孔
9 両側保持部材
10 中央保持部材
9a 上部ヨーク
9b スペーサ
9c 角座金
11a 上部取り付けボルト11a
11b 下部取り付けボルト11b
12 長ボルト12
13 下端軸孔部
14 押針用ジョイント管
15 押針
16 ナット
17 ケーシング本体
18 蓋
21 プラグヘッド
22 歪ゲージ
23 バネ定数調整機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber hardness tester having an improved spring load mechanism.
[0002]
[Prior art]
In the rubber hardness tester (durometer) defined by JISK6253 etc., as a means for detecting the needle displacement corresponding to the hardness measurement value, a mechanical type is generally a displacement enlargement mechanism using a dial gauge mechanism. There are known electronic and digital types using an optical linear gauge (Japanese Patent Laid-Open Nos. 60-102540 and 61-4942). In addition, a cantilever-shaped leaf spring or loop-shaped leaf spring is used as a spring load device for the rubber hardness tester, and a strain gauge is attached to the surface of the leaf spring to detect expansion and contraction of the leaf spring surface. A method for detecting the displacement of the lens is also known (Japanese Patent Laid-Open No. 1-284734).
[0003]
However, in the method using the dial gauge mechanism or the optical linear gauge as described above, a displacement detection error due to friction or wear of the mechanism portion occurs, and a cantilever-like leaf spring or a loop-like leaf spring is used. In the system, there is a problem that an error occurs due to the lateral movement of the needle tip.
[0004]
First, the method using a dial gauge mechanism requires a spindle that moves in a certain direction as a movable part for detecting displacement, and a bearing that holds the spindle, and a rack for transmitting the displacement of the spindle to the enlargement mechanism. A pinion mechanism and a detent pin for the mechanism are also required. All of them come into contact with fixed parts such as the main body case in a sliding or meshing manner, and eventually wear due to friction during operation.Therefore, not only the rattling and displacement detection error due to the wear itself but also the frictional force significantly increases due to fouling. Due to this frictional force, the force of the spring load device of the hardness meter connected to the spindle is not transmitted to the tip of the push needle, and a large error occurs in the force at the tip of the push needle to deform the sample.
[0005]
Even with an optical linear gauge, it is necessary to have a non-rotating pin for holding the glass scale on the moving side of the linear gauge in the correct position along with the spindle bearing. The same error cause and malfunction will be caused.
[0006]
On the other hand, in the method of measuring displacement by attaching a strain gauge to a cantilever leaf spring or loop leaf spring, there is no bearing or rubbing portion from the fixed part to the tip of the push needle, and there is a problem of friction and wear. In either case, since the push needles are suspended from the fixed portion without being restrained in the middle, so to speak, the tip moves considerably freely in the lateral direction. Such an operating state not only deviates from the original movement as a hardness tester specified by JISK6253, etc., but even if a slight lateral force acts on the tip of the push needle, the surface of the leaf spring is distorted, and the strain gauge Detects this as a displacement without distinguishing it from the distortion caused by the vertical displacement of the tip of the push needle.
[0007]
In addition, with a cantilever-shaped leaf spring, even when only a vertical upward force is applied to the tip of the push needle, the tip moves in an arc shape, so that it moves in the horizontal direction simultaneously with the up and down movement, and the push needle The tip surface is inclined. Such behavior also deviates from the original movement of the hardness meter, resulting in measurement errors.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a spring load mechanism that does not cause mechanical contact and accompanying friction between the push needle, the movable part connected thereto, and the fixed part, and that the tip of the push needle does not swing laterally. A rubber hardness meter having a displacement detection mechanism is provided.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the rubber hardness tester according to the present invention has a proximal end portion of a spring load mechanism in which a tip of a push needle is vertically applied to a rubber surface and the push needle is supported directly or indirectly by a free end. In a rubber hardness meter in which the rubber hardness is determined from the depth of the depression generated in the rubber surface by the tip of the push needle when the rubber surface is brought close to the rubber surface by a predetermined distance,
Two positions retreated backward by a first and second distances along the axis of the push needle from the tip of the push needle itself or the push needle support member are used for the push needle by the free end of the spring load mechanism. The first and second support positions of
The spring load mechanism is a leaf spring having a rectangular main portion, and has a pair of elongated holes that form symmetrically arranged slits extending along and parallel to both sides of the leaf spring, thereby separating the spring portions on both sides and the center spring portion. The two leaf springs thus divided are maintained in parallel at an interval corresponding to the interval between the first and second support positions for the push needle, and each intermediate position of the spring portions on both sides of each leaf spring One of the intermediate positions of the central spring portion is fixed to the rubber hardness tester main body as the base end portion of the spring load mechanism, and the other intermediate position is used as the free end portion of the spring load mechanism for the push needle. The first and second support positions are joined to each other.
[0010]
In the above structure, the middle position between the two side spring parts or the central spring part of each leaf spring is a leaf spring element that can be displaced only in the vertical direction with respect to both ends of the spring parts. Since the leaf springs are connected to each other, the middle position of both sides or the central spring part, which is the free end of the spring load mechanism, is only in the up-down direction with respect to the middle position of the other spring part, which is the base end part. It can be displaced. That is, for the front / rear / right / left forces, the combined leaf springs work as a highly rigid member without using sliding position holding means such as bearings or guide mechanisms, There is almost no movement in the front / rear and left / right directions.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a planar shape of a leaf spring used in the spring load mechanism of the present invention. A leaf spring 1 formed from a substantially strip-like elongated leaf spring piece is provided along both sides 2 and 2 thereof. It has a pair of long holes 3 symmetrically arranged extending in parallel. The long hole 3 forms a slit that divides both the spring portions 4 and the central spring portion 5. Tabs 6 are continuously provided at the intermediate positions of the side edges 2 and 2, and a margin hole 7 for attachment is formed at the center of the intermediate square area on both sides of the leaf spring 1 including the periphery of these tabs on the three sides. . A margin hole 8 for attachment is also formed at an intermediate position of the central spring portion 5. After all, the shape of the leaf spring 1 is finished symmetrically in the front-rear and left-right directions with the allowance hole 8 of the central spring portion 5 as the center.
[0012]
FIG. 2 shows a structure in which two plate springs are connected to a push needle as a spring load mechanism as viewed from three sides. In this case, the leaf springs 1a and 1b are held by the corresponding spacers with their both side spring portions and the central spring portion spaced apart from each other in the vertical direction. Each of these spacers forms part of the both-side holding member 9 and the center holding member 10. As is apparent in FIG. 2C, the both-side holding members 9 are composed of an upper yoke 9a, a pair of spacers 9b, and a square washer 9c, and a leaf spring between both leg portions of the upper yoke 9a and the upper end surfaces of the pair of spacers 9b. The intermediate portions on both sides of 1a are sandwiched, and the intermediate portions on both sides of the leaf spring 1b are sandwiched between the lower end surfaces of the pair of spacers 9b and the square washer 9c. In the through screw hole of both legs of the yoke 9a and the through margin hole of the spacer 9b, the upper mounting bolt 11a and the lower mounting bolt 11b are inserted from above and below, respectively, and the above-described margin spring 7 (FIG. 1) of the leaf spring is inserted. These leaf springs 1a and 1b are held in parallel at equal intervals by being penetrated.
[0013]
2B and C, the central holding member 10 is composed of an upper washer 10a, a central spacer 10b, and a square nut 10c. The central portion of the leaf spring 1a is interposed between the upper washer 10a and the upper end surface of the central spacer 10b. Further, the center portion of the leaf spring 1b is sandwiched between the lower end surface of the spacer 10b and the square nut 10c. The central holding member 10 is fixed together with the leaf springs 1a and 1b by inserting a long bolt 12 from above into the through margin hole of the spacer 10b and the square nut 10c through the upper washer 10a. As can be understood from FIG. 2B, both sides are formed in the square nut 10c, and the back surface (nut lower end surface) 10e is always inside the lower end shaft hole 13 of the hardness meter casing partially shown in FIG. It comes into contact with and is supported by the hole edge.
[0014]
The upper part of the pusher joint pipe 14 having an inner peripheral screw engages with a relatively long tip of the long bolt 12 protruding from below the square nut 10c. The joint pipe 14 passes through the lower end shaft hole portion 13 described above, and the lower end portion thereof occupies a position corresponding substantially to the lowermost end portion (not shown) of the hardness meter casing. In the joint pipe 14, a main body screw portion 15 a of the push needle 15 is inserted and fixed to an inner peripheral screw of the long screw 12 or less, and a nut 16 is provided at the tip of the screw portion 15 a on the push needle side exposed from the lower end of the joint pipe 14. Are engaged to fasten the engaged state with the joint pipe 14. Thus, the central holding member 10, the long bolt 12, the joint pipe 14, and the nut 16 together constitute a support member for the push needle 15. The position between the washer 10a / spacer 10b in the central holding member 10 is the first support position for the push needle by the free end portion of the leaf spring 1a that is retracted by the first distance in the axial direction from the push needle tip. The position between the spacer 10b and the square nut 16 becomes the second support position for the push needle by the free end portion of the leaf spring 1b that is retracted by the second distance in the axial direction from the tip of the push needle.
[0015]
The spring load mechanism including the leaf springs 1a and 1b and the center holding member 10 holding the push needle 15 via the both-side holding member 9 and the joint tube 14 is the center holding member in a steady state where the leaf springs 1a and 1b are flat. Ten square nuts 10c are in contact with and supported by the lower end shaft hole 13 of the hardness tester casing, so that downward movement of the member 10, and hence downward convex curvature of the central spring portion 5 of the leaf spring does not occur. However, when the push needle 15 is pressed upward against the hardness meter casing, and thus the both side holding members 9, as shown by phantom lines in FIG. 2B, it is left to the center of the leaf springs 1a and 1b. It does not prevent the upward convex curve of the spring portion 5 and therefore the push needle 15 from being lifted relatively. The upward convex curve of the central spring portion 5 is generated while lifting both ends of the leaf spring, which is a connection portion with the both-side spring portions 4, so that the spring portion 4 generates an upwardly concave curvature, but each leaf spring 1a, As a result of the one-sided nature of 1b and the vertical arrangement, there is almost no lateral distortion.
[0016]
3-5 is a figure which shows the upper surface of the hardness meter casing which accommodated the spring load mechanism mentioned above, a side surface, and a cross section, respectively, combining a fracture surface or a half section. The casing body 17 has a rectangular parallelepiped box shape having an indoor width and depth corresponding to the width of the both-side holding member 9 and an indoor length corresponding to the length of the leaf springs 1a and 1b. The cover 18 holding both the leg portions of the yoke 9a of the holding member is covered, and this is fixedly held by the side edge bolts 19 (FIG. 3), whereby the whole spring load mechanism is accommodated and held.
[0017]
The lower end shaft hole portion 13 of the casing described above is centrally held at the main body portion screwed from below into the through screw hole 20 of the large boss portion 17b protruding downward from the central portion of the bottom plate portion 17a of the casing main body, and at the screw tip end side. A small boss portion 13a that supports the square nut 10c of the member 10, and a screw block having an outer diameter reduced portion 13b that protrudes downward in a range substantially corresponding to the thickness of the large boss portion 17b from the screwed rear end side, By adjusting the screwing position, bias deflection is applied to the leaf springs 1a and 1b, and an initial load applied to the push needle 15 is set. However, the state shown in FIGS. 4 and 5 is a zero bias state in which the central spring part 5 of the leaf springs 1a and 1b supported by the central holding member 10 is maintained in the same horizontal plane as the both side spring parts 4 and 4. The initial load on the push needle 15 is zero.
[0018]
An annular space having a sufficient thickness is formed between the outer periphery of the outer diameter reducing portion 13b and the inner periphery (thread surface) of the through screw hole 20, and the plug head having a hollow portion 21a on the inner periphery of the through screw hole 20 The outer peripheral screw 21b at the distal end of the screw 21 is screw-engaged, and the outer periphery of the outer diameter reducing portion 13b corresponds to the inner peripheral surface forming the hollow portion 21a of the plug head 21 with a margin. At the center of the lower end surface portion of the plug head 21, there is a central hole that allows the push needle 15 and the screw portion 15 a to be arranged and passed, and the nut 16 that fastens the screw portion 15 a is located in the hollow portion 21 a of the plug head 21. .
[0019]
As is clear from FIG. 3 in particular, for example, in the central spring portion 5 of the leaf spring 1a, the strain gauge 22 is attached at a position slightly shifted to the right side from the middle in the longitudinal direction (spring load mechanism attachment position). Since the amount of deflection of the leaf spring and the distortion of each surface are proportional to each position, the strain gauge position may be anywhere as long as it causes deflection displacement. As described above, the parallel maintaining action of the two leaf springs 1a and 1b However, when there is a possibility that a strong lateral force acts on the tip of the push needle 15 and the surface of the leaf spring may be distorted, two, four, six, etc. When the strain gauges are arranged on the leaf springs in the front-rear and left-right directions, the lateral components of the outputs of these strain gauges cancel each other, and the influence on the error can be suppressed to a minute. There are various types of displacement measuring means other than strain gauges. For example, there is an eddy-electric sensor as a non-contact displacement measuring means.
[0020]
The lower leaf spring 1b is provided with a spring constant adjusting mechanism 23 having two adjustable upper and lower bridging plates that intersect with the leaf spring within a range in which the slit 3 exists. It is fixed with the leaf spring 1b interposed therebetween. When the spring constant adjusting mechanism 23 is fastened and fixed, the leaf spring does not bend outside the mechanism and exhibits a different spring constant depending on its position. Although not shown, a similar adjustment mechanism should be arranged on the left side of the hardness meter shown in FIGS. 3 and 4 to adjust symmetrically.
[0021]
In the hardness meter of the embodiment described above, when the tip of the push needle 15 is vertically applied to the surface of the rubber to be tested (not shown) and the plug head 21 is pushed down until it touches the rubber surface, the rubber hardness, That is, the push needle 15 is relatively lifted according to the depth of the depression on the rubber surface, and the leaf springs 1a and 1b are bent as shown in FIG. 2, and the output of the strain gauge 22 corresponding to the bending is appropriate. Amplified in the amplifier circuit and displayed as rubber hardness on a suitable indicator.
[0022]
【The invention's effect】
As described above, according to the present invention, an improved spring load mechanism mainly composed of two leaf springs is used, there is no mechanical contact between the movable part and the fixed part and the accompanying friction, and the push needle A rubber hardness tester whose tip does not swing laterally is provided.
[Brief description of the drawings]
FIG. 1 is a plan view showing an example of a planar shape of a leaf spring used in a rubber hardness meter of the present invention.
2A is a plan view showing an embodiment of the spring load mechanism of the present invention using two leaf springs of FIG. 1, FIG. 2B is a longitudinal cross section, and FIG. It is.
FIG. 3 is a plan view including a partial fracture and a cross section of a rubber hardness meter including a spring load mechanism of the present invention.
4 is a side view including a partially broken and vertical cross section of the rubber hardness tester shown in FIG. 3;
5 is a cross-sectional view in which the left half is a cross section taken along the line AA in FIG. 4 and the right half is a cross section taken along the line BB in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Leaf spring 3 Long hole 4 Both-side spring part 5 Central spring part 6 Tab 7, 8 Margin hole 9 Both-side holding member 10 Central holding member 9a Upper yoke 9b Spacer 9c Square washer 11a Upper attachment bolt 11a
11b Lower mounting bolt 11b
12 Long bolt 12
13 Lower end shaft hole portion 14 Needle joint tube 15 Needle 16 Nut 17 Casing body 18 Lid 21 Plug head 22 Strain gauge 23 Spring constant adjustment mechanism

Claims (1)

押針の先端を垂直にゴム面にあてがい、この押針を直接又は間接的に自由端部で支持したバネ荷重機構の基端部を所定距離だけ前記ゴム面に接近させたとき、前記押針の先端によりゴム面に生じた窪みの深さからゴム硬度を求めるようにしたゴム硬度計において、
前記押針自体又は押針支持部材の前記先端から押針軸線に沿って後方に第1及び第2の距離だけ退いた二つの位置を、前記バネ荷重機構の自由端部による前記押針のための第1及び第2の支持位置とし、
前記バネ荷重機構は、主要部が長方形の板バネにおいて、その板バネの両側辺に沿い且つ平行して延びる対称配置スリットを形成する一対の長孔を有することにより両側バネ部と中央バネ部を区分してなる2枚の前記板バネを、前記押針のための第1及び第2の支持位置の間隔に対応する間隔で平行に維持し、各板バネの両側バネ部の各中間位置と、中央バネ部の中間位置のいずれか一方を前記バネ荷重機構の基端部としてゴム硬度計本体に関連固定するとともに、他方の中間位置を前記バネ荷重機構の自由端部として前記押針のための第1及び第2の支持位置の各々に接合したことを特徴とするゴム硬度計。
When the tip end of the push needle is vertically applied to the rubber surface and the base end portion of the spring load mechanism supporting the push needle directly or indirectly at the free end is brought close to the rubber surface by a predetermined distance, the push needle In the rubber hardness tester, where the rubber hardness is determined from the depth of the depression generated on the rubber surface by the tip of
Two positions retreated backward by a first and second distances along the axis of the push needle from the tip of the push needle itself or the push needle support member are used for the push needle by the free end of the spring load mechanism. The first and second support positions of
The spring load mechanism is a leaf spring having a rectangular main portion, and has a pair of elongated holes that form symmetrically arranged slits extending along and parallel to both sides of the leaf spring, thereby separating the spring portions on both sides and the center spring portion. The two leaf springs thus divided are maintained in parallel at an interval corresponding to the interval between the first and second support positions for the push needle, and each intermediate position of the spring portions on both sides of each leaf spring One of the intermediate positions of the central spring portion is fixed to the rubber hardness tester main body as the base end portion of the spring load mechanism, and the other intermediate position is used as the free end portion of the spring load mechanism for the push needle. A rubber hardness tester bonded to each of the first and second support positions.
JP22418899A 1999-08-06 1999-08-06 Rubber hardness tester with improved spring loading mechanism Expired - Fee Related JP4064011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22418899A JP4064011B2 (en) 1999-08-06 1999-08-06 Rubber hardness tester with improved spring loading mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22418899A JP4064011B2 (en) 1999-08-06 1999-08-06 Rubber hardness tester with improved spring loading mechanism

Publications (2)

Publication Number Publication Date
JP2001050882A JP2001050882A (en) 2001-02-23
JP4064011B2 true JP4064011B2 (en) 2008-03-19

Family

ID=16809911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22418899A Expired - Fee Related JP4064011B2 (en) 1999-08-06 1999-08-06 Rubber hardness tester with improved spring loading mechanism

Country Status (1)

Country Link
JP (1) JP4064011B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003830B4 (en) * 2005-01-25 2013-02-14 Asmec Advanced Surface Mechanics Gmbh Device for highly accurate generation and measurement of forces and displacements
CN104568588B (en) * 2013-10-17 2017-05-24 珠海格力电器股份有限公司 Detection device for rubber body of insert
JP7144267B2 (en) * 2018-10-03 2022-09-29 株式会社ミツトヨ hardness tester
CN112485144B (en) * 2020-11-20 2024-02-09 湖南力方轧辊有限公司 Rich hardness tester for production and detection of supporting roller
CN116399679B (en) * 2023-06-08 2023-08-01 深圳市鑫精诚传感技术有限公司 Test pen and test device
CN118090482B (en) * 2024-04-19 2024-06-21 天津磊峰实业有限公司 Steel plate mechanical property detection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102540A (en) * 1983-11-10 1985-06-06 Yokohama Rubber Co Ltd:The Digital hardness tester
JPS614942A (en) * 1984-06-20 1986-01-10 Yokohama Rubber Co Ltd:The Digital hardness tester
JPH01284734A (en) * 1988-05-11 1989-11-16 Kobunshi Keiki Kk Scale for hardness of rubber
JP2853687B2 (en) * 1996-12-24 1999-02-03 日本電気株式会社 Surface property evaluation device
JPH1137915A (en) * 1997-07-15 1999-02-12 Akashi:Kk Hardness tester

Also Published As

Publication number Publication date
JP2001050882A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
JP3546057B2 (en) Contact probe
JP6011486B2 (en) Material testing machine
US20100300214A1 (en) Force monitoring methods and apparatus
JPS62501234A (en) Touch-sensing probe
US9989428B2 (en) Bi-directional force sensing device with reduced cross-talk between the sensitive elements
JPH04500562A (en) position measuring device
JP2002062124A (en) Length measuring device
CA2243822A1 (en) Cantilever transducer
JP4064011B2 (en) Rubber hardness tester with improved spring loading mechanism
EP0171876B1 (en) Torsional-axial extensiometer with additional restraint to limit unnecessary movements
JP3628331B2 (en) Extensometer
JP2019100874A (en) Shape measurement device
JP2009300301A (en) Displacement measuring tool and displacement measuring device
JP2008512304A (en) Seat weight sensor
JPH04158210A (en) Displacement detector
JP2000258332A (en) Cantilever for detecting normal force for atomic force microscope
JP3609271B2 (en) Displacement measuring device
JP2007183129A (en) Hardness meter
JP6333970B2 (en) Equipment for measuring the size and / or shape of machine parts
JP2003166885A (en) Offset load-resistant load cell
JPH01284734A (en) Scale for hardness of rubber
GB1583504A (en) Measuring gauge
JP3163783B2 (en) Thermal displacement compensator for measuring device
JP2982433B2 (en) Displacement gauge
SU1401264A1 (en) Electromechanical strain-measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees