JP2011131881A - Ballast water circulation processing system - Google Patents

Ballast water circulation processing system Download PDF

Info

Publication number
JP2011131881A
JP2011131881A JP2011031376A JP2011031376A JP2011131881A JP 2011131881 A JP2011131881 A JP 2011131881A JP 2011031376 A JP2011031376 A JP 2011031376A JP 2011031376 A JP2011031376 A JP 2011031376A JP 2011131881 A JP2011131881 A JP 2011131881A
Authority
JP
Japan
Prior art keywords
ballast
tank
ballast water
water
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011031376A
Other languages
Japanese (ja)
Other versions
JP2011131881A5 (en
Inventor
Yukio Ota
幸雄 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011031376A priority Critical patent/JP2011131881A/en
Publication of JP2011131881A publication Critical patent/JP2011131881A/en
Publication of JP2011131881A5 publication Critical patent/JP2011131881A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ballast water circulation processing system improved in installation space and cost without requiring a large capacity sterilization processing device. <P>SOLUTION: Focusing on the flow amount ratio of a ballast pump to a cooling seawater pump in correlations between the loading tonnage of a ship and each of a ballast water amount and a main engine capacity, a cooling seawater pump preliminary machine 4P is used for circulating ballast water filled into tanks at an unloading port after leaving the port and a small capacity sterilization device 5 is also used for processing it in a half or less of one-way navigational days. In structure beams and reinforcing materials for the tanks, lightening holes, welding scallops, air holes and water holes are arranged to form a main meandering flow path and a sub-flow path for preventing drift and stay. The diffusing operation of sterilizing a medical agent with the agitation and vibration of the hull is promoted to make sure ballast water processing. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、運送用船舶のバラスト水の滅菌処理システムに係るものである。  The present invention relates to a sterilization system for ballast water of a ship for transportation.

一般に液送船、バラ積船、貨物船などの運送用船舶は、船底や舷側の二重殻に配したバラストタンクを持ち、荷卸港で該タンクに注水しバラスト水として空荷喫水を保ち航行安定性を与え、荷積港で該タンクから排水して満載喫水での船体浮力を与える。  In general, transport vessels such as liquid carriers, bulk carriers, and cargo ships have ballast tanks arranged on the bottom shell or on the double shell on the side of the ship, and water is poured into the tanks at the unloading port to keep empty drafts as navigation. It provides stability and drains from the tank at the loading port to provide hull buoyancy at full draft.

バラスト水は、積載トン数(以下、DWTと呼び、例えばDW5000Tと記す)の約40%に及び、航海毎に荷卸港域の小生物や微生物を含む大量の海水を荷積港に運び放出しており、荷積港海域の水質や生態系を含む海洋環境に影響を与え、病原菌が該地域の社会被害に至る問題を起すことがある。  Ballast water is about 40% of the tonnage (hereinafter referred to as DWT, for example, DW5000T), and carries a large amount of seawater containing small organisms and microorganisms in the unloading port area every voyage. It may affect the marine environment including the water quality and ecosystem of the loading port area, and pathogens may cause social damage in the area.

これらの地球規模の環境問題に対処するため、国際海事機構(IMO)により2004年に「バラスト水管理条約」が採択され、2008年に該条約関連のガイドラインが成文化され、全ての船舶は、ある年(2016年或いは2020年)を過ぎると新造・現存何れもバラスト水管理システムを搭載して、排水時には生物量が条約の規制量以下になるように処理することを要求される。  In order to deal with these global environmental issues, the Ballast Water Management Convention was adopted in 2004 by the International Maritime Organization (IMO), and guidelines related to the convention were codified in 2008. After a certain year (2016 or 2020), both newly constructed and existing ones will be equipped with a ballast water management system, and when draining it will be required to treat the biomass so that it is less than the amount regulated by the Convention.

このようなバラスト水規制に対応し、関係業界で研究・開発のバラスト水管理システムは、バラスト注水時に稼働するよう計画されており、バラスト注排水ポンプは荷役速度に同調のため、該管理システムは該ポンプと同様な大容量(DW5000T級液送船の例では1100t/h)を要し、その設置コスト・スペースが大きく、技術的にも難題を伴う。  In response to these ballast water regulations, the research and development ballast water management system in the relevant industry is planned to operate during ballast water injection, and the ballast water injection / drainage pump is synchronized with the cargo handling speed. A large capacity (1100 t / h in the example of a DW5000T class liquid carrier) is required, and the installation cost and space are large, and there are technical difficulties.

暫定措置として、遠沖合の深海域でバラスト水交換が認められ、バラスト水総量の95%の交換「シーケンシャルメソッド:Sequential Method」又は3倍水量の注入・排出での交換「フロースルーメソッド:Flow−through Method」の2方法が深海域や遠海域で認められているが、前者はバラストタンク(一般に両舷5区画)の1区画毎に順次一旦空槽まで排水して再注水するため、喫水線及びトリム(船体の前後方向傾斜)の変化及び注排水中のタンク半充状態でのスロッシング(Sloshing)を伴い航行安定・安全性に問題あり、後者はバラスト注水の3倍時間を要するので前者の2倍時間と共に実施海域に制約を伴う。  As a provisional measure, ballast water exchange is permitted in the deep waters off the coast, and 95% of the total ballast water exchange “Sequential Method: Sequential Method” or exchange by injection / discharge of 3 times the amount of water “Flow-through Method: Flow- Two methods of “Through Method” are recognized in the deep sea area and the far sea area, but the former drains and re-injects water into the empty tank one by one for each section of the ballast tank (generally 5 sections on both sides). There is a problem in navigation stability and safety due to changes in trim (hull in the longitudinal direction of the hull) and sloshing in the tank half-filled state during pouring, and the latter requires 3 times the time of ballast pouring. There is a restriction on the implementation area with time.

上述の背景技術における問題点「バラスト注水時に稼働のためバラスト水管理システムの容量が大きく、その設置コスト・スペース及びその関連事項」を、表1に示す下記の船舶主要目に着目し解決を期する。  The above-mentioned problem in the background art is to solve the problem by focusing on the following ship main points shown in Table 1 as “the capacity of the ballast water management system is large for operation during ballast injection and its installation cost / space and related matters”. To do.

表1

Figure 2011131881
Table 1
Figure 2011131881

[表1概説] 一般に運送用船舶(液送船、バラ積船、貨物船など)において、速力は約14〜15ノット、載荷トン数とバラスト水総量(前述)及び主機関容量(ディーゼル機関)とはそれぞれほぼ一定の相関関係にあり、機関冷却熱量に見合う冷却海水流量は発電機関を含む機関容量にほぼ比例のため、冷却海水ポンプ(常用・予備各1台)の流量はバラストポンプ(左右舷各1台計2台、両舷同時運転)によるバラスト注排水流量の約20%〜30%、揚程は同様(20〜25m)である。  [Outline of Table 1] Generally, in a shipping ship (liquid ship, bulk carrier, cargo ship, etc.), the speed is about 14 to 15 knots, the tonnage and the total amount of ballast water (described above), and the main engine capacity (diesel engine) Since the cooling seawater flow rate that is commensurate with the engine cooling heat amount is almost proportional to the engine capacity including the power generation engine, the flow rate of the cooling seawater pump (one for normal use and one for spare use) is the ballast pump (left and right). About 20% to 30% of the ballast pouring / drainage flow rate by 2 units (2 units in total, simultaneous operation on both sides), and the lift is the same (20-25m).

バラスト注排水は荷役速度に同調して大流量・短時間(表1のバラスト注排水量[t/h]欄を参照)で行うが、出港後冷却海水ポンプ予備機{流量[t/h]欄を参照}でタンク毎に順次に循環・処理すれば、バラスト水管理システムは小容量で済み、余裕を見込んで1.5巡でも全タンク総量(一般に両舷5区分)を1日:中型船〜3日:大型船(循環日数「day]を参照)すなわち片道航海(航路航程を比較参照)の半日数以下でバラスト水処理を完了できる。  Ballast pouring and draining is performed at a large flow rate and in a short time (see the ballast pouring / drainage amount [t / h] column in Table 1) in synchronization with the cargo handling speed, but after leaving the port, a preliminary cooling seawater pump {flow rate [t / h] column If the tanks are circulated and treated sequentially for each tank, the ballast water management system needs only a small capacity. ~ 3 days: The ballast water treatment can be completed in less than half a day of a large ship (see circulation days “day”), that is, a one-way voyage (compare route route comparison).

問題を解決するための手段Means to solve the problem

[循環処理系] 冷却海水ポンプの予備機を、弁切替でバラスト水循環に当て、バラスト主管に循環吸引弁を、該ポンプの吐出口に着装のT形逆止弁(既考案「実新登録2010−3161757:T形逆止弁及びポンプユニット」と連成した循環送水弁をそれぞれ配し、滅菌薬剤発生・注入機を経てバラスト水循環主管に接続し、バラスト主管を吸引に利用しバラスト循環処理系を構成する。  [Circulation treatment system] A cooling seawater pump spare unit is applied to ballast water circulation by switching the valve, a circulation suction valve is attached to the ballast main pipe, and a T-type check valve (designed “renew registration 2010” mounted on the discharge port of the pump). -3161757: T-type check valve and pump unit "are connected to the circulation water supply valve respectively, connected to the ballast water circulation main pipe through the sterilizing chemical generator / injector, and the ballast main pipe is used for suction, and the ballast circulation treatment system Configure.

バラスト主管及び循環主管はそれぞれ分岐弁を介して各バラストタンクに接続する。  The ballast main pipe and the circulation main pipe are connected to the respective ballast tanks via branch valves.

滅菌薬剤発生・注入機は、既発明「特願2009−138942:船舶のビルジ・バラスト管装置」に示すように冷却海水ポンプ予備機の吸引側に設置してもよく、或いは、薬剤発生機を別体に配し、該ポンプの吸引管又は送水管に薬剤注入管を装着するのが機関室配置上好都合である。  The sterilizing drug generator / injector may be installed on the suction side of the preparatory cooling seawater pump as shown in the existing invention “Japanese Patent Application No. 2009-138942: Ship Bilge / Ballast Pipe Device”. It is convenient from the standpoint of engine room arrangement that it is arranged separately and a drug injection pipe is attached to the suction pipe or water supply pipe of the pump.

バラスト水循環主管とバラスト主管にそれぞれ滅菌薬剤濃度センサーを装着し、前者は注入混合濃度を、後者は循環後濃度を測定し、バラスト水処理状態を管理する。  The ballast water circulation main pipe and the ballast main pipe are each equipped with a sterilizing drug concentration sensor, the former measures the injection mixture concentration, the latter measures the post-circulation concentration, and manages the ballast water treatment state.

冷却海水ポンプの常用機故障或いは機関室浸水事故など該常用機で緊急吸引・排水の際は、該予備機を主用途の冷却海水供給に当てるため、近接のバラストポンプ吐出側に半絞り弁を介して循環送出管に接続し、該バラストポンプでバックアップ可能にする。  In the case of emergency suction or drainage with the regular machine, such as when the regular machine of the cooling seawater pump fails or the engine room is inundated, a semi-throttle valve is installed on the discharge side of the nearby ballast pump in order to apply the spare machine to the cooling seawater supply of the main application. The ballast pump can be backed up by connecting to the circulation delivery pipe.

なお、滅菌薬剤発生・注入機の容量がバラストポンプ単機流量まで大きく採れる場合は、上記の半絞り弁を全通弁に代え、該バラストポンプで両舷タンク同時に循環でき、全タンク総量の循環・処理日数を短縮(半減)可能となる。  If the capacity of the sterilizing agent generator / injector can be increased to the flow rate of a single ballast pump, the half-throttle valve can be replaced with a full valve, and the ballast pump can circulate both tanks at the same time. Processing days can be shortened (halved).

バラスト水処理方式は、塩素酸などの薬剤による化学的滅菌とし、循環処理後の航海残日数において水中生物の再増殖を避けながら効力減退し、荷積港でバラスト水の無害排出可能のものとする。  The ballast water treatment system will be chemically sterilized with chemicals such as chloric acid, and the effectiveness will be reduced while avoiding regrowth of aquatic organisms in the remaining days of voyage after circulation treatment. To do.

化学的滅菌は、薬剤自体の分子運動による拡散作用に、航海中の波浪及び造波による船体動揺及び振動(機関・プロペラ振動含む)でバラスト水の軽攪拌が加わり、拡散促進を伴うので好都合である。  Chemical sterilization is advantageous because it involves light diffusion of the ballast water by wave motion and vibration (including engine and propeller vibration) caused by wave and wave formation during voyage to the diffusion action due to the molecular motion of the drug itself, and it promotes diffusion. is there.

[薬剤発生方式] 滅菌薬剤発生機は、本発明による省容量化により、既開発・標準設置の海洋生物付着防止装置(MGPS例:次亜塩素酸ソーダ)のように、船内電解方式を期待できる。  [Drug generation method] The sterile drug generator can be expected to be an in-board electrolysis method like the already developed and standardized marine organism adhesion prevention device (MGPS example: sodium hypochlorite) by the capacity saving according to the present invention. .

[管路・タンク内流路] 循環主管・分岐弁では高流速(一般に3m/s程度)の乱流のため管内の薬剤濃度は一様となり、タンク内では低速流となるが以下述べるタンク内構造に伴う偏流・滞留防止の流況により、薬剤濃度の不同を避ける。  [Pipe / tank flow path] The circulation main pipe / branch valve has a high flow velocity (generally about 3 m / s), so the chemical concentration in the pipe is uniform, and the tank has a low flow rate. Avoid uneven drug concentration due to the flow and prevention of stagnant flow associated with the structure.

バラスト水循環主管はバラストタンク側部(Wing Tank:以下側部タンクと呼ぶ)の頂部(一般に上甲板直下)に配し、タンク毎に循環分岐弁で注入し、循環帰路は該バラストタンク底部(Bottom Tank:以下底部タンクと呼ぶ)の注排水分岐弁を持つバラスト主管を利用する。  The ballast water circulation main pipe is arranged at the top (generally just below the upper deck) of the side of the ballast tank (hereinafter referred to as the side tank), and is injected by a circulation branch valve for each tank, and the circulation return path is at the bottom of the ballast tank (Bottom A ballast main pipe having an inlet / outlet branch valve of “Tank: hereinafter referred to as a bottom tank” is used.

[蛇行主流路] 側部タンクの船軸方向の水平桁(Horizontal Girder)及び底部タンクの船軸方向の縦桁(Longitudinal Girder)のそれぞれ船首・尾部交互に大径の軽目穴を施し、側部タンクの横断面方向(すなわち船軸に直角の方向)の垂直桁(Vertical Girder)及び底部タンクの横断面方向の横桁(Lateral Girder)に軽目穴列を施し、側部タンク頂部の循環分岐弁から底部タンクの注排水分岐弁下のベルマウス(Bell−mouth)に至る蛇行主流路を形成する。  [Meandering main flow path] The horizontal tank side horizontal girder (Horizontal Girder) and the bottom tank axial direction girder (Longitudinal Girder) are respectively provided with large diameter light holes in the bow and tail alternately. Light holes are provided in the vertical girder (vertical girders) in the cross section direction of the bottom tank (that is, the direction perpendicular to the hull axis) and the lateral girder in the cross section direction of the bottom tank (circular girder). A meandering main flow path is formed from the branch valve to the bell-mouth below the pouring / draining branch valve of the bottom tank.

一般に船体構造において、該垂直桁及び横桁は3〜4FS(Frame Space:肋骨間隔)毎に配されており、側部タンクでは、1FS毎の肋骨(以下、小骨と呼ぶ)で内外殻板を補強し、底部タンクでは、該縦桁は4〜5LS(Longitudinal Stiffener Space:縦通骨間隔)毎に配されており、1LS毎の縦通骨(以下、縦小骨と呼ぶ)で二重底殻板を補強している。  Generally, in the hull structure, the vertical girder and the horizontal girder are arranged every 3 to 4 FS (Frame Space: rib spacing), and in the side tank, the inner and outer shell plates are separated by ribs (hereinafter referred to as small bones) every 1 FS. Reinforced, in the bottom tank, the stringers are arranged every 4-5 LS (longitudinal stiffener space), and double bottom shells with longitudinal bones (hereinafter referred to as longitudinal small bones) every 1 LS The board is reinforced.

[下降副流路] 水平桁中心線に小穴列を施し、小骨貫通部及び垂直桁との溶接隅部のスカロップ(Scallop)と共に、側部タンクの下降副流路を形成し、隅部の滞留及び主流路の偏流を防ぐ。  [Descent sub-flow channel] A small hole row is made in the center line of the horizontal girder, and a descent sub-flow channel of the side tank is formed together with a scallop (Scalop) at the welding corner with the small bone penetration part and the vertical girder. And prevent drift in the main flow path.

[横行副流路] 縦桁中心線に小穴列を配し、縦小骨と共に、二重底殻板との溶接に接して小寸の水穴及び気穴を1〜2FS毎に配して底部タンクの横行副流路を形成し、隅部の滞留及び主流路の偏流を防ぐ。  [Transverse sub-channel] A small hole row is arranged in the center line of the vertical girder, and along with the vertical small bone, a small water hole and a pore are arranged every 1 to 2 FS in contact with the welding with the double bottom shell plate, and the bottom part. A transverse sub-flow channel of the tank is formed to prevent corner accumulation and drift of the main flow channel.

[偏流・滞留防止] 横桁の縦小骨貫通部及び縦桁との溶接隅部のそれぞれスカロップが底部タンクの主流路の偏流及び隅部滞留を防ぐ。  [Prevention of drift / stagnation] The scallops at the welded corners of the transverse girder of the transverse girder and the girder prevent the drift and corner retention of the main channel of the bottom tank.

船底ビルジ殻板(Bilge Strake)部の縦桁は、1FS毎に大寸の軽目穴を施して船底タンクと共通の流路とし、1FS毎に配した補強板に中径穴及び隅部スカロップを施して滞留を防ぐ。  The vertical girder of the ship bottom bilge shell plate (Bilge Strake) has a large light hole every 1FS to make a common flow path with the ship bottom tank, and a medium diameter hole and a corner scallop on the reinforcing plate arranged for each 1FS. To prevent retention.

底部タンクの縦桁・横桁及び縦小骨のスカロップ及び水穴は、バラスト排水末期(水位が縦小骨高以下)においてベルマウス周りの集水にも充分な流路を形成する。  Scallops and water holes in the bottom tank stringers / crossers and vertical bones form a sufficient flow path for collecting water around the bellmouth at the end of ballast drainage (water level is below the vertical bone height).

底部タンクにおいて、横桁端部に船体中心側・舷側側交互に軽目穴を施し、横断面方向の蛇行主流路を追加することができる。  In the bottom tank, lighter holes can be made alternately at the end of the cross beam at the center and side of the hull, and a meandering main channel in the cross-sectional direction can be added.

バラ積船のように頂側部タンク(Topside Tank)及び底側部タンク(Bottom−side Tank)が大きな梯形断面の場合は、循環分岐管及び両タンク間の連絡管のそれぞれ管端をタンク断面方向に向け各タンクに回転螺旋流を与え偏流・滞留を防ぐ。  If the top tank and bottom-side tank have a large trapezoidal cross section, such as a bulk carrier, the end of each of the circulation branch pipe and the connecting pipe between the two tanks is shown in the cross section of the tank. A rotating spiral flow is applied to each tank in the direction to prevent drift and retention.

バラスト注排水流量に見合う該連絡管の循環水流速が不十分の場合は、底側部タンクへの循環分岐管を追加して最小限の管径で流速を与え、該タンクの回転螺旋流を補足する。  If the circulating water flow rate of the connecting pipe that matches the ballast injection / drainage flow rate is insufficient, a circulation branch pipe to the bottom tank is added to give the flow velocity with the minimum pipe diameter, and the rotating spiral flow of the tank is reduced. Complement.

両タンクとも、タンク殻板の周桁(底部タンクの横桁と同様に3〜4FS毎に配置)に軽目穴や縦小骨貫通部等のスカロップ及び該殻板の小骨の気穴・水穴が偏流・滞留を防ぐ。  In both tanks, scallops such as light holes and vertical small bone penetrations, and small holes and water holes in the small skeleton of the shell plate are arranged in the circumferential girder of the tank shell plate (placed every 3 to 4 FS as in the case of the horizontal girder of the bottom tank). Prevents drift and retention.

バラストタンク内の主流路を成す各桁の軽目穴は、バラスト注排水時の流路損失(特にポンプ吸引に重要)を局限し、港内・渠内での整備・修繕時のタンク内清掃・補修における作業員のアクセスを考慮して設計する。  The light holes in each girder that form the main flow path in the ballast tank limit the flow path loss (especially important for pump suction) during ballast pouring and drainage, and cleaning the tank during maintenance and repairs in harbors and harbors. Design in consideration of worker access during repairs.

[換水系] バラストポンプでタンク注水し循環主管経由で舷外排水するよう弁切替し、近海域で両舷タンク同時にフロースルーで換水可能とし、荷卸港の水質(濁水など)に対応する。  [Water change system] The tank is filled with a ballast pump, and the valve is switched to drain outside the tank via the circulation main pipe. Both water tanks can be changed simultaneously by flow-through in the near water area, corresponding to the water quality (turbid water, etc.) of the unloading port.

[船内海水系の清浄保持] 左・右舷各1台に集約のストレーナ(Strainer)及び各ビルジ溜め(Bilge Well)に設置の泥箱(Mad−box)のフィルタ(Filter)の目開き(濾し穴径)の在来標準の8mmを縮小(例えば4mm)して、舷外からの侵入及び船内発生の固形物の吸引を防ぎ、船内海水系の管路及びタンクを常に清浄に保つ。  [Cleaning of the seawater system in the ship] Opening (filter hole) of the filter of the mud box (Mad-box) installed in the strainer (Strainer) and the bilge well (Bilge Well) that are aggregated on each left and starboard The standard diameter of 8 mm (diameter) is reduced (for example, 4 mm) to prevent intrusion from the outside of the ship and suction of solid matter generated in the ship, and keep the ship's seawater system pipeline and tank always clean.

該集約ストレーナは、反舷側バラストポンプ運転の濾し水を逆流方向に与え、海水取水箱(Sea Chest)と共に逆洗可能とし、船内海水系の全ポンプに装着の逆止弁で、不慮の停電時に舷外海水の逆流による異物侵入を防止する。  The intensive strainer is a check valve attached to all the pumps in the seawater system in the seawater intake box (Sea Chest), which gives filtered water from the rebound side ballast pump operation in the reverse flow direction, and can be backwashed.異物 Prevent foreign matter from entering due to reverse flow of seawater.

発明の効果The invention's effect

本発明の滅菌循環系の構成は、以下に述べる効果を齎す。  The structure of the sterilization circulation system of the present invention has the following effects.

滅菌薬剤発生・注入機は、バラスト注排水流量の20〜30%の小容量で済み、塩素酸などの発生装置も省コスト・省スペースが可能となり、小・中型船の狭隘な機関室にも充分設置可能となる。  The sterilizing agent generator / injector requires a small volume of 20-30% of the ballast pouring drainage flow rate, and the chloric acid generator can be reduced in cost and space, making it suitable for narrow engine rooms of small and medium-sized ships. It can be installed sufficiently.

滅菌循環に使用の冷却海水ポンプ予備機は、動力効率がよく且つ定常航海中の発電機1台で常用機と共に運転できる動力容量であり、バラストポンプと同様の低揚程(20〜25m)のためバラストタンクの内圧強度について安全である。  The cooling seawater pump spare machine used for sterilization circulation has high power efficiency and power capacity that can be operated with a regular machine with one generator during steady voyage, because of the low head (20-25m) similar to the ballast pump The internal pressure strength of the ballast tank is safe.

上記の冷却海水ポンプ予備機の利用は、既発明「特願2009−165327:渦巻ポンプ及びポンプユニット」の横向双吸引口形ポンプ及び既考案「実登3161757」のT形逆止弁との連成弁による異用途兼用で頗る簡潔且つ省スペースのポンプユニット構成を伴う。  The above-mentioned cooling seawater pump spare machine is used in combination with the laterally double suction port type pump of the existing invention "Japanese Patent Application No. 2009-165327: spiral pump and pump unit" and the T type check valve of the existing invention "Joto 3161757". It is accompanied by a simple and space-saving pump unit configuration that can be used for other purposes.

バラスト水の循環は、ポンプ圧力・流量とも簡潔な無制御定量運転であり(バラスト注水時の滅菌処理では、荷役と同時稼働のため喫水とタンク水位の落差変化によるポンプ流量の変動を伴うことに注目)、帰管路は大径・低損失水頭のバラスト主管を利用するのでタンク内圧は低く、タンク水量が無変化のため喫水・トリム変化なく航行安定性・安全性を損なわない。  The circulation of ballast water is a simple uncontrolled quantitative operation for both pump pressure and flow rate. (Sterilization during ballast injection involves fluctuations in the pump flow rate due to changes in the draft and tank water level due to simultaneous operation with cargo handling. Note), the return pipe uses a large diameter, low-loss head ballast main pipe, so the tank internal pressure is low, and there is no change in the tank water volume.

タンク内蛇行の主流路及び下降・横行・回転の副流路は現行の船体構造(水平・垂直桁、縦・横桁及び中間小骨)を利用でき、偏流・滞留を防ぎ或いは局限し滅菌薬剤の拡散及び船体動揺・振動による拡散促進で、有効なバラスト水滅菌処理を可能にする。  Current hull structure (horizontal / vertical girders, vertical / horizontal girders and intermediate ossicles) can be used for the main flow path of the meander in the tank and the sub-flow path of descending / traversing / rotating, preventing drift / stagnation or localized Enables effective ballast water sterilization treatment by diffusion and promotion of diffusion by ship motion and vibration.

上述の滅菌循環管路・流路を逆方向に利用し、バラストポンプ1台の両舷同時フロースルーでタンク内偏流・滞留を局限して換水し、バラスト排水系(空荷喫水線下)で舷外排水できる。  Using the above-mentioned sterilization circulation pipes and flow paths in the opposite direction, the water flow is changed by restricting the drift and stagnation in the tank by simultaneous flow-through on both sides of one ballast pump, and dredging in the ballast drainage system (under the empty draft line) Can drain outside.

本発明のバラスト水処理システムを示す諸管系統図  Pipe system diagram showing the ballast water treatment system of the present invention 本発明のバラスト水処理システムに係るバラストタンクを示す船体横断面図で(a)は液送船の例、(b)はバラ積船の例を示す。  BRIEF DESCRIPTION OF THE DRAWINGS It is a hull cross-sectional view which shows the ballast tank which concerns on the ballast water treatment system of this invention, (a) shows the example of a liquid carrier, (b) shows the example of a bulk carrier. 本発明のバラスト水処理システムに係る底部タンク内の流路を示す船体構造図。  The hull structure figure which shows the flow path in the bottom tank which concerns on the ballast water treatment system of this invention. 本発明のバラスト水処理システムに係る側部タンク内の流路を示す船体構造図。  The hull structure figure which shows the flow path in the side tank which concerns on the ballast water treatment system of this invention. 本発明のバラスト水処理システムに係る底部タンクの蛇行流路追加を示す船体構造図。  The hull structure figure which shows the meandering flow path addition of the bottom part tank concerning the ballast water treatment system of this invention.

図面を参照し、本発明のバラスト水処理システムの実施例として、滅菌循環に係る系統及びタンク構造を説明し、なお、複数の同一機能要素は同一の符号で記載し、左・右舷等の区別が必要の場合は該符号に付属符号(S:Starboard、P:Portsideなど)を付加して記載する。  Referring to the drawings, a system and a tank structure related to sterilization circulation will be described as an example of a ballast water treatment system of the present invention. Is necessary, an attached code (S: Starboard, P: Portside, etc.) is added to the code.

[循環系統] 図1において、循環系統に係る実施例1を示せば、バラストポンプユニット1の右舷のバラスト主管2Sから分岐して冷却海水ポンプユニット3の循環吸引弁V1Cを経て冷却海水ポンプ予備機4PがT形逆止弁VTに連成の循環送水弁V2Cを経て滅菌装置5に送水し、滅菌装置5で滅菌薬剤を注入し弁VS2を経て右舷側循環主管6Sに、更に連絡弁V6Cを経て左舷側循環主管6Pに送水する。  [Circulation System] In FIG. 1, if Example 1 related to the circulation system is shown, a cooling seawater pump spare machine branches off from the starboard ballast main pipe 2S of the ballast pump unit 1 and passes through the circulation suction valve V1C of the cooling seawater pump unit 3. 4P supplies water to the sterilizer 5 through the circulation water supply valve V2C coupled to the T-type check valve VT, injects a sterilizing agent with the sterilizer 5, passes the valve VS2 to the starboard side circulation main pipe 6S, and further connects the communication valve V6C. Then, water is supplied to the port side circulation main pipe 6P.

冷却海水ポンプユニット3の冷却海水ポンプ常用機4Sは該予備機4Pと共に冷却吸引弁V1を経て、海水取水系7P(左舷)及び/又は7S(右舷)からそれぞれ取水分岐弁VIBを経て吸引し、T形逆止弁VTに連成の冷却給水弁V2を経て機関冷却系に冷却海水を供給しており、弁切替により常用機4S故障に備え予備機4Pで代替え(以下、バックアップ:Back−upと呼ぶ)する系統を構成しており、その予備機4Pを本発明のバラスト水循環処理に兼用する。  The cooling seawater pump regular machine 4S of the cooling seawater pump unit 3 is sucked from the seawater intake system 7P (port side) and / or 7S (right side) via the intake branch valve VIB together with the spare machine 4P through the cooling suction valve V1. Cooling seawater is supplied to the engine cooling system via a cooling water supply valve V2 coupled to the T-type check valve VT, and is replaced with a spare machine 4P in preparation for failure of the regular machine 4S by switching the valve (hereinafter referred to as backup: Back-up). The spare machine 4P is also used for the ballast water circulation process of the present invention.

バラストポンプ8Sは吸引弁V2Sを経てバラスト主管2Sから吸引し、絞り弁VS1を経て滅菌装置5に送水し、滅菌循環に使用の冷却海水ポンプ予備機4Pをバックアップする。  The ballast pump 8S sucks from the ballast main pipe 2S through the suction valve V2S, supplies water to the sterilizer 5 through the throttle valve VS1, and backs up the cooling seawater pump preliminary machine 4P used for sterilization circulation.

滅菌装置5の出口と、バラスト主管2Pと連絡弁V6経由2Sの合流部に、それぞれ滅菌薬剤濃度センサ11、12を装着する。  The sterilizing drug concentration sensors 11 and 12 are attached to the outlet of the sterilizer 5 and the junction of the ballast main pipe 2P and the connecting valve V6 2S, respectively.

[関連系統] 海水取水系7P(左舷)、7S(右舷)はそれぞれ海水箱(Sea Chest)9、取水主弁VIM、ストレーナ10を持ち、それぞれ取水吸引弁V1P(左舷)、V1S(右舷)を経て、バラスト主管2P(左舷)、2S(右舷)から排水吸引弁V2P(左舷)、V2S(右舷)を経て、バラストポンプ8P(左舷)、8S(右舷)に吸引され、それぞれ絞り弁V5P(左舷)、V5S(右舷)、注入弁V3P(左舷)、V3S(右舷)を経てバラスト主管2P(左舷)、2S(右舷)に送水し、逆止弁V4P(左舷)、V4S(右舷)及び舷外排水弁VOを経て舷外排出される。  [Related Systems] Seawater intake systems 7P (port) and 7S (starboard) each have a seawater box 9, sea intake main valve VIM, and strainer 10, and water intake valves V1P (port) and V1S (starboard), respectively. Then, it is sucked into the ballast pumps 8P (port side) and 8S (starboard) from the ballast main pipe 2P (port side) and 2S (starboard) through the drainage suction valves V2P (portside) and V2S (starboard), respectively, and the throttle valve V5P (portside) ), V5S (starboard), injection valve V3P (starboard), V3S (starboard), and water is supplied to the ballast main pipe 2P (starboard) and 2S (starboard), and check valves V4P (starboard), V4S (starboard) and outside It is discharged outside the drain via a drain valve VO.

ストレーナ7P、7Sは目開き(濾穴径)を小さくし(例えば4mm)海水取水の異物のサイズと個数を制限してバラスト水管理に資し、下記の経路で左右舷交互に逆洗を施し目詰まりを防ぐ。  The strainers 7P and 7S have a small opening (filter hole diameter) (for example, 4 mm) to limit the size and number of foreign matter in the seawater intake and contribute to ballast water management. Prevent clogging.

反舷側(例えば左舷側のバラストポンプ8Pを運転し、左舷側のストレーナ10を経た濾水を、弁V1P、弁V5P、弁V3P、弁V6、弁V2S、弁V1Sを通じて右舷側のストレーナ10に逆流方向に与え、空気弁VAを経た圧縮空気で左舷側のストレーナ10と海水箱9を攪拌しながら両者の逆洗を施す。  On the opposite side (for example, the port side ballast pump 8P is operated and the filtered water that has passed through the port side strainer 10 flows back to the starboard side strainer 10 through the valves V1P, V5P, V3P, V6, V2S, and V1S. The left side strainer 10 and the seawater box 9 are agitated with compressed air that has passed through the air valve VA, and both are backwashed.

この逆洗は荷卸港でバラスト注水の都度、沖合清浄海域で実施するのがよく、航海中は冷却海水の連続取水と間欠的な船内ビルジの吸引・排水の低債務で細目開きのストレーナの目詰まりは頗る低頻度である。  This backwashing should be carried out at the offshore clean water area at the unloading port every time the ballast water is injected, and during the voyage, it is a strainer with a wide opening due to the low debt of continuous intake of cooling seawater and intermittent inboard bilge suction / drainage. Clogging is infrequent.

なお、この逆洗中において、冷却海水ポンプユニット3は、逆洗側の海水取水系7Sの取水分岐弁VIBを閉じ、反舷側(左舷)の取水分岐弁VIBを経て取水し、無休連続稼働可能である。  During this backwashing, the cooling seawater pump unit 3 can close the intake branch valve VIB of the seawater intake system 7S on the backwash side and take water through the intake branch valve VIB on the opposite side (left port), and can operate continuously without holiday. It is.

[バラスト換水系] 例えば海水取水系7Sより取水吸引弁V1Sを経てバラストポンプ8S(右舷)を運転し、バラスト注水系統の弁V5S、V3Sを経てバラスト主管2S(右舷)に、連絡弁V6を経てバラスト主管2P(左舷)に送水して両舷1対のタンク毎のバラスト水を押上げ、両舷の循環主管6P、6S、連絡弁V6C及び逆止弁V4Cを経て左舷側に舷外排水し、フロースルーによるバラスト換水を実施可能であり、反舷側の海水取水系7P、バラストポンプ8Pによるバラスト注水系でも同様に実施可能である。  [Ballast Water Exchange System] For example, the ballast pump 8S (starboard) is operated from the seawater intake system 7S via the intake suction valve V1S, the valves V5S and V3S of the ballast water injection system are passed to the ballast main pipe 2S (starboard) and the communication valve V6. Water is fed to the ballast main pipe 2P (left side port) to push up the ballast water for each pair of tanks, and is drained outside the port to the port side through the circulation main pipes 6P and 6S on both sides, the connecting valve V6C and the check valve V4C. The ballast water exchange by flow-through can be performed, and the ballast water injection system by the seawater intake system 7P and the ballast pump 8P on the opposite side can be similarly implemented.

通常のバラスト排水及び上述のバラスト換水においても、不慮の停電などでバラストポンプ8P、8Sが停止の際、逆止弁V4P、V4S、V4Cにより舷外海水の逆流による異物侵入を防止し、船内海水系統を常に清浄に保つ。  In the normal ballast drainage and the above-described ballast exchange water, when the ballast pumps 8P and 8S are stopped due to an unexpected power failure, the check valves V4P, V4S and V4C prevent foreign matter from entering due to the reverse flow of the outside seawater, Keep the system clean at all times.

図2(a)、図3及び図4を参照し、バラストタンク内の循環流路を実施例2として説明する。  A circulation flow path in the ballast tank will be described as a second embodiment with reference to FIG.

[タンク構造概要] 図2(a)は液送船(Oil/Chemical Tanker)を例として、載荷部の船体横断面姿(Cross Section)を示し、底部・側部とも二重殻構造でバラストタンクを構成し、内殻内を載荷槽(Cargo Tank)101とし、横隔壁102で船軸方向に5分割し、中央隔壁103で左右舷に仕切り、それぞれ波形隔壁(Corrugate Bulkhead)で構成している。  [Summary of Tank Structure] FIG. 2 (a) shows a cross section of the loading section of a cargo ship (Oil / Chemical Tank) as an example, and a ballast tank with a double shell structure on the bottom and sides. The inner shell is a loading tank (Cargo Tank) 101, divided into five in the direction of the axis by the horizontal bulkhead 102, divided into left and right ridges by the central bulkhead 103, and each is constituted by a corrugated bulkhead. .

バラストタンクの二重底部分は底部タンク104(Bottom Tank)、側部の二重殻部分は側部タンク105(Wing Tank)とし、図3は底部タンク104の構造平面姿、図4は側部タンク105の構造側面姿を示す。  The double bottom portion of the ballast tank is the bottom tank 104 (Bottom Tank), the double shell portion of the side is the side tank 105 (Wing Tank), FIG. 3 is a structural plan view of the bottom tank 104, and FIG. The structural side view of the tank 105 is shown.

底部タンク104は、縦隔壁107でバラストタンクを左右舷に分割し、横隔壁106でバラストタンクを両舷とも船首尾に5分割し、各底部タンク104に縦桁108(Longitudinal Girder)及び3〜4FS毎に横桁109(Lateral Girder)を、縦桁108と並行して複数(図3では4本)の縦通補強材110(Longitudinal Stiffener:以下、縦小骨と呼ぶ)を二重底内外殻板111、112にそれぞれ配している。  The bottom tank 104 divides the ballast tank into left and right eaves with a vertical partition wall 107, and divides the ballast tank into five at the stern with a horizontal partition wall 106. Each bottom tank 104 has a vertical girder 108 (Longitudinal Guarder) and 3 to 3 parts. A double girder 109 (Lateral Girder) is provided every 4FS, and a plurality of (four in FIG. 3) longitudinal reinforcing members 110 (Longitudinal Stiffener: hereinafter referred to as longitudinal ossicles) in parallel with the vertical girder 108. These are arranged on the plates 111 and 112, respectively.

側部タンク105は、複数(図4では2本)の水平桁113で区分され、上記の横桁109の位置に垂直桁114を持ち、その中間には1FS毎に肋骨115(以下、小骨と呼ぶ)を舷側内外殻板116、117に配し、タンク頂部は上甲板118である。  The side tank 105 is divided into a plurality of (two in FIG. 4) horizontal girders 113, and has a vertical girder 114 at the position of the above-mentioned horizontal girder 109, and a rib 115 (hereinafter referred to as a small bone) every 1FS in the middle. ) Is arranged on the inner and outer shell plates 116 and 117, and the top of the tank is the upper deck 118.

底部タンク104の舷側曲線部はビルジ殻板119を持ち、外部にビルジキール120を、内部に1FS毎に補強板121がそれぞれ施されている。  The curved portion on the heel side of the bottom tank 104 has a bilge shell plate 119, a bilge keel 120 on the outside, and a reinforcing plate 121 on each 1FS.

[管路] 底部タンク104の外殻板112に小隙間(20〜30mm)を採ってベルマウス131を配し、分岐弁132(延長軸で上甲板118条で開閉操作)を経てバラスト主管2P(右舷側では2S)に接続する(バラスト主管2Pに並行の管は荷液の荷卸後の残液排出管を示す)。  [Pipe] A small gap (20 to 30 mm) is arranged in the outer shell plate 112 of the bottom tank 104, a bell mouth 131 is arranged, and the ballast main pipe 2P is passed through a branch valve 132 (opening and closing operation with the upper deck 118 on the extension shaft). (2S on the starboard side) is connected (a pipe parallel to the ballast main pipe 2P indicates a residual liquid discharge pipe after unloading of the liquid).

側部タンク105の頂部に循環主管6P(右舷側では2S)及び循環分岐弁133を、その管端134を該タンク105の流路始点部135にそれぞれ配する。  The circulation main pipe 6P (2S on the starboard side) and the circulation branch valve 133 are arranged at the top of the side tank 105, and the pipe end 134 thereof is arranged at the flow path starting point 135 of the tank 105.

[蛇行主流路] 側部タンク105の水平桁113及び底部タンク104の縦桁107の船首尾端部交互に軽目穴141を配し、循環分岐管端134からベルマウス131に至る蛇行主流路を形成する。  [Meandering main flow path] Light holes 141 are alternately arranged at the bow and tail ends of the horizontal girder 113 of the side tank 105 and the vertical girder 107 of the bottom tank 104, and the meandering main flow path extending from the circulation branch pipe end 134 to the bell mouth 131 Form.

垂直桁114に複数の軽目穴142を、横桁109に複数の軽目穴143をそれぞれ配し、水平桁113及び縦桁108とのそれぞれ交差隅部や縦小骨貫通部にそれぞれスカロップ145と共に、該蛇行主流路の全高・全幅に流速を分布させる。  A plurality of light holes 142 are arranged in the vertical girders 114, a plurality of light holes 143 are arranged in the horizontal girders 109, and scallops 145 are respectively provided at the intersections of the horizontal girders 113 and the vertical girders 108 and through the longitudinal small bones. The flow velocity is distributed over the entire height and width of the meandering main flow path.

[下降・横行副流路] 側部タンク105の水平桁113の中心線に小穴列144を施し、水平桁113の縁部の小骨115貫通部や垂直桁114との交差部のそれぞれスカロップ145と共に側部タンク105の全幅流速分布の下降副流路を形成し、底部タンク104の縦桁108の中心線に小穴列144を施し、縦桁108の縁部や縦小骨110の内外殻板111、112に接して明けた複数(1〜2FS毎)の気穴147、水穴148と共に底部タンク104の全高流速分布の横行副流路を形成し、両タンク内の偏流・滞留を防ぐ。  [Descent / Transverse Sub-Flow Channel] A small hole row 144 is provided at the center line of the horizontal girder 113 of the side tank 105, and the scallop 145 at each of the edge of the horizontal girder 113 through the small bone 115 and the intersection with the vertical girder 114. Forming a descending secondary flow path of the full width flow velocity distribution of the side tank 105, applying a small hole row 144 to the center line of the stringer 108 of the bottom tank 104, and the inner and outer shell plates 111 of the edge of the stringer 108 and the longitudinal small bone 110, A traverse sub-flow path of the total high flow velocity distribution of the bottom tank 104 is formed together with a plurality of (every 1-2 FS) air holes 147 and water holes 148 opened in contact with 112 to prevent drifting and staying in both tanks.

[ビルジ部] 底部タンク104の舷側部はビルジ殻板119、水平桁113(底部タンク内殻板111の延長部)、縦桁108に囲まれ且つ補給板121が1FS毎に施されているので、補強板121に中径の軽目穴122を、縦桁108に大径の軽目穴123を1FS毎に配してビルジ殻板119付近の滞留を局限する。  [Bilge part] The bottom side part of the bottom tank 104 is surrounded by a bilge shell plate 119, a horizontal girder 113 (an extension of the bottom tank inner shell plate 111) and a vertical girder 108, and a replenishment plate 121 is provided for each 1FS. Further, a medium-diameter light hole 122 is arranged in the reinforcing plate 121 and a large-diameter light hole 123 is arranged in the stringer 108 every 1FS to limit the stay in the vicinity of the bilge shell plate 119.

[蛇行主流路追加] 図5に示すように、底部タンク104の縦桁108による蛇行主流路を、横桁109の端部交互に大径の軽目穴141を配して更に横方向に蛇行を可能とし、横桁109の中心線に小穴列146を配し、縦小骨110の貫通部スカロップ145と共に更に縦行副流路を形成して偏流・滞留を防ぐ。  [Addition of meandering main flow path] As shown in FIG. 5, the meandering main flow path by the vertical girder 108 of the bottom tank 104 is further meandered in the horizontal direction by arranging light holes 141 having large diameters alternately at the ends of the horizontal girder 109. A small hole row 146 is arranged in the center line of the cross beam 109, and a longitudinal subchannel is formed together with the penetrating scallop 145 of the vertical ossicle 110 to prevent drift and stay.

[滅菌薬剤拡散] 以上、タンク内循環における偏流・滞留を極力防ぐよう工夫したが、薬剤は溶液中における分子運動で拡散する性質があり、船体動揺・振動(無波浪でも、船首・尾造波、機関・プロペラによる振動あり)によるバラスト水の加速度が薬剤拡散を促進し、滅菌機能を果たすものと考える。  [Diffusion of sterilized drug] As described above, we have devised to prevent drift and retention in the circulation in the tank as much as possible. The acceleration of ballast water due to the vibrations of the engine and propeller) promotes the diffusion of the drug and fulfills the sterilization function.

図2(b)を参照し、バラ積船(Bulk Carrier)のバラストタンク内流路を実施例3として説明すれば、バラストタンクの舷側部分は貨物艙(Cargo Hold)がホッパー状をなしており、頂部両舷に梯形断面の頂側部タンク(Top−side Tank)105Tを、底部両舷に梯形断面の底側部タンク(Bottom−side Tank)104Wとそれに続く矩形断面の底部タンク(Bottom Tank)104Bを以ってバラストタンクを構成しており、頂側部タンク105Tと底側部タンク104Wとは連絡管136で連結されている。  Referring to FIG. 2 (b), the flow path inside a ballast tank of a bulk carrier will be described as a third embodiment. A cargo ridge (Cargo Hold) forms a hopper shape on the heel side of the ballast tank. A top-side tank 105T having a trapezoidal cross section on both sides of the top, a bottom-side tank 104B having a trapezoidal cross section on both sides of the bottom, and a bottom tank having a rectangular section following the bottom-side tank (Bottom Tank). ) 104B constitutes a ballast tank, and the top side tank 105T and the bottom side tank 104W are connected by a connecting pipe 136.

船体底部の中央部には燃料タンク124が配され、底側部タンク104Wと底部タンク104Bの断面積の和は、頂側部タンク105Tとほぼ同等が普通である。  A fuel tank 124 is disposed at the center of the bottom of the hull, and the sum of the cross-sectional areas of the bottom side tank 104W and the bottom tank 104B is generally substantially equal to that of the top side tank 105T.

頂側部タンク105T及び底側部タンク104Wの横桁109はT形断面桁を内外殻板(116、117、118,119、112)に施し、両タンク中心部は大きな空洞を成しており、底部タンク104Bは図2(a)の底部タンク104と同様である。  The cross girder 109 of the top side tank 105T and the bottom side tank 104W has a T-shaped cross girder applied to the inner and outer shell plates (116, 117, 118, 119, 112), and the center of both tanks forms a large cavity. The bottom tank 104B is the same as the bottom tank 104 of FIG.

頂側部タンク105Tに循環主管6P、6S、循環分岐弁133(図示省略)、底部タンク104Bにバラスト主管2P、2S、バラスト分岐弁132(図示省略)、ベルマウス131を、図2(a)すなわち実施例2と同様に配する。  Circulation main pipes 6P and 6S, a circulation branch valve 133 (not shown) on the top side tank 105T, ballast main pipes 2P and 2S, a ballast branch valve 132 (not shown), and a bell mouth 131 on the bottom tank 104B, FIG. That is, they are arranged in the same manner as in the second embodiment.

頂側部タンク105Tでは、循環分岐の管端134をタンク殻板116、117及び上甲板118に沿う横方向に向け、その噴出により該タンク105内に回転螺旋流を与え、偏流・滞留を局限する。  In the top side tank 105T, the pipe end 134 of the circulation branch is directed in the lateral direction along the tank shell plates 116, 117 and the upper deck 118, and a rotational spiral flow is given into the tank 105 by the jetting to limit the drift / stagnation. To do.

底側部タンク104Wでは、頂側部タンク105Tからの連絡管136の管端137を外殻板117に沿い垂直方向に向け、その噴出により該タンク104Wに回転流を与えるが、該連絡管136がバラスト注排水時の管路損失低減の関係上その噴出流速は不十分の場合は、上記循環分岐から最小限の径の噴出管138を連絡管136と並行設置し噴出流速を得てもよい。  In the bottom side tank 104W, the pipe end 137 of the connecting pipe 136 from the top side tank 105T is directed along the outer shell plate 117 in the vertical direction, and the jet flow gives a rotational flow to the tank 104W. However, if the jet flow velocity is insufficient due to the reduction of pipe loss during ballast drainage, a jet pipe 138 having a minimum diameter from the circulation branch may be installed in parallel with the connecting pipe 136 to obtain the jet flow velocity. .

各タンク105T、104W、104Bの内部の桁・小骨における軽目穴、小穴、スカロップ、気穴、水穴などの偏流・滞留局限に係る構造は上述の図2(a)(実施例2)と同様である。  The structure related to the drift / retention localities such as light holes, small holes, scallops, air holes, water holes in the girders and small bones inside the tanks 105T, 104W, and 104B is the same as that shown in FIG. 2A (Example 2). It is the same.

1 バラストポンプユニット
2P バラスト主管(左舷) 2S バラスト主管(右舷)
3 冷却海水ポンプユニット
4P 冷却海水ポンプ予備機 4S 冷却海水ポンプ常用機
V1C 循環吸引弁 VT T形逆止弁
V2C 循環送水弁
V1 冷却吸引弁 V2 冷却送水弁
5 滅菌装置
6P 循環主管(左舷) 6S 循環主管(右舷)
7P 海水取水系(左舷) 7S 海水取水系(右舷)
8P バラストポンプ(左舷) 8S バラストポンプ(右舷)
V1P 取水吸引弁(左舷) V1S 取水吸引弁(右舷)
V2P 排水吸引弁(左舷) V2S 排水吸引弁(右舷)
V3P 注入弁(左舷) V3S 注入弁(右舷)
V4P 排水逆止弁(左舷) V4S 排水逆止弁(右舷)
V5P 絞り弁(左舷) V5S 絞り弁(右舷)
V6、V6C 連絡弁 V5C 半絞り弁
9 海水箱 VIM 取水主弁
10 ストレーナ VIB 取水分岐弁
11、12 濃度センサ
101 荷液槽、載荷艙 102 荷液槽横隔壁
103 荷液槽縦隔壁 104 底部タンク
105 側部タンク 106 タンク横隔壁
104W 底側部タンク 104B 底部タンク
105T 頂側部タンク
107 タンク縦隔壁 108 縦桁
109 横桁 110 縦小骨
111 2重底内殻板 112 二重底外殻板
113 水平桁 114 垂直桁
115 肋骨(小骨) 116 舷側内殻板
117 舷側外殻板 118 上甲板
119 ビルジ殻板 120 ビルジキール
121 補強板 122、123 軽目穴
124 燃料タンク
131 ベルマウス 132 バラスト分岐弁
133 循環分岐弁 134、137 管端
135 流路始点 136 連絡管
141 軽目穴 142 軽目穴
143 軽目穴 144 小穴
145 スカロップ 146 小穴
147 気穴 148 水穴
1 Ballast pump unit 2P Ballast main pipe (left side) 2S Ballast main pipe (right side)
3 Cooling Seawater Pump Unit 4P Cooling Seawater Pump Preliminary Machine 4S Cooling Seawater Pump Regular Machine V1C Circulating Suction Valve VT T Type Check Valve V2C Circulating Water Feed Valve V1 Cooling Suction Valve V2 Cooling Water Feed Valve 5 Sterilizer 6P Circulation Main Pipe (Side Port) 6S Circulation Main line (Starboard)
7P Seawater intake system (Port side) 7S Seawater intake system (Starboard)
8P ballast pump (left side) 8S ballast pump (right side)
V1P Water intake suction valve (left side) V1S Water intake suction valve (right side)
V2P Drainage suction valve (left side) V2S Drainage suction valve (right side)
V3P injection valve (left port) V3S injection valve (right port)
V4P Drainage check valve (left side) V4S Drainage check valve (right side)
V5P Throttle valve (left side) V5S Throttle valve (right side)
V6, V6C Communication valve V5C Half-throttle valve 9 Seawater box VIM Intake main valve 10 Strainer VIB Intake branch valve 11, 12 Concentration sensor 101 Load tank, loading tank 102 Load tank horizontal partition wall 103 Load tank vertical partition wall 104 Bottom tank 105 Side tank 106 Tank horizontal partition 104W Bottom side tank 104B Bottom tank 105T Top side tank 107 Tank vertical partition 108 Vertical girder 109 Horizontal girder 110 Vertical small bone 111 Double bottom inner shell plate 112 Double bottom outer shell plate 113 Horizontal girder 114 Vertical Girder 115 Rib (Small) 116 Bone Inner Shell Plate 117 Bone Outer Shell Plate 118 Upper Deck 119 Bilge Shell Plate 120 Bilge Keel 121 Reinforcement Plate 122, 123 Light Hole 124 Fuel Tank 131 Bellmouth 132 Ballast Branch Valve 133 Circulation Branch Valve 134, 137 Pipe end 135 Flow path start point 136 Connecting pipe 141 Light Hole 142 Light hole 143 Light hole 144 Small hole 145 Scallop 146 Small hole 147 Air hole 148 Water hole

Claims (6)

冷却海水ポンプ予備機に装着の2組の吸引弁と送水弁で冷却海水系統からバラスト水循環系統に切替え、或いは該ポンプに隣接のバラストポンプ1台に切替弁を付加して該循環系統に切替え、滅菌装置を経て循環管路でバラストタンクに送水し、戻り水をバラスト注排水管路を経て吸引し、バラストタンク毎にバラスト水を循環して滅菌処理するよう構成した船舶のバラスト水循環処理システム。  Switch from the cooling seawater system to the ballast water circulation system with two pairs of suction valve and water supply valve installed in the cooling seawater pump spare machine, or switch to the circulation system by adding a switching valve to one ballast pump adjacent to the pump, A ship ballast water circulation processing system configured to send water to a ballast tank through a circulatory line through a sterilizer, suck the return water through a ballast injection / drain pipe, and circulate the ballast water in each ballast tank for sterilization. バラストタンクの船軸方向の各構造桁の船首尾交互の端部に軽目穴を配し、横断面方向の各構造桁に軽目穴列及び内外殻板の縦小骨が該構造桁縁部貫通のスカロップと共に、側部タンクの頂部の循環注入管端から底部タンクのバラスト注排水管端のベルマウスに至る、蛇行主流路を構成した船舶のバラスト水循環処理システム。  Light holes are placed at the bow and tail alternate ends of each structural girder in the axial direction of the ballast tank, and the light holes and vertical ossicles of the inner and outer shell plates are located at the edges of the structural girder on each structural girder in the transverse direction. A ballast water circulation treatment system for a ship that constitutes a meandering main flow path from the end of the circulation injection pipe at the top of the side tank to the bell mouth at the end of the ballast pouring / draining pipe of the bottom tank together with the penetrating scallop. 請求項2の蛇行主流路に、底部タンクの各横桁の端部に船体中央と舷側の両側交互に軽目穴を配して、断面方向にも蛇行流路を加えた船舶のバラスト水循環処理システム。  The ballast water circulation treatment of a ship in which light holes are alternately arranged in the meandering main flow path of the bottom tank at the end of each transverse girder of the bottom tank alternately on both sides of the hull center and the shore side, and the meandering flow path is also added in the cross-sectional direction. system. バラストタンクの船軸方向の各構造桁のそれぞれ中心線に小穴列と、該構造桁及び縦小骨の内外殻板との溶接線に接して気穴列及び水穴列をそれぞれ配し、横断面方向の各構造桁との交差部のスカロップと共に該タンク内の偏流・滞留を防止するよう、横断面方向の副流路を構成した船舶のバラスト水循環処理システム。  A small hole row is arranged at the center line of each structural girder in the axial direction of the ballast tank, and a row of air holes and a water hole row are arranged in contact with the weld line between the structural girder and the inner and outer shell plates of the vertical small bone, respectively. A ship ballast water circulation treatment system in which a sub-flow path in a cross-sectional direction is formed so as to prevent a drift and stagnation in the tank together with a scallop at an intersection with each structural girder in a direction. バラストタンクの舷側部に大寸の梯形断面を持つ頂側部タンクや底側部タンクにおいて、頂部の循環注入管及び両タンク連絡管の管端をタンク殻板に沿いタンク断面方向に向け、各タンクに回転副流を与えて偏流・滞留を防止するよう構成した船舶のバラスト水循環処理システム。  In the top side tank and bottom side tank that have a large trapezoidal cross section on the heel side of the ballast tank, the pipe end of the top circulation injection pipe and both tank connecting pipes are directed along the tank shell plate in the tank cross section direction. A ship ballast water circulation treatment system configured to prevent a drift or stagnation by giving a rotating subflow to the tank. 請求項1のバラスト水循環系統に舷外排水弁を付加し、該系統の管路及び請求項2のバラストタンク内の蛇行主流路を逆方向に利用し、バラストポンプでバラスト注排水管路を経て注水し喫水線下で舷外排水するよう構成の、バラスト換水機能を付加した船舶のバラスト水循環処理システム。  An outside drainage valve is added to the ballast water circulation system of claim 1, and the meandering main channel in the ballast tank of claim 2 and the meandering main channel in the ballast tank of claim 2 are used in the reverse direction, and the ballast pump passes through the ballast injection / drainage channel. A ballast water circulation treatment system with a ballast water exchange function that is configured to inject water and drain outside the waterline.
JP2011031376A 2011-01-28 2011-01-28 Ballast water circulation processing system Pending JP2011131881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011031376A JP2011131881A (en) 2011-01-28 2011-01-28 Ballast water circulation processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011031376A JP2011131881A (en) 2011-01-28 2011-01-28 Ballast water circulation processing system

Publications (2)

Publication Number Publication Date
JP2011131881A true JP2011131881A (en) 2011-07-07
JP2011131881A5 JP2011131881A5 (en) 2013-02-07

Family

ID=44345076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031376A Pending JP2011131881A (en) 2011-01-28 2011-01-28 Ballast water circulation processing system

Country Status (1)

Country Link
JP (1) JP2011131881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016112950A (en) * 2014-12-12 2016-06-23 株式会社新来島どっく Ship structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285013A (en) * 2009-06-10 2010-12-24 Yukio Ota Bilge-ballast pipe device of vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285013A (en) * 2009-06-10 2010-12-24 Yukio Ota Bilge-ballast pipe device of vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016112950A (en) * 2014-12-12 2016-06-23 株式会社新来島どっく Ship structure

Similar Documents

Publication Publication Date Title
KR100881962B1 (en) Ballast water system
JP5562186B2 (en) Circulation system for ship ballast water
JP4509156B2 (en) Ship
JP6022484B2 (en) System for treating ballast water in ballast tanks
CN102514693B (en) Method for loop ballast exchange system for marine vessels during navigation
JP4505613B2 (en) Ship buoyancy control system
JP2009067253A5 (en)
KR20050083745A (en) Mobile desalination plants and systems, and method for producing desalinated water
CN101600620B (en) Ballast-treated water supply ship, and supply method for ballast-treated water
JP5173544B2 (en) Ballast water treatment ship and untreated ballast water treatment method
JP5798797B2 (en) Liquefied fuel transport ship and ship remodeling method, ship and liquefied fuel transport ship
CN109937957A (en) A kind of quick land-sea live fish lighterage
JP2011131881A (en) Ballast water circulation processing system
JP4303758B2 (en) Ballast treated water supply ship and ballast treated water supply method
JP2013056621A (en) Installation structure and installation method of ballast water treatment device in container ship
WO2013153670A1 (en) Ship and ballast water processing device
KR20150009330A (en) Apparatus for ballast water generating
WO2010046906A2 (en) Method and system for managing ballast water
GB1361557A (en) Apparatus for handling sludge in liquid tanks of vessels
KR20170052922A (en) Automatic Ballast Water management system of vessel and the working mechanism
KR20210027739A (en) Water treatment apparatus using ozone bubble
JP2011131881A5 (en)
JP6271337B2 (en) Floating structure and water filtration method in floating structure
KR101996279B1 (en) Ballast apparatus for vessel and the treatment method of ballast water for vessel
CN210645776U (en) Green and environment-friendly ship gas-liquid energy-saving supply and exhaust system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20121212

A975 Report on accelerated examination

Effective date: 20130125

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806