JP2011131258A - Submerged arc welding method of steel material - Google Patents

Submerged arc welding method of steel material Download PDF

Info

Publication number
JP2011131258A
JP2011131258A JP2009294531A JP2009294531A JP2011131258A JP 2011131258 A JP2011131258 A JP 2011131258A JP 2009294531 A JP2009294531 A JP 2009294531A JP 2009294531 A JP2009294531 A JP 2009294531A JP 2011131258 A JP2011131258 A JP 2011131258A
Authority
JP
Japan
Prior art keywords
welding
electrode
current density
total
submerged arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009294531A
Other languages
Japanese (ja)
Other versions
JP5672697B2 (en
Inventor
Atsushi Ishigami
篤史 石神
Naoya Hayakawa
直哉 早川
Kenji Oi
健次 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009294531A priority Critical patent/JP5672697B2/en
Publication of JP2011131258A publication Critical patent/JP2011131258A/en
Application granted granted Critical
Publication of JP5672697B2 publication Critical patent/JP5672697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a submerged arc welding method capable of obtaining the beautiful bead appearance while obtaining the sufficient penetration at high welding speed with low heat input. <P>SOLUTION: At least one of the inner surface welding and the outer surface welding is executed with the one-layer welding at the welding speed of ≥180 cm/min under the condition that the current density of the first and second electrodes satisfy the inequalities (1), the first electrode and the welding speed satisfy the inequality (2), and the total of the thickness of the steel material and the total groove sectional area of the inner surface and the outer surface satisfy the inequality (3). Inequality (1) : 95≤D<SB>1</SB>≤3.3×D<SB>2</SB>, inequality (2) : v+0.1×I<SB>1</SB>≤310, and inequality (3) : 3.9×t-S<SB>total</SB>≤20, where D<SB>1</SB>: current density (A/mm<SP>2</SP>) of the first electrode, D<SB>2</SB>: current density (A/mm<SP>2</SP>) of the second electrode, v: welding speed (cm/min), I<SB>1</SB>: first electrode current (A), t: thickness (mm), S<SB>total</SB>: total groove sectional area (mm<SP>2</SP>) of inner and outer surfaces. Preferably, the distance between the wire centers of the first and second electrodes measured at the surface position of the steel plate is set to 15-45 mm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋼材のサブマージアーク溶接方法に関し、UOE鋼管、スパイラル鋼管などの大径鋼管の造管溶接に用いて好適なものに関する。   The present invention relates to a submerged arc welding method for steel materials, and more particularly to a method suitable for pipe making welding of large diameter steel pipes such as UOE steel pipes and spiral steel pipes.

大径鋼管の造管溶接(シーム溶接)には2電極以上のサブマージアーク溶接が適用されている。パイプ生産能率向上の観点から鋼管の内面側を1パス、外面側を1パスで溶接する両面一層盛り溶接が一般的で、高能率な溶接施工がなされている(例えば特許文献1,2)。   Submerged arc welding with two or more electrodes is applied to pipe making welding (seam welding) of large diameter steel pipes. From the viewpoint of improving pipe production efficiency, double-sided single-layer welding, in which the inner surface side of the steel pipe is welded with one pass and the outer surface side with one pass, is commonly performed, and highly efficient welding is performed (for example, Patent Documents 1 and 2).

両面一層溶接では内面溶接金属と外面溶接金属が重なり未溶融部がないように十分な溶け込み深さを確保するため、1000A以上の大電流を適用して溶接を行うのが一般的であるが、能率と欠陥抑制を重視することで、溶接入熱が過剰となりやすく、溶接部特に溶接熱影響部の靭性が劣化する傾向にある。   In double-sided single-layer welding, in order to ensure a sufficient penetration depth so that the inner surface welding metal and the outer surface welding metal overlap and there is no unmelted portion, it is common to perform welding by applying a large current of 1000 A or more, By placing emphasis on efficiency and defect suppression, welding heat input tends to be excessive, and the toughness of the welded part, particularly the welded heat affected zone, tends to deteriorate.

溶接部の高靭性化のためには、溶接入熱を低減するのが有効で、特に板厚の大きな鋼管の造管溶接では必要な入熱が大きくなるため、可能な限り入熱を低減することが課題となっている。しかしながら、入熱を低減すると溶け込み不足を生じる危険性が増大するため、従来より入熱低減と深溶け込みの両立を目的としたサブマージアーク溶接方法に関する種々の提案がなされている。   In order to increase the toughness of welds, it is effective to reduce the heat input, especially in the case of steel pipe welding with thick steel pipes, the required heat input is increased, so the heat input is reduced as much as possible. This is an issue. However, since reducing the heat input increases the risk of inadequate penetration, various proposals have been made regarding submerged arc welding methods aimed at achieving both heat input reduction and deep penetration.

例えば特許文献3には高電流で更なる高電流密度でのサブマージアーク溶接方法が提案されており、アークエネルギーをできるだけ板厚方向に投入することにより、必要な溶け込み深さだけを確保し、鋼材幅方向の母材の溶解を抑制することで溶接入熱が過剰とならないようにして、入熱低減と深溶け込みの両立が図られている。   For example, Patent Document 3 proposes a submerged arc welding method with a high current and a further high current density. By supplying arc energy in the plate thickness direction as much as possible, only the necessary penetration depth is ensured. By suppressing the melting of the base material in the width direction, the heat input by welding is prevented from becoming excessive, and both heat input reduction and deep penetration are achieved.

特開平11−138266号公報JP 11-138266 A 特開平10−109171号公報JP-A-10-109171 特開2006−272377号公報JP 2006-272377 A

しかし、溶接条件の選定においては、溶接部の靭性、溶け込み形状の他に、ビード外観を考慮することが必要であるところ、特許文献3記載のサブマージアーク溶接方法では、入熱低減と深溶け込みが両立できるものの、高溶接速度条件下においてはハンピングビードになりやすく、更に余盛が高くなりやすく、溶接後に余盛を削るなどの作業が必要となり生産効率が低下する場合があった。   However, in the selection of welding conditions, it is necessary to consider the bead appearance in addition to the toughness of the weld and the penetration shape. In the submerged arc welding method described in Patent Document 3, heat input reduction and deep penetration are achieved. Although both can be achieved, under high welding speed conditions, it tends to be a humping bead, and the surplus is likely to be higher, and the work such as shaving off the surplus after welding is required, which may reduce the production efficiency.

そこで、本発明は鋼材を内外面から多電極サブマージアーク溶接するに際し、従来の細径ワイヤを用いた高溶接速度かつ低入熱で十分な溶け込みを得ながら美麗なビード外観を得ることが可能なサブマージアーク溶接方法を提供することを目的とする。   Therefore, the present invention can obtain a beautiful bead appearance while obtaining sufficient penetration at a high welding speed and low heat input using a conventional thin wire when performing multi-electrode submerged arc welding of steel materials from the inner and outer surfaces. An object is to provide a submerged arc welding method.

本発明者らは、サブマージアーク溶接で種々の溶接条件下において鋼材の内外面一層溶接継手を作製し、溶接金属断面形状および溶接欠陥について調査した。   The inventors of the present invention made single-layer welded joints of steel materials under various welding conditions by submerged arc welding, and investigated the weld metal cross-sectional shape and weld defects.

その結果、開先形状、溶接条件、電極配置を適正に設定することで、低入熱かつ高溶接速度で十分な溶け込みを得ながら余盛高さ低減およびハンピングビードの抑制を実現し、美麗な外観のビードが得られることを見出した。本発明はこの知見に基づいてなされたものであり、その要旨は以下の通りである。
1.2電極以上のサブマージアーク溶接を用いた鋼材の内外面一層溶接において、内面溶接と外面溶接の少なくとも一方が下記を満足することを特徴とする鋼材のサブマージアーク溶接方法。
As a result, by setting the groove shape, welding conditions, and electrode arrangement appropriately, it is possible to reduce the surplus height and suppress the humping bead while obtaining sufficient penetration at low heat input and high welding speed. It was found that a bead with a good appearance can be obtained. This invention is made | formed based on this knowledge, The summary is as follows.
1.2 Inner and outer surface single layer welding of steel materials using submerged arc welding of electrodes or more, wherein at least one of inner surface welding and outer surface welding satisfies the following:


溶接速度が180cm/min以上で、鋼材の板厚と内面と外面の開先断面積の合計は下記の(1)式を満足し、第1電極と溶接速度は下記の(2)式を満足し、さらに第1電極および第2電極の電流密度は下記の(3)式を満足する。
The welding speed is 180 cm / min or more, the total thickness of the steel plate and the groove cross-sectional area of the inner surface and the outer surface satisfy the following formula (1), and the first electrode and the welding speed are the following formula (2). Furthermore, the current densities of the first electrode and the second electrode satisfy the following expression (3).


3.9×t−Stotal≦20 (1)
v+0.1×I≦310 (2)
95≦D≦3.3×D (3)
ここで、
電流密度(A/mm)=溶接電流(A)÷ワイヤ断面積(mm
:第1電極の電流密度(A/mm)、D:第2電極の電流密度(A/mm)、
v:溶接速度(cm/min)、I:第1電極電流(A)、t:板厚(mm)、
total:内面と外面の開先断面積の合計(mm
2.鋼板表層位置で測定した第1電極と第2電極のワイヤ中心間の距離が15mm以上、45mm以下であることを特徴とする1に記載のサブマージアーク溶接方法。
3.9 × t-S total ≦ 20 (1)
v + 0.1 × I 1 ≦ 310 (2)
95 ≦ D 1 ≦ 3.3 × D 2 (3)
here,
Current density (A / mm 2 ) = Welding current (A) ÷ Wire cross-sectional area (mm 2 )
D 1 : current density of the first electrode (A / mm 2 ), D 2 : current density of the second electrode (A / mm 2 ),
v: welding speed (cm / min), I 1 : first electrode current (A), t: plate thickness (mm),
S total : Sum of groove cross-sectional areas of inner surface and outer surface (mm 2 )
2. 2. The submerged arc welding method according to 1, wherein the distance between the wire centers of the first electrode and the second electrode measured at the surface layer position of the steel sheet is 15 mm or more and 45 mm or less.

本発明によれば、2電極以上のサブマージアーク溶接において、溶接入熱の低減と、溶け込み量の増加を高い溶接速度のもとで両立させ、美麗なビード外観の内外面1層盛溶接部を得ることが可能で、産業上極めて有用である。   According to the present invention, in the submerged arc welding of two or more electrodes, a reduction in welding heat input and an increase in the penetration amount are achieved at a high welding speed, and an inner / outer surface single-layer weld with a beautiful bead appearance is achieved. It can be obtained and is extremely useful industrially.

開先形状を示す図。The figure which shows a groove shape. 溶接部マクロ断面の一例を示す模式図。The schematic diagram which shows an example of a welding part macro cross section.

本発明では、1.開先形状が溶接結果(余盛高さ:図2中のh)に及ぼす影響、2.溶接条件の溶接結果(ハンピングビード)に及ぼす影響、3.溶接結果に及ぼす第1電極の電流密度D(A/mm)と第2電極の電流密度D(A/mm)の影響を、それぞれについてのパラメータ式によって代表し、良好な溶接部が得られるようにその値を規定する。 In the present invention, 1. Influence of groove shape on welding result (height height: h in FIG. 2) 2. Influence of welding conditions on welding results (humping beads); The influence of the current density D 1 (A / mm 2 ) of the first electrode and the current density D 2 (A / mm 2 ) of the second electrode on the welding result is represented by the parameter formula for each, and a good weld The value is specified so that

まず、開先形状が溶接結果(余盛高さ:図2中のh)に及ぼす影響は、パラメータ式:3.9×t−Stotal(ここで、t:板厚(mm)、Stotal:内面と外面の開先断面積の合計(mm))で規定し、開先断面積が小さすぎると余盛高さが過大になりやすいため、下記(1)式を満足させる。 First, the influence of the groove shape on the welding result (recess height: h in FIG. 2) is as follows: Parameter formula: 3.9 × t−S total (where t: plate thickness (mm), S total : Sum of groove cross-sectional areas of inner surface and outer surface (mm 2 )), and if the groove cross-sectional area is too small, the surplus height tends to be excessive, so the following formula (1) is satisfied.

次に、溶接条件の溶接結果(ハンピングビード)に及ぼす影響を、第1電極電流、溶接速度からなるパラメータ式:v+0.1×I(ここで、v:溶接速度(cm/min)、I:第1電極電流(A))で規定し、第1電極の電流が大きく溶接速度が速い溶接条件ほどハンピングビードになりやすいため、下記(2)式を満足させる。 Next, the influence of the welding conditions on the welding result (humping bead) is expressed by a parameter formula consisting of the first electrode current and the welding speed: v + 0.1 × I 1 (where v: welding speed (cm / min), I 1 : defined by the first electrode current (A)), and the welding condition in which the current of the first electrode is large and the welding speed is high is likely to be a humping bead, and therefore satisfies the following formula (2).

溶接結果に及ぼす第1電極の電流密度D(A/mm)と第2電極の電流密度D(A/mm)の影響は、第1電極の電流密度D(A/mm)と3.3倍した第2電極の電流密度D(A/mm)との比較で規定し、第1電極の電流密度Dが低すぎると溶け込み深さが不十分になりやすく、また、第2電極の電流密度が第1電極の電流密度に対して低すぎるとビード不整になりやすいため、下記(3)式を満足させるように規定する。


3.9×t−Stotal≦20 (1)
v+0.1×I≦310 (2)
95≦D≦3.3×D (3)
ここで、
電流密度(A/mm)=溶接電流(A)÷ワイヤ断面積(mm
:第1電極の電流密度(A/mm)、D:第2電極の電流密度(A/mm)、
v:溶接速度(cm/min)、I:第1電極電流(A)、t:板厚(mm)、
total:内面と外面の開先断面積の合計(mm
なお、本発明では、第1電極と第2電極間の距離(鋼板表層位置で測定した第1電極と第2電極のワイヤ中心間の距離)を、15mm以上45mm以下とするのが好ましい。梨型割れの発生を抑制するには第1電極と第2電極間の距離が15mm以上が、スラグ巻き込みを抑制するには第1電極と第2電極間の距離が45mm以下が好ましいからである。
Welding current density Results on the first electrode D 1 (A / mm 2) and the influence of current density D 2 (A / mm 2) of the second electrode, the current density of the first electrode D 1 (A / mm 2 ) And 3.3 times the current density D 2 (A / mm 2 ) of the second electrode. If the current density D 1 of the first electrode is too low, the penetration depth tends to be insufficient. Further, if the current density of the second electrode is too low with respect to the current density of the first electrode, bead irregularity is likely to occur, so that the following expression (3) is satisfied.

3.9 × t-S total ≦ 20 (1)
v + 0.1 × I 1 ≦ 310 (2)
95 ≦ D 1 ≦ 3.3 × D 2 (3)
here,
Current density (A / mm 2 ) = Welding current (A) ÷ Wire cross-sectional area (mm 2 )
D 1 : current density of the first electrode (A / mm 2 ), D 2 : current density of the second electrode (A / mm 2 ),
v: welding speed (cm / min), I 1 : first electrode current (A), t: plate thickness (mm),
S total : Sum of groove cross-sectional areas of inner surface and outer surface (mm 2 )
In the present invention, the distance between the first electrode and the second electrode (the distance between the wire centers of the first electrode and the second electrode measured at the surface layer position) is preferably 15 mm or more and 45 mm or less. This is because the distance between the first electrode and the second electrode is preferably 15 mm or more for suppressing the occurrence of pear-shaped cracks, and the distance between the first electrode and the second electrode is preferably 45 mm or less for suppressing the slag entrainment. .

本発明は上述のように構成されているので、高溶接速度が可能となった。なお、本発明は内面溶接と外面溶接のいずれにも適用することができ、内面溶接と外面溶接の両方に適用することが好ましい。   Since the present invention is configured as described above, a high welding speed is possible. The present invention can be applied to both inner surface welding and outer surface welding, and is preferably applied to both inner surface welding and outer surface welding.

板厚6.4mm、19.1mm、31.8mmの鋼板に、図1に示す開先形状の開先加工を施した後、内外面一層溶接の3または4電極サブマージアーク溶接を施して溶接継手を作製し、ビード外観を目視観察後、溶け込み状態、溶接欠陥の有無の検査をビード定常部を等分して採取した3つのマクロ断面を目視観察して行った。表1に鋼板の化学成分を、表2に開先寸法を、表3に溶接条件を示す。図2にマクロ断面の模式図を示す。   A steel plate having thicknesses of 6.4 mm, 19.1 mm, and 31.8 mm is subjected to groove processing of the groove shape shown in FIG. 1 and then subjected to inner or outer surface single layer 3 or 4-electrode submerged arc welding to weld joints. After the bead appearance was visually observed, three macro sections taken by equally dividing the bead steady portion were visually inspected for the penetration state and the presence or absence of welding defects. Table 1 shows the chemical composition of the steel sheet, Table 2 shows the groove dimensions, and Table 3 shows the welding conditions. FIG. 2 shows a schematic diagram of a macro cross section.

各板厚毎に、開先形状では、内外面において開先角度と開先深さを変化させ、溶接条件では、内外面溶接のそれぞれにおいて、第1電極、第2電極の電流密度、溶接速度を変化させた。また、第1電極と第2電極の極間距離を変えた溶接も一部行った。   For each plate thickness, in the groove shape, the groove angle and groove depth are changed on the inner and outer surfaces, and in the welding conditions, the current density and welding speed of the first electrode and the second electrode in each of the inner and outer surface welding. Changed. In addition, some welding was performed by changing the distance between the first electrode and the second electrode.

表4に、溶接結果を示す。No.1〜No.10は、内面溶接および/または外面溶接でパラメータ式:3.9×t−Stotalの値を20以下、パラメータ式:v+0.1×Iの値を310以下、第1電極の電流密度D(A/mm)は95以上、且つ当該第1電極の電流密度D(A/mm)を、3.3倍した第2電極の電流密度D(A/mm)以下として、内面溶接および/または外面溶接を行ったもので溶接速度180(cm/min)以上の高速溶接であっても内面溶接部および/または外面溶接部で美麗なビード外観が得られている。 Table 4 shows the welding results. No. 1-No. 10 is a parameter formula: 3.9 × t−S total with a value of 20 or less, a parameter formula: v + 0.1 × I 1 with a value of 310 or less, and the current density D of the first electrode in inner surface welding and / or outer surface welding. 1 (A / mm 2 ) is 95 or more, and the current density D 1 (A / mm 2 ) of the first electrode is 3.3 times the current density D 2 (A / mm 2 ) or less of the second electrode. A beautiful bead appearance is obtained at the inner surface welded portion and / or the outer surface welded portion even when the inner surface welding and / or the outer surface welding is performed and the welding speed is 180 (cm / min) or higher.

No.3の内面溶接はパラメータ式:v+0.1×Iの値が310超え、第1電極の電流密度D(A/mm)の絶対値は95未満のため、ハンピングビード、余盛過大であった。 No. The inner surface welding of No. 3 has a parameter formula: v + 0.1 × I 1 exceeding 310, and the absolute value of the current density D 1 (A / mm 2 ) of the first electrode is less than 95. Met.

No.5の外面溶接は第1電極の電流密度D(A/mm)が、3.3倍した第2電極の電流密度D(A/mm)を超えるため、溶接速度180(cm/min)以下でも、ビード不整であった。 No. 5, the current density D 1 (A / mm 2 ) of the first electrode exceeds the current density D 2 (A / mm 2 ) of the second electrode multiplied by 3.3. min) Even below, the bead was irregular.

No.11は内面溶接および外面溶接の第1電極の電流密度が95未満であり溶け込み不良が生じた。No.12は内面開先断面積と外面開先断面積の合計が小さくパラメータ式:3.9×t−Stotalの値が20超えており、内面溶接および外面溶接において余盛が高くなった。 No. No. 11 had a current density of the first electrode of inner surface welding and outer surface welding of less than 95, and poor penetration occurred. No. No. 12 had a small sum of the inner face groove cross-sectional area and the outer face groove cross-sectional area, and the value of the parameter formula: 3.9 × t- Total was more than 20, and the surplus was increased in the inner surface welding and the outer surface welding.

No.13は内面溶接および外面溶接で第1電極の電流密度D(A/mm)が第2電極の電流密度D(A/mm)の3.3倍を超えておりビード不整となった。 No. 13 is an inner surface welding and an outer surface welding, and the current density D 1 (A / mm 2 ) of the first electrode exceeds 3.3 times the current density D 2 (A / mm 2 ) of the second electrode, and the bead is irregular. It was.

No.14は内面溶接と外面溶接の両方においてパラメータ式:v+0.1×Iの値が310超えの場合で、内面溶接と外面溶接のいずれもハンピングビードとなった。 No. 14 is a case where the value of the parameter formula: v + 0.1 × I 1 exceeds 310 in both the inner surface welding and the outer surface welding, and both the inner surface welding and the outer surface welding became humping beads.

No.15は内面溶接においてパラメータ式:v+0.1×Iの値が310超えの場合でハンピングビードとなり、外面溶接については溶接速度が180cm/min未満の例である。 No. 15 is a humping bead when the value of the parameter formula: v + 0.1 × I 1 exceeds 310 in the inner surface welding, and the outer surface welding is an example in which the welding speed is less than 180 cm / min.

No.16は内面溶接において第1電極の電流密度D(A/mm)が第2電極の電流密度D(A/mm)の3.3倍を超える場合でビード不整となり、外面溶接については溶接速度が180cm/min未満の例である。 No. No. 16 shows that the bead irregularity occurs when the current density D 1 (A / mm 2 ) of the first electrode exceeds 3.3 times the current density D 2 (A / mm 2 ) of the second electrode in the inner surface welding. Is an example where the welding speed is less than 180 cm / min.

なお、十分な溶け込みと美麗なビード外観が得られているが、No.9の外面溶接は第1電極と第2電極との極間距離(鋼板表層位置で測定したワイヤ中心間距離)が13mmで、梨型割れが発生した。No.10の外面溶接は第1電極と第2電極との極間距離が47mmで、スラグ巻き込みが発生した。また、両溶接の溶接速度は180cm/min未満である。   In addition, although sufficient penetration and a beautiful bead appearance were obtained, no. In the outer surface welding of No. 9, the interelectrode distance between the first electrode and the second electrode (the distance between the wire centers measured at the surface layer position) was 13 mm, and a pear-shaped crack occurred. No. In the outer surface welding No. 10, the distance between the first electrode and the second electrode was 47 mm, and slag entrainment occurred. Moreover, the welding speed of both welding is less than 180 cm / min.

Figure 2011131258
Figure 2011131258

Figure 2011131258
Figure 2011131258

Figure 2011131258
Figure 2011131258

Figure 2011131258
Figure 2011131258

1 鋼材
2 内面溶接部
3 外面溶接部
h 余盛高さ
t 板厚
DESCRIPTION OF SYMBOLS 1 Steel material 2 Inner surface welded part 3 Outer surface welded part h Extra height t Plate thickness

Claims (2)

2電極以上のサブマージアーク溶接を用いた鋼材の内外面一層溶接において、内面溶接と外面溶接の少なくとも一方が下記を満足することを特徴とする鋼材のサブマージアーク溶接方法。

溶接速度が180cm/min以上で、鋼材の板厚と内面と外面の開先断面積の合計は下記の(1)式を満足し、第1電極と溶接速度は下記の(2)式を満足し、さらに第1電極および第2電極の電流密度は下記の(3)式を満足する。
3.9×t−Stotal≦20 (1)
v+0.1×I≦310 (2)
95≦D≦3.3×D (3)
ここで、
電流密度(A/mm)=溶接電流(A)÷ワイヤ断面積(mm
:第1電極の電流密度(A/mm)、D:第2電極の電流密度(A/mm)、
v:溶接速度(cm/min)、I:第1電極電流(A)、t:板厚(mm)、
total:内面と外面の開先断面積の合計(mm
A steel submerged arc welding method characterized in that at least one of inner surface welding and outer surface welding satisfies the following in single-layer inner and outer surface welding of a steel material using submerged arc welding of two or more electrodes.
The welding speed is 180 cm / min or more, the total thickness of the steel plate and the groove cross-sectional area of the inner surface and the outer surface satisfy the following formula (1), and the first electrode and the welding speed are the following formula (2). Furthermore, the current densities of the first electrode and the second electrode satisfy the following expression (3).
3.9 × t-S total ≦ 20 (1)
v + 0.1 × I 1 ≦ 310 (2)
95 ≦ D 1 ≦ 3.3 × D 2 (3)
here,
Current density (A / mm 2 ) = Welding current (A) ÷ Wire cross-sectional area (mm 2 )
D 1 : current density of the first electrode (A / mm 2 ), D 2 : current density of the second electrode (A / mm 2 ),
v: welding speed (cm / min), I 1 : first electrode current (A), t: plate thickness (mm),
S total : Sum of groove cross-sectional areas of inner surface and outer surface (mm 2 )
鋼板表層位置で測定した第1電極と第2電極のワイヤ中心間の距離が15mm以上45mm以下であることを特徴とする請求項1に記載のサブマージアーク溶接方法。   The submerged arc welding method according to claim 1, wherein the distance between the wire centers of the first electrode and the second electrode measured at the surface layer position of the steel sheet is 15 mm or more and 45 mm or less.
JP2009294531A 2009-12-25 2009-12-25 Submerged arc welding method for steel Active JP5672697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294531A JP5672697B2 (en) 2009-12-25 2009-12-25 Submerged arc welding method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294531A JP5672697B2 (en) 2009-12-25 2009-12-25 Submerged arc welding method for steel

Publications (2)

Publication Number Publication Date
JP2011131258A true JP2011131258A (en) 2011-07-07
JP5672697B2 JP5672697B2 (en) 2015-02-18

Family

ID=44344557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294531A Active JP5672697B2 (en) 2009-12-25 2009-12-25 Submerged arc welding method for steel

Country Status (1)

Country Link
JP (1) JP5672697B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073523A (en) * 2012-10-05 2014-04-24 Jfe Steel Corp Submerged arc welding method
CN114682886A (en) * 2022-04-28 2022-07-01 河南鼎力杆塔股份有限公司 Welding method for angle iron tower steel cladding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260684A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Multiple electrode submerged arc welding method of thick steel plate
JP2007268564A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Multi-electrode submerged arc welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260684A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Multiple electrode submerged arc welding method of thick steel plate
JP2007268564A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Multi-electrode submerged arc welding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073523A (en) * 2012-10-05 2014-04-24 Jfe Steel Corp Submerged arc welding method
CN114682886A (en) * 2022-04-28 2022-07-01 河南鼎力杆塔股份有限公司 Welding method for angle iron tower steel cladding
CN114682886B (en) * 2022-04-28 2024-03-19 河南鼎力杆塔股份有限公司 Welding method for angle iron tower steel

Also Published As

Publication number Publication date
JP5672697B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5521632B2 (en) Thick steel plate welding method
WO2010137186A1 (en) Submerged arc welding method for steel plate
JP5772977B2 (en) Submerged arc welding method for steel sheet
RU2486996C2 (en) Method of hidden arc welding of steel material using multiple electrodes
JP2006272377A (en) Submerged arc welding method of steel material
JP6119940B1 (en) Vertical narrow groove gas shielded arc welding method
JP2007268564A (en) Multi-electrode submerged arc welding method
JP2008043974A (en) Longitudinal seam welded joint of uoe steel pipe
JP4952892B2 (en) Welding method for extra heavy steel plates
KR20160144494A (en) Vertical narrow gap gas shielded arc welding method
JP5239900B2 (en) Multi-electrode submerged arc welding method for steel
CN110253118B (en) Welding method for 917 steel plate and aluminum-titanium steel composite material
JP5223369B2 (en) Multi-electrode submerged arc welding method for steel
JP2009214127A (en) Submerged arc welding method for steel material
JP2009233679A (en) Submerged arc welding method of steel material
JP5354236B1 (en) Submerged arc welding method for steel sheet
JP5672697B2 (en) Submerged arc welding method for steel
JP5742090B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
JP2013081985A (en) Submerged arc welding method for steel material
JP5742091B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
JP5758573B2 (en) Multi-electrode submerged arc welding method for steel
JP5470718B2 (en) Multi-electrode submerged arc welding method for thick steel plate
JP5895423B2 (en) Multi-electrode submerged arc welding method for steel sheet
JP7323781B2 (en) Multi-electrode submerged arc welding method
JP6607677B2 (en) Four-electrode single-sided single-layer submerged arc welding method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5672697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250