JP2011129686A - Thermoelectric conversion device, and method for manufacturing the same - Google Patents

Thermoelectric conversion device, and method for manufacturing the same Download PDF

Info

Publication number
JP2011129686A
JP2011129686A JP2009286403A JP2009286403A JP2011129686A JP 2011129686 A JP2011129686 A JP 2011129686A JP 2009286403 A JP2009286403 A JP 2009286403A JP 2009286403 A JP2009286403 A JP 2009286403A JP 2011129686 A JP2011129686 A JP 2011129686A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
substrate
composite
substrates
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009286403A
Other languages
Japanese (ja)
Other versions
JP5521529B2 (en
Inventor
Koji Omote
孝司 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009286403A priority Critical patent/JP5521529B2/en
Publication of JP2011129686A publication Critical patent/JP2011129686A/en
Application granted granted Critical
Publication of JP5521529B2 publication Critical patent/JP5521529B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion device that is easy to manufacture. <P>SOLUTION: As one embodiment, the thermoelectric conversion device 10 includes a first heating medium flow passage 12 and a second heating medium flow passage 13 disposed around a columnar hollow portion 11 to form double spiral flow passages, a spiral first thermoelectric conversion portion 14 forming one border between the first heating medium flow passage 12 and second heating medium flow passage 13, and a spiral second thermoelectric conversion portion 15 forming the other border between the first heating medium flow passage 12 and second heating medium flow passage 13, wherein the first thermoelectric conversion portion 14 and second thermoelectric conversion portion 15 are flexible. The thermoelectric conversion device 10 is manufactured using a flexible thermoelectric conversion substrate 20 having a center through hole 22, a slit 28 extending from an end edge to the center through hole, a first end face 23 and a second end face 24 which face each other across the slit 28, a first electrode 45 disposed on the first end face, and a second electrode 46 disposed on the second end face. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱電変換装置及びその製造方法に関する。   The present invention relates to a thermoelectric conversion device and a manufacturing method thereof.

近年、廃棄される熱エネルギーを電気エネルギーに変換する熱電変換装置が関心を集めている。また、熱電変換装置は、電気エネルギーを用いた熱の移送のためにも用いられる。このように、熱電変換装置には、熱により発電する熱発電素子と、電気により熱を移送するペルチェ素子とが含まれる。これらの熱発電素子及びペルチェ素子の基本的な構造は同じである。   In recent years, thermoelectric conversion devices that convert waste heat energy into electrical energy have attracted attention. Thermoelectric conversion devices are also used for heat transfer using electrical energy. As described above, the thermoelectric conversion device includes a thermoelectric generator that generates electricity by heat and a Peltier element that transfers heat by electricity. The basic structures of these thermoelectric generators and Peltier elements are the same.

熱電変換装置は、可動部を持たないので、高い信頼性を有する。また、熱電変換装置は、小型に形成可能なので、設置の容易な発電装置である。更に、熱電変換装置は、無騒音且つ無振動であり、環境性に優れている。   Since the thermoelectric converter does not have a movable part, it has high reliability. Further, since the thermoelectric conversion device can be formed in a small size, it is a power generation device that is easy to install. Furthermore, the thermoelectric conversion device is noiseless and vibration-free and has excellent environmental properties.

例えば、従来の熱電変換装置として、複数の熱電変換素子が電気的に直列に接続されて形成されるものがある。各熱電変換素子は、電気的には、p型半導体素子とn型半導体素子とが直列に接続され、また熱的には、p型半導体素子とn型半導体素子とが並列に配置される。熱電変換装置は、これらの熱電変換素子が電気的絶縁性を有するセラミックス板の上に固定された構造を有し、熱源の近傍に配置され得る。   For example, some conventional thermoelectric conversion devices are formed by connecting a plurality of thermoelectric conversion elements electrically in series. In each thermoelectric conversion element, a p-type semiconductor element and an n-type semiconductor element are electrically connected in series, and thermally, the p-type semiconductor element and the n-type semiconductor element are arranged in parallel. The thermoelectric conversion device has a structure in which these thermoelectric conversion elements are fixed on a ceramic plate having electrical insulation, and can be disposed in the vicinity of a heat source.

特開2008−91539号公報JP 2008-91539 A 特開2009−43752号公報JP 2009-43752 A

上述したように、従来の熱電変換装置は、セラミック板上に多数の熱電変換素子を配置された構造を有する。このように、セラミックス板を用いる熱電変換装置は、脆性を有するセラミックス板の加工が困難である。従って、熱電変換装置の製造を自動化することは難しい。   As described above, the conventional thermoelectric conversion device has a structure in which a large number of thermoelectric conversion elements are arranged on a ceramic plate. Thus, the thermoelectric conversion device using the ceramic plate is difficult to process the brittle ceramic plate. Therefore, it is difficult to automate the manufacture of the thermoelectric conversion device.

また、熱電変換装置では、多数のp型半導体素子とn型半導体素子とを、熱的に並列に配置するには、熱媒体との間に熱的に接触する接触面積が大きいことが望ましい。   In the thermoelectric conversion device, in order to arrange a large number of p-type semiconductor elements and n-type semiconductor elements in parallel in parallel, it is desirable that the contact area in thermal contact with the heat medium is large.

また、熱電変換装置は、エネルギー変換効率の向上が求められている。   In addition, thermoelectric conversion devices are required to improve energy conversion efficiency.

本明細書では、製造が容易な熱電変換装置及びその製造方法を提供することを目的とする。   In this specification, it aims at providing the thermoelectric conversion apparatus with easy manufacture, and its manufacturing method.

また、本明細書では、熱媒体との間に熱的に大きな接触面積を有する熱電変換装置及びその製造方法を提供することを目的とする。   It is another object of the present specification to provide a thermoelectric conversion device having a thermally large contact area with a heat medium and a method for manufacturing the thermoelectric conversion device.

更に、本明細書では、エネルギー変換効率の高い熱電変換装置及びその製造方法を提供することを目的とする。   Furthermore, it aims at providing the thermoelectric conversion apparatus with high energy conversion efficiency, and its manufacturing method in this specification.

本明細書に開示する熱電変換装置の一形態によれば、柱状の中空部の周りに配置される2重螺旋の流路を形成する第1熱媒体流路及び第2熱媒体流路と、上記第1熱媒体流路と上記第2熱媒体流路との間の一方の境界を形成する螺旋状の第1熱電変換部と、上記第1熱媒体流路と上記第2熱媒体流路との間の他方の境界を形成する螺旋状の第2熱電変換部と、を備え、上記第1熱電変換部及び上記第2熱電変換部は可撓性を有する。   According to one aspect of the thermoelectric conversion device disclosed in the present specification, a first heat medium flow path and a second heat medium flow path that form a double spiral flow path arranged around a columnar hollow portion; A spiral first thermoelectric converter that forms one boundary between the first heat medium flow path and the second heat medium flow path, the first heat medium flow path, and the second heat medium flow path A spiral second thermoelectric conversion unit that forms the other boundary between the first thermoelectric conversion unit and the second thermoelectric conversion unit.

また、上述した熱電変換装置の製造方法では、中央貫通孔と、端縁から上記中央貫通孔へ延びるスリットと、上記スリットを挟んで対向する第1端面及び第2端面と、上記第1端面に配置される第1電極と、上記第2端面に配置される第2電極と、を有する可撓性の熱電変換基板を用いて熱電変換装置が製造される。   Moreover, in the manufacturing method of the thermoelectric conversion apparatus mentioned above, the center through-hole, the slit extended from the edge to the said center through-hole, the 1st end surface and 2nd end surface which oppose on both sides of the said slit, and the said 1st end surface A thermoelectric conversion device is manufactured using a flexible thermoelectric conversion substrate having a first electrode arranged and a second electrode arranged on the second end face.

上述した本明細書に開示する熱電変換装置及びその製造方法によれば、製造が容易である。   According to the thermoelectric conversion device and the manufacturing method thereof disclosed in the present specification described above, the manufacturing is easy.

また、上述した本明細書に開示する熱電変換装置及びその製造方法によれば、熱媒体との間に熱的に大きな接触面積を有する。   Moreover, according to the thermoelectric conversion apparatus and its manufacturing method disclosed in the present specification described above, a thermal contact area with the heat medium is large.

更に、上述した本明細書に開示する熱電変換装置及びその製造方法によれば、エネルギー変換効率が高い。   Furthermore, according to the thermoelectric conversion device and the manufacturing method thereof disclosed in the present specification described above, the energy conversion efficiency is high.

本発明の目的及び効果は、特に請求項において指摘される構成要素及び組み合わせを用いることによって認識され且つ得られるだろう。   The objects and advantages of the invention will be realized and obtained by means of the elements and combinations particularly pointed out in the appended claims.

前述の一般的な説明及び後述の詳細な説明の両方は、例示的及び説明的なものであり、クレームされている本発明を制限するものではない。   Both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention as claimed.

本明細書に開示する熱電変換装置の第1実施形態を示す斜視図である。1 is a perspective view showing a first embodiment of a thermoelectric conversion device disclosed in this specification. FIG. 図1のX1−X1線断面図である。It is the X1-X1 sectional view taken on the line of FIG. 図1の熱電変換装置を形成する熱電変換基板を示す斜視図である。It is a perspective view which shows the thermoelectric conversion board | substrate which forms the thermoelectric conversion apparatus of FIG. 図3の熱電変換基板の部分破断斜視図である。FIG. 4 is a partially broken perspective view of the thermoelectric conversion substrate of FIG. 3. 図3の熱電変換基板の分解斜視図である。It is a disassembled perspective view of the thermoelectric conversion board | substrate of FIG. (A)は、第2基板が取り除かれた図3の熱電変換基板を示す平面図であり、(B)は、(A)のX2−X2線断面図である。(A) is a top view which shows the thermoelectric conversion board | substrate of FIG. 3 from which the 2nd board | substrate was removed, (B) is the X2-X2 sectional view taken on the line of (A). (A)は、図3の熱電変換基板を形成する第2基板を示す平面図であり、(B)は、(A)のX3−X3線断面図である。(A) is a top view which shows the 2nd board | substrate which forms the thermoelectric conversion board | substrate of FIG. 3, (B) is the X3-X3 sectional view taken on the line of (A). (A)は、本明細書に開示する熱電変換装置の製造方法の第1実施形態の製造工程(その1)を示す図であり、(B)は製造工程(その2)を示す図である。(A) is a figure which shows the manufacturing process (the 1) of 1st Embodiment of the manufacturing method of the thermoelectric conversion apparatus disclosed to this specification, (B) is a figure which shows a manufacturing process (the 2). . (A)は、本明細書に開示する熱電変換装置の製造方法の第1実施形態の製造工程(その3)を示す図であり、(B)は製造工程(その4)を示す図である。(A) is a figure which shows the manufacturing process (the 3) of 1st Embodiment of the manufacturing method of the thermoelectric conversion apparatus disclosed to this specification, (B) is a figure which shows a manufacturing process (the 4). . 本明細書に開示する熱電変換装置の製造方法の第1実施形態の製造工程(その5)を示す図である。It is a figure which shows the manufacturing process (the 5) of 1st Embodiment of the manufacturing method of the thermoelectric conversion apparatus disclosed to this specification. 本明細書に開示する熱電変換装置の製造方法の第1実施形態の製造工程(その6)を示す図である。It is a figure which shows the manufacturing process (the 6) of 1st Embodiment of the manufacturing method of the thermoelectric conversion apparatus disclosed to this specification. 本明細書に開示する熱電変換装置の製造方法の第1実施形態の製造工程(その7)を示す図である。It is a figure which shows the manufacturing process (the 7) of 1st Embodiment of the manufacturing method of the thermoelectric conversion apparatus disclosed to this specification. 本明細書に開示する熱電変換装置の製造方法の第1実施形態の製造工程(その8)を示す図である。It is a figure which shows the manufacturing process (the 8) of 1st Embodiment of the manufacturing method of the thermoelectric conversion apparatus disclosed to this specification. 本明細書に開示する熱電変換装置の第2実施形態を示す斜視図である。It is a perspective view which shows 2nd Embodiment of the thermoelectric conversion apparatus disclosed to this specification. 図13のY1−Y1線断面図である。It is the Y1-Y1 sectional view taken on the line of FIG. (A)は、図13の熱電変換装置を形成する一方の熱電変換基板の撓んだ状態を示す斜視図であり、(B)は第1熱電変換基板の撓んでない状態を示す部分破断斜視図である。(A) is a perspective view which shows the state which one thermoelectric conversion board | substrate which forms the thermoelectric conversion apparatus of FIG. 13 bent, (B) is a partially broken perspective view which shows the state which the 1st thermoelectric conversion board | substrate is not bent. FIG. (A)は、図13の熱電変換装置を形成する他方の熱電変換基板の撓んだ状態を示す斜視図であり、(B)は第2熱電変換基板の撓んでない状態を示す部分破断斜視図である。(A) is a perspective view which shows the state which the other thermoelectric conversion board | substrate which forms the thermoelectric conversion apparatus of FIG. 13 bent, (B) is a partially broken perspective view which shows the state which the 2nd thermoelectric conversion board | substrate does not bend. FIG. 本明細書に開示する熱電変換装置の製造方法の第2実施形態の製造工程(その1)を示す図である。It is a figure which shows the manufacturing process (the 1) of 2nd Embodiment of the manufacturing method of the thermoelectric conversion apparatus disclosed to this specification. 本明細書に開示する熱電変換装置の製造方法の第2実施形態の製造工程(その2)を示す図である。It is a figure which shows the manufacturing process (the 2) of 2nd Embodiment of the manufacturing method of the thermoelectric conversion apparatus disclosed to this specification. 本明細書に開示する熱電変換装置の製造方法の第2実施形態の製造工程(その3)を示す図である。It is a figure which shows the manufacturing process (the 3) of 2nd Embodiment of the manufacturing method of the thermoelectric conversion apparatus disclosed to this specification. 本明細書に開示する熱電変換装置の第3実施形態を示す正面図である。It is a front view which shows 3rd Embodiment of the thermoelectric conversion apparatus disclosed to this specification. 図20の熱電変換装置の平面図である。It is a top view of the thermoelectric conversion apparatus of FIG. (A)は、本明細書に開示する熱電変換装置の製造方法の第3実施形態の製造工程(その1)を示す図であり、(B)は、本明細書に開示する熱電変換装置の製造方法の第3実施形態の製造工程(その2)を示す図である。(A) is a figure which shows the manufacturing process (the 1) of 3rd Embodiment of the manufacturing method of the thermoelectric conversion apparatus disclosed to this specification, (B) is a figure of the thermoelectric conversion apparatus disclosed to this specification. It is a figure which shows the manufacturing process (the 2) of 3rd Embodiment of a manufacturing method. 本明細書に開示する熱電変換基板の製造方法の変形例を示す図である。It is a figure which shows the modification of the manufacturing method of the thermoelectric conversion board | substrate disclosed to this specification.

以下、本明細書で開示する熱電変換装置の好ましい第1実施形態を、図面を参照して説明する。但し、本発明の技術範囲はそれらの実施形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。   Hereinafter, a preferred first embodiment of a thermoelectric conversion device disclosed in this specification will be described with reference to the drawings. However, it should be noted that the technical scope of the present invention is not limited to these embodiments, but extends to the invention described in the claims and equivalents thereof.

図1は、本明細書に開示する熱電変換装置の第1実施形態を示す斜視図である。図2は、図1のX1−X1線断面図である。   FIG. 1 is a perspective view showing a first embodiment of a thermoelectric conversion device disclosed in this specification. 2 is a cross-sectional view taken along line X1-X1 of FIG.

本実施形態の熱電変換装置10は、柱状の中空部11の周りに配置されて2重螺旋の流路を形成する第1熱媒体流路12及び第2熱媒体流路13を備える。   The thermoelectric conversion device 10 of this embodiment includes a first heat medium flow channel 12 and a second heat medium flow channel 13 that are arranged around a columnar hollow portion 11 to form a double spiral flow channel.

第1熱媒体流路12は、図2の実線の矢印に示すように、熱電変換装置10の内部に形成された螺旋状の流路である。同様に、第2熱媒体流路13は、図2の点線の矢印に示すように、熱電変換装置10の内部に形成された螺旋状の流路である。   The first heat medium flow path 12 is a spiral flow path formed inside the thermoelectric conversion device 10 as indicated by the solid line arrow in FIG. 2. Similarly, the second heat medium flow path 13 is a spiral flow path formed inside the thermoelectric conversion device 10 as indicated by the dotted arrow in FIG.

第1熱媒体流路12及び第2熱媒体流路13それぞれは、独立した流路であり、熱電変換装置10の下方に一方の開口部を有し、熱電変換装置10の上方に他方の開口部を有する。第1熱媒体流路12及び第2熱媒体流路13それぞれは、熱電変換装置10の下方から上方に向かって螺旋状に延びている。   Each of the first heat medium flow path 12 and the second heat medium flow path 13 is an independent flow path, and has one opening below the thermoelectric conversion device 10 and the other opening above the thermoelectric conversion device 10. Part. Each of the first heat medium flow channel 12 and the second heat medium flow channel 13 extends in a spiral shape from the lower side to the upper side of the thermoelectric conversion device 10.

熱電変換装置10では、第1熱媒体流路12及び第2熱媒体流路13は、中空部11とは繋がっていない。また、第1熱媒体流路12及び第2熱媒体流路13は、第1熱電変換部12と第2熱電変換部13とに挟まれていない部分が外部に開放されていない。   In the thermoelectric conversion device 10, the first heat medium flow path 12 and the second heat medium flow path 13 are not connected to the hollow portion 11. Moreover, the part which is not pinched | interposed into the 1st thermoelectric conversion part 12 and the 2nd thermoelectric conversion part 13 is not open | released outside the 1st heat-medium flow path 12 and the 2nd heat-medium flow path 13.

また、熱電変換装置10は、第1熱媒体流路12と第2熱媒体流路13との間の一方の境界を形成する螺旋状の第1熱電変換部14と、第1熱媒体流路12と第2熱媒体流路13との間の他方の境界を形成する螺旋状の第2熱電変換部15と、を備える。   The thermoelectric conversion device 10 includes a spiral first thermoelectric conversion unit 14 that forms one boundary between the first heat medium flow path 12 and the second heat medium flow path 13, and a first heat medium flow path. 12 and a spiral second thermoelectric conversion unit 15 that forms the other boundary between the second heat medium flow path 13 and the second heat medium flow path 13.

第1熱電変換部14は、熱電変換装置10の下方から上方に向かって、螺旋状に延びている。第1熱電変換部14は、熱電変換装置10の上方に第1端面23を有し、下方に第2端面24を有する。   The first thermoelectric conversion unit 14 extends in a spiral shape from the lower side to the upper side of the thermoelectric conversion device 10. The first thermoelectric conversion unit 14 has a first end face 23 above the thermoelectric conversion device 10 and a second end face 24 below.

第1熱電変換部14は、上面が第1熱媒体流路12と熱的に接触し、下面が第2熱媒体流路13と熱的に接触している。熱電変換装置10の下方から上方に向かって螺旋状に延びる第1熱電変換部14は、その略全体に亘って、第1熱媒体流路12と第2熱媒体流路13とに挟まれており、それぞれの流路と熱的に接触している。   The first thermoelectric converter 14 has an upper surface in thermal contact with the first heat medium flow path 12 and a lower surface in thermal contact with the second heat medium flow path 13. The first thermoelectric conversion portion 14 that spirally extends from the lower side to the upper side of the thermoelectric conversion device 10 is sandwiched between the first heat medium flow channel 12 and the second heat medium flow channel 13 over substantially the whole thereof. And are in thermal contact with the respective flow paths.

第1熱電変換部14は、内部に熱電変換回路を有する。この熱電変換回路の第1電極45が、第1端面23に配置され、熱電変換回路の第2電極46が第2端面24に配置される。   The 1st thermoelectric conversion part 14 has a thermoelectric conversion circuit inside. The first electrode 45 of the thermoelectric conversion circuit is disposed on the first end face 23, and the second electrode 46 of the thermoelectric conversion circuit is disposed on the second end face 24.

第2熱電変換部15は、上面が第2熱媒体流路13と熱的に接触し、下面が第1熱媒体流路12と熱的に接触している。熱電変換装置10の下方から上方に向かって螺旋状に延びる第2熱電変換部15は、その略全体に亘って、第1熱媒体流路12と第2熱媒体流路13とに挟まれており、それぞれの流路と熱的に接触している。   The second thermoelectric conversion unit 15 has an upper surface in thermal contact with the second heat medium flow path 13 and a lower surface in thermal contact with the first heat medium flow path 12. The second thermoelectric conversion portion 15 that spirally extends from the lower side to the upper side of the thermoelectric conversion device 10 is sandwiched between the first heat medium flow channel 12 and the second heat medium flow channel 13 over substantially the whole. And are in thermal contact with the respective flow paths.

第2熱電変換部15は、第1熱電変換部14と同様の構造を有しており、第1熱電変換部14とは独立した熱電変換回路を有する。この熱電変換回路も、第1電極及び第2電極(図示せず)を有する。   The second thermoelectric conversion unit 15 has the same structure as the first thermoelectric conversion unit 14 and has a thermoelectric conversion circuit independent of the first thermoelectric conversion unit 14. This thermoelectric conversion circuit also has a first electrode and a second electrode (not shown).

このように、熱電変換装置10は、熱電変換部と熱媒体流路とが一体に形成されている。   As described above, in the thermoelectric conversion device 10, the thermoelectric conversion unit and the heat medium flow path are integrally formed.

本実施形態の熱電変換装置10では、第1熱電変換部14及び第2熱電変換部15それぞれは可撓性を有する。詳しくは後述するが、第1熱電変換部14及び第2熱電変換部15それぞれは、可撓性を有する複数の熱電変換基板が、撓んだ状態で、互いに組み合わされ接合されて、螺旋状の構造が形成されている。そのため、熱電変換装置10も全体として可撓性を有する。   In the thermoelectric conversion device 10 of the present embodiment, each of the first thermoelectric conversion unit 14 and the second thermoelectric conversion unit 15 has flexibility. As will be described in detail later, each of the first thermoelectric conversion unit 14 and the second thermoelectric conversion unit 15 includes a plurality of flexible thermoelectric conversion substrates that are combined and joined to each other in a bent state. A structure is formed. Therefore, the thermoelectric conversion device 10 also has flexibility as a whole.

熱電変換装置10を用いて熱発電を行う場合には、例えば、第1熱媒体流路12に、図2の実線の矢印に示すように、熱電変換装置10の下方から上方に向かって、温度の高い熱媒体が流される。また、第2熱媒体流路13には、例えば、図2の点線の矢印に示すように、熱電変換装置10の上方から下方に向かって、温度の低い熱媒体が流される。   When thermoelectric power generation is performed using the thermoelectric conversion device 10, for example, the temperature of the first heat medium flow path 12 from the lower side to the upper side of the thermoelectric conversion device 10 as indicated by the solid line arrow in FIG. 2. A high heat medium is flowed. In addition, a heat medium having a low temperature flows through the second heat medium flow path 13 from the upper side to the lower side of the thermoelectric conversion device 10, for example, as indicated by a dotted arrow in FIG. 2.

第1熱媒体流路12及び第2熱媒体流路13には、求められる熱発電力に応じて、例えば、大量の熱媒体を循環させることができる。   A large amount of heat medium can be circulated in the first heat medium flow path 12 and the second heat medium flow path 13 according to the required heat generation power, for example.

このようにして、第1熱電変換部14及び第2熱電変換部15それぞれは、第1熱媒体流路12内を流れる熱媒体の温度と第2熱媒体流路13内を流れる熱媒体の温度の差によって熱発電を行う。発電された電力は、それぞれ熱電変換部における第1電極及び第2電極から取り出される。   Thus, each of the first thermoelectric conversion unit 14 and the second thermoelectric conversion unit 15 includes the temperature of the heat medium flowing in the first heat medium flow channel 12 and the temperature of the heat medium flowing in the second heat medium flow channel 13. Thermal power is generated by the difference between The generated electric power is taken out from the first electrode and the second electrode in the thermoelectric conversion unit, respectively.

また、例えば、図1に示すリード線16を用いて、第1熱電変換部14の熱電変換回路と第2熱電変換部15の熱電変換回路とが直列に接続されるように、両変換部の第1電極同士を接続しても良い。この場合には、第1熱電変換部14及び第2熱電変換部15によって熱発電された電極は、熱電変換装置10の下方に位置する2つの第2電極から取り出される。   Further, for example, by using the lead wire 16 illustrated in FIG. 1, the thermoelectric conversion circuit of the first thermoelectric conversion unit 14 and the thermoelectric conversion circuit of the second thermoelectric conversion unit 15 are connected in series. The first electrodes may be connected to each other. In this case, the electrodes thermoelectrically generated by the first thermoelectric conversion unit 14 and the second thermoelectric conversion unit 15 are taken out from the two second electrodes located below the thermoelectric conversion device 10.

また、第1熱電変換部14及び第2熱電変換部15それぞれの熱電変換回路に対して電力を供給することによって、第1熱媒体流路12内を流れる熱媒体と第2熱媒体流路13内を流れる熱媒体との間で熱エネルギーの移送を行うこともできる。   Further, by supplying electric power to the thermoelectric conversion circuits of the first thermoelectric conversion unit 14 and the second thermoelectric conversion unit 15, the heat medium flowing in the first heat medium flow channel 12 and the second heat medium flow channel 13. It is also possible to transfer heat energy to and from the heat medium flowing inside.

図1及び図2に示す熱電変換装置10は、可撓性を有する複数の熱電変換基板20a、20bが撓んだ状態で互いに組み合わされ接合されて形成されている。第1熱電変換部14は、撓んだ熱電変換基板20aが螺旋状に接合されて形成されている。また、第2熱電変換部15は、撓んだ熱電変換基板20bが螺旋状に接合されて形成されている。   The thermoelectric conversion device 10 shown in FIGS. 1 and 2 is formed by combining and joining a plurality of flexible thermoelectric conversion substrates 20a and 20b in a bent state. The first thermoelectric conversion portion 14 is formed by joining a bent thermoelectric conversion substrate 20a in a spiral shape. The second thermoelectric conversion unit 15 is formed by joining a bent thermoelectric conversion substrate 20b in a spiral shape.

次に、熱電変換基板20aを、図3〜図7を参照して以下に説明する。熱電変換基板20bは、熱電変換基板20aと同じ構造を有しているので、以下に説明する熱電変換基板20aの説明は、熱電変換基板20bに対しても適宜適用される。   Next, the thermoelectric conversion board | substrate 20a is demonstrated below with reference to FIGS. Since the thermoelectric conversion substrate 20b has the same structure as the thermoelectric conversion substrate 20a, the description of the thermoelectric conversion substrate 20a described below is also applied to the thermoelectric conversion substrate 20b as appropriate.

図3は、図1の熱電変換装置10を形成する熱電変換基板20aの撓んだ状態を示す斜視図である。図4は、図3の熱電変換基板20aの部分破断斜視図である。図5は、図3の熱電変換基板20aの分解斜視図である。図6(A)は、第2基板34が取り除かれた図3の熱電変換基板20aを示す平面図であり、図6(B)は、図6(A)のX2−X2線断面図である。図7(A)は、図3の熱電変換基板20aを形成する第2基板を示す平面図であり、図7(B)は、図7(A)のX3−X3線断面図である。   FIG. 3 is a perspective view showing a bent state of the thermoelectric conversion substrate 20a forming the thermoelectric conversion device 10 of FIG. FIG. 4 is a partially broken perspective view of the thermoelectric conversion substrate 20a of FIG. FIG. 5 is an exploded perspective view of the thermoelectric conversion substrate 20a of FIG. 6A is a plan view showing the thermoelectric conversion substrate 20a of FIG. 3 with the second substrate 34 removed, and FIG. 6B is a cross-sectional view taken along line X2-X2 of FIG. 6A. . 7A is a plan view showing a second substrate forming the thermoelectric conversion substrate 20a of FIG. 3, and FIG. 7B is a cross-sectional view taken along line X3-X3 of FIG. 7A.

熱電変換基板20aは、図4に示すように、第1基板31及び第2基板34を備える。第1基板31及び第2基板34は可撓性を有する。   As shown in FIG. 4, the thermoelectric conversion substrate 20 a includes a first substrate 31 and a second substrate 34. The first substrate 31 and the second substrate 34 have flexibility.

図6(A)に示すように、第1基板31は、中央に位置する第1貫通孔32と、端縁から第1貫通孔32へ延びる第1スリット33とを有する。第1基板31は、電気絶縁性を有する。   As shown in FIG. 6A, the first substrate 31 has a first through hole 32 located in the center and a first slit 33 extending from the edge to the first through hole 32. The first substrate 31 has electrical insulation.

また、図7(A)に示すように、第2基板34は、中央に位置する第2貫通孔35と、端縁から第2貫通孔35へ延びる第2スリット36とを有する。第2基板34は、電気絶縁性を有する。   As shown in FIG. 7A, the second substrate 34 includes a second through hole 35 located in the center and a second slit 36 extending from the edge to the second through hole 35. The second substrate 34 has electrical insulation.

熱電変換基板20aでは、第1貫通孔32と第2貫通孔35とが同じ形状を有している。本実施形態では、第1貫通孔32及び第2貫通孔35は、円形状を有しているが、第1貫通孔32及び第2貫通孔35の形状は、矩形等の他の形状であっても良い。   In the thermoelectric conversion substrate 20a, the first through hole 32 and the second through hole 35 have the same shape. In the present embodiment, the first through hole 32 and the second through hole 35 have a circular shape, but the first through hole 32 and the second through hole 35 have other shapes such as a rectangle. May be.

また、熱電変換基板20aでは、第1基板31と第2基板34とが同じ形状を有している。本実施形態では、第1基板31及び第2基板34は、正方形状を有しているが、第1貫通孔32及び第2貫通孔35の形状は、円形等の他の形状であっても良い。   Moreover, in the thermoelectric conversion board | substrate 20a, the 1st board | substrate 31 and the 2nd board | substrate 34 have the same shape. In the present embodiment, the first substrate 31 and the second substrate 34 have a square shape, but the first through hole 32 and the second through hole 35 may have other shapes such as a circle. good.

熱電変換基板20aでは、内部を密閉する基板間シール部21が、第1基板31の周縁と第2基板34の周縁との間に形成されている。   In the thermoelectric conversion substrate 20 a, an inter-substrate seal portion 21 that seals the inside is formed between the periphery of the first substrate 31 and the periphery of the second substrate 34.

第1スリット33及び第2スリット36は、幅のない切れ込みであっても良いし、所定の幅を有する切れ込みであっても良い。   The first slit 33 and the second slit 36 may be slits having no width, or may be slits having a predetermined width.

熱電変換基板20aは、第2基板34上の第2貫通孔35の周囲に、第2貫通孔35を囲み、第2スリット36の位置で途切れる中央シール部25が形成されている。また、熱電変換基板20aは、第2基板34上の周縁には、第2スリット36の位置で途切れる外周シール部26が形成されている。熱電変換基板20bも、熱電変換基板20aと同様に形成されている。   In the thermoelectric conversion substrate 20 a, a central seal portion 25 is formed around the second through hole 35 on the second substrate 34 so as to surround the second through hole 35 and to be interrupted at the position of the second slit 36. Further, the thermoelectric conversion substrate 20 a is formed with an outer peripheral seal portion 26 that is interrupted at the position of the second slit 36 on the periphery on the second substrate 34. The thermoelectric conversion substrate 20b is also formed in the same manner as the thermoelectric conversion substrate 20a.

基板間シール部21、及び中央シール部25、及び外周シール部26は、可撓性を有する。   The inter-substrate seal part 21, the center seal part 25, and the outer peripheral seal part 26 have flexibility.

また、熱電変換基板20aでは、第1貫通孔32と第2貫通孔35とを揃え、且つ第1スリット33と第2スリット36とを揃えて、第2基板34が、第1基板31上に熱電変換回路40を挟んで積層されている。   Further, in the thermoelectric conversion substrate 20a, the first through hole 32 and the second through hole 35 are aligned, and the first slit 33 and the second slit 36 are aligned, so that the second substrate 34 is placed on the first substrate 31. The thermoelectric conversion circuits 40 are stacked.

具体的には、第1基板31と第2基板34とは、両基板間にp型半導体素子41及びn型半導体素子42を有する熱電変換回路40が配置されて、積層されている。熱電変換回路40は、第1基板31上に配置されており、第1電極45及び第2電極46を有する。   Specifically, the first substrate 31 and the second substrate 34 are stacked with a thermoelectric conversion circuit 40 having a p-type semiconductor element 41 and an n-type semiconductor element 42 disposed between the two substrates. The thermoelectric conversion circuit 40 is disposed on the first substrate 31 and includes a first electrode 45 and a second electrode 46.

図4及び図5に示すように、熱電変換基板20aでは、第1貫通孔32と第2貫通孔35とこれらの貫通孔の間をシールする基板間シール部21の部分とによって中央貫通孔22が形成される。また、第1スリット33と第2スリット36との間には、基板間シール部21の部分によって、対向する第1端面23及び第2端面24が形成されている。   As shown in FIGS. 4 and 5, in the thermoelectric conversion substrate 20 a, the central through hole 22 is formed by the first through hole 32, the second through hole 35, and the portion of the inter-substrate seal portion 21 that seals between these through holes. Is formed. Further, between the first slit 33 and the second slit 36, an opposing first end surface 23 and second end surface 24 are formed by the portion of the inter-substrate seal portion 21.

第1端面23と第2端面24との間には、スリット27が形成される。図3に示すように、撓んだ状態の熱電変換基板20aでは、スリット27において、第1端面側の端部23aと第2端面側の端部24aとを、これらの面方向において互いに反対の向きにずらして切り込み部28が形成される。   A slit 27 is formed between the first end surface 23 and the second end surface 24. As shown in FIG. 3, in the thermoelectric conversion substrate 20a in the bent state, in the slit 27, the end portion 23a on the first end face side and the end portion 24a on the second end face side are opposite to each other in these plane directions. The cut portion 28 is formed by shifting in the direction.

第1電極45が第1端面23に配置され、第2電極46が第2端面24に配置されている。第1電極45は、凸型の電極形状を有する第2電極46の部分を、受け容れ可能な凹型の部分を有する。   The first electrode 45 is disposed on the first end face 23, and the second electrode 46 is disposed on the second end face 24. The first electrode 45 has a concave portion that can accept the portion of the second electrode 46 having a convex electrode shape.

次に、熱電変換回路40について、図6及び図7を参照して、以下に更に説明する。   Next, the thermoelectric conversion circuit 40 will be further described below with reference to FIGS. 6 and 7.

図6(A)及び図6(B)に示すように、熱電変換回路40は、p型半導体素子41とn型半導体素子42とが第1導電板43を介して直列に接続される熱電変換素子が、複数直列に接続されて形成されている。p型半導体素子41及びn型半導体素子42それぞれは、導電性接着材47を介して第1導電板43と接続する。第1導電板43は、第1基板31上に配置される。   6A and 6B, the thermoelectric conversion circuit 40 includes a p-type semiconductor element 41 and an n-type semiconductor element 42 connected in series via a first conductive plate 43. A plurality of elements are connected in series. Each of the p-type semiconductor element 41 and the n-type semiconductor element 42 is connected to the first conductive plate 43 through a conductive adhesive 47. The first conductive plate 43 is disposed on the first substrate 31.

熱電変換素子48同士は、第1基板31と対向する第2基板34の面上に配置された第2導電板46(図7(B)参照)を介して接続する。具体的には、p型半導体素子41及びn型半導体素子42それぞれは、導電性接着材47を介して第2導電板46と接続する。なお、図2では、導電性接着材47は図示していない。   The thermoelectric conversion elements 48 are connected to each other via a second conductive plate 46 (see FIG. 7B) disposed on the surface of the second substrate 34 facing the first substrate 31. Specifically, each of the p-type semiconductor element 41 and the n-type semiconductor element 42 is connected to the second conductive plate 46 via the conductive adhesive 47. In FIG. 2, the conductive adhesive 47 is not shown.

第1電極45は、熱電変換回路40の一方の端部を形成する第1導電板43と、導電性接着材47を介して接続する。また、第2電極46は、熱電変換回路40の他方の端部を形成する第1導電板43と、導電性接着材47を介して接続する。   The first electrode 45 is connected to the first conductive plate 43 that forms one end of the thermoelectric conversion circuit 40 via the conductive adhesive 47. The second electrode 46 is connected to the first conductive plate 43 that forms the other end of the thermoelectric conversion circuit 40 via a conductive adhesive 47.

第1導電板43及び第2導電板46は可撓性を有することが好ましい。   The first conductive plate 43 and the second conductive plate 46 are preferably flexible.

なお、本実施形態の熱電変換回路40では、複数の熱電変換素子48が直列に接続されているが、熱電変換回路40は、複数の熱電変換素子48が、並列に接続されるか又は、直列及び並列に接続されて形成されていても良い。   In the thermoelectric conversion circuit 40 of the present embodiment, a plurality of thermoelectric conversion elements 48 are connected in series. However, in the thermoelectric conversion circuit 40, the plurality of thermoelectric conversion elements 48 are connected in parallel or in series. Alternatively, they may be connected in parallel.

p型半導体素子41、及びn型半導体素子42、及び第1電極45、及び第2電極46の寸法は、熱電変換基板20aが撓んで熱電変換装置10を形成することを妨げない大きさであることが好ましい。   The dimensions of the p-type semiconductor element 41, the n-type semiconductor element 42, the first electrode 45, and the second electrode 46 are dimensions that do not prevent the thermoelectric conversion substrate 20a from being bent to form the thermoelectric conversion device 10. It is preferable.

上述した熱電変換回路40を形成する技術は、電子部品又は半導体素子等の従来の生産技術を用いることができるので、熱電変換基板20aを安価に大量に生産することが可能である。   Since the technology for forming the thermoelectric conversion circuit 40 described above can use conventional production technologies such as electronic components or semiconductor elements, the thermoelectric conversion substrate 20a can be produced in large quantities at a low cost.

熱電変換基板20a、20bを形成する可撓性を有する第1基板31又は第2基板32の形成材料としては、ポリイミド(スコッチ製:ポリイミドテープなど)フレキスブルテープ、フレキシブルプリント回路(FPC)用銅張りポリイミドフィルム等を用いることができる。   As a material for forming the flexible first substrate 31 or second substrate 32 for forming the thermoelectric conversion substrates 20a and 20b, polyimide (manufactured by Scotch: polyimide tape, etc.) flexible tape, copper for flexible printed circuit (FPC) A stretched polyimide film or the like can be used.

また、熱電変換基板20a、20bを形成する可撓性を有する基板間シール部21、及び中央シール部25、及び外周シール部26の形成材料としては、電気絶縁性の熱硬化性樹脂、シート構造接着剤(3M製:APAS)など等を用いることができる。   Moreover, as a forming material of the flexible inter-substrate seal part 21, the central seal part 25, and the outer peripheral seal part 26 which form the thermoelectric conversion substrates 20a and 20b, an electrically insulating thermosetting resin, a sheet structure An adhesive (manufactured by 3M: APAS) or the like can be used.

熱電変換素子48を形成するp型半導体素子41又はn型半導体素子42の形成材料としては、例えば、Bi2Te3、Sb2Te3、PbTe、Sm2S3、Cu2O、Ge−Te、FeSi2、又はCoSb3等を用いることができる。   For example, Bi2Te3, Sb2Te3, PbTe, Sm2S3, Cu2O, Ge-Te, FeSi2, or CoSb3 can be used as a material for forming the p-type semiconductor element 41 or the n-type semiconductor element 42 forming the thermoelectric conversion element 48. .

上述した本実施形態の熱電変換装置10によれば、電子部品又は半導体装置等の従来の生産技術を用いることができるので製造が容易である。   According to the thermoelectric conversion device 10 of the present embodiment described above, manufacturing is easy because conventional production techniques such as electronic components or semiconductor devices can be used.

また、熱電変換装置10によれば、第1熱電変換部14及び第2熱電変換部15それぞれは、その略全体に亘って、2重螺旋の第1熱媒体流路12及び第2熱媒体流路13と熱的に接蝕しているので、熱媒体との間に熱的に大きな接触面積を有する。一方、熱電変換装置10は、縦方向に螺旋状に延びる構造を有しているので、熱電変換装置10が必要とする平面積は小さい。   Moreover, according to the thermoelectric conversion apparatus 10, the 1st thermoelectric conversion part 14 and the 2nd thermoelectric conversion part 15 are respectively the double spiral 1st heat-medium flow path 12 and 2nd heat-medium flow over substantially the whole. Since it is in thermal contact with the path 13, it has a large thermal contact area with the heat medium. On the other hand, since the thermoelectric conversion device 10 has a structure extending in a spiral shape in the vertical direction, the flat area required by the thermoelectric conversion device 10 is small.

また、熱電変換装置10によれば、熱媒体との間に熱的に大きな接触面積を有するので、エネルギー変換効率が高い。   Moreover, according to the thermoelectric conversion apparatus 10, since it has a thermally large contact area between heat media, energy conversion efficiency is high.

更に、熱電変換装置10によれば、中空部11を、例えば、放熱板に熱的に接続したねじ形状の構造体に容易に取り付けすることができる。   Furthermore, according to the thermoelectric conversion device 10, the hollow portion 11 can be easily attached to, for example, a screw-shaped structure that is thermally connected to a heat sink.

次に、上述した熱電変換装置の好ましい製造方法の一実施形態を、図8〜図13を参照して、以下に説明する。   Next, an embodiment of a preferable manufacturing method of the above-described thermoelectric conversion device will be described below with reference to FIGS.

まず、図8(A)に示すように、中央に位置する第1貫通孔32と端縁から第1貫通孔32へ延びる第1スリット33とを有する可撓性の第1基板31上に、複数の第1導電板43が形成される。複数の第1導電板43は、例えば、リソグラフィー技術を用いたパターニングによって形成される。第1導電板43の形成材料としては、例えば、銅を用いることができる。   First, as shown in FIG. 8A, on a flexible first substrate 31 having a first through hole 32 located in the center and a first slit 33 extending from the edge to the first through hole 32, A plurality of first conductive plates 43 are formed. The plurality of first conductive plates 43 are formed, for example, by patterning using a lithography technique. As a material for forming the first conductive plate 43, for example, copper can be used.

第1基板31の寸法は、例えば、厚さが2mmであり、一辺の長さが40mmの正方形とすることができる。第1貫通孔32は、例えば、直径を10mmの円形とすることができる。第1スリット33の寸法は、例えば、幅を2mmとすることができる。   The dimensions of the first substrate 31 can be, for example, a square with a thickness of 2 mm and a side length of 40 mm. The first through hole 32 can be, for example, a circle having a diameter of 10 mm. As for the dimension of the 1st slit 33, a width | variety can be 2 mm, for example.

そして、第1導電板43それぞれに対して、p型半導体素子又はn型半導体素子又は第1電極又は第2電極が搭載される部位に導電性接着材47が塗布される。なお、p型半導体素子又はn型半導体素子又は第1電極又は第2電極に導電性接着材47を塗布しても良い。   Then, a conductive adhesive 47 is applied to each portion of the first conductive plate 43 where the p-type semiconductor element, the n-type semiconductor element, the first electrode, or the second electrode is mounted. The conductive adhesive 47 may be applied to the p-type semiconductor element, the n-type semiconductor element, the first electrode, or the second electrode.

次に、図8(B)に示すように、第1導電板43それぞれの所定の部位に、導電性接着材47を介して、p型半導体素子41及びn型半導体素子42及び第1電極45及び第2電極46が接着して搭載される。このようにして、第1基板31上に、複数の熱電変換素子48が搭載される。p型半導体素子41及びn型半導体素子42の寸法は、例えば、縦及び横の長さが5mm、高さ2mmとすることができる。また、p型半導体素子41及びn型半導体素子42の形成材料として、不純物が添加されたBi2Te3を用いることができる。   Next, as shown in FIG. 8B, the p-type semiconductor element 41, the n-type semiconductor element 42, and the first electrode 45 are placed on predetermined portions of the first conductive plate 43 via a conductive adhesive 47. And the 2nd electrode 46 is adhere | attached and mounted. In this way, the plurality of thermoelectric conversion elements 48 are mounted on the first substrate 31. The dimensions of the p-type semiconductor element 41 and the n-type semiconductor element 42 can be, for example, 5 mm in length and 2 mm in length and 2 mm in height. Further, Bi2Te3 to which an impurity is added can be used as a material for forming the p-type semiconductor element 41 and the n-type semiconductor element 42.

また、第1基板31上の周縁に、基板間シール部21が形成される。   Further, the inter-substrate seal portion 21 is formed on the peripheral edge on the first substrate 31.

基板間シール部21は、例えば、メタルマスク印刷機を用いて、熱硬化性の電気絶縁性の樹脂ペーストが第1基板31上に印刷して形成される。基板間シール部21の寸法は、例えば、高さを300μm、幅を2mmとすることができる。   The inter-substrate seal portion 21 is formed by printing a thermosetting electrically insulating resin paste on the first substrate 31 using, for example, a metal mask printer. The dimensions of the inter-substrate seal part 21 can be, for example, a height of 300 μm and a width of 2 mm.

次に、図9(A)に示すように、中央に位置する第2貫通孔35と端縁から第2貫通孔35へ延びる第2スリット36とを有する可撓性の第2基板34上に、複数の第2導電板46が形成される。第2導電板46は、第1導電板43と同様に形成される。   Next, as shown in FIG. 9A, on a flexible second substrate 34 having a second through hole 35 located in the center and a second slit 36 extending from the edge to the second through hole 35. A plurality of second conductive plates 46 are formed. The second conductive plate 46 is formed in the same manner as the first conductive plate 43.

第2基板32の形状は、第1基板31と同じとした。また、第2貫通孔35の形状は、第1貫通孔32と同じとした。また、第2スリット36の形状は、第1スリット33と同じとした。また、第2導電板46の形状は、第1導電板43と同じとした。   The shape of the second substrate 32 was the same as that of the first substrate 31. The shape of the second through hole 35 is the same as that of the first through hole 32. The shape of the second slit 36 is the same as that of the first slit 33. The shape of the second conductive plate 46 is the same as that of the first conductive plate 43.

そして、第2導電板46それぞれに対して、p型半導体素子41及びn型半導体素子42と接続される部位に導電性接着材47が塗布される。   Then, a conductive adhesive 47 is applied to each of the second conductive plates 46 where the p-type semiconductor element 41 and the n-type semiconductor element 42 are connected.

次に、図9(B)に示すように、第2基板34における上面の第2貫通孔35の周囲に、第2貫通孔35を囲み、第2スリット36の位置で途切れる中央シール部25が形成される。また、第2基板32における上面の周縁には、第2スリット36の位置で途切れる外周シール部26が形成される。ここで、第2基板32における上面は、第2導電板46が形成されている面とは反対側の面を意味する。中央シール部25及び外周シール部26は、基板間シール部21と同様に形成される。   Next, as shown in FIG. 9B, the central seal portion 25 surrounding the second through hole 35 around the second through hole 35 on the upper surface of the second substrate 34 and being interrupted at the position of the second slit 36 is provided. It is formed. Further, an outer peripheral seal portion 26 that is interrupted at the position of the second slit 36 is formed on the periphery of the upper surface of the second substrate 32. Here, the upper surface of the second substrate 32 means a surface opposite to the surface on which the second conductive plate 46 is formed. The central seal portion 25 and the outer peripheral seal portion 26 are formed in the same manner as the inter-substrate seal portion 21.

次に、図10に示すように、複数の熱電変換素子48が搭載された第1基板31上に、第2基板34が、第1貫通孔32と第2貫通孔35とを揃え、且つ第1スリット33と第2スリット36とを揃えて積層されて、両基板間に複数の熱電変換素子48を有する熱電変換回路40が形成される。ここで、第2基板34の第2導電板46が形成された面が、第1基板31と対向するように、第2基板34が第1基板31上に積層される。   Next, as shown in FIG. 10, the second substrate 34 has the first through hole 32 and the second through hole 35 aligned on the first substrate 31 on which the plurality of thermoelectric conversion elements 48 are mounted, and A thermoelectric conversion circuit 40 having a plurality of thermoelectric conversion elements 48 between both substrates is formed by laminating the first slit 33 and the second slit 36 together. Here, the second substrate 34 is laminated on the first substrate 31 so that the surface of the second substrate 34 on which the second conductive plate 46 is formed faces the first substrate 31.

この際に、第1基板31の周縁と第2基板34の周縁との間に形成される基板間シール部21によって、熱電変換回路40を含む内部が密閉される。また、第2基板34が第1基板31上に積層されることによって、第1貫通孔32と第2貫通孔35とこれらの貫通孔の間をシールする基板間シール部21の部分とによって中央貫通孔22が形成される。また、第1スリット33と第2スリット36との間には、基板間シール部21の部分によって、対向する第1端面23及び第2端面24が形成される。また、熱電変換回路40の第1電極45が第1端面23に配置され、熱電変換回路40の第2電極46が第2端面24に配置される。   At this time, the interior including the thermoelectric conversion circuit 40 is hermetically sealed by the inter-substrate seal portion 21 formed between the periphery of the first substrate 31 and the periphery of the second substrate 34. In addition, the second substrate 34 is stacked on the first substrate 31, so that the first through hole 32, the second through hole 35, and the portion of the inter-substrate seal portion 21 that seals between these through holes are centralized. A through hole 22 is formed. Further, between the first slit 33 and the second slit 36, an opposing first end surface 23 and second end surface 24 are formed by the portion of the inter-substrate seal portion 21. Further, the first electrode 45 of the thermoelectric conversion circuit 40 is disposed on the first end face 23, and the second electrode 46 of the thermoelectric conversion circuit 40 is disposed on the second end face 24.

このようにして、図11に示す複数の熱電変換基板20a、20bが形成される。図11では、熱電変換基板20bは、熱電変換基板20aとは反対の向きに示されている。   In this way, a plurality of thermoelectric conversion substrates 20a and 20b shown in FIG. 11 are formed. In FIG. 11, the thermoelectric conversion board 20b is shown in the opposite direction to the thermoelectric conversion board 20a.

次に、図12に示すように、2つの熱電変換基板20a、20bを用いて、熱電変換基板複合体50aが形成される。   Next, as shown in FIG. 12, a thermoelectric conversion substrate composite 50a is formed using the two thermoelectric conversion substrates 20a and 20b.

具体的には、2つの熱電変換基板20a、20bそれぞれにおける第1端面側の端部23aと第2端面側の端部23bとを、スリット27において、これらの面方向において互いに反対の向きにずらして切り込み部28が形成される。そして、一方の熱電変換基板20aの切り込み部28と他方の熱電変換基板20bの切り込み部28とが互いに差し込まれる。そして、一方の熱電変換基板20aの第1端面側の端部23aが、他方の熱電変換基板20bの上側に重ねられ、且つ、一方の熱電変換基板20aの第2端面側の端部24aが、他方の熱電変換基板20bの下側に重ねられる。更に、他方の熱電変換基板20bの第1端面側の端部23aが、一方の熱電変換基板20aの上側に重ねられ、且つ、他方の熱電変換基板20bの第2端面側の端部24aが、一方の熱電変換基板20aの下側に重ねられる。そして、一方の熱電変換基板20aと他方の熱電変換基板20bとを、互いの中央貫通孔22、22が揃えて重ね合わされる。   Specifically, the end portion 23a on the first end surface side and the end portion 23b on the second end surface side of each of the two thermoelectric conversion substrates 20a and 20b are shifted in opposite directions in these surface directions in the slit 27. Thus, the cut portion 28 is formed. Then, the cut portion 28 of one thermoelectric conversion substrate 20a and the cut portion 28 of the other thermoelectric conversion substrate 20b are inserted into each other. And the end part 23a on the first end face side of one thermoelectric conversion board 20a is overlaid on the upper side of the other thermoelectric conversion board 20b, and the end part 24a on the second end face side of one thermoelectric conversion board 20a is It is overlaid on the lower side of the other thermoelectric conversion substrate 20b. Furthermore, the end portion 23a on the first end face side of the other thermoelectric conversion substrate 20b is overlaid on the upper side of the one thermoelectric conversion substrate 20a, and the end portion 24a on the second end face side of the other thermoelectric conversion substrate 20b is One thermoelectric conversion substrate 20a is overlaid on the lower side. And one thermoelectric conversion board | substrate 20a and the other thermoelectric conversion board | substrate 20b are mutually overlap | superposed with the center through-holes 22 and 22 aligning.

そして、一方の熱電変換基板20aと他方の熱電変換基板20bとを、互いの中央貫通孔22,22を揃えて重ね合わす際には、以下に述べる部位同士が接合される。即ち、一方の熱電変換基板20aの中央シール部25が、重ね合わされている他方の熱電変換基板20bの下面における中央貫通孔22の周囲の部分に配置されて接合され、且つ、他方の熱電変換基板20bの中央シール部25が、重ね合わされている一方の熱電変換基板20aの下面の中央貫通孔22の周囲の部分に配置されて接合される。その結果、これらの中央シール部25、25及び中央貫通孔22,22によって延伸中央貫通孔51が形成される。これと同時に、一方の熱電変換基板20aの外周シール部26が、重ね合わされている他方の熱電変換基板20bの下面の周縁の部分に配置されて接合され、且つ、他方の熱電変換基板20bの外周シール部26が、重ね合わされている一方の熱電変換基板20aの下面の周縁の部分に配置されて接合される。このようにして、熱電変換基板複合体50aが形成される。   When the one thermoelectric conversion substrate 20a and the other thermoelectric conversion substrate 20b are overlapped with the center through holes 22 and 22 aligned, the following portions are joined together. That is, the center seal portion 25 of one thermoelectric conversion substrate 20a is disposed and joined to a portion around the central through hole 22 on the lower surface of the other thermoelectric conversion substrate 20b that is overlaid, and the other thermoelectric conversion substrate. The central seal portion 25 of 20b is disposed and joined to a portion around the central through hole 22 on the lower surface of one of the superimposed thermoelectric conversion substrates 20a. As a result, an extended central through hole 51 is formed by the central seal portions 25 and 25 and the central through holes 22 and 22. At the same time, the outer peripheral seal portion 26 of one thermoelectric conversion substrate 20a is arranged and joined to the peripheral portion of the lower surface of the other thermoelectric conversion substrate 20b that is overlaid, and the outer periphery of the other thermoelectric conversion substrate 20b. The seal portion 26 is disposed and joined to the peripheral portion of the lower surface of the one thermoelectric conversion substrate 20a that is overlaid. In this way, the thermoelectric conversion substrate composite 50a is formed.

中央シール部25及び外周シール部26と、これらのシール部と対向する部位との接合は、例えば、図12に示すように、2つの熱電変換基板20a、20bが組み合わされた熱電変換基板複合体50aを上下から加圧し且つ加熱することによって行われる。この加圧及び加熱処理は、例えば、等圧プレス機を用いて、温度150℃、圧力2MPa、時間30分の条件で行うことができる。また、この加圧及び加熱処理によって、2つの熱電変換基板20a、20bそれぞれを形成する第1基板31及び第2基板32が、基板間シール部21を介して接合される。   For example, as shown in FIG. 12, a thermoelectric conversion substrate composite in which two thermoelectric conversion substrates 20a and 20b are combined is used for joining the central seal portion 25 and the outer peripheral seal portion 26 to the portions facing these seal portions. It is performed by pressing and heating 50a from above and below. This pressurization and heat treatment can be performed using, for example, an isobaric press machine under conditions of a temperature of 150 ° C., a pressure of 2 MPa, and a time of 30 minutes. In addition, the first substrate 31 and the second substrate 32 forming the two thermoelectric conversion substrates 20 a and 20 b are bonded to each other through the inter-substrate seal portion 21 by the pressurization and heat treatment.

本実施形態では、上述した熱電変換基板複合体が3つ形成された。   In the present embodiment, three thermoelectric conversion substrate composites described above are formed.

次に、図13に示すように、3つの熱電変換基板複合体50a、50b、50cを用いて、熱電変換装置10が形成される。   Next, as shown in FIG. 13, the thermoelectric conversion device 10 is formed using the three thermoelectric conversion substrate composites 50a, 50b, and 50c.

具体的には、一の熱電変換基板複合体50aにおける一方の熱電変換基板20aの第1端面23と、別の一の熱電変換基板複合体50bにおける一方の熱電変換基板20aの第2端面24とが、これらの端面における第1電極45と第2電極46とを電気的に接続すると共に接合される。   Specifically, the first end surface 23 of one thermoelectric conversion substrate 20a in one thermoelectric conversion substrate composite 50a, and the second end surface 24 of one thermoelectric conversion substrate 20a in another thermoelectric conversion substrate composite 50b, However, the first electrode 45 and the second electrode 46 at these end faces are electrically connected and joined.

また、一の熱電変換基板複合体50aにおける他方の熱電変換基板20bの第1端面23と、別の一の熱電変換基板複合体50bにおける他方の熱電変換基板20bの第2端面24(図示せず)とが、これらの端面における第1電極45と第2電極46(図示せず)とを電気的に接続すると共に接合される。   The first end face 23 of the other thermoelectric conversion board 20b in one thermoelectric conversion board composite 50a and the second end face 24 (not shown) of the other thermoelectric conversion board 20b in another thermoelectric conversion board composite 50b. ) Electrically connect and join the first electrode 45 and the second electrode 46 (not shown) at these end faces.

更に、一の熱電変換基板複合体50aにおける一方の熱電変換基板20aの中央シール部25及び他方の熱電変換基板20bの中央シール部25が、重ね合わされている別の一の熱電変換基板複合体50bの下面の延伸中央貫通孔51の周囲の部分と接合される。   Furthermore, another thermoelectric conversion substrate composite 50b in which the center seal portion 25 of one thermoelectric conversion substrate 20a and the center seal portion 25 of the other thermoelectric conversion substrate 20b in one thermoelectric conversion substrate composite 50a are overlapped. It joins with the peripheral part of the extending | stretching center through-hole 51 of the lower surface of this.

更にまた、一の熱電変換基板複合体50aにおける一方の熱電変換基板20aの外周シール部26及び他方の熱電変換基板20bの外周シール部26が、重ね合わされている別の一の熱電変換基板複合体50bの下面の周縁の部分と接合される。そして、2つの熱電変換基板複合体50a、50bが、互いの延伸中央貫通孔51,51を揃えて重ね合わされる。   Furthermore, another thermoelectric conversion substrate composite in which the outer peripheral seal portion 26 of one thermoelectric conversion substrate 20a and the outer peripheral seal portion 26 of the other thermoelectric conversion substrate 20b in one thermoelectric conversion substrate composite 50a are overlapped. It joins with the peripheral part of the lower surface of 50b. Then, the two thermoelectric conversion substrate composites 50a and 50b are overlapped with the extended central through holes 51 and 51 aligned.

第1端面23と第2端面24とは、例えば、両端面の間に熱硬化性の電気絶縁性ペーストを塗布した後、加熱処理されて接合される。   For example, the first end face 23 and the second end face 24 are bonded by heat treatment after applying a thermosetting electrical insulating paste between both end faces.

中央シール部25及び外周シール部26と、対向する部位との接合方法としては、例えば、両端面の間に熱硬化性の電気絶縁性ペーストを塗布した後、熱電変換基板複合体の形成に用いた加圧及び加熱処理を用いることができる。なお、熱電変換基板複合体の形成時には加圧及び加熱処理を行わないで、中央シール部25及び外周シール部26と対向する部位との接合を接合する際の加圧及び加熱処理の際に、熱電変換基板複合体における接合部位の同士の接合をまとめて行っても良い。   As a method for joining the central seal portion 25 and the outer peripheral seal portion 26 to the opposing portions, for example, a thermosetting electrical insulating paste is applied between both end faces and then used for forming a thermoelectric conversion substrate composite. Conventional pressurization and heat treatment can be used. In addition, during the formation of the thermoelectric conversion substrate composite, pressure and heat treatment are not performed, and during the pressure and heat treatment when joining the joints with the central seal portion 25 and the outer peripheral seal portion 26 are opposed. You may collectively join between the junction parts in a thermoelectric conversion board | substrate composite_body | complex.

同様にして、熱電変換基板複合体50bと熱電変換基板複合体50cとが接合されて、熱電変換装置10が形成される。この際、3つの熱電変換基板20aが接合して、第1熱電変換部14が形成される。同様に、3つの熱電変換基板20bが接合して、第2熱電変換部15が形成される。また、第1熱電変換部14及び第2熱電変換部15を境界とする第1熱媒体流路12及び第2熱媒体流路13が形成される。また、3つの延伸中央貫通孔51が重なって中空部11が形成される。   Similarly, the thermoelectric conversion substrate composite 50b and the thermoelectric conversion substrate composite 50c are joined to form the thermoelectric conversion device 10. At this time, the three thermoelectric conversion substrates 20a are joined to form the first thermoelectric conversion portion 14. Similarly, the three thermoelectric conversion substrates 20b are joined to form the second thermoelectric conversion unit 15. Moreover, the 1st heat-medium flow path 12 and the 2nd heat-medium flow path 13 which make the 1st thermoelectric conversion part 14 and the 2nd thermoelectric conversion part 15 a boundary are formed. Further, the hollow portion 11 is formed by overlapping the three extending central through holes 51.

上述した本実施形態の熱電変換装置の製造方法によれば、可撓性を有する第1基板31及び第2基板34、及び可撓性を有する熱電変換基板20a、20bを用いて、熱電変換装置10が形成されるので、製造が容易である。このように平板状の基板を主に扱う製造工程なので、製造工程の自動化が簡易に行える。また、可撓性を有する第1基板31及び第2基板34、及び可撓性を有する熱電変換基板20a、20bを用いるので、部品の破損等が生じ難い。従って、熱電変換装置の生産性を向上できる。   According to the manufacturing method of the thermoelectric conversion device of the present embodiment described above, the thermoelectric conversion device using the flexible first substrate 31 and the second substrate 34 and the flexible thermoelectric conversion substrates 20a and 20b. Since 10 is formed, manufacture is easy. Thus, since the manufacturing process mainly deals with flat substrates, the manufacturing process can be easily automated. In addition, since the flexible first substrate 31 and the second substrate 34 and the flexible thermoelectric conversion substrates 20a and 20b are used, it is difficult for components to be damaged. Therefore, the productivity of the thermoelectric conversion device can be improved.

また、上述した実施形態では、3つの熱電変換基板複合体を積層して熱電変換装置が形成されたが、熱電変換基板複合体の積層数は、求められる熱発電特性に応じて適宜設定され得る。また、熱電変換基板複合体を形成する熱電変換基板の寸法も、求められる熱発電特性に応じて適宜設定され得る。   In the above-described embodiment, the thermoelectric conversion device is formed by laminating three thermoelectric conversion substrate composites. However, the number of laminations of the thermoelectric conversion substrate composites can be appropriately set according to required thermoelectric generation characteristics. . Moreover, the dimension of the thermoelectric conversion board | substrate which forms the thermoelectric conversion board | substrate composite body can also be set suitably according to the thermoelectric power generation characteristic calculated | required.

次に、本明細書に開示する第2及び第3実施形態の熱電変換装置を、図面を参照しながら以下に説明する。第2及び第3実施形態について特に説明しない点については、上述の第1実施形態に関して詳述した説明が適宜適用される。また、図14〜図17及び図21〜図22において、図1〜図7と同じ構成要素に同じ符号を付してある。   Next, thermoelectric conversion devices according to second and third embodiments disclosed in this specification will be described below with reference to the drawings. Regarding points that are not particularly described in the second and third embodiments, the description in detail regarding the first embodiment is applied as appropriate. Further, in FIGS. 14 to 17 and FIGS. 21 to 22, the same components as those in FIGS.

図14は、本明細書に開示する熱電変換装置の第2実施形態を示す斜視図である。図15は、図13のY1−Y1線断面図である。図16(A)は、図13の熱電変換装置を形成する一方の熱電変換基板の撓んだ状態を示す斜視図であり、図16(B)は一方の熱電変換基板の撓んでない状態を示す部分破断斜視図である。図17(A)は、図13の熱電変換装置を形成する他方の熱電変換基板の撓んだ状態を示す斜視図であり、図17(B)は他方の熱電変換基板の撓んでない状態を示す部分破断斜視図である。   FIG. 14 is a perspective view showing a second embodiment of the thermoelectric conversion device disclosed in this specification. 15 is a cross-sectional view taken along line Y1-Y1 of FIG. FIG. 16A is a perspective view showing a bent state of one thermoelectric conversion substrate forming the thermoelectric conversion device of FIG. 13, and FIG. 16B shows a state where one thermoelectric conversion substrate is not bent. It is a partially broken perspective view shown. FIG. 17A is a perspective view showing a bent state of the other thermoelectric conversion substrate forming the thermoelectric conversion device of FIG. 13, and FIG. 17B shows a state where the other thermoelectric conversion substrate is not bent. It is a partially broken perspective view shown.

次に、本明細書に開示する熱電変換装置の第2実施形態を以下に説明する。   Next, a second embodiment of the thermoelectric conversion device disclosed in this specification will be described below.

本実施形態の熱電変換装置10は、上述した第1実施形態とは異なって、第1熱媒体流路12又は第2熱媒体流路13の内の何れか一方が、中空部11と繋がっている。   Unlike the first embodiment described above, the thermoelectric conversion device 10 of the present embodiment has either one of the first heat medium flow path 12 and the second heat medium flow path 13 connected to the hollow portion 11. Yes.

具体的には、図14及び図15に示すように、第1熱媒体流路12は、中空部11と繋がっており、且つ第1熱電変換部14と第2熱電変換部15とに挟まれていない部分が、中空部11と繋がっている部分を除いて、外部には開放されていない。本明細書では、2重螺旋を形成する第1熱媒体流路12及び第2熱媒体流路13は、第1熱媒体流路12又は第2熱媒体流路13の何れか一方が、中空部11と繋がっている構造を含む。   Specifically, as shown in FIGS. 14 and 15, the first heat medium flow path 12 is connected to the hollow portion 11 and is sandwiched between the first thermoelectric conversion portion 14 and the second thermoelectric conversion portion 15. The part which is not open | released except the part connected with the hollow part 11 is not open | released outside. In the present specification, the first heat medium flow path 12 and the second heat medium flow path 13 forming the double helix are either one of the first heat medium flow path 12 and the second heat medium flow path 13 being hollow. The structure connected with the part 11 is included.

また、第2熱媒体流路13は、中空部11とは繋がっておらず、且つ第1熱電変換部14と第2熱電変換部15とに挟まれていない部分が、中空部11と境界を接している部分を除いて、外部に開放されている。本明細書では、2重螺旋を形成する第1熱媒体流路12及び第2熱媒体流路13は、第1熱媒体流路12又は第2熱媒体流路13の何れか一方が、熱電変換装置10の外部と繋がっている構造を含む。   Further, the second heat medium flow path 13 is not connected to the hollow portion 11, and a portion not sandwiched between the first thermoelectric conversion portion 14 and the second thermoelectric conversion portion 15 has a boundary with the hollow portion 11. It is open to the outside, except for the touching part. In the present specification, the first heat medium flow path 12 and the second heat medium flow path 13 that form a double helix are either the first heat medium flow path 12 or the second heat medium flow path 13 and the The structure connected with the exterior of the converter 10 is included.

熱電変換装置10を用いて熱発電を行う場合には、例えば、第1熱媒体流路12に、図15の点線の矢印に示すように、熱電変換装置10の下方から上方に向かって、温度の高い熱媒体が流される。温度の高い熱媒体は、下方から上方に向かって、中空部11内を直線状に流れると共に、第1熱媒体流路12内を、図15の実線の矢印に示すように、螺旋状に流れる。   When thermoelectric power generation is performed using the thermoelectric conversion device 10, for example, in the first heat medium flow path 12, as indicated by the dotted arrows in FIG. 15, the temperature increases from below to above the thermoelectric conversion device 10. A high heat medium is flowed. The heat medium having a high temperature flows linearly in the hollow portion 11 from below to above, and spirally flows in the first heat medium flow path 12 as indicated by solid line arrows in FIG. .

一方、第2熱媒体流路13は、熱電変換装置10の外部の雰囲気と繋がっている。例えば、熱電変換装置10を恒温槽内に配置して、この恒温槽内の温度を、第1熱媒体流路12を流れる熱媒体の温度よりも低くすることができる。   On the other hand, the second heat medium flow path 13 is connected to the atmosphere outside the thermoelectric conversion device 10. For example, the thermoelectric conversion device 10 can be arranged in a thermostat, and the temperature in the thermostat can be made lower than the temperature of the heat medium flowing through the first heat medium flow path 12.

このようにして、第1熱電変換部14及び第2熱電変換部15それぞれは、第1熱媒体流路12内を流れる熱媒体の温度と第2熱媒体流路13内の熱媒体の温度の差によって熱発電を行う。   Thus, each of the first thermoelectric conversion unit 14 and the second thermoelectric conversion unit 15 has the temperature of the heat medium flowing in the first heat medium flow channel 12 and the temperature of the heat medium in the second heat medium flow channel 13. Thermoelectric power is generated by the difference.

図14及び図15に示す熱電変換装置10は、可撓性を有する一方の熱電変換基板20a及び他方の熱電変換基板20bが撓んだ状態で互いに組み合わされ接合されて形成されている。第1熱電変換部14は、撓んだ一方の熱電変換基板20aが螺旋状に接合されて形成されている。また、第2熱電変換部15は、撓んだ他方の熱電変換基板20bが螺旋状に接合されて形成されている。   The thermoelectric conversion device 10 shown in FIGS. 14 and 15 is formed by combining and bonding one thermoelectric conversion substrate 20a having flexibility and the other thermoelectric conversion substrate 20b in a bent state. The first thermoelectric conversion unit 14 is formed by joining one bent thermoelectric conversion substrate 20a in a spiral shape. The second thermoelectric conversion unit 15 is formed by joining the other bent thermoelectric conversion substrate 20b in a spiral shape.

次に、一方の熱電変換基板20aを、図16(A)及び図16(B)を参照して以下に説明する。   Next, one thermoelectric conversion substrate 20a will be described below with reference to FIGS. 16 (A) and 16 (B).

図16(A)及び図16(B)に示すように、本実施形態では、一方の熱電変換基板20aは、上述した第1実施形態の熱電変換基板から中央シール部が除去された構造を有する。即ち、一方の熱電変換基板20aにおける第2基板34上の周縁には、第2スリット36の位置で途切れる外周シール部26が形成されている。   As shown in FIGS. 16A and 16B, in this embodiment, one thermoelectric conversion substrate 20a has a structure in which the central seal portion is removed from the thermoelectric conversion substrate of the first embodiment described above. . That is, an outer peripheral seal portion 26 that is interrupted at the position of the second slit 36 is formed on the peripheral edge of the one thermoelectric conversion substrate 20 a on the second substrate 34.

本実施形態では、一方の熱電変換基板20aが中央シール部を有なさいので、第1熱媒体流路12が、中空部11と繋がることになる。   In the present embodiment, since one thermoelectric conversion substrate 20 a has a central seal portion, the first heat medium flow path 12 is connected to the hollow portion 11.

次に、他方の熱電変換基板20bを、図17(A)及び図17(B)を参照して以下に説明する。   Next, the other thermoelectric conversion substrate 20b will be described below with reference to FIGS. 17 (A) and 17 (B).

また、図17(A)及び図17(B)に示すように、本実施形態では、他方の熱電変換基板20bは、上述した第1実施形態の熱電変換基板から外周シール部が除去された構造を有する。即ち、他方の熱電変換基板20bにおける第2基板34上の第2貫通孔35の周囲には、第2貫通孔35を囲み、第2スリット36の位置で途切れる中央シール部25が形成されている。   As shown in FIGS. 17A and 17B, in the present embodiment, the other thermoelectric conversion substrate 20b has a structure in which the outer peripheral seal portion is removed from the thermoelectric conversion substrate of the first embodiment described above. Have That is, a central seal portion 25 surrounding the second through hole 35 and being interrupted at the position of the second slit 36 is formed around the second through hole 35 on the second substrate 34 in the other thermoelectric conversion substrate 20b. .

本実施形態では、他方の熱電変換基板20bが外周シール部を有なさいので、第2熱媒体流路13が、熱電変換装置10の外部の雰囲気と繋がることになる。   In the present embodiment, since the other thermoelectric conversion substrate 20b has an outer peripheral seal portion, the second heat medium flow path 13 is connected to the atmosphere outside the thermoelectric conversion device 10.

本実施形態の熱電変換装置10のその他の構造は、上述した第1実施形態と同様である。   Other structures of the thermoelectric conversion device 10 of the present embodiment are the same as those of the first embodiment described above.

上述した本実施形態の熱電変換装置によれば、中空部11と繋がっている第1熱媒体流路12及び外部と繋がっている第2熱媒体流路13内に、より多くの熱媒体を流すことができる。従って、第1熱電変換部14及び第2熱電変換部15により大きな熱エネルギーを与えることができる。   According to the thermoelectric conversion device of the present embodiment described above, a larger amount of heat medium is caused to flow through the first heat medium flow path 12 connected to the hollow portion 11 and the second heat medium flow path 13 connected to the outside. be able to. Therefore, large heat energy can be given to the first thermoelectric conversion unit 14 and the second thermoelectric conversion unit 15.

次に、上述した熱電変換装置の好ましい製造方法の一実施形態を、図18〜図20を参照して、以下に説明する。   Next, an embodiment of a preferable method for manufacturing the thermoelectric conversion device described above will be described below with reference to FIGS.

まず、上述した第1実施形態の熱電変換装置の製造方法において説明したのと同様にして、図18に示す一方の熱電変換基板20a及び他方の熱電変換基板20bが形成される。   First, in the same manner as described in the manufacturing method of the thermoelectric conversion device of the first embodiment described above, one thermoelectric conversion substrate 20a and the other thermoelectric conversion substrate 20b shown in FIG. 18 are formed.

次に、図19に示すように、2つの熱電変換基板20a、20bを用いて、熱電変換基板複合体50aが形成される。   Next, as shown in FIG. 19, a thermoelectric conversion substrate composite 50a is formed using the two thermoelectric conversion substrates 20a and 20b.

具体的には、一方の熱電変換基板20a及び他方の熱電変換基板20bそれぞれにおける第1端面側の端部23aと第2端面側の端部23bとを、スリット27において、これらの面方向において互いに反対の向きにずらして切り込み部28が形成される。そして、一方の熱電変換基板20aの切り込み部28と他方の熱電変換基板20bの切り込み部28とが互いに差し込まれる。そして、一方の熱電変換基板20aの第1端面側の端部23aが、他方の熱電変換基板20bの上側に重ねられ、且つ、一方の熱電変換基板20aの第2端面側の端部24aが、他方の熱電変換基板20bの下側に重ねられる。更に、他方の熱電変換基板20bの第1端面側の端部23aが、一方の熱電変換基板20aの上側に重ねられ、且つ、他方の熱電変換基板20bの第2端面側の端部24aが、一方の熱電変換基板20aの下側に重ねられる。そして、一方の熱電変換基板20aと他方の熱電変換基板20bとを、互いの中央貫通孔22、22が揃えて重ね合わされる。   Specifically, the end portion 23a on the first end surface side and the end portion 23b on the second end surface side in each of the one thermoelectric conversion substrate 20a and the other thermoelectric conversion substrate 20b are mutually connected in the surface direction in the slit 27. The cut portion 28 is formed by shifting in the opposite direction. Then, the cut portion 28 of one thermoelectric conversion substrate 20a and the cut portion 28 of the other thermoelectric conversion substrate 20b are inserted into each other. And the end part 23a on the first end face side of one thermoelectric conversion board 20a is overlaid on the upper side of the other thermoelectric conversion board 20b, and the end part 24a on the second end face side of one thermoelectric conversion board 20a is It is overlaid on the lower side of the other thermoelectric conversion substrate 20b. Furthermore, the end portion 23a on the first end face side of the other thermoelectric conversion substrate 20b is overlaid on the upper side of the one thermoelectric conversion substrate 20a, and the end portion 24a on the second end face side of the other thermoelectric conversion substrate 20b is One thermoelectric conversion substrate 20a is overlaid on the lower side. And one thermoelectric conversion board | substrate 20a and the other thermoelectric conversion board | substrate 20b are mutually overlap | superposed with the center through-holes 22 and 22 aligning.

そして、一方の熱電変換基板20aと他方の熱電変換基板20bとを、互いの中央貫通孔22,22を揃えて重ね合わす際には、以下に述べる部位同士が接合される。即ち、他方の熱電変換基板20bの中央シール部25が、重ね合わされている一方の熱電変換基板20aの下面の中央貫通孔22の周囲の部分に配置されて接合される。その結果、これらの中央シール部25及び中央貫通孔22、22によって延伸中央貫通孔51が形成される。これと同時に、一方の熱電変換基板20aの外周シール部26が、重ね合わされている他方の熱電変換基板20bの下面の周縁の部分に配置されて接合される。このようにして、熱電変換基板複合体50aが形成される。   When the one thermoelectric conversion substrate 20a and the other thermoelectric conversion substrate 20b are overlapped with the center through holes 22 and 22 aligned, the following portions are joined together. That is, the center seal portion 25 of the other thermoelectric conversion substrate 20b is disposed and bonded to a portion around the central through hole 22 on the lower surface of the one of the superimposed thermoelectric conversion substrates 20a. As a result, an extended central through hole 51 is formed by the central seal portion 25 and the central through holes 22 and 22. At the same time, the outer peripheral seal portion 26 of one thermoelectric conversion substrate 20a is disposed and joined to the peripheral portion of the lower surface of the other thermoelectric conversion substrate 20b that is overlaid. In this way, the thermoelectric conversion substrate composite 50a is formed.

中央シール部25及び外周シール部26と、これらのシール部と対向する部位との接合は、上述した第1実施形態の熱電変換装置の製造方法と同様に行われる。   The joining of the central seal portion 25 and the outer peripheral seal portion 26 to the portions facing these seal portions is performed in the same manner as in the method for manufacturing the thermoelectric conversion device of the first embodiment described above.

本実施形態では、上述した熱電変換基板複合体が4つ形成された。   In the present embodiment, four thermoelectric conversion substrate composites described above are formed.

次に、図20に示すように、4つの熱電変換基板複合体50a、50b、50c、50dを用いて、熱電変換装置10が形成される。   Next, as shown in FIG. 20, the thermoelectric conversion device 10 is formed using the four thermoelectric conversion substrate composites 50a, 50b, 50c, and 50d.

具体的には、一の熱電変換基板複合体50aにおける一方の熱電変換基板20aの第1端面23と、別の一の熱電変換基板複合体50bにおける一方の熱電変換基板20aの第2端面24とが、これらの端面における第1電極45と第2電極46とを電気的に接続すると共に接合される。   Specifically, the first end surface 23 of one thermoelectric conversion substrate 20a in one thermoelectric conversion substrate composite 50a, and the second end surface 24 of one thermoelectric conversion substrate 20a in another thermoelectric conversion substrate composite 50b, However, the first electrode 45 and the second electrode 46 at these end faces are electrically connected and joined.

また、一の熱電変換基板複合体50aにおける他方の熱電変換基板20bの第1端面23と、別の一の熱電変換基板複合体50bにおける他方の熱電変換基板20bの第2端面24(図示せず)とが、これらの端面における第1電極45と第2電極46(図示せず)とを電気的に接続すると共に接合される。   The first end face 23 of the other thermoelectric conversion board 20b in one thermoelectric conversion board composite 50a and the second end face 24 (not shown) of the other thermoelectric conversion board 20b in another thermoelectric conversion board composite 50b. ) Electrically connect and join the first electrode 45 and the second electrode 46 (not shown) at these end faces.

更に、一の熱電変換基板複合体50aにおける他方の熱電変換基板20bの中央シール部が、重ね合わされている別の一の熱電変換基板複合体50bの下面の延伸中央貫通孔51の周囲の部分と接合される。   Furthermore, the central seal portion of the other thermoelectric conversion substrate 20b in the one thermoelectric conversion substrate composite 50a is a portion around the extended central through hole 51 on the lower surface of another superimposed thermoelectric conversion substrate composite 50b. Be joined.

更にまた、一の熱電変換基板複合体50aにおける一方の熱電変換基板20aの外周シール部26が、重ね合わされている別の一の熱電変換基板複合体50bの下面の周縁の部分と接合される。更に、2つの熱電変換基板複合体50a、50bが、互いの延伸中央貫通孔51,51を揃えて重ね合わされる。   Furthermore, the outer peripheral seal portion 26 of one thermoelectric conversion substrate 20a in one thermoelectric conversion substrate composite 50a is joined to the peripheral portion of the lower surface of another superimposed thermoelectric conversion substrate composite 50b. Further, the two thermoelectric conversion substrate composites 50a and 50b are overlapped with the extended central through holes 51 and 51 aligned.

第1端面23と第2端面24とは、例えば、両端面の間に熱硬化性の電気絶縁性ペーストを塗布した後、加熱処理されて接合される。   For example, the first end face 23 and the second end face 24 are bonded by heat treatment after applying a thermosetting electrical insulating paste between both end faces.

中央シール部25及び外周シール部26と、対向する部位との接合方法としては、例えば、上述した熱電変換基板複合体の形成に用いた加圧及び加熱処理を用いることができる。   As a method for joining the central seal portion 25 and the outer peripheral seal portion 26 to the opposing portions, for example, the pressurization and heat treatment used for forming the thermoelectric conversion substrate composite described above can be used.

同様にして、熱電変換基板複合体50bと熱電変換基板複合体50cと熱電変換基板複合体50dとが接合されて、熱電変換装置10が形成される。   Similarly, the thermoelectric conversion substrate 10 is formed by joining the thermoelectric conversion substrate composite 50b, the thermoelectric conversion substrate composite 50c, and the thermoelectric conversion substrate composite 50d.

上述した本実施形態の熱電変換装置の製造方法によれば、上述した第1実施形態の熱電変換装置の製造方法と同様の効果が得られる。   According to the method for manufacturing the thermoelectric conversion device of the present embodiment described above, the same effects as those of the method for manufacturing the thermoelectric conversion device of the first embodiment described above can be obtained.

次に、本明細書に開示する熱電変換装置の第3実施形態を以下に説明する。   Next, a third embodiment of the thermoelectric conversion device disclosed in this specification will be described below.

図21は、本明細書に開示する熱電変換装置の第3実施形態を示す正面図である。図22は、図20の熱電変換装置の平面図である。   FIG. 21 is a front view showing a third embodiment of the thermoelectric conversion device disclosed in this specification. FIG. 22 is a plan view of the thermoelectric conversion device of FIG.

本実施形態の熱電変換装置10は、3つの熱電変換ユニット10a、10b、10cが、螺旋の方向を揃えて並んで結合されて形成されている。各熱電変換ユニット10a、10b、10cは、上述した第1実施形態の熱電変換装置と同じ構造を有する。   The thermoelectric conversion device 10 of the present embodiment is formed by connecting three thermoelectric conversion units 10a, 10b, and 10c side by side with their spiral directions aligned. Each thermoelectric conversion unit 10a, 10b, 10c has the same structure as the thermoelectric conversion apparatus of 1st Embodiment mentioned above.

図22における太線は、図21の正面図における段差の位置を示している。   The thick line in FIG. 22 indicates the position of the step in the front view of FIG.

上述した本実施形態の熱電変換装置10によれば、並んだ複数の熱電変換ユニットを有するので、熱発電される電力を増加できる。また、熱電変換装置10は、熱電変換ユニットが螺旋の方向を揃えて並んで結合されているので、コンパクトな寸法を有する。   According to the thermoelectric conversion device 10 of the present embodiment described above, since it has a plurality of thermoelectric conversion units arranged side by side, it is possible to increase the power generated by thermoelectric power generation. In addition, the thermoelectric conversion device 10 has a compact size because the thermoelectric conversion units are aligned and coupled with the spiral direction aligned.

なお、本実施形態では、3つの熱電変換ユニットが結合された構造を有しているが、熱電変換装置を形成する熱電変換ユニットの数は、2つでも良いし、4つ以上であっても良い。   In the present embodiment, the three thermoelectric conversion units are combined, but the number of thermoelectric conversion units forming the thermoelectric conversion device may be two, or four or more. good.

次に、上述した熱電変換装置の好ましい製造方法の一実施形態を、図23を参照して、以下に説明する。   Next, an embodiment of a preferable method for manufacturing the thermoelectric conversion device described above will be described below with reference to FIG.

まず、図23(A)に示すように、複数の熱電変換基板が連続して形成される熱電変換基板連続体200a、200bが形成される。熱電変換基板連続体200aは、上述した第1実施形態の熱電変換装置の製造方法において説明した熱電変換基板が3つ連続した構造を有する。熱電変換基板20a同士は、スリット27の方向を揃えて、側面同士が接合されている。   First, as shown in FIG. 23A, thermoelectric conversion substrate continuous bodies 200a and 200b in which a plurality of thermoelectric conversion substrates are continuously formed are formed. The thermoelectric conversion substrate continuous body 200a has a structure in which three thermoelectric conversion substrates described in the method for manufacturing the thermoelectric conversion device of the first embodiment described above are continuous. The thermoelectric conversion substrates 20 a are joined to each other at the side surfaces with the direction of the slits 27 aligned.

熱電変換基板連続体200bは、スリット27の位置が異なる他は、熱電変換基板連続体200aと同様の構造を有する。   The thermoelectric conversion substrate continuous body 200b has the same structure as the thermoelectric conversion substrate continuous body 200a except that the positions of the slits 27 are different.

次に、図23(B)に示すように、熱電変換基板連続体200a及び熱電変換基板連続体200bは、撓まされてスリット27において切り込み部が形成され、互いに対応する切り込み部同士が差し込まれて、熱電変換基板連続体複合体300aが形成される。この熱電変換基板連続体複合体300aは、図12に示す熱電変換基板複合体が3つ並んで結合された構造を有する。ここで、熱電変換基板連続体複合体は3つ形成される。   Next, as shown in FIG. 23B, the thermoelectric conversion substrate continuum 200a and the thermoelectric conversion substrate continuum 200b are bent to form a cut portion in the slit 27, and the corresponding cut portions are inserted into each other. Thus, the thermoelectric conversion substrate continuous body composite 300a is formed. This thermoelectric conversion substrate continuous body composite 300a has a structure in which three thermoelectric conversion substrate composites shown in FIG. Here, three thermoelectric conversion board | substrate continuous body composites are formed.

次に、3つの熱電変換基板連続体複合体300a、300b、300cが、螺旋の方向に接合されて、図21及び図22に示す熱電変換装置10が形成される。   Next, three thermoelectric conversion board | substrate continuous body composite bodies 300a, 300b, 300c are joined in the direction of a spiral, and the thermoelectric conversion apparatus 10 shown in FIG.21 and FIG.22 is formed.

本発明では、上述した各実施形態の熱電変換装置及びその製造方法は、本発明の趣旨を逸脱しない限り適宜変更が可能である。   In the present invention, the thermoelectric conversion device and the manufacturing method thereof according to each of the embodiments described above can be appropriately changed without departing from the spirit of the present invention.

例えば、図6(B)に示す熱電変換素子が搭載された第1基板は、図24に示すように形成されても良い。具体的には、まず、図24(A)に示すように、導電層60aの両面に非導電層60bが積層されて形成された基板60が形成される。   For example, the first substrate on which the thermoelectric conversion element shown in FIG. 6B is mounted may be formed as shown in FIG. Specifically, first, as shown in FIG. 24A, a substrate 60 formed by laminating a non-conductive layer 60b on both surfaces of a conductive layer 60a is formed.

次に、図24(B)に示すように、基板60の所定の部位における非導電層の部分を、基板60の両面から除去して導電層60aの部分が露出される。   Next, as shown in FIG. 24B, portions of the non-conductive layer at predetermined portions of the substrate 60 are removed from both surfaces of the substrate 60 to expose portions of the conductive layer 60a.

次に、図24(C)に示すように、基板60の一方の面における導電層60aが露出した部分に、導電性接着材61が塗布されると共に、基板60の周縁に外周シール部62が形成される。   Next, as shown in FIG. 24C, a conductive adhesive 61 is applied to a portion where the conductive layer 60 a on one surface of the substrate 60 is exposed, and an outer peripheral seal portion 62 is formed on the periphery of the substrate 60. It is formed.

次に、図24(D)に示すように、露出した導電層60aの部分に塗布された導電性接着材61にp型半導体素子63及びn型半導体素子64が接着されて、熱電変換素子65が基板60上に搭載される。このようにして、熱電変換素子が搭載された基板が形成される。   Next, as shown in FIG. 24D, a p-type semiconductor element 63 and an n-type semiconductor element 64 are bonded to a conductive adhesive 61 applied to the exposed portion of the conductive layer 60a, so that a thermoelectric conversion element 65 is obtained. Is mounted on the substrate 60. In this way, a substrate on which the thermoelectric conversion element is mounted is formed.

図24(D)に示す熱電変換素子が搭載された基板では、基板60の下を流れる熱媒体は、熱伝導率が低い非導電層60bを介さずに、熱伝導率が高い導電層60aと直接に熱的に接触する。そのため、熱電変換素子65と基板60の下を流れる熱媒体との間の熱の移送効率が向上する。   In the substrate on which the thermoelectric conversion element shown in FIG. 24D is mounted, the heat medium flowing under the substrate 60 does not go through the non-conductive layer 60b with low thermal conductivity, and the conductive layer 60a with high thermal conductivity. Direct thermal contact. Therefore, the heat transfer efficiency between the thermoelectric conversion element 65 and the heat medium flowing under the substrate 60 is improved.

ここで述べられた全ての例及び条件付きの言葉は、読者が、発明者によって寄与された発明及び概念を技術を深めて理解することを助けるための教育的な目的を意図する。ここで述べられた全ての例及び条件付きの言葉は、そのような具体的に述べられた例及び条件に限定されることなく解釈されるべきである。また、明細書のそのような例示の機構は、本発明の優越性及び劣等性を示すこととは関係しない。本発明の実施形態は詳細に説明されているが、その様々な変更、置き換え又は修正が本発明の精神及び範囲を逸脱しない限り行われ得ることが理解されるべきである。   All examples and conditional words mentioned herein are intended for educational purposes to help the reader deepen and understand the inventions and concepts contributed by the inventor. All examples and conditional words mentioned herein are to be construed without limitation to such specifically stated examples and conditions. Also, such exemplary mechanisms in the specification are not related to showing the superiority and inferiority of the present invention. While embodiments of the present invention have been described in detail, it should be understood that various changes, substitutions or modifications can be made without departing from the spirit and scope of the invention.

以上の上述した各実施形態に関し、更に以下の付記を開示する。   Regarding the above-described embodiments, the following additional notes are disclosed.

(付記1)
柱状の中空部の周りに配置されて2重螺旋の流路を形成する第1熱媒体流路及び第2熱媒体流路と、
前記第1熱媒体流路と前記第2熱媒体流路との間の一方の境界を形成する螺旋状の第1熱電変換部と、
前記第1熱媒体流路と前記第2熱媒体流路との間の他方の境界を形成する螺旋状の第2熱電変換部と、
を備え、
前記第1熱電変換部及び前記第2熱電変換部は可撓性を有する熱電変換装置。
(Appendix 1)
A first heat medium flow path and a second heat medium flow path arranged around a columnar hollow portion to form a double spiral flow path;
A spiral first thermoelectric converter that forms one boundary between the first heat medium flow path and the second heat medium flow path;
A spiral second thermoelectric converter that forms the other boundary between the first heat medium flow path and the second heat medium flow path;
With
The first thermoelectric conversion unit and the second thermoelectric conversion unit are flexible thermoelectric conversion devices.

(付記2)
前記第1熱媒体流路及び前記第2熱媒体流路は、前記中空部とは繋がっていない付記1に記載の熱電変換装置。
(Appendix 2)
The thermoelectric conversion device according to appendix 1, wherein the first heat medium flow path and the second heat medium flow path are not connected to the hollow portion.

(付記3)
前記第1熱媒体流路及び前記第2熱媒体流路は、前記第1熱電変換部と前記第2熱電変換部とに挟まれていない部分が外部に開放されていない付記2に記載の熱電変換装置。
(Appendix 3)
The thermoelectric device according to appendix 2, wherein the first heat medium flow channel and the second heat medium flow channel are not opened to the outside at a portion not sandwiched between the first thermoelectric conversion unit and the second thermoelectric conversion unit. Conversion device.

(付記4)
前記第1熱媒体流路又は前記第2熱媒体流路の内の何れか一方は、前記中空部と繋がっている付記1に記載の熱電変換装置。
(Appendix 4)
The thermoelectric conversion device according to supplementary note 1, wherein either one of the first heat medium flow path or the second heat medium flow path is connected to the hollow portion.

(付記5)
前記第1熱媒体流路は、前記中空部とは繋がっておらず、且つ前記第1熱電変換部と前記第2熱電変換部とに挟まれていない部分が、前記中空部と境界を接している部分を除いて、外部に開放されており、
前記第2熱媒体流路は、前記中空部と繋がっており、且つ前記第1熱電変換部と前記第2熱電変換部とに挟まれていない部分が、前記中空部と繋がっている部分を除いて、外部には開放されていない付記4に記載の熱電変換装置。
(Appendix 5)
The first heat medium flow path is not connected to the hollow portion, and a portion not sandwiched between the first thermoelectric conversion portion and the second thermoelectric conversion portion is in contact with the hollow portion. Except for the parts that are open to the outside,
The second heat medium flow path is connected to the hollow portion, and a portion not sandwiched between the first thermoelectric conversion portion and the second thermoelectric conversion portion is excluded from a portion connected to the hollow portion. The thermoelectric conversion device according to appendix 4, which is not open to the outside.

(付記6)
前記第1熱電変換部及び前記第2熱電変換部それぞれは、可撓性を有する第1基板と、可撓性を有する第2基板とを有し、
前記第1基板と前記第2基板とは、両基板間にp型半導体素子及びn型半導体素子を有する熱電変換回路が配置されて、積層されている付記1〜5の何れか一項に記載の熱電変換装置。
(Appendix 6)
Each of the first thermoelectric conversion unit and the second thermoelectric conversion unit includes a flexible first substrate and a flexible second substrate,
The said 1st board | substrate and the said 2nd board | substrate are any one of the additional notes 1-5 by which the thermoelectric conversion circuit which has a p-type semiconductor element and an n-type semiconductor element is arrange | positioned between both board | substrates, and is laminated | stacked. Thermoelectric conversion device.

(付記7)
柱状の中空部の周りに配置される2重螺旋の流路を形成する第1熱媒体流路及び第2熱媒体流路と、
前記第1熱媒体流路と前記第2熱媒体流路との間の一方の境界を形成する螺旋状の第1熱電変換部と、
前記第1熱媒体流路と前記第2熱媒体流路との間の他方の境界を形成する螺旋状の第2熱電変換部と、
を備え、前記第1熱電変換部及び前記第2熱電変換部は可撓性を有する複数の熱電変換ユニットが、螺旋の方向を揃えて並んで結合されて形成される熱電変換装置。
(Appendix 7)
A first heat medium flow path and a second heat medium flow path forming a double spiral flow path disposed around the columnar hollow portion;
A spiral first thermoelectric converter that forms one boundary between the first heat medium flow path and the second heat medium flow path;
A spiral second thermoelectric converter that forms the other boundary between the first heat medium flow path and the second heat medium flow path;
And the first thermoelectric conversion unit and the second thermoelectric conversion unit are formed by combining a plurality of flexible thermoelectric conversion units aligned in a spiral direction.

(付記8)
中央に位置する第1貫通孔と、端縁から前記第1貫通孔へ延びる第1スリットとを有する可撓性の第1基板と、
中央に位置する第2貫通孔と、端縁から前記第2貫通孔へ延びる第2スリットとを有する可撓性の第2基板と、
前記第1基板上に配置され、第1電極及び第2電極を有する熱電変換回路と、
を備え、
前記第1貫通孔と前記第2貫通孔とを揃え、且つ前記第1スリットと前記第2スリットとを揃えて、前記第2基板が前記第1基板上に前記熱電変換回路を挟んで積層されており、
前記第1基板と前記第2基板との間には内部を密閉する基板間シール部が形成され、前記第1貫通孔と前記第2貫通孔とこれらの貫通孔の間をシールする前記基板間シール部の部分とによって中央貫通孔が形成され、前記第1スリットと前記第2スリットとの間には、前記基板間シール部の部分によって、対向する第1端面及び第2端面が形成されており、
前記第1電極が前記第1端面に配置され、前記第2電極が前記第2端面に配置される、可撓性を有する熱電変換基板。
(Appendix 8)
A flexible first substrate having a first through hole located in the center and a first slit extending from an edge to the first through hole;
A flexible second substrate having a second through hole located in the center and a second slit extending from the edge to the second through hole;
A thermoelectric conversion circuit disposed on the first substrate and having a first electrode and a second electrode;
With
The second substrate is laminated on the first substrate with the thermoelectric conversion circuit sandwiched between the first through hole and the second through hole, and the first slit and the second slit. And
Between the first substrate and the second substrate, an inter-substrate seal portion is formed to seal the inside, and the first through hole, the second through hole, and the inter-substrate seal between these through holes. A central through hole is formed by a portion of the seal portion, and a first end surface and a second end surface are formed between the first slit and the second slit by the portion of the inter-substrate seal portion. And
A flexible thermoelectric conversion substrate in which the first electrode is disposed on the first end surface and the second electrode is disposed on the second end surface.

(付記9)
付記8に記載の熱電変換基板を2つ備え、
2つの前記熱電変換基板それぞれは、前記第1基板と前記第2基板とが同じ形状を有し、前記第1貫通孔と前記第2貫通孔とが同じ形状を有し、前記基板間シール部が、前記第1基板の周縁と前記第2基板の周縁との間に形成されており、
2つの前記熱電変換基板それぞれは、前記第2基板上の前記第2貫通孔の周囲に、前記第2スリットの位置で途切れる中央シール部が形成されており、且つ、前記第2基板上の周縁には、前記第2スリットの位置で途切れる外周シール部が形成されており、前記第1端面側の端部と前記第2端面側の端部とが、これらの面方向において互いに反対の向きにずらされており、
一方の前記熱電変換基板の前記第1端面側の端部を、他方の前記熱電変換基板の上側に重ね、且つ、一方の前記熱電変換基板の前記第2端面側の端部を、他方の前記熱電変換基板の下側に重ね、
他方の前記熱電変換基板の前記第1端面側の端部を、一方の前記熱電変換基板の上側に重ね、且つ、他方の前記熱電変換基板の前記第2端面側の端部を、一方の前記熱電変換基板の下側に重ねて、
一方の前記熱電変換基板と、他方の前記熱電変換基板とが、互いの前記中央貫通孔を揃えて重ね合わされており、
一方の前記熱電変換基板の前記中央シール部は、重ね合わされている他方の前記熱電変換基板の下面の前記中央貫通孔の周囲の部分に配置され、他方の前記熱電変換基板の前記中央シール部は、重ね合わされている一方の前記熱電変換基板の下面の前記中央貫通孔の周囲の部分に配置されて、これらの中央シール部及び中央貫通孔によって延伸中央貫通孔が形成され、
一方の前記熱電変換基板の前記外周シール部は、重ね合わされている他方の前記熱電変換基板の下面の周縁の部分に配置され、他方の前記熱電変換基板の前記外周シール部は、重ね合わされている一方の前記熱電変換基板の下面の周縁の部分に配置されている、熱電変換基板複合体。
(Appendix 9)
Two thermoelectric conversion boards according to appendix 8 are provided,
In each of the two thermoelectric conversion substrates, the first substrate and the second substrate have the same shape, the first through hole and the second through hole have the same shape, and the inter-substrate seal portion Is formed between the periphery of the first substrate and the periphery of the second substrate,
Each of the two thermoelectric conversion substrates has a central seal portion that is interrupted at the position of the second slit around the second through hole on the second substrate, and a peripheral edge on the second substrate. Is formed with an outer peripheral seal part which is interrupted at the position of the second slit, and the end part on the first end face side and the end part on the second end face side are opposite to each other in these surface directions. Has been displaced,
The end portion on the first end face side of one of the thermoelectric conversion substrates is overlaid on the upper side of the other thermoelectric conversion substrate, and the end portion on the second end face side of one of the thermoelectric conversion substrates is placed on the other end Overlay the bottom of the thermoelectric conversion board,
The end portion on the first end face side of the other thermoelectric conversion substrate is overlaid on the upper side of one thermoelectric conversion substrate, and the end portion on the second end face side of the other thermoelectric conversion substrate is placed on one of the thermoelectric conversion substrates. Overlay the bottom of the thermoelectric conversion board,
One of the thermoelectric conversion substrates and the other thermoelectric conversion substrate are overlaid with the center through-holes aligned,
The central seal portion of one of the thermoelectric conversion substrates is disposed in a portion around the central through hole on the lower surface of the other thermoelectric conversion substrate that is overlaid, and the central seal portion of the other thermoelectric conversion substrate is , Disposed in a portion around the central through hole on the lower surface of one of the thermoelectric conversion substrates that are superposed, extending central through hole is formed by these central seal portion and the central through hole,
The outer peripheral seal portion of one of the thermoelectric conversion substrates is disposed at a peripheral portion of the lower surface of the other thermoelectric conversion substrate that is overlapped, and the outer peripheral seal portion of the other thermoelectric conversion substrate is overlapped. The thermoelectric conversion board | substrate composite body arrange | positioned at the peripheral part of the lower surface of one said thermoelectric conversion board | substrate.

(付記10)
付記8に記載の熱電変換基板を2つ備え、
2つの前記熱電変換基板それぞれは、前記第1貫通孔と前記第2貫通孔とが同じ形状を有し、前記第1基板と前記第2基板とが同じ形状を有し、前記基板間シール部が、前記第1基板の周縁と前記第2基板の周縁との間に形成されており、
一方の前記熱電変換基板における前記第2基板上の周縁には、前記第2スリットの位置で途切れる外周シール部が形成されており、
他方の前記熱電変換基板における前記第2基板上の前記第2貫通孔の周囲には、前記第2スリットの位置で途切れる中央シール部が形成されており、
2つの前記熱電変換基板それぞれは、前記第1端面側の端部と前記第2端面側の端部とが、これらの面方向において互いに反対の向きにずらされており、
一方の前記熱電変換基板の前記第1端面側の端部を、他方の前記熱電変換基板の上側に重ね、且つ、一方の前記熱電変換基板の前記第2端面側の端部を、他方の前記熱電変換基板の下側に重ね、
他方の前記熱電変換基板の前記第1端面側の端部を、一方の前記熱電変換基板の上側に重ね、且つ、他方の前記熱電変換基板の前記第2端面側の端部を、一方の前記熱電変換基板の下側に重ねて、
一方の前記熱電変換基板と、他方の前記熱電変換基板とが、互いの前記中央貫通孔を揃えて重ね合わされており、
他方の前記熱電変換基板の前記中央シール部は、重ね合わされている一方の前記熱電変換基板の下面の前記中央貫通孔の周囲の部分に配置されて、これらの中央シール部及び中央貫通孔によって延伸中央貫通孔が形成され、
一方の前記熱電変換基板の前記外周シール部は、重ね合わされている他方の前記熱電変換基板の下面の周縁の部分に配置されている、熱電変換基板複合体。
(Appendix 10)
Two thermoelectric conversion boards according to appendix 8 are provided,
In each of the two thermoelectric conversion substrates, the first through hole and the second through hole have the same shape, the first substrate and the second substrate have the same shape, and the inter-substrate seal portion Is formed between the periphery of the first substrate and the periphery of the second substrate,
On the peripheral edge on the second substrate in one of the thermoelectric conversion substrates, an outer peripheral seal portion that is interrupted at the position of the second slit is formed,
Around the second through hole on the second substrate in the other thermoelectric conversion substrate, a central seal portion that is interrupted at the position of the second slit is formed,
Each of the two thermoelectric conversion substrates, the end portion on the first end surface side and the end portion on the second end surface side are shifted in directions opposite to each other in these surface directions,
The end portion on the first end face side of one of the thermoelectric conversion substrates is overlaid on the upper side of the other thermoelectric conversion substrate, and the end portion on the second end face side of one of the thermoelectric conversion substrates is placed on the other end Overlay the bottom of the thermoelectric conversion board,
The end portion on the first end face side of the other thermoelectric conversion substrate is overlaid on the upper side of one thermoelectric conversion substrate, and the end portion on the second end face side of the other thermoelectric conversion substrate is placed on one of the thermoelectric conversion substrates. Overlay the bottom of the thermoelectric conversion board,
One of the thermoelectric conversion substrates and the other thermoelectric conversion substrate are overlapped with each other with the center through-holes aligned,
The central seal portion of the other thermoelectric conversion substrate is disposed in a portion around the central through hole on the lower surface of the one of the superimposed thermoelectric conversion substrates, and is extended by the central seal portion and the central through hole. A central through hole is formed,
The thermoelectric conversion substrate composite, wherein the outer peripheral seal portion of one of the thermoelectric conversion substrates is disposed at a peripheral portion of the lower surface of the other thermoelectric conversion substrate that is overlaid.

(付記11)
付記9に記載の熱電変換基板複合体を複数備え、
一の前記熱電変換基板複合体における一方の前記熱電変換基板の前記第1端面と、別の一の前記熱電変換基板複合体における一方の前記熱電変換基板の前記第2端面とが、これらの端面における前記第1電極と前記第2電極とを電気的に接続して接合され、
前記一の熱電変換基板複合体における他方の前記熱電変換基板の前記第1端面と、前記別の一の熱電変換基板複合体における他方の前記熱電変換基板の前記第2端面とが、これらの端面における前記第1電極と前記第2電極とを電気的に接続して接合され、
前記一の熱電変換基板複合体における一方の前記熱電変換基板の前記中央シール部及び他方の前記熱電変換基板の前記中央シール部は、重ね合わされている前記別の一の熱電変換基板複合体の下面の延伸中央貫通孔の周囲の部分と接合され、
前記一の熱電変換基板複合体における一方の前記熱電変換基板の前記外周シール部及び他方の前記熱電変換基板の前記外周シール部は、重ね合わされている前記別の一の熱電変換基板複合体の下面の周縁の部分と接合されて、
複数の前記熱電変換基板複合体が、互いの前記延伸中央貫通孔を揃えて重ね合わされている、熱電変換装置。
(Appendix 11)
Comprising a plurality of thermoelectric conversion substrate composites according to appendix 9,
The first end surface of one of the thermoelectric conversion substrates in one thermoelectric conversion substrate composite and the second end surface of one of the thermoelectric conversion substrates in another thermoelectric conversion substrate composite are these end surfaces. In which the first electrode and the second electrode are electrically connected and joined,
The first end surface of the other thermoelectric conversion substrate in the one thermoelectric conversion substrate composite and the second end surface of the other thermoelectric conversion substrate in the another thermoelectric conversion substrate composite are these end surfaces. In which the first electrode and the second electrode are electrically connected and joined,
In the one thermoelectric conversion substrate composite, the central seal portion of one of the thermoelectric conversion substrates and the central seal portion of the other thermoelectric conversion substrate are overlapped with each other. Is joined to the peripheral part of the extending central through hole of
In the one thermoelectric conversion substrate composite, the outer peripheral seal portion of one of the thermoelectric conversion substrates and the outer peripheral seal portion of the other thermoelectric conversion substrate are overlapped with each other. It is joined with the peripheral part of
A thermoelectric conversion device in which a plurality of the thermoelectric conversion substrate composites are overlapped with each other with the extension center through-holes aligned.

(付記12)
付記10に記載の熱電変換基板複合体を複数備え、
一の前記熱電変換基板複合体における一方の前記熱電変換基板の前記第1端面と、別の一の前記熱電変換基板複合体における一方の前記熱電変換基板の前記第2端面とが、これらの端面における前記第1電極と前記第2電極とを電気的に接続して接合され、
前記一の熱電変換基板複合体における他方の前記熱電変換基板の前記第1端面と、前記別の一の熱電変換基板複合体における他方の前記熱電変換基板の前記第2端面とが、これらの端面における前記第1電極と前記第2電極とを電気的に接続して接合され、
前記一の熱電変換基板複合体における他方の前記熱電変換基板の前記中央シール部は、重ね合わされている前記別の一の熱電変換基板複合体の下面の延伸中央貫通孔の周囲の部分と接合され、
前記一の熱電変換基板複合体における一方の前記熱電変換基板の前記外周シール部は、重ね合わされている前記別の一の熱電変換基板複合体の下面の周縁の部分と接合されて、
複数の前記熱電変換基板複合体が、互いの前記延伸中央貫通孔を揃えて重ね合わされている、熱電変換装置。
(Appendix 12)
Comprising a plurality of thermoelectric conversion substrate composites according to appendix 10,
The first end surface of one of the thermoelectric conversion substrates in one thermoelectric conversion substrate composite and the second end surface of one of the thermoelectric conversion substrates in another thermoelectric conversion substrate composite are these end surfaces. In which the first electrode and the second electrode are electrically connected and joined,
The first end surface of the other thermoelectric conversion substrate in the one thermoelectric conversion substrate composite and the second end surface of the other thermoelectric conversion substrate in the another thermoelectric conversion substrate composite are these end surfaces. In which the first electrode and the second electrode are electrically connected and joined,
The central seal portion of the other thermoelectric conversion substrate in the one thermoelectric conversion substrate composite is joined to a portion around the extended central through hole on the lower surface of the another thermoelectric conversion substrate composite that is overlaid. ,
The outer peripheral seal portion of one of the thermoelectric conversion substrates in the one thermoelectric conversion substrate composite is joined to a peripheral portion of the lower surface of the another thermoelectric conversion substrate composite that is overlaid,
A thermoelectric conversion device in which a plurality of the thermoelectric conversion substrate composites are overlapped with each other with the extension center through-holes aligned.

(付記13)
中央に位置する第1貫通孔と端縁から前記第1貫通孔へ延びる第1スリットとを有する可撓性の第1基板上に、複数の熱電変換素子を搭載し、
前記複数の熱電変換素子が搭載された前記第1基板上に、中央に位置する第2貫通孔と端縁から前記第2貫通孔へ延びる第2スリットとを有する可撓性の第2基板を、前記第1貫通孔と前記第2貫通孔とを揃え、且つ前記第1スリットと前記第2スリットとを揃えて積層して、両基板間に前記複数の熱電変換素子を有する熱電変換回路を形成し、且つ、
前記第1基板と前記第2基板との間に内部を密閉する基板間シール部を形成すると共に、前記第1貫通孔と前記第2貫通孔とこれらの貫通孔の間をシールする前記基板間シール部の部分とによって中央貫通孔を形成し、且つ前記第1スリットと前記第2スリットとの間には、前記基板間シール部の部分によって、対向する第1端面及び第2端面を形成し、
前記熱電変換回路の第1電極を前記第1端面に配置し、且つ前記熱電変換回路の第2電極を前記第2端面に配置する熱電変換基板の製造方法。
(Appendix 13)
A plurality of thermoelectric conversion elements are mounted on a flexible first substrate having a first through hole located in the center and a first slit extending from the edge to the first through hole,
A flexible second substrate having a second through hole located in the center and a second slit extending from an edge to the second through hole on the first substrate on which the plurality of thermoelectric conversion elements are mounted. A thermoelectric conversion circuit having the plurality of thermoelectric conversion elements between both substrates, wherein the first through hole and the second through hole are aligned and the first slit and the second slit are aligned and stacked. Forming, and
Between the first substrate and the second substrate, an inter-substrate seal portion that seals the inside is formed, and the first through hole, the second through hole, and the inter-substrate seal between these through holes A central through hole is formed by a portion of the seal portion, and a first end surface and a second end surface facing each other are formed by the portion of the inter-substrate seal portion between the first slit and the second slit. ,
The manufacturing method of the thermoelectric conversion board | substrate which arrange | positions the 1st electrode of the said thermoelectric conversion circuit to the said 1st end surface, and arrange | positions the 2nd electrode of the said thermoelectric conversion circuit to the said 2nd end surface.

(付記14)
前記熱電変換素子が搭載された第1基板は、
導電層の両面に非導電層が積層されて形成された基板の所定の部位における非導電層の部分を、基板の両面から除去して前記導電層の部分を露出させ、
前記基板の一方の面における前記導電層が露出した部分に、熱電変換素子を搭載して形成される付記13に記載の熱電変換基板を製造する方法。
(Appendix 14)
The first substrate on which the thermoelectric conversion element is mounted is
Removing a portion of the non-conductive layer at a predetermined portion of the substrate formed by laminating the non-conductive layer on both sides of the conductive layer to expose the portion of the conductive layer by removing from both sides of the substrate;
The method of manufacturing a thermoelectric conversion substrate according to appendix 13, wherein a thermoelectric conversion element is mounted on a portion of the one surface of the substrate where the conductive layer is exposed.

(付記15)
中央貫通孔と、
端縁から前記中央貫通孔へ延びるスリットと、
前記スリットを挟んで対向する第1端面及び第2端面と、
前記第1端面に配置される第1電極と、
前記第2端面に配置される第2電極と、
を有する可撓性の熱電変換基板を用いて熱電変換複合基板を製造する方法であって、
2つの前記熱電変換基板それぞれにおける前記第1端面側の端部と前記第2端面側の端部とを、これらの面方向において互いに反対の向きにずらして切り込み部を形成し、
一方の前記熱電変換基板の切り込み部と他方の前記熱電変換基板の切り込み部とを互いに差し込み、
一方の前記熱電変換基板の前記第1端面側の端部を、他方の前記熱電変換基板の上側に重ね、且つ、一方の前記熱電変換基板の前記第2端面側の端部を、他方の前記熱電変換基板の下側に重ね、他方の前記熱電変換基板の前記第1端面側の端部を、一方の前記熱電変換基板の上側に重ね、且つ、他方の前記熱電変換基板の前記第2端面側の端部を、一方の前記熱電変換基板の下側に重ねて、一方の前記熱電変換基板と他方の前記熱電変換基板とを、互いの前記中央貫通孔を揃えて重ね合わす、熱電変換複合基板の製造方法。
(Appendix 15)
A central through hole,
A slit extending from the edge to the central through hole;
A first end face and a second end face facing each other across the slit;
A first electrode disposed on the first end face;
A second electrode disposed on the second end surface;
A method of manufacturing a thermoelectric conversion composite substrate using a flexible thermoelectric conversion substrate having
The first end face side end part and the second end face side end part of each of the two thermoelectric conversion substrates are shifted in directions opposite to each other in these plane directions to form a cut part,
Inserting the cut portion of one of the thermoelectric conversion substrates and the cut portion of the other thermoelectric conversion substrate,
The end portion on the first end face side of one of the thermoelectric conversion substrates is overlaid on the upper side of the other thermoelectric conversion substrate, and the end portion on the second end face side of one of the thermoelectric conversion substrates is placed on the other end The thermoelectric conversion board is overlaid on the lower side, the end on the first end face side of the other thermoelectric conversion board is overlaid on the upper side of one of the thermoelectric conversion boards, and the second end face of the other thermoelectric conversion board is overlaid. A thermoelectric conversion composite in which one end of the thermoelectric conversion substrate is overlaid on the lower side of the one thermoelectric conversion substrate, and the one thermoelectric conversion substrate and the other thermoelectric conversion substrate are overlapped with the center through-holes aligned. A method for manufacturing a substrate.

(付記16)
2つの前記熱電変換基板それぞれにおける上面の前記中央貫通孔の周囲には、前記スリットの位置で途切れる中央シール部が形成され、
2つの前記熱電変換基板それぞれにおける上面の周縁には、前記スリットの位置で途切れる外周シール部が形成されており、
一方の前記熱電変換基板と他方の前記熱電変換基板とを、互いの前記中央貫通孔を揃えて重ね合わす際には、
一方の前記熱電変換基板の前記中央シール部を、重ね合わされている他方の前記熱電変換基板の下面における前記中央貫通孔の周囲の部分に配置し、且つ、他方の前記熱電変換基板の前記中央シール部を、重ね合わされている一方の前記熱電変換基板の下面の前記中央貫通孔の周囲の部分に配置して、これらの中央シール部及び中央貫通孔によって延伸中央貫通孔を形成し、且つ、
一方の前記熱電変換基板の前記外周シール部を、重ね合わされている他方の前記熱電変換基板の下面の周縁の部分に配置し、且つ、他方の前記熱電変換基板の前記外周シール部を、重ね合わされている一方の前記熱電変換基板の下面の周縁の部分に配置する、付記15に記載の熱電変換基板複合体の製造方法。
(Appendix 16)
Around the central through hole on the upper surface of each of the two thermoelectric conversion substrates, a central seal portion that is interrupted at the position of the slit is formed,
On the periphery of the upper surface of each of the two thermoelectric conversion substrates, an outer peripheral seal portion that is interrupted at the position of the slit is formed,
When superposing one thermoelectric conversion substrate and the other thermoelectric conversion substrate with the center through-holes aligned with each other,
The central seal portion of one of the thermoelectric conversion substrates is disposed in a portion around the central through hole on the lower surface of the other thermoelectric conversion substrate that is overlaid, and the central seal of the other thermoelectric conversion substrate A portion is disposed in a portion around the central through hole on the lower surface of one of the thermoelectric conversion substrates that are overlaid, and an extended central through hole is formed by the central seal portion and the central through hole, and
The outer peripheral seal portion of one of the thermoelectric conversion substrates is disposed on the peripheral portion of the lower surface of the other thermoelectric conversion substrate that is overlaid, and the outer peripheral seal portion of the other thermoelectric conversion substrate is overlaid. The manufacturing method of the thermoelectric conversion board | substrate composite_body | complex of Additional remark 15 arrange | positioned in the peripheral part of the lower surface of the one said thermoelectric conversion board | substrate which is carrying out.

(付記17)
他方の前記熱電変換基板における上面の前記中央貫通孔の周囲には、前記スリットの位置で途切れる中央シール部を形成され、
一方の前記熱電変換基板における上面の周縁には、前記スリットの位置で途切れる外周シール部を形成されており、
一方の前記熱電変換基板と他方の前記熱電変換基板とを、互いの前記中央貫通孔を揃えて重ね合わす際には、
他方の前記熱電変換基板の前記中央シール部を、重ね合わされている一方の前記熱電変換基板の下面の前記中央貫通孔の周囲の部分に配置して、これらの中央シール部及び中央貫通孔によって延伸中央貫通孔を形成し、且つ、一方の前記熱電変換基板の前記外周シール部を、重ね合わされている他方の前記熱電変換基板の下面の周縁の部分に配置する、付記15に記載の熱電変換基板複合体の製造方法。
(Appendix 17)
Around the central through hole on the upper surface of the other thermoelectric conversion substrate is formed a central seal portion that is interrupted at the position of the slit,
On the periphery of the upper surface of one of the thermoelectric conversion substrates, an outer peripheral seal portion that is interrupted at the position of the slit is formed,
When superposing one thermoelectric conversion substrate and the other thermoelectric conversion substrate with the center through-holes aligned with each other,
The central seal portion of the other thermoelectric conversion substrate is arranged in a portion around the central through hole on the lower surface of one of the superimposed thermoelectric conversion substrates, and is stretched by the central seal portion and the central through hole. The thermoelectric conversion board according to appendix 15, wherein a central through hole is formed, and the outer peripheral seal portion of one of the thermoelectric conversion boards is disposed at a peripheral portion of the lower surface of the other thermoelectric conversion board that is overlaid. A method for producing a composite.

(付記18)
付記16に記載の熱電変換複合基板を複数用いて熱電変換装置を製造する方法であって、
一の前記熱電変換基板複合体における一方の前記熱電変換基板の前記第1端面と、別の一の前記熱電変換基板複合体における一方の前記熱電変換基板の前記第2端面とを、これらの端面における前記第1電極と前記第2電極とを電気的に接続すると共に接合し、且つ、
前記一の熱電変換基板複合体における他方の前記熱電変換基板の前記第1端面と、前記別の一の熱電変換基板複合体における他方の前記熱電変換基板の前記第2端面とを、これらの端面における前記第1電極と前記第2電極とを電気的に接続すると共に接合し、且つ、
前記一の熱電変換基板複合体における一方の前記熱電変換基板の前記中央シール部及び他方の前記熱電変換基板の前記中央シール部を、重ね合わされている前記別の一の熱電変換基板複合体の下面の延伸中央貫通孔の周囲の部分と接合し、且つ、
前記一の熱電変換基板複合体における一方の前記熱電変換基板の前記外周シール部及び他方の前記熱電変換基板の前記外周シール部を、重ね合わされている前記別の一の熱電変換基板複合体の下面の周縁の部分と接合して、
複数の前記熱電変換基板複合体を、互いの前記延伸中央貫通孔を揃えて重ね合わす、熱電変換装置の製造方法。
(Appendix 18)
A method of manufacturing a thermoelectric conversion device using a plurality of thermoelectric conversion composite substrates according to appendix 16,
The first end surface of one of the thermoelectric conversion substrates in one thermoelectric conversion substrate composite and the second end surface of one of the thermoelectric conversion substrates in another thermoelectric conversion substrate composite, these end surfaces Electrically connecting and joining the first electrode and the second electrode in; and
The first end face of the other thermoelectric conversion board in the one thermoelectric conversion board composite and the second end face of the other thermoelectric conversion board in the another thermoelectric conversion board composite are these end faces. Electrically connecting and joining the first electrode and the second electrode in; and
The lower surface of the other one thermoelectric conversion substrate composite in which the central seal portion of one of the thermoelectric conversion substrates and the central seal portion of the other thermoelectric conversion substrate in the one thermoelectric conversion substrate composite are overlaid. And a portion around the extended central through hole of
The lower surface of the one other thermoelectric conversion substrate composite in which the outer peripheral seal portion of one of the thermoelectric conversion substrates and the outer peripheral seal portion of the other thermoelectric conversion substrate in the one thermoelectric conversion substrate composite are overlaid. Join to the peripheral part of
The manufacturing method of the thermoelectric conversion apparatus which aligns the said extending | stretching center through-hole mutually, and overlaps several said thermoelectric conversion board | substrate composite bodies.

(付記19)
付記17に記載の熱電変換複合基板を複数用いて熱電変換装置を製造する方法であって、
一の前記熱電変換基板複合体における一方の前記熱電変換基板の前記第1端面と、別の一の前記熱電変換基板複合体における一方の前記熱電変換基板の前記第2端面とを、これらの端面における前記第1電極と前記第2電極とを電気的に接続すると共に接合し、且つ、
前記一の熱電変換基板複合体における他方の前記熱電変換基板の前記第1端面と、前記別の一の熱電変換基板複合体における他方の前記熱電変換基板の前記第2端面とを、これらの端面における前記第1電極と前記第2電極とを電気的に接続すると共に接合し、且つ、
前記一の熱電変換基板複合体における他方の前記熱電変換基板の前記中央シール部を、重ね合わされている前記別の一の熱電変換基板複合体の下面の延伸中央貫通孔の周囲の部分と接合し、且つ、
前記一の熱電変換基板複合体における一方の前記熱電変換基板の前記外周シール部を、重ね合わされている前記別の一の熱電変換基板複合体の下面の周縁の部分と接合して、
複数の前記熱電変換基板複合体を、互いの前記延伸中央貫通孔を揃えて重ね合わす、熱電変換装置の製造方法。
(Appendix 19)
A method for manufacturing a thermoelectric conversion device using a plurality of thermoelectric conversion composite substrates according to appendix 17,
The first end surface of one of the thermoelectric conversion substrates in one thermoelectric conversion substrate composite and the second end surface of one of the thermoelectric conversion substrates in another thermoelectric conversion substrate composite, these end surfaces Electrically connecting and joining the first electrode and the second electrode in; and
The first end face of the other thermoelectric conversion board in the one thermoelectric conversion board composite and the second end face of the other thermoelectric conversion board in the another thermoelectric conversion board composite are these end faces. Electrically connecting and joining the first electrode and the second electrode in; and
The center seal portion of the other thermoelectric conversion substrate in the one thermoelectric conversion substrate composite is joined to a portion around the extended central through hole on the lower surface of the another thermoelectric conversion substrate composite that is overlaid. ,and,
The outer peripheral seal portion of one of the thermoelectric conversion substrates in the one thermoelectric conversion substrate composite is joined to a peripheral portion of the lower surface of the another thermoelectric conversion substrate composite that is overlaid,
The manufacturing method of the thermoelectric conversion apparatus which aligns the said extending | stretching center through-hole mutually, and overlaps several said thermoelectric conversion board | substrate composite bodies.

10 熱電変換装置
11 中空部
12 第1熱媒体流路
13 第2熱媒体流路
14 第1熱電変換部
15 第2熱電変換部
16 リード線
20a、20b 熱電変換基板
21 基板間シール部
22 中央貫通孔
23 第1端面
23a 第1端面側の端部
24 第2端面
24a 第2端面側の端部
25 中央シール部
26 外周シール部
27 スリット
28 切り込み部
31 第1基板
32 第1貫通孔
33 第1スリット
34 第2基板
35 第2貫通孔
36 第2スリット
40 熱電変換回路
41 p型半導体素子
42 n型半導体素子
43 第1導電板
44 第2導電板
45 第1電極
46 第2電極
47 導電性接着材
48 熱電変換素子
50a、50b、50c、50d 熱電変換基板複合体
51 延伸中央貫通孔
60 基板
60a 導電層
60b 非導電層
61 導電性接着材
62 基板間シール部
63 p型半導体素子
64 n型半導体素子
200a、200b 熱電変換基板連続体
300a、300b、300c 熱電変換基板連続体複合体
DESCRIPTION OF SYMBOLS 10 Thermoelectric conversion apparatus 11 Hollow part 12 1st heat medium flow path 13 2nd heat medium flow path 14 1st thermoelectric conversion part 15 2nd thermoelectric conversion part 16 Lead wire 20a, 20b Thermoelectric conversion board 21 Inter-substrate sealing part 22 Center penetration Hole 23 First end face 23a End part on the first end face side 24 Second end face 24a End part on the second end face side 25 Central seal part 26 Peripheral seal part 27 Slit 28 Cut part 31 First substrate 32 First through hole 33 1st Slit 34 second substrate 35 second through hole 36 second slit 40 thermoelectric conversion circuit 41 p-type semiconductor element 42 n-type semiconductor element 43 first conductive plate 44 second conductive plate 45 first electrode 46 second electrode 47 conductive adhesive Material 48 Thermoelectric conversion element 50a, 50b, 50c, 50d Thermoelectric conversion substrate composite 51 Stretch center through hole 60 Substrate 60a Conductive layer 60b Non-conductive layer 6 DESCRIPTION OF SYMBOLS 1 Conductive adhesive material 62 Inter-substrate seal part 63 p-type semiconductor element 64 n-type semiconductor element 200a, 200b Thermoelectric conversion board | substrate continuous body 300a, 300b, 300c Thermoelectric conversion board | substrate continuous body composite body

Claims (6)

柱状の中空部の周りに配置されて2重螺旋の流路を形成する第1熱媒体流路及び第2熱媒体流路と、
前記第1熱媒体流路と前記第2熱媒体流路との間の一方の境界を形成する螺旋状の第1熱電変換部と、
前記第1熱媒体流路と前記第2熱媒体流路との間の他方の境界を形成する螺旋状の第2熱電変換部と、
を備え、
前記第1熱電変換部及び前記第2熱電変換部は可撓性を有する熱電変換装置。
A first heat medium flow path and a second heat medium flow path arranged around a columnar hollow portion to form a double spiral flow path;
A spiral first thermoelectric converter that forms one boundary between the first heat medium flow path and the second heat medium flow path;
A spiral second thermoelectric converter that forms the other boundary between the first heat medium flow path and the second heat medium flow path;
With
The first thermoelectric conversion unit and the second thermoelectric conversion unit are flexible thermoelectric conversion devices.
中央貫通孔と、
端縁から前記中央貫通孔へ延びるスリットと、
前記スリットを挟んで対向する第1端面及び第2端面と、
前記第1端面に配置される第1電極と、
前記第2端面に配置される第2電極と、
を有する可撓性の熱電変換基板を用いて熱電変換複合基板を製造する方法であって、
2つの前記熱電変換基板それぞれにおける前記第1端面側の端部と前記第2端面側の端部とを、これらの面方向において互いに反対の向きにずらして切り込み部を形成し、
一方の前記熱電変換基板の切り込み部と他方の前記熱電変換基板の切り込み部とを互いに差し込み、
一方の前記熱電変換基板の前記第1端面側の端部を、他方の前記熱電変換基板の上側に重ね、且つ、一方の前記熱電変換基板の前記第2端面側の端部を、他方の前記熱電変換基板の下側に重ね、他方の前記熱電変換基板の前記第1端面側の端部を、一方の前記熱電変換基板の上側に重ね、且つ、他方の前記熱電変換基板の前記第2端面側の端部を、一方の前記熱電変換基板の下側に重ねて、一方の前記熱電変換基板と他方の前記熱電変換基板とを、互いの前記中央貫通孔を揃えて重ね合わす、熱電変換複合基板の製造方法。
A central through hole,
A slit extending from the edge to the central through hole;
A first end face and a second end face facing each other across the slit;
A first electrode disposed on the first end face;
A second electrode disposed on the second end surface;
A method of manufacturing a thermoelectric conversion composite substrate using a flexible thermoelectric conversion substrate having
The first end face side end part and the second end face side end part of each of the two thermoelectric conversion substrates are shifted in directions opposite to each other in these plane directions to form a cut part,
Inserting the cut portion of one of the thermoelectric conversion substrates and the cut portion of the other thermoelectric conversion substrate,
The end portion on the first end face side of one of the thermoelectric conversion substrates is overlaid on the upper side of the other thermoelectric conversion substrate, and the end portion on the second end face side of one of the thermoelectric conversion substrates is placed on the other end The thermoelectric conversion board is overlaid on the lower side, the end on the first end face side of the other thermoelectric conversion board is overlaid on the upper side of one of the thermoelectric conversion boards, and the second end face of the other thermoelectric conversion board is overlaid. A thermoelectric conversion composite in which one end of the thermoelectric conversion substrate is overlaid on the lower side of the one thermoelectric conversion substrate, and the one thermoelectric conversion substrate and the other thermoelectric conversion substrate are overlapped with the center through-holes aligned. A method for manufacturing a substrate.
2つの前記熱電変換基板それぞれにおける上面の前記中央貫通孔の周囲には、前記スリットの位置で途切れる中央シール部が形成され、
2つの前記熱電変換基板それぞれにおける上面の周縁には、前記スリットの位置で途切れる外周シール部が形成されており、
一方の前記熱電変換基板と他方の前記熱電変換基板とを、互いの前記中央貫通孔を揃えて重ね合わす際には、
一方の前記熱電変換基板の前記中央シール部を、重ね合わされている他方の前記熱電変換基板の下面における前記中央貫通孔の周囲の部分に配置し、且つ、他方の前記熱電変換基板の前記中央シール部を、重ね合わされている一方の前記熱電変換基板の下面の前記中央貫通孔の周囲の部分に配置して、これらの中央シール部及び中央貫通孔によって延伸中央貫通孔を形成し、且つ、
一方の前記熱電変換基板の前記外周シール部を、重ね合わされている他方の前記熱電変換基板の下面の周縁の部分に配置し、且つ、他方の前記熱電変換基板の前記外周シール部を、重ね合わされている一方の前記熱電変換基板の下面の周縁の部分に配置する、請求項2に記載の熱電変換基板複合体の製造方法。
Around the central through hole on the upper surface of each of the two thermoelectric conversion substrates, a central seal portion that is interrupted at the position of the slit is formed,
On the periphery of the upper surface of each of the two thermoelectric conversion substrates, an outer peripheral seal portion that is interrupted at the position of the slit is formed,
When superposing one thermoelectric conversion substrate and the other thermoelectric conversion substrate with the center through-holes aligned with each other,
The central seal portion of one of the thermoelectric conversion substrates is disposed in a portion around the central through hole on the lower surface of the other thermoelectric conversion substrate that is overlaid, and the central seal of the other thermoelectric conversion substrate A portion is disposed in a portion around the central through hole on the lower surface of one of the thermoelectric conversion substrates that are overlaid, and an extended central through hole is formed by the central seal portion and the central through hole, and
The outer peripheral seal portion of one of the thermoelectric conversion substrates is disposed on the peripheral portion of the lower surface of the other thermoelectric conversion substrate that is overlaid, and the outer peripheral seal portion of the other thermoelectric conversion substrate is overlaid. The manufacturing method of the thermoelectric conversion board | substrate composite_body | complex of Claim 2 arrange | positioned in the peripheral part of the lower surface of the one said thermoelectric conversion board | substrate which is carrying out.
他方の前記熱電変換基板における上面の前記中央貫通孔の周囲には、前記スリットの位置で途切れる中央シール部を形成され、
一方の前記熱電変換基板における上面の周縁には、前記スリットの位置で途切れる外周シール部を形成されており、
一方の前記熱電変換基板と他方の前記熱電変換基板とを、互いの前記中央貫通孔を揃えて重ね合わす際には、
他方の前記熱電変換基板の前記中央シール部を、重ね合わされている一方の前記熱電変換基板の下面の前記中央貫通孔の周囲の部分に配置して、これらの中央シール部及び中央貫通孔によって延伸中央貫通孔を形成し、且つ、一方の前記熱電変換基板の前記外周シール部を、重ね合わされている他方の前記熱電変換基板の下面の周縁の部分に配置する、請求項2に記載の熱電変換基板複合体の製造方法。
Around the central through hole on the upper surface of the other thermoelectric conversion substrate is formed a central seal portion that is interrupted at the position of the slit,
On the periphery of the upper surface of one of the thermoelectric conversion substrates, an outer peripheral seal portion that is interrupted at the position of the slit is formed,
When superposing one thermoelectric conversion substrate and the other thermoelectric conversion substrate with the center through-holes aligned with each other,
The central seal portion of the other thermoelectric conversion substrate is arranged in a portion around the central through hole on the lower surface of one of the superimposed thermoelectric conversion substrates, and is stretched by the central seal portion and the central through hole. The thermoelectric conversion according to claim 2, wherein a central through hole is formed, and the outer peripheral seal portion of one of the thermoelectric conversion substrates is disposed at a peripheral portion of the lower surface of the other thermoelectric conversion substrate that is overlaid. A method for producing a substrate composite.
請求項3に記載の熱電変換複合基板を複数用いて熱電変換装置を製造する方法であって、
一の前記熱電変換基板複合体における一方の前記熱電変換基板の前記第1端面と、別の一の前記熱電変換基板複合体における一方の前記熱電変換基板の前記第2端面とを、これらの端面における前記第1電極と前記第2電極とを電気的に接続すると共に接合し、且つ、
前記一の熱電変換基板複合体における他方の前記熱電変換基板の前記第1端面と、前記別の一の熱電変換基板複合体における他方の前記熱電変換基板の前記第2端面とを、これらの端面における前記第1電極と前記第2電極とを電気的に接続すると共に接合し、且つ、
前記一の熱電変換基板複合体における一方の前記熱電変換基板の前記中央シール部及び他方の前記熱電変換基板の前記中央シール部を、重ね合わされている前記別の一の熱電変換基板複合体の下面の延伸中央貫通孔の周囲の部分と接合し、且つ、
前記一の熱電変換基板複合体における一方の前記熱電変換基板の前記外周シール部及び他方の前記熱電変換基板の前記外周シール部を、重ね合わされている前記別の一の熱電変換基板複合体の下面の周縁の部分と接合して、
複数の前記熱電変換基板複合体を、互いの前記延伸中央貫通孔を揃えて重ね合わす、熱電変換装置の製造方法。
A method of manufacturing a thermoelectric conversion device using a plurality of thermoelectric conversion composite substrates according to claim 3,
The first end surface of one of the thermoelectric conversion substrates in one thermoelectric conversion substrate composite and the second end surface of one of the thermoelectric conversion substrates in another thermoelectric conversion substrate composite, these end surfaces Electrically connecting and joining the first electrode and the second electrode in; and
The first end face of the other thermoelectric conversion board in the one thermoelectric conversion board composite and the second end face of the other thermoelectric conversion board in the another thermoelectric conversion board composite are these end faces. Electrically connecting and joining the first electrode and the second electrode in; and
The lower surface of the other one thermoelectric conversion substrate composite in which the central seal portion of one of the thermoelectric conversion substrates and the central seal portion of the other thermoelectric conversion substrate in the one thermoelectric conversion substrate composite are overlaid. And a portion around the extended central through hole of
The lower surface of the one other thermoelectric conversion substrate composite in which the outer peripheral seal portion of one of the thermoelectric conversion substrates and the outer peripheral seal portion of the other thermoelectric conversion substrate in the one thermoelectric conversion substrate composite are overlaid. Join to the peripheral part of
The manufacturing method of the thermoelectric conversion apparatus which aligns the said extending | stretching center through-hole mutually, and overlaps several said thermoelectric conversion board | substrate composite bodies.
請求項4に記載の熱電変換複合基板を複数用いて熱電変換装置を製造する方法であって、
一の前記熱電変換基板複合体における一方の前記熱電変換基板の前記第1端面と、別の一の前記熱電変換基板複合体における一方の前記熱電変換基板の前記第2端面とを、これらの端面における前記第1電極と前記第2電極とを電気的に接続すると共に接合し、且つ、
前記一の熱電変換基板複合体における他方の前記熱電変換基板の前記第1端面と、前記別の一の熱電変換基板複合体における他方の前記熱電変換基板の前記第2端面とを、これらの端面における前記第1電極と前記第2電極とを電気的に接続すると共に接合し、且つ、
前記一の熱電変換基板複合体における他方の前記熱電変換基板の前記中央シール部を、重ね合わされている前記別の一の熱電変換基板複合体の下面の延伸中央貫通孔の周囲の部分と接合し、且つ、
前記一の熱電変換基板複合体における一方の前記熱電変換基板の前記外周シール部を、重ね合わされている前記別の一の熱電変換基板複合体の下面の周縁の部分と接合して、
複数の前記熱電変換基板複合体を、互いの前記延伸中央貫通孔を揃えて重ね合わす、熱電変換装置の製造方法。
A method of manufacturing a thermoelectric conversion device using a plurality of thermoelectric conversion composite substrates according to claim 4,
The first end surface of one of the thermoelectric conversion substrates in one thermoelectric conversion substrate composite and the second end surface of one of the thermoelectric conversion substrates in another thermoelectric conversion substrate composite, these end surfaces Electrically connecting and joining the first electrode and the second electrode in; and
The first end face of the other thermoelectric conversion board in the one thermoelectric conversion board composite and the second end face of the other thermoelectric conversion board in the another thermoelectric conversion board composite are these end faces. Electrically connecting and joining the first electrode and the second electrode in; and
The center seal portion of the other thermoelectric conversion substrate in the one thermoelectric conversion substrate composite is joined to a portion around the extended central through hole on the lower surface of the another thermoelectric conversion substrate composite that is overlaid. ,and,
The outer peripheral seal portion of one of the thermoelectric conversion substrates in the one thermoelectric conversion substrate composite is joined to a peripheral portion of the lower surface of the another thermoelectric conversion substrate composite that is overlaid,
The manufacturing method of the thermoelectric conversion apparatus which aligns the said extending | stretching center through-hole mutually, and overlaps several said thermoelectric conversion board | substrate composite bodies.
JP2009286403A 2009-12-17 2009-12-17 Thermoelectric conversion device and manufacturing method thereof Expired - Fee Related JP5521529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286403A JP5521529B2 (en) 2009-12-17 2009-12-17 Thermoelectric conversion device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286403A JP5521529B2 (en) 2009-12-17 2009-12-17 Thermoelectric conversion device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011129686A true JP2011129686A (en) 2011-06-30
JP5521529B2 JP5521529B2 (en) 2014-06-18

Family

ID=44291970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286403A Expired - Fee Related JP5521529B2 (en) 2009-12-17 2009-12-17 Thermoelectric conversion device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5521529B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033114A (en) * 2012-08-03 2014-02-20 Fujitsu Ltd Thermoelectric conversion device and method for manufacturing the same
JP2014127598A (en) * 2012-12-26 2014-07-07 Fujitsu Ltd Actuator, cell substrate complex, manufacturing method of cell substrate complex and manufacturing method of actuator
DE102013222344B3 (en) * 2013-11-04 2015-04-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method of manufacturing a thermoelectric device and thermoelectric device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296077A (en) * 2005-04-08 2006-10-26 Kyoto Univ Thermoelectric generator and heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296077A (en) * 2005-04-08 2006-10-26 Kyoto Univ Thermoelectric generator and heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033114A (en) * 2012-08-03 2014-02-20 Fujitsu Ltd Thermoelectric conversion device and method for manufacturing the same
JP2014127598A (en) * 2012-12-26 2014-07-07 Fujitsu Ltd Actuator, cell substrate complex, manufacturing method of cell substrate complex and manufacturing method of actuator
DE102013222344B3 (en) * 2013-11-04 2015-04-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method of manufacturing a thermoelectric device and thermoelectric device

Also Published As

Publication number Publication date
JP5521529B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
US9871181B2 (en) Production method of thermoelectric converter, production method of electronic device equipped with thermoelectric converter, and thermoelectric converter
JP6583461B2 (en) Method for manufacturing thermoelectric conversion device
JP3219279B2 (en) Thermoelectric device
JP5987444B2 (en) Thermoelectric conversion device and manufacturing method thereof
JPH1056099A (en) Multilayer circuit board and manufacture thereof
TW201208020A (en) Package substrate having a passive element embedded therein and fabrication method thereof
JP5521529B2 (en) Thermoelectric conversion device and manufacturing method thereof
TW201206267A (en) Multilayer printed circuit board using flexible interconnect structure, and method of making same
JP2012142466A (en) Semiconductor device
JP2017208478A (en) Thermoelectric conversion module and thermoelectric conversion device
JP2012195423A (en) Manufacturing method of multilayer wiring board and multilayered antenna
CN104377187B (en) IC support plates, the semiconductor devices with the IC support plates and preparation method
JP5820915B2 (en) Manufacturing method of multilayer wiring board
JP5696449B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP7055113B2 (en) Thermoelectric module and its manufacturing method
JP2012230954A (en) Printed wiring board and printed wiring board manufacturing method
TW201428903A (en) Electronic device and method of manufacturing the same
JPWO2018034161A1 (en) Multilayer coil and manufacturing method thereof
CN108550531B (en) Method for manufacturing package substrate
TW201722224A (en) Printed circuit board and fabrication method thereof
JP2001156343A (en) Thermoelectric element and method of manufacturing the same
JP4690700B2 (en) Thermoelectric conversion device and method of manufacturing thermoelectric conversion device
JP2011181601A (en) Thermoelectric conversion device and method of manufacturing the same
JP4579855B2 (en) Electronic cooling module and method for manufacturing the same
JP2011233658A (en) Flow channel built-in substrate and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5521529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees